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Extevic Ilegpiinyn

[O1 prBlioypagikéc ovapopéc kalwms kor o1 ovapopés oe Zynuota koi Ilivakeg

roaporéumovy otny wAipn Teyvikn ExOeon n omoia axoiovbei]

EIZATQI'H
H mopovoa Teyvikr ‘Exbeon amotelel 1o lo Mapadotéo (I11) tov Epgvuvnrikov
[Ipoypappatog pe titho:
OAAHZ-EMII (M1 S 380043)
I[potétvne Xyeowaopnoc Badpov I'epupov og Pevotomromopo ‘Eda@og pe
®vowkn Lewopiki] Movoon
ue Xvvroviot (Epguvntikd Yrevbuvo) tov I'edpyro Mrovkofdio Kabnyntiy EMII.

JVYKEKPIUEVO, TAPOLGIALovTal T amoTeAéSHATO TS Apdong A2, n omoia amocKoTEl
omnv:
"Avorroén loyiouixod yia v opiBuntixn ovaloon e cVLEVYUEVHS ATOKPIoHS
Babpov - Ocucliowons - Pevotomoinuévov Edapouvg”.

Yty mapovoa Teyvikn ‘ExbBeon, emovvantetal emimiéov to 20 Mapadotéo (I2) tov
EPELVNTIKOD TPOYPAULUOTOS, TO OTOI0 GLVIGTATOL GTHV VLTO-PoVTive. (o€ YADOGO
npoypappatiopod C++) m omoilo eivol omoapaitntn Yoo TV €QOPUOY NG VEOG

apOunTikng pebodoroyiag, pe tnv Mn I'pappikr) MéBodo [enepacuévov Aapopav.

IXTOPIKO
H mototikd kot mocotikd akpiPrg mPOGOUOIMOT TNG CUUTEPLPOPAS EMPUVELLKDV
BepeMdoewv Vo KAOEGTMOG PEVOTOMOINGNG OMOUTEL TNV TPOYUATOTOINCT TANPMG
oLEVYUEVOV AVOADCEDV EVEPYDY TACEWV KOl PONG TOV VEPOD TMV TOP®V, LE YPNON
eVOG KOTAOTOTIKOD TPOCOUOIDUOTOS IKOVOD VO TPOPAEYEL T1 GLUTEPLPOPA CUUDV
VIO LOVOTOVIKT KO OVOKVKALKY @Option. To mpocopoiopa mov viobetdnke yo to
oKOTO OVTO, GTO TOPOV EPELVNTIKO TPOYPOLO, VUL TO TPOCGOUOIMUO OPLOKNG
emeavelog mov wpotddnke amd tovg Papadimitriou et al. (1999, 2001, 200@)wc

avto tporomonke amd tovg Andrianopoulos (2010a,b).
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To ev MOy mpooopoiopo Paciletor ot Bempio YEVIKELUEVIS TAACTIKOTNTOS, EVOD
OlBETEL UNOEVIKT] EAOGTIKT TTEPLOYN, LE OMOTELEGLO Ol TOPOULOPPMOCELS VO EIval G
KGOe Prpo EAUCTOTAACTIKEG. XE O,TL APOPA OTIG EAUCTIKEG TAPUUOPPADCELS, OPYLKE
vroAoyileton T0 pEYIGTO EAOOTIKO UETPO ddtunong Gmax CSOUQOVE TOV TOTO TOV
Hardin (1978),ka1 otn ouvéyeto, bIToAoYILETOL TO OMOUEIOUEVO EPAUTTOUEVIKO UETPO
dtbdtunong G, ovpgova pe 1o votepnTikd Tpocopoioua Ramberg-Osgood (1943
YPON TOL €V AOY® TPOGOUOUDUOTOS EMTPENEL TNV OKPPY TPOGOUOI®ON NG
ATTOLEIMONG TOL HETPOV SUTUNONS KOl TNG aVENONG TG VOTEPNTIKNG amdoPeong pe
mv avéavopevn emPBAAAOUEVT] AVOKVKAIKY StoTunTikn mapoudpewon (m.y. Vucetic
& Dobry, 1991, Ishibashi & Zhang, 1993H mpokdmtovco pHOPEN NG GYEONMC
SWTUNTIKOV  TACEWMV — OSWTUNTIKOV TOPAULOPOOCE®Y, Kol TNG  OvTIGTOWYMNG
OTTOLEIMONG TOL EPATTOUEVTIKOD HETPOL OATUNONG, TOPOLGLAloVTaL GTO XyNHOTO

2.1k 2.2tg miqpovg Teyvikng ExBeong mov akoAovbet.

g 0,TL aQOpPl GTIC TAUGTIKEG TOPAUOPPDOGELS, TO LETPO mAaoTikoOTnTag Ky diveton
GLUVOPTNCEL TNG OTOGTOCNG TNG TPEYOVGOS EVTATIKNG KATAGTOONS I, GTO YDPO TOV
ATOKAIVOUOGHV Tace®V, and eva cvluyéc onueio '’ nveo oc plo emedvelo mov
ovopaletor oplokn emipaveo. I'io ™ d1evbuvon TV TAUCTIKOV TOPALOPPOCE®Y, 01
SITUNTIKEG  TOPAPOPPOGES  aKoAovBoOv  cvlevypévo VvOHOC pong, &ved Ol
OYKOUETPIKEG  TOPOUOPPAOCEL; LRTOAOYILOVTOL GUVOPTAGEL TNG AmOCTOCNG TOL
TPEXOVTOG TAGIKOD onpeiov omd pia devutepn emMEAVELD, TOV OVOUALETOL EMPAVELL
dwotoAkdtTag. TOGO N oploKkY| EMPAVELN, OCO KO 1) EMLPAVELD SLOGTOAIKOTNTOG
opiCovtar cvvaptnoet g TopauéTpov katdotaons v (Been & Jefferies, 19850t
plog tpitng emupdvelag, mov ovopdletor em@dveld Kpiociung Katdotaons. Me tov
TPOTO OVTO, EVOOUATOVTETOL 6T0 mpocopoiopa 1 Oewpia Kpioyng Katdotaong
(Schofield & Wroth, 1968)mov enttpénel TV TPOGOUOI®GT TNG GLUTEPLPOPAS
£00PMOV UE OLOPOPETIKY OpYIKN Kotdotaor (Slopopetiky péon evepyd thom kot

OYETIKN TUKVONTO), YPNOUOTOIDVTOS TG 016G TAPAUETPOVG.

H popen tov tpldv enQavel®V TOL TPOCOUOIMUNTOS GTO YDPO TOV TPLIEOVIKMV
Toe®V P’-g Kol 6TO EMIMESO T TOL AOYOV ATOKAIVOLGAOV TACEWYV, TOPOVGLALETOL GTA
Yyuato 2.3 ko 2.5. Xto Zynuo 2.5 mapovoialetor eniong o vouog mpoPoAng g
TPEYOVCOG EVTATIKNG Katdotaong I, 610 ovluyég ompueio " mive GTNV O0pLoKN
emoavea. Onwg @aivetar 6to oynuo, o vopog mpoPoing opiletoar cuvapTioEL NG

EVTATIKNG KATAGTOONG r-R oTNV TEAELTOO AVTIGTPOPT] POPTIONG.
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Téhog, oto mhootikd pétpo Kp eiodyetar, pécwm evog epmelptkod cvvieleoth by, m
emidopaon ¢ e€EMENG T doung Tov £daPkov otoryeiov. H Bemdpnon avtr emttpénel
™mv okpn Tpocopoimon Tov PLOUOL avENONG TOV VAEPTECEWV TOPWV, OCE

OVOKVKAIKT QOPTIOT|, HEXPL TN PEVCTOTOINOT).

APIOGMHTIKH MEGOAOAOTI'TA
To oavotépo KoTACTOTIKO TPOcOUOipa &ixe evoopatmbel o©TOV  KOOKO
[Memepacpévav Awgopodv FLAC ond tovg Andrianopoulos et al (2010a,b),
¥pNoonotwvtag ™ yhAwooa mpoypappaticpod FISH. To FLAC gpapudlel pio pn-
memAeypévn oladikacio emiAvong, n omoia cvvoyiletar oto Zynuoa 2.6. ITopd ™
dvvatotro tov FLAC v v mpaypatonoinon mANp®G cLELYHEVOV SLVOLLK®V
AVOADGE®MV  EVEPYMV TACE®V HE PO TOL VYPOL TOV TOP®V, M YPNON TNG
EVOOUATOUEVG  YA®ooag mpoypappaticpod FISH  ocvverdyeton  vrepPfoiikd
aLENUEVO VTTOAOYIOTIKO KOGTOC, LLE OTOTELEGOL 1) EPUPUOYT TNG EV AOY® OP1OUNTIKNG
puebodoroylag o€ TPELG OOTAGES VO €lvOl TPAKTIKAOG adbvatn. AgdopEVNG TG
TPIGOACTOONG QUONG TG CULUTEPLPOPAS EMPAVEIONK®OV Oegpelmoewy  PBaOpmv
YEQUPOV  EML  PELOTOMOMGIHLOL  €0GPOVG, O OAYOPIOUOC OAOKANPMOONG TOL
KOTOGTATIKOD TPOGOUOIMUOTOS ETOVOTPOYPOUUOATIOTNKE, 0TO TAAIGIOL TOL TOPAHVTOG
EPELVNTIKOD TPOYPAUUOTOS, XPNOILOTOIOVTAS TN YA®ooo C++, pe omotéleopo
LEI®GN TOL ¥POVOL TOV avoldoemv o€ Tepinov 1/3 tov apyuov ypovov. Ev cuveyeia,
TPOyUATOTOmONKE PEATIOTOTOINGN TOV KAOJIKA, TEPAUTEP® UEUDVOVING TO YPOVO
avéivong koatd 10%. Znpovtikd poAo oe avt) ™ dwdkacio elye n Pertiotomoinon
TOL oAyopiBuov E€POPUOYNS TOV VOUOL TPOPOAC TOL TPOGOUOIDMUNTOS KOl
TPOGIOPIGHoD Tov cLluyolg onueiov oty oplakn empdavela. TELog, o alydpOuog

emeKTdONKE OTIC TPEIS O100TAGELS KOl evompatdbnke otov Kadika FLAC3D.

[dwitepa onpavtiky, yu Tov KaBopiopd Tov TEAMKOL ¥POVOL OvVOADGE®Y, NTOV 1M
eMAOYN TG HEBOOOV OAOKANPMONG TOV KATACTATIKOV oYécemVv. ['a T0 oKond avto,
eetdotnioy TPEIS SLOPOPETIKOL AAYOPIOLOL OAOKANP®ONG, KOl CUYKEKPLULEVO 1] OTTAN
ohokApwon Euler, n tpomomomuévn ohoxkApwon Euler kot n tpomomomuévn
ohokAnpwon Euler pe avtépotn vrodwaipeon tov Pripatog oAokAnpmong Kat EAYY0
o@diuatog, mov mpotabnke amd tovg Sloan et al (2001)0t avotépw alydpiBuot

oAOKAN PG Tapovstdloviat Ypapikd oto Xynpota 2.9émg 2.11.
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IMa v a&oroynon tov peBddmv aT®OV, KATUCKELAGTNKAVY, Y10 TPLOEOVIKY GOPTION
KO Y10, AtAT] SIOTUNOT|, Ol IGOKAUTOAEG COAALOTOC TTOV TOPOLGLALOVTOL GTO XY LOTOL
3.1 xar 3.2, avtiotoyya. [Mapatnpndnke 6t n tpomomomuévn olokAnpwon Euler pe
aLTOHOTN VTOJIPEST TOL PUATOG OAOKANPWOONG Kol EAEYYO COAUALOTOC, EMTPEMEL
™V akpiPr] OLOKANP®ON TOV KOTACTATIKOV GYECEWMV, OKOUN KOl Yio HeyOAa PApata
emPoriropevov moapapopemdcemy. Ilapdia ovtd, olamot®dnke OTL Yo UIKPEG
eMPAALOLEVES TAPOUOPPADCELS, IKOVOTOMTIKNY aKpifeto pumopel va emtevydel axdpa
Kou pe omdn olokAnpwomn Euler. Telkd, viobetnOnke éva oOvOeto oynua
OAOKANP®OMNG, OV XPNOLUOTOLEL oAy oAokANpwon Eulerywa pikpéc emPariopeveg
TOPOLOPPAOCELS, EVAD VIO UEYOAVTEPEG TOPAUOPPADOGCEIS EMTPEMEL TNV CLTOLOTN
emoyn petald g aming olokAnpwong Euler kot tov avtdépatov adyopifuov tmv
Sloan et al, cuvaptioel ™G TOMIKNG HN-YPOLMKOTNTAS TNG OYXEONG TACEDV

TOPOALOPPOGEDV.

IMa v a&odlodynon tov emieypévouv aiyopiBpov oAoKAP®oNG, EEETAGTNKE 1) TUGIKT
6dgvom tov Zynuatog 3.5. Ta anoteAéGHOTO TOL TPOEKVYAV LE TNV EPAPLOYYT| TOV
Jpopov  peBddmV  OhoKANP®ONG, Yo SpOpETIKA  Prjpata  emPBoAAOUEVOV
TOPOLOPPAOCEWV, Topovctalovtal ota Zynuato 3.6 ko 3.7.Xto Xynuata 3.8 ko 3.9
TOPOVCIALETOL TO OYETIKO OQAAUN omd TNV €QAPUOYn ToL kABe aAyoplOpov
OAOKANPMOOTNG, EVD Ol OVTIGTOLYOl OOLTOVUEVOL VITOAOYIGTIKOL Ypdvol cuvoyilovat
otov Ilivaxa 3.3. Onwg @aivetor oTovV Mvoko ovTd, 1 U1 EQOPUOYN EAEYYOL
OQAALOTOC KOl OLTOMATNG VTOOOMPESNG TOL PHUOTOG, EMITPEMEL TN ONUOVTIKY
peiwon tov ¥pOVOL avAaALoNG, OAAG 00NYeEl G€ OMUOVTIKO GQAAUW, €01KE oIV
TEPITTOON UEYOA®V EMPOAALOUEVOV TAPAUOPPADCENDY, KOl KUPIMG OTIC TEPLOYES
EVTOVOL UN-YPOUUIKNAG GUUTEPIPOPAS, OTAV 1 EVTATIKN Kotdotoon TANcdlel v
emodveln kpioywng xoatdotaons. Ilapdia avtd, o mpotewduevog orydpOpog
EMTPEMEL TNV OVTOUOTY] ETAOYN TOL OCYNUATOS OAOKANP®OONG ovAAOyd HE TO
emPaAlopevo Prpo TopopuOPE®ONG KOl HE TNV TOMIKN UN-YPOUUIKOTNTO, WE
QTOTEAECLO, VO TTOPEYEL IKOVOTIOINTIKY OKpiPela, EmTuyydvovtog TapdAAnio peimon

TOV VTOAOYIGTIKOV ¥pOvoL £m¢ Kot katd 90%.

BAOGMONOMHXH & AEIOAOI'HXH
Ot TOpAUETPOL TOL KOTOGTATIKOD TPOCOUOUDUATOS Tov vioBethOnke oto mapdv
EPEVVITIKO TPOYPOLUL, TPOSUPUOGTNKOV 0T cvumepipopd g dupov Nevada,mg

omoiag To QLOIKA YopaxTnPoTikd ovvoyiloviow otov Ilivaxa 3.4, evd 1
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KOKKOUETPIKN ¢ OwPabuion mapovoidletar oto Zymua 3.10. Ov emieyuéveg
nmopduetpor cvvoyilovtar otov Ilivaka 3.5. Ot mpoPAéyelc tov KATOGTOTIKOD
TPOCOUOIDIOTOS CLYKPIVOVTOL HE TO OVTIGTOUYO. TEPOLATIKE OTOTEAECUOTO OTO
muota 3.11 éwg 3.20, oe 6povg HEYIOTOL HETPOVL SLUTUNGONG, OMOUEIDMONG TOV
pétpov Odtunong kot ovEnong e 1E®oovg omdoPeonc pe tOo  €OPOG  TNG
EMPOALOUEVNG  OVOKVKAMKNG  OLOTUNTIKNG  TOPAUOPP®ONS, PLOUOD  avaTTuENG
VIEPTECEDV TOP®V, KOl KOUTVADV PELGTOTOINGCNG, YO0 OPOPETIKE EMimEdL

eMPAALOLEVNG LEGC TAOMG, KO OLOPOPETIKES GYETIKEG TUKVOTNTEG.

[Tépav g a&loAdynong Tov TPoPAEYEMY TOL KATAGTATIKOD TPOGOUOIMUOTOS EVOVTL
EPYOUOTNPLOKDOV OOKIUMV E60POUNYOVIKIG, N axpifela g apBuntikng pebodoroyiog
emoAnOevnke kol oe eminedo TPOPANUATOS GLVOPLIKAOV GLVONKAOV, HECH TNG
TPOCOUOIMONG TOL TEPAUATOG PLYOKEVIPIOT #12, ToV €pgLVNTIKOD TPOYPAULATOS
VELACS (Arulmoli et al., 1992, Arulanandan & Scott994). To cvykekpiuévo
meipopo €yl GUECT OYECN UE TO OVTIKEIUEVO TOL TOPOVIOG EPELVITIKOV
TPOYPAUUOTOS, KON apopd GTN GEIGUIKY CUUTEPLPOPE EMPAVELNKNG OepeMmong,
eopalopevng emt  peLOTOMOMOIUOV  €0GQOVE, TOL  OMOIOL  VEEPKELTOL UM
PEVOTOTOMCIUN  EMEOAVEIOKT oTtpdon. H ddtan tov e&v AOY® TEPAUOTOS
QLYOKEVTPIOTH Topovctdletoan oto Zynuo 3.21, eved ta avtioToyo OmOTEAEGLOTO
napovctaloviot oto Zynuato 3.22£€w¢ 3.24,6¢ 6povS YPOVOIGTOPIDV EMTAYVVOEMV,

AOY@V VIEPTIEGEMV TOP®V Kot SLVOUIKOV KoOlnoemv Tov Bepeliov.

Mo v emoinBevon g axpifelag tov alyopiBuov oe VO Kol TPELS OLOCTAGELS
TPAYLLATOTOMONKOV TPELS SOPOPETIKEG AVAAVCELS. Apykd €ywve avdivorn ce 600
dwotdoelg, pe tov kadwka FLAC, ot cvvéyelo mpaypatomombnke pion 1codvvapun
avdAivon eninedng mapapdpemong pe tov kadika FLAC3D kat téhog Tpocopotdonke
T0 TANPES TPLodidoTato TpoPAnua pe tov kddwa FLAC3D. Ot avtictotyot kévvafot
MEMEPACUEVOV O1APOPOV OV BemprOnkav mapovsialovror ota Zynuota 3.25 £mg
3.27, evéd ot avtiotoyeg aplOunTikéc mPoPAEYELS CLYKPIVOVTOL LLE TO TEPOUATIKA
amotedéopato ota Zynuota 3.29 éwg 3.31.0nwg eaivetor ota v Ady® oynuata, M
avartuyfeico apOuntik pebodoroyio emirpémer v akpiPn mTpocsouoiwon NG
OLUTEPLPOPES  EMPOVEINK®OV BepeMdoewy VIO Kabeot®dG pevotomoinong, e

IKOVOTIOUNTIKT] TTOLOTIKN KO TOGOTIKT okpPiBeLaL.
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Chapter 1. Introduction

Chapter

Introduction

This Technical Report constitut€snal Deliverable 1 of the Research Project with
title:

THALIS-NTUA (MIS 380043)

Innovative Design of Bridge Piers on Liquefiable Stg with the use of Natural

Seismic Isolation

performed under the general coordination of PraiesSeorge Bouckovalas

(Scientific Responsible).

Namely, it presents the actions taken and the agsdcresults ofVork Package
WP2, which aims at:

"Software development for the numerical analysisooipled bridge pier-foundation-

liquefied ground respon%e

Attached to this Report ifinal Deliverable D2 of the aforementioned Research
Project, which includes the subroutine (in prograngrianguage C++) required for
the application of the constitutive soil model deped herein to numerical (Finite

Element and Finite Difference) computation algarith

The Scope of Work Package WP2has been described in the approved Research
Proposal as follows:

"The numerical analyses of liquefied ground resgomsll be performed with an
advanced computer software that has been develaptte Foundation Engineering
laboratory of NTUA during long time research spaesbby OSDP (1994-1996),
NTUA (1996-1999 & 2002-2004) and GSRT (2004-200fis software combines the
non linear, dynamic Finite Difference analysis negetlwith a new constitutive model



Chapter 1. Introduction

for liquefiable soils which is implemented to the commercial codes FLAC and FLAC
3D (Itasca, 2006) using the UDM (User Defined Model) option of these codes.

To comply with the project requirements, the aforementioned software will have to be
upgraded as described below:

(a) The accuracy of computations will be improved for problems where excess pore
pressure dissipation and soil consolidation takes place concurrently with seismic
shaking. In addition, the numerical integration algorithm of the constitutive model
will be optimized with respect to the required computational effort so that the
parametric investigation of actual 3D boundary value problems, such as the one

treated herein, can be performed in reasonable time.

(b) The constitutive model parameters will be calibrated against results from
conventional geotechnical investigations in order to promote the application of the

new model in practice by experienced but not necessarily expert users.

(c) The upgraded software that will be used for the numerical analysis of liquefied
ground response will be verified against experimental results from two (2) relevant
centrifuge tests performed during the well known VELACS research prdjaainQli

et al., 1992, Prevost et al 1994, Manzari & Arulanandan 1994): (a) seismic response
of horizontally layered, liquefiable ground, and (b) seismic response of a square

footing on liquefiable ground covered by a silty crust.”

Work Tasks (a), (b) and (c) above have been successfully executed, as described in
the following Chapters. In addition, a CD has been prepared, and attached at the end
of the report, with the electronic version of the constitutive model in C++, a detailed
Users' Manual for its calibration and implementation to the Finite Difference codes
FLAC (version 5) and FLAC 3D (version 4), as well as sample input files for typical

analyses of liquefied ground response.
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Chapter

Numerical methodology:
Background & new developments

2.1. General

The qualitatively and quantitatively accurate nuoc@rsimulation of the seismic
behavior of shallow foundations in a liquefiablginee would not be possible with
the simple constitutive models (i.e. Mohr-CoulorRimn) which are offered by most
commercial finite element and finite difference esdtoday. However, these
commercial codes provide useful features, suchhasability to perform coupled
dynamic effective stress analysis with groundwaflaw, discretization into
complicated meshes and use of structural elembatsi(s, shells and cables) together
with a user-friendly application environment. Ferimore, many of them also allow
the implementation of user-defined models. Theeefdhe most efficient way to
perform such a rigorous numerical analysis is tplement a constitutive model,
capable of predicting accurately the basic aspefcts/clic response of sands under
variable cyclic shear strain amplitudes, into ohée currently available commercial

codes.

The constitutive model selected in this work, is timne proposed by Papadimitriou et
al. (1999, 2001, 2002), as it was consequently fisatby Andrianopoulos (2010a,b).

This model provides the following advantages:

. The incorporation of the Critical State theory dfilSMechanics (CSSM)
(Schofield & Wroth, 1968) and the association ofahbehavior to the state
parameteny (Been & Jefferies, 1985), which allows the simiolatof the
effect of initial state (relative density and mesffective stress) with a single

set of model parameters.
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The Ramberg-Osgood formulation adopted for elastain increments, which
can simulate the non-linear hysteretic behaviousafds (decrease of shear
modulus and increase of hysteretic damping withreiasing cyclic shear

strain), at low strain levels.

The introduction of an empirical coefficient, whicjuantifies the effect of
fabric evolution during shearing and thus allows #tcurate modeling of the
excess pore pressure buildup rate, towards ligtiefac

The vanished elastic region, a modification intraeih by Andrianopoulos
(2010a,b) to the original model by Papadimitrioale{2001), which increases
the efficiency of the integration scheme, sinceeliminates the iterative
procedures required to estimate the crossing muirthe yield surface and to

ensure the consistency condition.

This constitutive model has been successfully imgleted into the Finite Difference

Code FLAC by Andrianopoulos (2010a,b). The same prder program, together

with its 3D version, namely FLAC3D is also useddner The selection of the specific

computer code was based on the following criteria:

FLAC uses an explicit integration scheme, which esaik more efficient and

robust for modeling highly nonlinear problems (Fnah and Burd, 1997).

FLAC allows the performance of fully coupled growader flow and dynamic

analysis.

Many special features, such as grid adjustmenittanfy shape and use of

structural and interface elements, are containdlddarcode.

Most importantly, FLAC allows the implementation oéw, user-defined
constitutive models (UDMs), written in C++ and cdhag as dynamic link
libraries (DLLS) that can be loaded when neededhWlight modifications, a
UDM compiled for FLAC, may be also used in FLAC3D.

The currently available version of FLAC3D incorpmsa parallel processing
feature, which improves the code’s efficiency by fimes. UDMs compiled
with C++ integrate with this feature, without arpesial modifications.

Initially, the implementation of the constitutiveonel by Andrianopoulos (2006), was

achieved using the built-in programming languag&Hr|l Extensive verification
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through comparison of the enhanced code’s predistio the experimental results of
three different centrifuge tests from the VELACS®jpct (Arulanandan et al., 1994),
proved the model's qualitative and quantitative uaacy in the analysis of soil
liquefaction problems. However, the high computagiocost of these analyses made
the algorithm’s extension to rigorous 3-dimensioaaalyses practically impossible.

Therefore, as part of this Thesis:

. The UDM was rewritten in C++ and compiled as a Diile, reducing the

analysis time to about 1/3.

. Optimization of the new code resulted in an adddioreduction in analysis
time, of the order of 10%.

. Function profiling of the C++ code showed that #igorithm adopted by
Andrianopoulos (2006) with regard to the model’ppiag rule was very time
consuming. Therefore, this algorithm was simplifiedthout altering the

model’s accuracy.

. Less accurate, but simpler and time efficient irdégn schemes were tested
and evaluated in both element level (using isoarraps) and boundary value
problems (performing a benchmark analysis), in otdelraw conclusions for

their range of application.

. An automatic algorithm was developed, that switclhetween different
integration schemes, based on the local non-lityeari the stress-strain

relationship.

In the rest of this Chapter, a thorough presemai® provided for the finally
implemented constitutive model, the finite diffecencodes FLAC and FLAC3D, as
well as the adopted integration scheme, with emphgson the modifications which

were applied to enhance the efficiency of the nirakalgorithm.
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2.2. Constitutive model description

The numerical methodology presented herein usegdhstitutive model originally

proposed by Papadimitriou et al. (1999, 2001, 20883 consequently modified by
Andrianopoulos (2006). The model is built on thengmal framework of

elastoplasticity. It was originally developed irettriaxial space (p,q) (Papadimitriou
et al., 2001), though the following presentationcuges on its multiaxial

generalization (Papadimitriou et al, 2001, Andrigmalos, 2006), which will be also
used for the implementation to the finite differermmdes FLAC and FLAC3D.

Following the elastoplasticity formulation, theests increment; is computed for

any given strain incremeny;, using the elastoplastic tangent moduGijg:
Gy = Cuekpl & (2.1)
The elastoplastic modulus is a fourth order tensor:

C?mn Rmn L Ce
Cii =G —— - (2.2)
Ko +LiCi Ry

Cj. the elastic stiffness modulus
R the perpendicular to the plastic potential surfadhe stress space
L. the perpendicular to the yield surface in thesstrspace
K the plastic hardening modulus
The expressions adopted for the above moduli ansbts will be presented in the
following paragraphs.

In Soil Mechanics, it is common practice to decosgstresses into an isotropie)(
and a deviatoric §) component. This deconvolution is also used in tiedel

presented herein, and the corresponding stressarens are defined as:

oy =§ + W (2.3)
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(e}
wherep=—& |
P 3

Of importance is also the deviatoric stress ratioich is defined as:

Si

ij
Accordingly, strains may be also decomposed tomeluic (¢,,,) and deviatoric ¢, )
as follows:

_ e
g =6t

oy (2.5)

whereeg, , =€, .

2.2.1.Elastic moduli

As previously mentioned, Andrianopoulos (2006) nfiedi the original model by
Papadimitriou et al. (2001), by incorporating a igaed yield surface. This
modification eliminates the iterative proceduresioWhare required in order to
estimate the crossing point on the yield surfaak ersure the consistency condition,
thus increasing the efficiency of the integratidgoathm. The absence of a purely
elastic region does not imply that strain increraetd not have an elastic part. On the
contrary, the deconvolution of strain increments$oiran elastic and a plastic
component continues to apply, so that the plastoponent is always present, even

for small strain amplitudes.

The elastic moduli used herein follow a hypo-eafrmulation, based on the well-
established one-dimensional hysteretic model by Btaghand Osgood (1943). This

formulation allows the smooth decrease of the tatigeshear moduluss, from its

maximum valueG__ , and the consequent smooth increase of viscoupidgmwith

increasing shear strain amplitude (e.g. Vucetic &y, 1991, Ishibashi & Zhang,
1993).

According to isotropic elasticity, the elastic ftdss coefficient is given from
Equation (2.6):

-10 -
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e _ 2v
Cijkl = G& (5”( 81| +§| @k +1_2V€] §| j (2.6)

wherev is the Poisson’s ratio, which is assumed to bestzan.

The maximum shear modul&s, _, is given from the well-established Hardin (1978)

formula:
Gmax:L P 2.7)
0.3+ 0.7¢\ p
where:
B model parameter
e void ratio
p isotropic stress

P, atmospheric pressure 98.1kPa)

It must be stressed out that the value of paramigteliffers for monotonic and for
cyclic loading. This is due to the fact that thestitutive model presented herein does

not predict plastic behavior when the deviatorieest ratior; remains constant.
Therefore, for loading with constant, such as in one-dimensional consolidation, the
value of parameteB must be adjusted to a small& , value, corresponding to
larger strain amplitudes.

The tangent shear modulus, used in Equation (2.6), is related to the maximum

shear moduluss,, as:

G
G, = me% (2.8)

where T is a positive scalak () defined in Equation (2.9), which is used to espre

the reduction of the elastic shear modulus takiaggyas the current deviatoric stress

ratio r; diverts from a reference ratig)ef. The expression of is different for initial

shearing & LR ) and subsequent load reversad R).

-11 -
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A
A

In the above equatiorX is a scalar quantifying the variation of the cuotreeviatoric

(2.9)

ref

stress ratior; from the reference ratig;” . The latter is defined as the deviatoric

stress ratio corresponding to the point of loacersal, while for the first shearing, it
is the initial stress ratio.

X :\/%(rij _rijref)(ﬁj _Eref) (210)

Variable n, is defined as:

GLR
n = ai( p[”é‘xjvl (2.11)
where:

G the maximum shear modulus at last load reversal

max

LR

p the isotropic stress at last load reversal

a,,y, model parameters

To provide insight to the above formulation, oneynassume pure shearing-y
conditions, so thatxX :(r—rmf )/po. The elastic stress-strain relationship resulting

from the specified formula in this simple casejépicted in Figure 2.1. The variation
of the secant shear modulus, normalized with theimmam shear modulus, is shown
in Figure 2.2, as a function of the shear straipléodey. As shown in both Figures,
a, is the ratio of the secant shear modulus to theirmeam shear modulus, for the
characteristic shear strain valyg. More specifically, model parametey quantifies

the non-linearity for small strain amplitudes, wheplastic strains are minor. A

decrease of, leads to increased non-linearity, while fr= 1 the behavior is linear.

On the other hand, model parametemay be interpreted as a threshold shear strain

-12 -
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beyond which any further degradation to the ovesdlffness is due to the

development of plastic strain.

20
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10

|
|
|
|
Ny * Po |
i
|
|
|

T (kPa)

n
FTTTTTTTT

0.02 0.04 0.06

—_
(=)
o - - — —
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Figure 2.1. Exemplary pure shear stress-strain relation acogrith the Ramberg-
Osgood formulation: shear reversal and effec,of

Yype 2.1, Tomkn oxéon SLTpUTIKNG TAOTG-TOPALOPPOCS COUPMVA LE TO VOLO
Ramberg-Osgoodivtiotpopn ¢opTiong kot £TidpacT TV &,.

-13-
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G [ Gy ax
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Y (%)

Figure 2.2. Exemplary shear modulus degradation with increasihgar strain,
according to the Ramberg-Osgood formulation: eftéct, .

Yympo 2.2.  Tomkn oyéon amoueiwong Ttov HETPOL OdTnuUNon He avEavOUEVN
datuntikny mopopudpewon, copemve pe to vopo Ramberg-Osgood:
emidpaocn tov 7, .

2.2.2.Plastic moduli

According to the framework of classical elastoptatst, the following functions need
to be defined, in order to have a complete sebosttutive relations:

J An expression for the yield surfade(cij,qn)=0, where g, represent the

model’s internal variables.

. The gradient of the plastic potential surfaRe =dg(c; ,q )/ a5 , which is
multiplied by the loading indexA to define the plastic strain increment
&, =(A)R;.

. A rate equatior, =(A)T, which is necessary in order to define the evoiutio

of the model’s internal variables.

Combining the above functions with the kinematicabsumption for the

decomposition of total strain into elastic and ptapartsé; = &7 +§”, the consistency

-14 -
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condition f =f =0 and the elasticity equatiot = C &, yields Equation (2.2) for

the elastoplastic modulu§yy . However, as shown in Equation (2.2), in geneealiz

plasticity, it suffices to define the gradientd =df(o;,q,)/do; and

. of (Gij’qn )_
R, =dg(c; ,q)/ d; , as well as the plastic modulus, e O In the
constitutive model used hereib, andR; are defined as:
of \Y Nyt
og D

whereV andD are scalar variables, arnq is a unit vector, which will be defined in

the following paragraphs. It should be stressetl tha —V , implying that the model

incorporates a non-associated flow rule.

2.2.3.Model surfaces

The adopted constitutive model belongs to the famfl bounding surface models,
where the plasticity equations are defined with diee of two surfaces in the stress
space, namely the Bounding Surface and the DilgtaBarface. In order to

incorporate the Critical State Theory of Soil Metiga, the state parameter (Been

& Jefferies, 1985) is used to correlate the above third surface, namely the Critical
State Surface. All three surfaces have the shapecohe, with their apex at the origin

of the stress space.

o 1 .
In the triaxial stress spaqe = 5(011+ 26'y,), g =0}, — 0%, the surfaces are defined as

shown in Figure 2.3, using the deviatoric stres®msaVl_ for compression and,

for extension. More specificallyM¢, M° and M¢ are used for the critical state
surface, the bounding surface and the dilatancyaseyr respectively, for triaxial

compression, while, for triaxial extension, thepedtive stress ratios aM¢, M? and

MY,

-15-
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deviatoric stress q

mean effective stress p'

Figure 2.3. Projection of model surfaces on the triaxial frggace p’-q.

Yyqpa 2.3.  TIpoPol TOV EMPAVELOV TOL TPOCOUOIMUONTOS GTOV YMOPO TMV
Tproéovikmv tdoewv P’-qd.

The full description of the conical shape of thefates in the multiaxial stress space,
requires the definition of the surfaces’ shape loa7-plane, i.e. the plane in the

r.r,,r; space which is perpendicular to the hydrostatis & =r,=r,). The Lode

angle 6, defined in Equation (2.14), is used for this msg (Figures 2.4 and 2.5).

-16 -
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Figure 2.4. Projection of model surfaces on thplane — Mapping rule adopted by
Papadimitriou et al (2002).

Yympo 2.4, TIpofoin TV ETIQAVELDY TOV TPOCOUOUDUATOS GTO EMMEOO T — NOHOG
npoPoing cvugpwva pe Papadimitriou et al (2002).

Figure 2.5. Projection of model surfaces on th@lane — Mapping rule adopted by
Andrianopoulos (2006).

Yyqpa 2.5.  TIpoPoin TV EMPAVEIDY TOV TPOGOUOIDUATOG GTO EMINEdO T — NOHOG
npofoing couemwvo pe Andrianopoulos (2006).

-17 -
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Namely, this angle corresponds to the directiorthef deviatoric stress ratig and

ranges between 0° and 60°, where 0° correspondsatoal compression and 60°

corresponds to triaxial extension. Intermediatei@slrefer to non-triaxial loading.

3313
I)=""-—""2 2.14
cos( ) > J272 (2.14)
where:
J, :%( h5) the second invariant of

J, = %( G55 ) the third invariant of;

Incorporating the effect of the Lode angle, the egalty non-circular shape of the

model surfaces on theplane is given by Equation (2.15):

M; =g (6,c°) M¢ (2.15)
where:
MC
c=—2 2.16
c M (2.16)
2c +¢ ¢
0,cC )= - K} 2.17
g( ) 1+¢ 1-¢ { 2 2 cos )} @17
2~ o o)

As described in the above, both the Bounding anat&ncy Surfaces are correlated to

the Critical State Surface, through the criticaltstparametery (Been & Jefferies,

1985), defined as:

yoe—g, (2.18)

where e is the void ratio at Critical State, for an averagiress equal tp. In the
e— Inp space, the Critical State Surface is assumedve tie form of a straight line,

described as:

-18 -
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e.=(e). ~1 |r(p£j (2.19)

where:
P, atmospheric pressure 08.1kP¢)
(e,), void ratio at critical state, fop=p,

A slope of Critical State Line (CSL) in thee- Inp space

It becomes clear that the state paramegercombines the effect of soil density
(through the void ratioe) and the average consolidation (effective) pressur
(through e_,). Positive y values { >0) imply contractive behavior and_,, = ¢,

while negativey values {y <0) indicate dilative behavior and, ., > ¢.. This is

incorporated into the model through Equations (Rt@{2.23):

Mo =MS+k 2 (—y) (2.20)
M2 =M¢+k 2 (—y) (2.21)
MJ =M ¢ +k Sy (2.22)
MI =M S +k dy (2.23)

whereM¢, M¢, k2, k2, k¢, k¢ are user defined model parameters.

The deviatoric stress ratidgl; and M are related to the friction angles at Critical

State¢_. . and ¢ . (for triaxial compression and extension, respetyiy as:

cs,Cc cs,e

e = 6sin(¢cs,c)

° 3-SiN( s c) (2.24)

B 6iN(,e.c)

© 3+ SIN({eq o) (2.25)

while k2 andk{ can be computed by the following simplified exsiess:

-19-
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kbz—gkb 2.26
Y (2.26)
kd:_:kd 2.27
©oME e (2.27)

In order to incorporate the model surfaces in tbestitutive equations, an image

point r;” must be defined on each surface, and its distiionethe current deviatoric
stress ratio; must be computed. In the original model presebteBapadimitriou et

al. (2002), this was achieved using the unit deviatstress ratio tensar;, which is

normal to the yield surface at the current crosgiomt, as shown in Figure 2.4. The
model adopted herein, presented by Andrianopou289§) has a vanished vyield

surface, and therefore the unit vectgr must be defined otherwise. Andrianopoulos

(2006) studied how various mapping rules affect shreulated sand response and

concluded to the one schematically presented iar€ig.5. Namely, the image point
rij'P is located on the bounding surface, as the piiojeetiong the(r”. —rijLR) direction,
wherer; is the current deviatoric stress ratio, and is the deviatoric stress ratio at

load reversal. This mapping rule has the advantédaking into account the recent

shear stress history. However, it must be streis#ich perturbation of; leads to the
definition of a newrijLR, which may affect the simulated soil behavior.dfiyy the

unit vectorn; is computed as:

rlP

e - (2.28)
Loy

Given the unit vecton.

j» the image points on the model surfaces may bepuated

using Equation (2.29), while their scalar distanftes the current statg, may be

computed using Equation (2.30). Positige™° values imply that the current state is

inside the corresponding surface, while for negaualues, it is outside.

o= \EM oy (2.29)

-20 -
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debd — ( ri'IP,c,b,d_ . ) n (2.30)

]| 1

Both the interpolation rule and flow rule of theoated constitutive model are
functions of the above scalar distances, normalagaminst two reference distances,

namelyd®, andd’,, defined as:

ref ref 1
db’dz\/é(Mb'd+M o) (2.31)
ref 3 0 0+7 '

2.2.4.Flow rule

Having defined the unit vectat;, the gradient of the yield surface may be readily
computed using Equation (2.12). However, in ordecampute the directioR; of

plastic strain increment (Equation (2.13)), theiatale D must also be defined. This
is expressed as a function of the scalar distarmee the dilatancy surface, using the

following expression:

D=Ad"| 2.0- <de> (2.32)

ref

where:

A non-dimensional model parameter

o

Note that the value oD affects only the volumetric component of plasticiss.
Moreover, Equations (2.30) and (2.32) imply thasipee volumetric strain (i.e.
contraction) will occur when the current deviatosteess ratio is inside the dilatancy
surface, whereas dilative behavior will be simudatteloading continues beyond the
dilatancy surface. In this sense, the dilatancfaserclosely corresponds to the phase

transformation line of Ishihara et al (1975).

2.2.5.Plastic hardening modulus

In order to have a complete set of constitutive atigus, the plastic hardening

modulusKp remains to be defined. This modulus is relatethéoscalar distanca®

from the image point on the bounding surface, thhotine expression:

-21-
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K, =ph,h,d" (2.33)

where:

) average stress, giving unitskq

h, positive scalar, used to define the interpolatiale to the model's

bounding surface

h, positive scalar, used to quantify the effect dfria change

d° distance from the bounding surface
All parameters in Equation (2.33) are positive edlu except fromd", which
essentially controls the sign df , thus differentiating hardening and softening

behavior. More specifically, when the current demig stress ratio lies inside the
bounding surface,d” >0 and hardening occurs. When the bounding surface is
crossed, thend® <0 and the post-peak strain softening behavior ditigié soils is

simulated.

The interpolation rule used in the adopted cortsteumodel is described as:

Gl

(k-

whereh, is a non-dimensional model parameter.

h, =h (2.34)

This expression oh, was presented by Andrianopoulos (2006), and ferdifit than
the one originally proposed form by Papadimitriduak (2002), where the quantity

|db| in the nominator was not raised to th& ower. This modification became
necessary after the adoption of a vanished yiettase. The plastic modulug
resulting from this new expression, takes largéuegwhen the current stress ratjo
is not far from the last shear reversal, whileréguction as the stress ratip moves

closer to the bounding surface, is highly non-lmea

The fabric evolution is assumed to merely affeat filastic strain rates, and is

introduced to the expression for the plastic mositdy through an empirical factor

h,, expressed as:

-22 -
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1+(f
el o
1+<fi].nii>
According to Equation (2.35), the value bf is a function of the scalar variabfe
and the tensorf,, which take initial values equal to zero, and egobs plastic

volumetric strains accumulate, i.e.:

f, =Hel, (2.36)

fii = _H<_é€ol>(cni]’ + fi]’) (2.37)
where:

C=4max|f,] (2.38)

H=H, (%J(-W(,) (2.39)

In Equation (2.39):

o,, Isthe maximum principal stress at the initiatesiaf consolidation
v, Is the value of the state parameierat the initial state of consolidation
P. is the atmospheric pressure

H is a positive non-dimensional model parameter

o

According to Equation (2.36)f, follows the whole shearing history of the sand.

Therefore, when the shearing path remains undepliase transformation line, it
simulates the continuously stiffening unloadingseeling behavior (Ladd et al, 1977,

Seed et al, 1977), by increasing the nominatds,0dnd thus the plastic modulds, .

On the other hand, according to Equation (2.873levelops only during dilation, and
in the opposite sense relative to ten@@t‘lij +fii) , SO that boti(Cnii +fi].) and fi]. will

asymptotically tend to zero, until a potential loaglersal will change the direction of

n,. However, during this dilative shear path, theatemator ofh, remains equal to

1, becausef;, develops in the opposite sense of and thus <fjjnij>=0. The
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denominator becomes larger than 1 , only afterad leversal that follows a dilative

path, and maintains its value until the next loadersal, or until tensof, starts

developing towards a different direction. This smse of theh, denominator

simulates the compliant unloading paths, obserfted successive shearing cycles of
larger amplitude (Ishihara et al, 1975, Ladd ell@l7, Nemat-Nasser et al, 1982).

2.2.6.Stress increment and load reversal

Finally, in order to define a load reversal, thesistency condition is considered, and

Equation (2.1) is rearranged as follows:

&, = Coué; —(A)CoR (2.40)

ij ifmn =" mn
where A is the loading index, defined in Equation (2.41):

L.G.
A= 51 241

p

For the specific constitutive model, the above &gua may be simplified as follows:

;= 2G,&; + K&, 5; _<A><2thij + KtDSij) (2.42)

A _2Gne; ~ VK, (2.43)
K, +2G,-VK,D '

The above expressions allow the distinction ofdlvases:
A >0 Loading occurs and plastic strains accumulate.
A =0 Neutral loading occurs and plastic strains areaktquzero.

A<0 Unloading occurs. In this case, a load reversahtpis defined, and the

reference state/” is reassigned. Therefore, the negative value eldhding

index A is only instant, as the reassignment of the raefaestate yields a

positive value forA .
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2.3. FLAC & FLACS3D finite difference codes

The above presented constitutive model was implésdeinto the commercial codes
FLAC and FLAC3D, using the program’s option for Ussefined Models (UDM).
FLAC (standing for Fast Lagrangian Analysis of Goun&) is an explicit finite
difference program for geotechnical engineering meaics computation. Materials
are represented by elements, or zones, which faynddhat is adjusted by the user to
fit the shape of the object to be modeled. Eacimetd behaves according to a
prescribed linear or nonlinear stress/strain lawresponse to the applied forces or
boundary restraints. The selection of the specidimputer code for the purposes of
this thesis was based on a number of availableiadpésatures, including the

following:

. FLAC offers the capability of performing dynamidesftive stress analyses,
together with fully coupled groundwater flow, thgstisfying the basic

requirement for the numerical modeling of liquefactrelated problems.

. A new feature added to the currently available iearof FLAC 5 is the
capacity to add user-defined constitutive modeltewr in C++ and compiled
as dynamic link libraries (DLLS). In all previougrgions, the implementation
of UDMs was made through the built-in programmiagduage FISH. The
main advantage of this modification is improvedaiincy: UDMs compiled
with C++ may perform 3 times faster than the onesttem in FISH.
Moreover, only slight modifications are needed tioe UDM to be used in
FLAC3D.

o FLAC also allows the use of interface elementsitoutate distinct planes
along which slip and/or separation can occur, afagestructural elements to
simulate structural support. Therefore, the enhéiwoele may be used for the

analysis of the most complicated liquefaction edigproblems.

. Finally, FLAC contains the powerful built-in prognaning language FISH,
which allows the user to write his own functionsl @axtend FLAC's pre- and
post-processing capabilities. This feature may beduto define boundary
conditions (such as tied nodes) for the dynamiclyaea, as well as to
manipulate the analyses output (i.e. create tinstohés and contours of

eXxcess pore pressures and excess pore pressasy. rati
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2.3.1.The explicit finite difference method

The Finite Element Method has a central requiremearnely that the field quantities
(stresses and displacements) vary throughout €laohmert in a prescribed fashion,
using specific functions controlled by nodal parger® The formulation involves the
adjustment of these parameters to minimize eneggyd. In contrast, in the Finite
Difference Method, every derivative in the set @vgrning equations is replaced
directly by an algebraic expression written in terof the field variables (stress,
displacement) at discrete points in space, whisdhvariables are not defined within

elements.

Therefore, even for the solution of static problethe dynamic equations of motion
are the ones included in the formulation, using ¢femeral calculation sequence
illustrated in Figure 2.6. This procedure first okes the equations of motion to
derive new velocities and displacements from séessd forces. Then, strain rates
are derived from velocities, and new stresses stain rates. Each full cycle of this

loop is taken as one timestep.

Equilibrium Equation
(Equation of Mation)

new new
velocities ani stresses
displacements or forces

Stress / Strain Relation
(Constitutive Equation)

Figure 2.6.  Explicit calculation sequence used in FLAC.

Yyqpa 2.6.  Mn zmemleypévn d001KaGiot VTOAOYIGHOD TOL YPNCUYLOTOIEITOL GTOV
kodwa FLAC.

The most important characteristic of the expligiité difference method is that each
box in Figure 2.6 updates all of its grid variab(egesses or displacements) from
known values that remain fixed while control ishuit the box. For example, the new
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stresses computed in the lower box are based osethef velocities which has been
already calculated, and is assumed to be “frozen’tlfe operation of the box. This
could be unreasonable, since a local stress chstnmdd influence the neighboring
nodes and change their velocities. In order toifjushis “frozen velocities”
assumption, the integration timestep must be adelyuamall, so that information
cannot physically pass from one element to anatheng that interval. This timestep
value is dependant on the maximum speed at whfohnration can propagate within
each material, i.e. the pressure wave velocityyelkas the size of elements used. Of
course, after several cycles of the loop, distutbancan propagate across several

elements, just as they would propagate physically.

The most important advantage of the explicit finitéference method is that no
iteration process is necessary when computings&sefom strains in an element,
even if the constitutive law is highly nonlinean implicit methods, which are
commonly used in finite element programs, everynelgt communicates with every
other element during one solution step, and thezefumerous iterations must be
performed in order to obtain compatibility and didpuium. It becomes obvious that
the disadvantage of the explicit method is the brhialestep required, and the
consequently large number of computation stepsghwiiakes the method inefficient
for the modeling of linear, small-strain problerkgwever, it is more suitable for ill-
behaved systems, where nonlinear constitutive ltawge-strain effects and physical
instabilities become important. Therefore, in thesec of the highly non-linear
liquefaction related problems, FLAC is expecteghésform better than most implicit

finite element methods.

2.3.2.The finite difference equations

The first set of equations of dynamic equilibriusnthe generalized Newton’s law of

motion for a continuous solid body, which is exgegtas:

ou. aGij
a R 2.44
& ox Pg; (2.44)
where:
t time

X, coordinate vector

1
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p mass density

g gravitational acceleration
u, velocity vector

o, stress tensor

The other set of equations is the constitutivetieia or stress/strain law, which has
the following form:
G = M(Gii,éii,qn) (2.45)

where:
M( ) is the functional form of the constitutive law,

& represents strain rates and

q, are history parameters depending on the parti¢anar

The strain rate; is derived from velocity gradients as:

(c';i], :l[%.;.i} (2.46)
2( ox;  ox;

2.3.3.Mixed discretization

In order to solve the system of the above equatitims continuous medium is
replaced by a discrete one, where velocities arak$oare assumed to be concentrated
on the nodes of a grid (or mesh). Therefore, the laf motion for the continuum are
transformed into discrete forms of Newton’s lavttat nodes. The spatial derivatives
of velocities and forces (i.e. strain rates anesstes) are assumed to be constant

within the zones (or elements) defined by the nadestioned above.

In FLAC, the finite difference mesh is composedjoédrilateral elements, which are
internally subdivided into two overlaid sets of stant-strain triangular elements, as
shown in Figure 2.7. The use of triangular elemetiteinates problems which may
occur with the deformational patterns of constarais finite difference

guadrilaterals. More specifically, for polygons hvitmore than three nodes,
combinations of nodal displacements exist whicldpoe no strain and may result in

no opposing forces. To overcome this problem, thatropic stress and strain
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components are taken to be constant and are adeoage the whole quadrilateral

element, while the deviatoric components are meiathand treated independently
for each triangular sub-element. This procedurferired to as mixed discretization, is
described by Marti and Cundall (1982). The termedixliscretization arises from the
different discretizations for the isotropic and @¢eric parts of the stress and stain

tensors.

{a) (b} (c)

Figure 2.7. (a) Overlaid quadrilateral elements used in FLA®) typical
triangular element with velocity vectors and (cpital triangular
element with force vectors and unit normal vectarghe element’s
surfaces.

Yyqpa 2.7.  (a) Emkolontopevo TETPATAELPIKG GTOLEIN TOV YPNOUOTOLOVVTOL
otov kadka FLAC, (b) dtavdouata taydtntog otovg KouBouvg tumikon
TPIYOVIKOD oToyEiov Kot (C) S1ovOGHOTO SUVALE®Y 6TOVG KOUPBOVS Kot
povadtaio dtovoopata KEAOETO OTIG MAEVPEG TLMKOV TPLYOVIKOD
otoyeiov.

A mixed discretization technique is also used IPAEBD. More specifically, the
continuum is discretized into tetrahedra, whicheéhéhve advantage of not generating
hourglass deformations (i.e., deformation pattemested by combinations of nodal
velocities producing no strain-rate and, thus, adah force increments). Similarly to
FLAC, a coarser discretization in zones is supex@ds the tetrahedral discretization
(Figure 2.8). Isotropic stresses and volumetriais$r in a zone are evaluated as the
volumetric-average value over all tetrahedra in #wne, while the deviatoric

components are manipulated independently.

It must be noted that one brick element in FLAC3ihtains 2 overlays of 5 sub-
zones each, and therefore model computations aferped 10 times per zone and

per cycle, thus increasing the computational cgs2.b times, compared to the 4 sub-
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zones of the 2-dimensional quadrilateral elemehtsLAC. Moreover, in FLAC3D,

all 6 stress components need to be computed, whilee plane strain conditions of
FLAC, only 4 components are required. Finally, makinto account the increased
number of elements required to perform a full 3-elisional analysis, the importance

of the computational efficiency of the User Defidddel’s code is realized.

owelay 1

owelay 2 I

Figure 2.8. A 8-node zone in FLAC3D, with 2 overlaid sets defahedra each.
Yympo 2.8.  8-xouPikd otoryeio tov Kmdwka FLAC3D, pe 600 emkaAlvmtopeveg

OUASES TOV 5 TETPUEIPIKDV GTOLYEIWDV.
2.3.4.Discrete-model form of the finite difference equabns

The finite difference equations for the triangutaib-elements of FLAC are derived

using the generalized form of Gauss’ divergenceréra. According to this theorem,

the average value of the gradi€<n§£> of a scalar, vector or tensérover the area
Xi

A may be computed as follows:

<5_f>=l X gA=1[ nfds=
ox; | AAOx A’s
(2.47)

o\ 1 _ 1 (@) , ¢(b)
<8xi> AZni(f>As . s1r1i(f +£ )As

S
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where:
S the boundary of a closed surface
n, is the unit normal to the surface
s the length of a side of the triangle

(f) s taken to be the average over the side

The summation occurs over the three sides of thagular sub-zone, anth) and
(b) are two consecutive nodes on a side. Equatio72ah be used to derive all the

components of the strain rate tensor based on wedtadities.

In FLAC3D, Equation (2.47) takes the following 3¥ainsional form:

<£E>=l--é£dA=lJIHMA:>
ox,/ V< Vox, VA
(2.48)

o\ 1 o a o
<a_xl>_vznl<f>AAf _W;ni (f( ) 4 f®) 4 g ))AAf

f

where:
\Y is the volume of the tetrahedron in consideration
A Is the tetrahedron surface
n is the unit normal to the surface

i

(f) s taken to be the average over the surface

Here, the summation occurs over the four surfatesmch tetrahedron, denoted with

the superscripf), while (a), (b) and(c) denote the nodes of each surface.

Given the strain-rate tensor, the constitutive @wEquation (2.45) can be used to
derive a new stress tensor. Once the stresses lwere calculated, the equivalent
forces applied to each nodal point need to be ohetbexd.

In FLAC, each quadrilateral zone contains two sétisvo triangular sub-zones. Each
corner of these sub-zones receives two force dwions, one from each adjoining
side:

F =0, (n"s" +n®s?) (2.49)

i 21]
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Within each set of sub-zones, the forces from ¢liesn meeting at each node are
summed. The forces from both sets are then averagedive the nodal force
contribution of the quadrilateral. At each nodee ttorces from all surrounding
guadrilaterals are summed to give the net nodatefovector, which includes
contributions from applied loads and from body é&xr@ue to gravity. Gravity forces

F® are computed as:
E® = gim,F (2.50)

wherem, is the gravitational mass at the node, defineh@sum of one-third of the

masses of triangles connected to the node.

Similarly, in FLAC3D, each corner of the tetrahddsab-zones receives three force

contributions, from each adjoining face:
E-l (nAD +nPA® +nPAY) (2.51)
y J J

Within each set of sub-zones, the forces from ¢h&hedra meeting at each node are
summed. The nodal force contribution of each eldnsederived as the average of the
sums of the two sets of overlaid tetrahedral sulegoThe forces from all elements
surrounding each node are summed and consequatdbdao externally applied
loads and gravitational body forces to give theahddrce vector. The gravitational
mass at each node, which is required for the coatiput of gravity forces, is defined

as the sum of one-fourth of the masses of tetrahealtnected to the node.

In both FLAC and FLAC3D, if the body is at equililom, or in steady-state flow

(e.g., plastic flow),E on the node will be zero. Otherwise, the node w#i

accelerated according to the finite difference faffNewton’s second law of motion:
ugwmﬁ) _ 1igtfm/z) + zFi(t)g (2.52)
m

where the superscripts denote the time at which aeesponding variable is
evaluated.

For large-strain problems Equation (2.52) is inaéen over time to determine the

coordinatesx; of the gridpoints:
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x40 = 50y (A7) (2.53)

i i

Note that Equations (2.52) and (2.53) are both eredt in time (central finite
differences), with velocities existing at points time that are shifted by half a

timestep from the displacements and forces.

The above formulation is modified for the solutioinstatic problems, by introducing

into Equation (2.52) a form of damping, called lawan-viscous damping, as follows:

i

L (t+ (t= ¢ At

ugt AY2) _ o (-442) +2(Fi( ) _Fd,i); (2.54)
whereF, ; is the damping force, given by Equation (2.55):

F, = oc‘Fi(t)‘sgn(ugt_m/Z)) (2.55)

and, by defaultp. = 0.80.

2.3.5.Numerical stability

As described previously, the explicit finite difégrce solution procedure is not
unconditionally stable. The speed of the “calcolatiront” must be greater than the
maximum speed at which information propagates. Tétigbility condition is

expressed in terms of a critical timestep:

AX

At crit — E

(2.56)

where

Ax is the minimum propagation distance, estimatedasc, . in FLAC,

and V/AA_ . in FLAC3D.

X

C is the maximum speed at which information can pgape, namely the

I<+4C73 |

p

p-wave velocityC, =

It can be easily shown that the above expressiaggisvalent to Equation (2.57),
which refers to a general system of solid matergald networks of interconnected

masses and springs:
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—

At =-min (2.57)

crit

where T, is the smallest eigen-period of the system. Faingle mass-spring

element, the above equation becomes:

m
At =2 /— 2.58
crit k ( )

For the simple case of a rectangular zone, with &g, thicknessT and diagonal
length L,, the gridpoint mass and the zone stiffness capxXpeessed as shown in

Equations (2.59) and (2.60), respectively:

m =ipAZT (2.59)

L2
k:(K+4%)A_dT (2.60)
It is obvious that the combination of Equations58&, (2.59) and (2.60) vyields
Equation (2.56). This implies that Equation (2.5@&y be regarded as an estimate of
the local critical timestep, which can be easilycelted without computing the

eigen-period of the complete system.

In all cases, a timestep must be chosen that ifesnti@an the above critical timestep.
In both FLAC and FLAC3D, a safety factor of 2 isphed for this purpose. In

dynamic analyses the above timestep refers toithelated problem time. In static
analyses, it is more efficient to assume a pseimestepAt=1 and adjust the nodal

masses of Equation (2.54). In FLAC, nodal masses@amputed by Equation (2.61):

m

n

(K - 4%)Axfm
=> A (2.61)

In FLAC3D, the above expression takes the followmmgn:

n ZZ(K+4%)1‘;1:]X{(niAA)2} (2.62)
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In the case of effective stress analyses, wherengwater is present, the bulk

modulus of the fluid increases the mechanical re¢8t of the saturated zone, thus
reducing the selected timestep. This is done byifyind the apparent mechanical

bulk modulus of the zone, according to Equatio632.

K=K +a’M (2.63)

where:
a Biot coefficient

M Biot modulus

If the compressibility of grains is neglected comgghto that of the drained material,

thena=1 andM =K /n, whereK is the fluid bulk modulus and is the porosity.

Taking into account the large value of the watdk lmodulus (e.g. about 200MPa), it
becomes evident that in the analysis of liquefactelated problems, where
groundwater flow is present, the dynamic timestepery small (of the order of
10*sec), thus resulting to generally small strain incramse This observation is
crucial for the selection of the integration algfom of the implemented constitutive
model, since the use of small integration stepsrawgs the model’s accuracy, and
reduces the necessity for high-order integratioheswes and complicated error-
control algorithms.

2.3.6.Fluid-mechanical interaction

One of the basic features of FLAC is the capadtynbdel groundwater flow through

permeable soils. The modeling of flow may be doneoupled, i.e. independent of

the mechanical calculations, or it may be done cowapled way, so as to capture the
effects of fluid/solid interaction. According toethatter:

o The fluid in a zone reacts to mechanically indusetume changes by a

change in the pore pressure.

. Changes in pore pressures induce changes in tleetieff stresses, thus

affecting the response of the solid.

Both FLAC and FLAC3D can calculate pore pressufeces, with or without pore
pressure dissipation. They also provide a numbdeatiires, including isotropic and

anisotropic permeability, partial saturation, coegsibility of the saturated material,
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two-phase flow, as well as a number of boundaryditmms and fluid sources

(prescribed inflow or outflow, varying with time).

Finally, dynamic pore pressure generation can bdefed using the “Finn” and the
“Byrne” built-in constitutive models. In the mod&nplemented herein though,
dynamic pore pressure generation is modeled intiress a result of the simulated

decrease of effective stress.

In the simpler case of saturated flow, where gramsassumed to be incompressible
compared to the soil skeleton, the equations gavgrime coupled fluid-deformation

mechanisms are presented in the following.

First of all, water flow is described by Darcy’'sva

0
q; = _kija_xj(P_pwgkxk) (2.64)
where:
q; specific charge vector
k;; mobility coefficient tensor (measure of permeaypiliequal to the

hydraulic conductivityk,, — the commonly used permeability when
Darcy’s law is expressed in terms of head - dividgdhe fluid’'s unit
weight: k =k, /p, g)

P fluid pressure

Pu mass density of the fluid

gy gravitational acceleration vector

The fluid pressure follows the constitutive lawkgfuation (2.65):

@ _ 88 vol

= 2.65
ot ot ( )

where:
M Biot's fluid modulus, equal toK,/n, where K, is the fluid bulk
modulus andn is the porosity (this only applies when grains are

considered incompressible, compared to the soiétk®

volumetric strain

vol
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Finally, Equations (2.44) and (2.45) are expressederms of effective stresses

o; =c, —P5;, while the mass density in Equation (2.44) is the saturated density

ij?

P =Py +0p,, (Wherep, is the dry density).

The discretization and finite difference methodéofe the general scheme presented

in previous paragraphs:

. Pore pressureB are defined at gridpoints and assumed to varaflgevithin

each sub-zone.

. The specific charge vectey, in Equation (2.64) is derived for each sub-zone

through the Gauss divergence theorem (Equatiod3)and (2.48)).

. The volumetric straire_, in Equation (2.65) is the equivalent nodal volume

vol

increase arising from mechanical deformations efdhd. It is computed as
the sum of the contributions from all sub-zonesnemted to the node. Each
triangle contributes a third of its volume in FLA@hile each tetrahedron
contributes one fourth of its volume in FLAC3D. Tiesulting sum is divided

by two, to account for the double overlay scheme.

o Finally, zone pressures necessary to perform aectefée stress analysis
(stresses are also defined in zones), are derivad the surrounding nodal

values by simple averaging.

Similar to the mechanical solution scheme, a @ailiticnestep is defined to ensure the
stability of the explicit solution of the fluid fl@ equations. In this case, the expression
of the critical timestep has the following form:

\%

At = m

(2.66)

\Y equivalent nodal volume

K, permeability matrix, relating nodal pore pressucesodal flow rate (it

is derived from the application of the Gauss dieee theorem to
Equation (2.64))

The value of the timestep used in FLAC (and FLAC3Bpbtained by multiplication

of the critical timestep with a safety factor 08 0Since the permeability appears at
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the denominator of Equation (2.66), the flow tinegsin many practical applications
with low permeability values, becomes larger thhe torresponding mechanical
timestep, and is therefore not critical. The maximtlow timestep may become
critical in cases that gravel or other high perniléggbmaterials are present (e.g.
gravel drains), or in the numerical modeling of tcémge experiments, where the
prototype permeability is derived from the actuarrpeability of the model,

multiplied by the centrifugal acceleration of tlestt

2.3.7.User defined models

Both FLAC and FLAC3D allow the user to implementedsDefined Models
(UDMs), written in C++ and compiled as Dynamic Lihkboraries (DLLs). Once
compiled successfully, UDMs behave just like builtmodels, as far as the user is
concerned. They can be installed and removed frpatited zones, while their
properties can be assigned, printed and plotted.

The basic incremental numerical algorithm is tHefaing:

Given the former stress state and the total stiratmement for the current timestep,
the corresponding stress increment is determinetithe new stress state is
calculated.

It should be noted that all models are definedeinms of effective stresses. Pore
pressures are used to convert total stressesdctigé stresses before the constitutive
model is called, while the reverse process occites ghe model calculations are

complete.

The most important factor to be taken into accowiten implementing new

constitutive models into FLAC is the fact that tHBM is called once per sub-zone
(four times per quadrilateral zone in FLAC, and temes per brick zone in

FLAC3D), for every solution step. The averagingtloé stress outputs is internally
handled by FLAC, according to the mixed discretaattechnique described in the
previous paragraphs. On the other hand, model measnare stored once per zone,
including the history variables used in elasto4ptasiodels, like the one adopted in
the present work. The accumulation and averaginghete parameters must be
performed inside the UDM. It must be noted thas thveraging procedure may

invoke errors in the application of the consistenondition of elasto-plastic model,
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and was one of the main reasons for the adoptian \anished yield surface in the

constitutive model presented by Andrianopoulos €00

In previous versions of FLAC, constitutive modetailel only be written in the built-

in programming language FISH. This technique wasoie used by Andrianopoulos
(2006). However, constitutive models written in Hi%re executed with a speed
which lays somewhere between one-quarter and orte-0ii the speed of built-in

models. This problem has been overcome with C+ngesithe compiled DLLs

perform 3 times faster than FISH models. It beconeesdent that without

reprogramming the model into C++, the computatior@dt of performing a 3-D

dynamic analysis would make the numerical solutidn3-D liquefaction-related

problems (e.g. seismic resoponse of shallow fostiog pile foundations in a
liquefaction regime) pratically impossible.

In the C++ language, the emphasis is on an objgetted approach to program
structure, where objects are represented by clagseh object may contain data,
which are encapsulated by the object and are bieisiutside it. Communication with
the object (and the associated data) is achieveddigber functions that operate on

the encapsulated data.

In addition, there is strong support for a hiergrohobjects: new object types may be
derived from a base object and the base-object'snbee functions may be

superseded by similar functions provided by thevedrobjects. This arrangement is
very efficient in terms of program modularity. Fexample, the main program may
need to access many different varieties of thevddrbbjects in many different parts
of the code. However, it does not need to makaerte to the derived objects, but
only to the base-objects. In this case, the apmtgomember functions of the derived

objects are automatically called.

This methodology is exploited in FLAC’s support fdDMs. A base class, called
ConstitutiveModel, provides the framework for actual constitutivedals. No object
of this base class can be created. However, nesgadamay be derived from the base
class, representing the User Defined Models. Objettthe derived classes may be

created, referring to zones with the assigned UDM.

The ConstitutiveModel base class is termed an fabtclass because it declares a

number of “virtual” member functions. The derivddsses must supply real member
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functions to replace the virtual functions of CadgiveModel, and to define the

name, the properties and the mechanical behaviothef specific user-defined

constitutive model. The most important member fiomg are summarized in the

following:

The Keyword() function returns a pointer to a character arraytaiaing the

name of the constitutive model, as the user widmréo it within FLAC.

The Name() function returns a pointer to a character arragtaioing the

name of the constitutive model that is to be usegrintout.

The Properties() function returns a pointer to an array of stringsntaining
the names of model properties, with a null poirttedenote the end of the

character array of strings.

The SetProperty(unsignedn, const double&dVal) function is used to store
the supplied valudVal, given to FLAC as user input, to the model’s prava
memory location, corresponding to the model properth sequential number

n.

The GetProperty(unsignedn) function returns to FLAC the value of the

property with sequential number

An Initialize(unsigneduDim, State*ps) function is called once for each
model object (i.e., for each full zone), allowirgggerform initialization of its

variables.

The Run(unsigneduDim, Stateps) function is called from FLAC at each
cycle, once for each sub-zone. The dimensionafityjof FLAC and 3 for
FLAC3D) is given auDim, while the structur@s contains the current stress
components and the computed strain increment coemerior the sub-zone
being processed. The model must update the stesssort from strain

increments.

The ConfinedModulus() function must return a value for the maximum
confined modulus, which is used by FLAC to compie stable timestep, as
described in the previous paragraphs.

The ShearModulus() function must return a value for the current tarige

shear modulus, which is used by FLAC to determweffecients for the quiet
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and free-field boundaries, that can by used wherfopeing dynamic

analyses.

. Finally, theSaveRestore{lodelSaveObjectmso) function allows the model

to save and restore data members of each object.

FLAC is made aware of a user-written constitutivedel by a constructor call
invoked by a static global instance of the modealssl This call causes the base
constructor to “register” the new model, and adtbithe list of models. The static
instance of the model is consulted whenever FLAEdeeany information about the
model (i.e. model name or property name), or whareeds to create a copy of the

model (i.e. assign the model to a zone).

As previously described, the most important linkween FLAC and a UDM is the
member-functiorRun(unsignednDim, State*ps), which computes the mechanical
response of the model during cycling. A structuséate *ps, is used to transfer
information to and from the model. The most importanembers ofps are

summarized in the following:

o bySubZone is the sequence number of the sub-zone currendiyngb
processed, whildyTotSubZonesis the total number of sub-zones in the
specific zone (including those from all overlaysyOverlay is the number of
overlays). This information is used in the UDM take accumulated sub-zone
data correctly. For example, if four sub-zones present (as in the 2-D
version of FLAC), accumulated values will need ® divided by four, in

order to obtain the average for the whole zone.

. dSubZoneVolume is the volume of the current sub-zone, while

dZoneVolumeis the total zone volume.

. STensor stnEis the strain increment tensor, which is inputhe constitutive
model.
. STensor stnSis the Stress tensor. The current effective stiessor is input

to the constitutive model, and the model must rethe updated tensor.

In order for the user to load UDMs into FLAC, thegram must be first configured
to accept DLL models by giving theONFIG cppudm command. Then, the model
DLL may be loaded by giving the commaMiODEL load <filename>, with the
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flename of the DLL. Thereafter, the new model naand property names will be

recognized by FLAC, and can be used just like anlg-lm models.

2.4. Integration scheme

In previous paragraphs, it is explained that th@lémentation of a user-defined
constitutive model into the finite difference co#®.AC essentially requires to
develop a numerical algorithm for the computatibthe stress increment, for a given
current stress state and a given strain incremanather words, the constitutive
stress-strain relationship needs to be expliaittggrated. In the general framework of
elasto-plasticity, this relationship has the forhiequation (2.1), while for the specific
constitutive model, this equation can be rearrangedEquation (2.42).

It must be stressed that explicit integration soberoan be easily applied for the
numerical integration of exceedingly complex cdnsire laws, as they are
straightforward to implement. In contrast, implicitethods, which are commonly
used with the Finite Element Method, are diffictaltimplement, except for the case
of relatively simple soil models. This is becauke gradients of the yield and the
plastic potential surface, as well as the hardemamgneed to be evaluated for the
final stress state, which is unknown. Therefore tesulting system of non-linear
equations must be solved iteratively. If the matifNewton-Raphson scheme is used
for this purpose, then second derivatives of thedyfunction and plastic potential
need to be computed in order to implement the titergorocedure, thus leading to
much tedious algebra for complex soil plasticityd@ks. In the model used herein, the

gradients of the yield and the plastic potentiafeme, L; and R; respectively, are
given by Equations (2.12) and (2.13), as functiohthe unit vectorn; . Figure 2.5

schematically illustrates the mapping rule adopfied the definition of n., thus

ij

indicating the complexity of deriving the differeals of L; and R;, and justifying

ij 1
the selection of the explicit finite difference @#&LAC, for the implementation of

the model.

Effective algorithms for the explicit numerical égiration of complex elastoplastic
constitutive models, have been presented by Slbah(2001) and incorporated in the
work of Andrianopoulos (2006). These algorithms nmeaytomatically divide the

applied strain increment into sub-increments (fep<s, in order to control the global
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integration error. Using an estimate of the locabre the size and the number of sub-
steps become a function of the specified erroraolee, the magnitude of the imposed
strain increment, and the non-linearity of the ¢ibmsve relations. The algorithms

presented by Sloan et al (2001) use either a neadEuler scheme or a Runge-Kutta-
Dormand-Prince scheme to estimate the local emrdhe computed stresses and to

control the sub-division of the applied strain groent.

2.4.1.Modified Euler integration scheme, with automatic
substepping and error control

Following the work of Andrianopoulos (2006), the difeed Euler scheme is used

herein, together with the aforementioned sub-stepgind automatic error control

algorithm. According to this specific algorithmrfeach timestep\t a pseudo time

T (0<T<1)is defined, as:

t—t
T= ° (2.67)
At
where:
t is the current time
t is the time at the start of the load increment

0

Differentiating Equation (2.67) yields:

ar_1 (2.68)
dt At

Therefore, Equation (2.1) becomes:
Aot = AT 200 _ ATAts = G (ATA: )= G (ATA 2.69
Op TATT T Gij_ikl( tﬁ)—»( ?r) (2.69)

In this way, the stress-strain relationship canirddegrated over the pseudo-time

(AT)

interval T=0 to T=1, with the stress sub-increment;"’ corresponding to the

pseudo-time incremem{T , being computed from the same constitutive equoatitor

a strain sub-incrememsfi“) equal to:

Al = ATAe, (2.70)

-43-



Chapter 2. Numerical methodology: Background & miawelopments

where Ag; is the total strain increment for the full timgste

The pseudo-time is consequently divided into smadlerementsAT™ where n
denotes the pseudo-timE" =T"? + AT("”, as well as the associated stressf

and the valuesl(”) of the model’s hardening parameters.

In the constitutive model used herein, the hardpparameters are:

° The deviatoric stress ratiqLR which is defined at load reversal, i.e. when
A <O0.
o The fabric variabled, and f; , evolving according to Equations (2.36) and

(2.37).
For convenience, the evolution of the above hardgpiarameters will be expressed
as Aq=A(o;,0)9(c; ).

The applied integration algorithm is schematicallystrated in Figure 2.9 and

summarized in the following steps:

A
o
. A0®"
o+ . . _ _ _ -
(A0(1)+A0(2))/2j i_AG(Z) Ao
oMb — — — — R U A
| I
| I
| I
| I
| pe |
Q)
| S
72 | @ l @x oy
R a N X S
¢ ¢ ¢ ¢ rd
Ae €

Figure 2.9. Modified Euler integration scheme with automatidb-stepping and
error control.

Yyqpna 2.9.  Tpomomompévn olokAnpwon kotd Euler pe avtoparn vmodiaipeon
TOL PUATOC OAOKANPOONG KOt EAEYYO CPAALATOC.
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Step 1

The current stresss{”, the strain incremeni\e,, and the current values of the

ij ?
hardening parameterq(o) are given by FLAC and input to the UDM code, while

variablesT” and AT are initialized:
TO =0 (2.71)
ATY =1 (2.72)
Step 2

Steps 3-7 are repeated, for1,2,3..., until T® =) ATV =1.
i=1

Step 3
The stress incremenncs;.“) and the corresponding increment of the hardening

parametersaq™ are estimated using the Modified Euler integratimmeme, for a

strain increment given by Equation (2.73):
(M _ AT
Agi” = ATV Ag; (2.73)

More specifically, a first stress increment estienas|’ is computed using Equation

(2.74);

Acsgjl) =Ch (0@.“’1) ,q" " )Aggi“) (2.74)

1

The corresponding incrememig” of the hardening parameters is computed using
Equation (2.75):
N C R C) @75)

j j

A second pair of estimatesc” and Aq® is computed using Equations (2.76) and

(2.77).

Ao? = CE (o™ + Aq, ¢ ™+ ad ) ag? (2.76)

]
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Aq? = A(G?“’l) + Acs?jl),q(“’l) +Aq" )Q(cﬁﬁ’l) + Acg)) (2.77)

ij ij ij
Finally, the incrementac{” and Aq™ are given from Equations (2.78) and (2.79):

Acﬁil) + Acﬁf)

ij 2

(2.78)

) _ Aq(l) +Aq(2)

. (2.79)

Aq

Step 4

Since the local error in the Euler and modifiedefihtegration schemes B(AT?)

and O(AT3) respectively, the error inc{” and Aq™ can be estimated from:

1iac® 4 As? (9 (2 _ Ald
{Aégn)} {Ac.(.“)} E(AG” +Ac; )—qu —Z(qu —-Aqg )
q(n)
Therefore, a relative error meastR€ can be computed using Equation (2.81):

RM :1 max HAGi(jz) _Acigl)
2l

o'
T

(2.81)

It may be observed that for strain increments tegdd zero, this relative error would
become equal to the second derivative of the sgteam relationship, for the given

loading direction, normalized by the current stress

acij
asij

RAsij 50
Gij

(2.82)

Therefore, this relative error may also be regamed measure of the local degree of

non-linearity, of the stress-strain relationship.
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Step 5

The relative erroR"™ is compared to the tolerance variaBIBOL . This variable has
been implemented as a model property, that carxtegnally defined by the UDM
user. The optimum value f@TOL proposed by Sloan et al (2001)950L =107,
and this is the current default value ®FOL in the UDM.

if R™>STOL (and AT™ > AT,

min

) then the substep is rejected, and steps 3-4 are

repeated for a smaller time incremeyk™ ;
AT = max{ QT A Tnin} (2.83)

where:

q=0.9/8;8|'2 0.1 (2.84)

The value ofAT,_ is the minimum timestep value, introduced by Sleaal (2001)
for reasons of code robustness. In the implemebfel, it can be defined by the
user, with AT =107 being the default minimum timestep, correspondioga

maximum of 1000 sub-steps.

Equation (2.84) is obtained from the requirement:
R™ < STOL (2.85)

Given that the local error estimated by EquatioB@R is O(ATZ), yields Equation

(2.86):

(2.86)

which, combined with Equation (2.85) yields:
/STOL
gq= =0 (2.87)
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The coefficient of 0.9 in Equation (2.84) acts asafety factor for cases of highly
non-linear behavior. Even though it leads to smaBab-increment sizes, and
consequently more sub-increments, it reduces tmebeu of failed sub-increments

and increases the algorithm’s efficiency (Sloaalg2001).

Step 6

If R™ <STOL, or if AT™ =AT

min ?

then the substep is accepted, stresses and

hardening parameters are updated and a new timaai(éﬁ) is selected:

oV =6 1 Act) (2.88)
q" =q™ +Aq™ (2.89)
TOD M) 4 AT™) (2.90)
AT = AT (2.91)
where:
q=0.9 S;(g"s 1.1 (2.92)

If the last substep had been accepted WRith- STOL and AT™ = AT, , , thenq=1.

Step 7

The new timestep must be checked so that total Tinvéll not overcome unity:
AT™D <1-T™ (2.93)

Step 8

Return the final values af;, andq to FLAC, and continue with the next timestep.

2.4.2.Simple integration schemes

The aforementioned modified Euler integration alipon, with automatic sub-
stepping and error control, has been shown to @eoviaccurate results

(Andrianopoulos, 2006). However, its main disadagetis the high computational
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cost, which noticeably increases the analysis tie.the other hand, FLAC and
FLAC3D both use a very small timestep, in ordeensure the stability of the explicit
finite difference solution scheme. In the caseigfidfaction-related problems, this
timestep is further reduced, due to the large vafube water's bulk modulus. Thus,
strain increments are restricted to relatively smalues (of the order of0™° for a
typical liquefaction analysis, such as the onesasshm the following chapters). It
becomes clear that if strain increments are seffity small, further sub-stepping
might not be necessary. This observation indicttas simpler integration schemes
could be used for the UDM’'s implementation, thusréasing the model's
computational efficiency and reducing the analysi®e. However, as these simpler
algorithms would lack in accuracy, further inveatign was conducted, focusing on

the following issues:

o The development of an automatic algorithm, basedthen error control
concept presented by Sloan et al (2001). This alkgorswitches between
different integration schemes, depending on thalldegree of non-linearity

of the stress-strain relationship.

. The determination of a critical strain incrementuea beyond which, sub-

stepping and error control would become indispelesab

Before proceeding to the finally adopted algorithmo more simplified integration
schemes will be presented, namely the modified rEnlegration scheme and the

single-step Euler integration scheme.

2.4.3.Modified Euler integration scheme, without error-cantrol and
substepping

The version of the modified Euler integration sckeis schematically illustrated in

Figure 2.10 and summarized in the following steps:

Step 1

The current stresss”, the strain incremente,, and the current values of the

hardening parameterg” are given by FLAC and input to the UDM code.
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2
\

ot+tA) [~ A =~— — — — —

(AcM+Ac(@)

o) - —

A\ 4

Ae €

Figure 2.10. Modified Euler integration scheme without sub-siagp

Yyqpa 2.10. Tpomomompévn olokAnpwon katd Euler yopic vmodwipeon tov
Brpotog odokApwonc.

Step 2
The stress incremenths;, and the corresponding increment of the hardening
parametersAq are estimated using the Modified Euler integratsmmeme. More

specifically, a first stress increment estimatg” is computed using Equation (2.94):
Acsgl.l) =C (0%0) ,q“ )Asij (2.94)

The corresponding incrememnig” of the hardening parameters is computed using

Equation (2.95):
Aq" = Aq® = A(cﬁf),q)q(df’) (2.95)

A second pair of estimatess” and Aq® is computed using Equations (2.96) and

(2.97).

Ao =CF (o) + Acl,q” + Aq™ ) Ag, (2.96)

1

Aq" = AQ® = A (6 + Ac?,q + Aq" )G (o + Ac!?) (2.97)

J

-50-



Chapter 2. Numerical methodology: Background & miawelopments

Finally, the incrementac, andAq are given from Equations (2.98) and (2.99):

Acl) + Act?
Acy; =——— (2.98)
2
&) @

Aq= w (2.99)
Step 3
Stresses and hardening parameters are updatedtanted to FLAC.

o, =0y + Ao, (2.100)

q=9“ +Aq (2.101)

It may be observed that this integration schemergsdly consists of a reduced form

of the algorithm presented by Sloan et al (200hictv may be alternatively achieved

by either setting a large value 8TOL (i.e. 10%), or using small strain increments in
order to minimize the relative error. As explaing@viously, strain increments are
already limited to small values, due to the smalestep incorporated by FLAC and
FLAC3D, in order to resolve stability-related issu&herefore, integration steps are
not expected to be further divided into smallersseps, except for the cases where
the predicted soil behavior becomes highly nondinén other words, the application
of a modified Euler scheme, without substepping emdr control, is not expected to
perform much faster than the effective integraatgorithm of Sloan et al (2001). The
only computational benefit will arise when the sg-estrain relationship enters regions
of intense non-linearity. However, it would be dékly unsuitable to bypass
automatic error control and substepping in thedegnation steps, as this local
increase in computational efficiency would haverbebéviously accompanied by a

significant lack in accuracy.

2.4.4.Single-step Euler integration scheme

The simplest integration scheme applied in the gmesvork consists of the
performance of a single Euler integration step. Tih&egration procedure is
schematically illustrated in Figure 2.11 and sumpeat in the following steps:
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Figure 2.11. Single-step Euler integration scheme.

Yype 2.11.  Anhn ohokAnpmon katd Euler.

Step 1

The current stresss\”, the strain incrementes., and the current values of the

ij ! ij ?

hardening parameterg” are given by FLAC and input to the UDM code.

Step 2
The stress incremenths;, and the corresponding increment of the hardening

parameters\q are estimated using Equations (2.106) and (2.107):

Aoy =Cf(of,q"0) A, (2.102)

sa=A(f? (o) 210)

Step 3

Finally, stresses and hardening parameters ardagdad returned to FLAC.

o = G;.O) +Ac; (2.104)

q=9"+Aq (2.105)
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It becomes obvious that in this integration schemegdel computations are only
performed once for each step. The algorithm iscfioee expected to perform 2 times
faster than the modified Euler scheme without ecaotrol and substepping.
However, the penalty paid for the considerably eased efficiency, is the lack of

accuracy, as the error increases by one order ghmnouae (O(Atz) insteadO(AtS)

in the modified Euler scheme). Moreover, this schedoes not allow for any
estimation of the local error to be made, thus nat possible to have any control on
the accuracy of the integration procedure, andraatizc substepping algorithms may

not be applied.

2.4.5.Combined integration scheme

As explained in the above, the single-step intégmascheme may become twice as
effective than the double-step modified Euler sobebut it does not allow for any
error control to be applied and thus lacks in robess. Therefore, a combined
integration scheme was developed and adopted i, automatically switching
from single-step integration to modified Euler gration with automatic substepping
and error control. Substepping and error controy i@ omitted, depending on the
value of theSTOL variable, defined by the UDM user.

The main concept of the proposed algorithm is simiio the error estimation
procedure proposed by Sloan et al (2001). In bottermes, the error is measured
from the difference of two consecutive stress im@ets, as shown in Equation
(2.81). In the original algorithm of Sloan et aD(), this difference is derived from
the two increments of the modified Euler integnatiprocedure. In the proposed
algorithm, the local error measure is estimateshgushe stress increments of two
consecutive steps. If this error measure remairdlewb@& given tolerance value
MSTOL, then integration is performed using the singépsEuler scheme. If this

value is exceeded, then modified Euler integraisoerctivated.

According to this procedure, the current stressemment is actually regarded as the
second stress increment of a modified Euler proeethat would have been applied
in the previous step. Therefore, the estimated eélwes not correspond to the current
step, but to the previous one. Since FLAC and FLBG® not allow for any

corrections to be made in previously completed simgs, it may seem that the

application of a higher order integration schem@as performed where necessary,
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but actually it is performed with the delay of dimaestep, thus not contributing to the

increase of integration accuracy.

However, application of the previously presentetggnation schemes has indicated
that there are distinct regions in the stresssstralationship where non-linear
behavior is not predominant, and where the singlp-dntegration scheme is
sufficiently accurate. Similarly, there are highgn-linear regions, where the use of
higher-order integration schemes and potential tepbsng becomes imperative.
These two regions are not singular timesteps, btiteesections of the stress-strain
relationship, with a duration of many subsequemetteps. According to the
proposed methodology, when the stress state esmtegion of high non-linearity, the
estimated error increases and the modified Eulegrse is applied. Of course, during
the first timestep of this highly non-linear regiothe stress increment is not
accurately predicted. However, the increased emeasure implies the use of the
modified Euler scheme in the subsequent timestepsther words, even with the
delay of one single substep, this “combined intigmna algorithm essentially allows
to switch between the two different integration esoles, depending on the current
highly or weakly non-linear soil behavior. In othsords, the developed algorithm
allows the integration scheme to adapt to the laegjree of non-linearity of the
stress-strain relationship, thus achieving thenopth balance between the accuracy
of the integration procedure and the involved cotatonal cost. Finally, it should be
stressed that the small integration timestep whsalsed by FLAC in order to ensure
the stability of the explicit finite difference smlon scheme, results in the

minimization of the effect of this single step deta the overall accuracy.

The combined integration scheme is summarizeddridtiowing steps:

Step 1

The current stress'¥, the strain incremenne!”, and the current values of the

ij ij

hardening parametelcé") are given by FLAC and input to the UDM code.

Step 2
The stress increment&ci(j") and the corresponding increment of the hardening

parameter$q(k) are estimated using Equations (2.106) and (2.107):
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soff = G (. 2106)
Aq" = A (o, )5 (2.107)

Step 3
The accuracy of the single-step integration schiEméhe previous step is evaluated.
More specifically, the current stress incremam.‘j") is regarded as the second stress

increment of a modified Euler scheme that wouldeh&een applied during the

(k-1)

previous timestep. Therefore, a more accurate atm Ac;~ of the previous

step’s stress increment and the current stﬁé;‘%smay be given by Equations (2.108)
and (2.109), respectively:
Acl + AGHY
ij ij

AGI S — (2.108)

6t = gk 4 AGHY (2.109)

1 [ 1

In order to account for the different strain incesrts of the two individual integration

steps, the current stress increment valod” is adjusted as:

Aggk—l)
k) H : ActH (2.110)
Asgjk)

AG, :

This adjustment is not totally accurate, as it doatstake into account changes in the
direction of the strain increment. This would hgveat significance in load reversals.
However, in this case, the error computed in thiewieng steps would increase, thus
forcing the algorithm to switch into the use of thmore accurate modified Euler

integration scheme.
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Step 4
Similarly to the integration scheme presented ma&let al (2001), an error estimate

for the stress incrementis| ™ may be calculated using Equation (2.111):

HAagk) — AclY

ij

1
R== (2.111)
2 6i(jk—l)

Step 5

The error estimate computed in Step 4 is comparedtblerance variabl&STOL,
which has been implemented as a model propertgandbe externally defined by the
UDM user:

. If R<MSTOL, then the single-step integration scheme is censdl
accurate, either due to the small strain increrdefined by FLAC, or because
the current stress state is far from the highly -o@ar regions of the

constitutive relation. Therefore, the stress in(HBtrAci(j") is used to compute

k+1

Gi(j ) which is consequently returned to FLAC.

. If R>MSTOL, then the single-step integration scheme is notirate, and a

more accurate scheme (i.e. the modified Euler sehemeds to be applied. In
this case, the stress incremsﬁmi(j") may be used as the first increment of the

modified Euler scheme, thus only the second incrégmeeds to be computed.
The use of automatic substepping and error cowkepends on the selected
value for theSTOL variable. For small tolerance values, the UDM qernis

the previously described error control procedurkilevfor larger values (i.e.

STOL=10) substepping does not occur and the integratiberse reduces

to a simple modified Euler scheme.

The accuracy and computational efficiency of tlumbined algorithm is evaluated in
Chapter 3, and compared to the simple single-stgprithm, the modified Euler
algorithm, and the modified Euler algorithm witht@matic error control and

substepping.
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2.5. Mapping rule

An important part of the integration algorithm isetapplication of the model's
mapping rule, which was described in previous paalgs and schematically
illustrated in Figure 2.5. Due to the complicacytbé mapping rule, an iterative
procedure is required, which demands high comprtati effort and increases the
analysis time. Therefore, the algorithm adoptedAogrianopoulos (2006) for the
application of the mapping rule was modified, aigito increase the code’s
computational efficiency. This modification takedvantage of the small critical
timestep used by FLAC to ensure the stability efeiplicit finite difference scheme,
by using the results from the previous step, asindtral value for the iterative

procedure.

The application of the mapping rule essentiallyerefto the determination of the

image pointr;,” on the bounding surface (Figure 2.5). This coreigmint lies on the
line defined by the current deviatoric stress rafi@nd a reference point, namely the
deviatoric stress ratio at last load revergdl. The location of this point may be
expressed as a function @f and r,*, with the aid of a variable, as shown in

Equation (2.112):
ri]n’ (a)zri]?R +a(rij _ri;dR) (2.112)

The value ofa must satisfy the condition thaf” lies on the bounding surface. In

agreement with the definition of the model surfacpsesented in the previous

paragraphs, the distandg, (a) from the bounding surface can be computed using

Equation (2.113):
2
Fyg (a)=r§) (a)ri]n) (a)_\/gMg (nij) (2.113)
wheren, is the unit vector in the direction @f :

r

n, =—— (2.114)

) IP_IP
Vg Iy

-57 -



Chapter 2. Numerical methodology: Background & miawelopments

andM; is computed according to Equation (2.15).

Positive values offy (a)>0 correspond to points;” lying outside the Bounding
Surface, while iff(a) <0 the corresponding poin” is located inside the surface.
In order for r;"to be the required image point, the conditiBg(a)=0 must be

satisfied. It becomes evident that the above egustare interlaced, and an iterative
procedure is necessary for the determination officant a and the consequent

computation of the unit vectan; .

2.5.1.Algorithm proposed by Andrianopoulos (2006)
The iterative algorithm proposed by Andrianopoul@®06) for this purpose is

summarized in the following steps:

Step 1

The final value of coefficient is assumed to lie between two variables, nanagly

anda, . The initial values for these variables afe=0 anda, :=1.

Step 2

The distanceg, (a,) and F,(a,) of the points corresponding to the valugsand

a, , from the model's Bounding Surface are initialngputed.

Step 3
If Fi(a,)>0 then a, and a, are accepted as bounding values aof and the

procedure continues with Step 4.

If Fy(a,)<0 thena, anda, are updated ta,:=a, anda, :=2a,, and Steps 2-3 are
repeated, until a proper pair af anda, is determinedF(a,) does not need to be

recomputed, as it is equal By (a,) from the previous step.

Step 4

The value ofa is estimated by Equation (2.115):
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a=a, —(a, —a,) Fis () (2.115)

Step 5

The distancef (a) of the point corresponding to the valags computed.

Step 6

If |FBS |<10‘5 then the image point has been foumfl £r;" (a)) and the procedure
is finished.

If |Fy(a)>10" and Fy(a)<0 then the correct value lies between and a,.

Therefore,a, :=a, Fy(a,):=F(a) and Steps 4-6 are repeated.

If |Fy(a)>10" and Fy(a)>0 then the correct value lies betweey and a.

Therefore,a, :=a, Fy(a,):=F(a) and Steps 4-6 are repeated.

2.5.2.Modified algorithm for the application of the models mapping
rule

Due to the complicacy of the equations involvedhe calculation ofF,(a), the

above algorithm is associated to relatively highmpatational cost. In order to
increase the computational efficiency of the UDNE Bbove algorithm was replaced
with a more straight-forward procedure. More spealfy, combining Equations
(2.112) and (2.113) with the conditidfs(a)=0, yields a binomial for the variable

a.
(dr dr, )a +(2druruLR a+ (ruLRruLR \/7Mb Jz (2.116)

where:

dr, =r, — 1% (2.117)

Equation (2.116) is interlaced, a4; is a function of the unity vectat., defined in

ij

the direction ofr”

ij

which in turn is a function o. However, it can be easily solved

iteratively:
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. Since M; takes values betweerM® and M", an initial value of
Mp(n;)=(M?+M?)/2 can be used, so that a first estimate d6 computed

from Equation (2.116).

o Next, ri?’ may be computed from Equation (2.112), allowinthare precise

estimate ofM; .

. Introducing this new value oM} into Equation (2.116) allows a more
accurate estimate of a. This procedure may be raosdi iteratively until

convergence. Experience from the application of #igorithm indicates that
in most cases, convergence is achieved in less24aiterations.

Apart from reducing the size of the algorithm, dnhel number of equations involved,
an important benefit from this modification is ththe quantitiesdr,dr,, dr,;* and
"t that appear in Equation (2.116) need to be cakedlanly once. Therefore, the

i i

required computational effort is significantly rexal.

An even more important benefit from this algoritigrthat the final estimate d¥1;

may be stored into memory and used as an initielevéor the next step’s iterative
procedure. As thoroughly explained in the previqeragraphs, the integration
timestep in both FLAC and FLAC3D is restrained trywsmall values, in order to
ensure the stability of the explicit finite differee solution scheme. Moreover,

according to the model’'s mapping rule, the directed the unit vectorn; is only
indirectly related to the current deviatoric streso r, . As shown in Figure 2.5, the
unit vector n; is associated with the direction of shearimg;™), and is therefore

relatively insensitive to small changes in the entrdeviatoric stress ratio. As a

result, the direction of the unit vectar, and the resulting value d\ﬂg(nij), are not

expected to intensely fluctuate, during shearingeré&fore, the number of iterations
needed for convergence is minimized and the cortipotd efficiency is significantly

increased.
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2.6. Drift Correction

An important part of the constitutive model’s intafjon scheme is the application of
a drift correction algorithm, which ensures thag¢ #tress point does not move far
outside the model’'s bounding surface. This coroecbhecomes necessary due to the
form of the adopted mapping rule, which was presgitt the previous section. More
specifically, if the current stress point lies tartside the bounding surface, it could

become impossible to determine a conjugate imagg. po

Therefore, after each modification of the stressestthe distance from the bounding
surface Es(rj) is computed, and consequently compared to a diwlemance value
Festwo. Following a sensitivity analysis, the toleranadue inherited in this work is
equal to Bs=102 If the distance is larger than this value, I.es(f) > Fes o the

following drift correction algorithm is applied.

Step 1

The stress state is moved in the stress spacey tilerdirection of the plastic potential

derivative, i.e.R; :‘% ;
Gij

6" =0, +A(2G n + K D ) (2.118)
where:
Fo (T
= BS( ”) (2.119)
K,+2G,+ VKD
Step 2

The result of the above correction is evaluated:

Case a: g5(ri*®") > Fss tol

The corrected stress point is still far outsideldbanding surface, thus the correction

of Step 1 is repeated.

Case b: E5(rj*") <0

The applied drift correction was larger than neagsshus Step 1 is repeated, using
A'=0.9A.
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Case c: F5(rj*") < Fssoiand Fg(ri" < 0

The applied drift correction is accepted.
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Chapter

Numerical methodology:
Evaluation of performance

3.1. General

The numerical methodology presented in Chapter 2visluated herein, in both
element level and boundary value conditions. Theu@cy of the addressed
integration schemes was first assessed, througligkielopment of isoerror maps.
Their computational efficiency was also evaluatgatpugh their application for a
given undrained shear strain path and the compaon$ahe required computational

times.

Consequently, the adopted constitutive model wéibrated against a wide range of
resonant column, as well as monotonic and cycldrained simple shear and triaxial
tests. Having achieved a good comparison betweemxtperimental results and the
respective numerical predictions, in element levleé accuracy of the developed
numerical methodology in boundary value problems ewaluated in both 2- and 3-
dimensions. This was achieved through the simulatica well established centrifuge
experiment, concerning the liquefaction performaota shallow foundation, which

will be the problem dealt with in the following gttars.
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3.2. Accuracy of integration schemes

In the previous paragraphs, three different integmaschemes have been adressed,

namely the:

o Modified Euler integration with automatic sub-steygpand error control
o Modified Euler integration without sub-stepping ador control

o Single step Euler integration

In order to assess the accuracy of the above #igwmj and derive conclusions on
their range of application, isoerror maps were tpped. This procedure has been
employed by a number of authors, e.g. Krieg & Kr{@§77), Schreyer, Kulak &
Kramer (1979), Iwan & Yoder (1983), Ortiz & Popal®g5), Ortiz & Simo (1986)
and Simo & Taylor (1986), as well as by Andriandpsy2006).

It must be noted, herein, that the combined integrascheme may not be evaluated
using the isoerror maps procedure, as this proeeiduplves the accuracy evaluation
of the integration algorithm over one single stramnrement, while the developed

scheme involves a sequence of increments.
The procedure for the creation of isoerror mapasifllows:

o A minimum of three points in the stress space liscsed, representing a wide

range of possible stress states.

. A sequence of specified strain increments is agpieeeach selected point,
and the integration algorithm is used for the cotafon of the corresponding

stresses.

. The exact stresses for the prescribed strain iremésnare computed by
repeatedly applying the algorithm with an incregsimumber of
subincrements. The value for which further subenoenting produces no

change in the numerical result is taken as thetescaation.

. Finally, results are reported as the relative noman square of the error

between the exact and computed solution, as olstdp&quation (3.1):

(3.1)
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In the work presented herein, three different ointthe stress space were examined.
An initial void ratio of e=0.737 was considered, corresponding to a relative densit

of D,=40%. Starting from an initial isotropic pressure ef =o, =80kPa, the

material was subjected to:

. undrained triaxial compression
. undrained triaxial extension
. undrained simple shear

More specifically, in the first case of triaxial mapression, a vertical compressive

strain of ¢, =0.01% was applied to the specimen, accompanied by aal eznd
opposite horizontal strain of, =-0.01%, in order to achieve initial yielding. In the
case of triaxial extension, the specimen was stdgedo a vertical strain of
e, =—0.01% and a horizontal strain aof, =0.01%. The application of these strains
was performed incrementally, in 10.000 steps £107°). Finally, in order for the
isoerror maps to be constructed, different comimnat of vertical @A¢,) and

horizontal (Ae, ) strains were consequently applied, ranging fridm to 107 ,.

In the third case, yielding was achieved by inliahpplying a shear strain of
e, =0.01% . Similar to the previous cases, shearing was egplinder constant
volume, in 10.000 steps\é =10*). At the final stage, different combinations o&ah

(Ae,, ) and vertical e, ) strain were applied, ranging fromd~ to 107

In all cases, the exact solutions were obtainedplying the stain increments in
steps of Ae=10", and using the Modified Euler integration schemthautomatic

sub-stepping and error control, with an error thee value o6TOL =107

The above procedure was performed three timesegmonding to the different
integration algorithms presented in the above. rEselting isoerror maps are shown
in Figures 3.1 and 3.2.
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Figure 3.1. Isoerror maps for undrained triaxial compressiord axtension,
created using (a) the Modified Euler integrationhesne, with
automatic sub-stepping and error control, (b) thedi¥led Euler
scheme without substepping and error control ahdh@ single-step
Euler integration scheme.

Yype 3.1, Iookaumdrieg GQAAUATOS Yoo aoTpdyylotn tpa&ovikny OAlym ko
EQPEAKLG O, BempdvTog () tpomomomuévn oAokAnpmwon kot Eulerpe
avtopatn vmodlaipeon Pruatoc kar  EAeyxo oediuoatog, (b)
tpomomomuévn ohokAnpwon katd Euler yopig vrodiaipeon Prpotoc
kot (C) amkn ohokAfpwon katd Euler.
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Figure 3.2.

Xypa 3.1.

Isoerror maps for simple shear, created usingh@)Modified Euler
integration scheme, with automatic sub-steppingemalr control, (b)
the Modified Euler scheme without substepping amdrecontrol and
(c) the single-step Euler integration scheme.

Iookaumdreg o@dlpatog Yoo omAf  duwdTunom, Oswpovrag ()
Tpomomomuévn oAokANpmon kotd Euler pe avtéuatn vrodiaipeon
Buatog ko Edeyyo cediparog, (b) tpomomomuévn olokinpmon katd
Euler yopic vmodiaipeon Pruatoc kot (C) amkny oAokANpworn Kotd
Euler.
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Thorough observation of Figures 3.1 and 3.2 yidtésfollowing conclusions:

As it was expected, the computed relative erroreiases with increasing

strain increments, for all initial stress stated &or all integration schemes.
Relative error increases when large tensile streirements are applied.

The Modified Euler integration scheme with automatib-stepping and error
control is proved to provide the most accurate Iteswith the relative error

not exceeding 5 to 10%, even for the largest ag@igin increments.

Compared to the single step Euler integration sehethe benefit from the
application of the modified Euler algorithm withostib-stepping and error
control, is proved to be relatively small. It shabdde taken into account that
model computations in the modified Euler schemepmdormed twice, and

thus the single-step Euler scheme is expected twibe as efficient.

For strain increments smaller tharo™, all algorithms provide accurate

results, with the relative error not exceeding 5%.

This last observation was incorporated into the lsioed integration scheme of the

UDM code, by adding the restriction not to perfoansingle-step Euler integration,

when the norm of the applied strain incremﬁmtij H:Aaiquj is beyond a threshold

strain valueETOL. This tolerance value was implemented as a UDMy¢gnty and

may be defined by the user. According to the abpnesented isoerror maps, this

value should not be larger thaa™. However, taking into account that these maps do

not cover the whole range of possible stress statesstrain increments, a smaller

default value ofL0”® was conservatively selected.

Therefore, the implemented combined integrationesth features the following

parameters:

A strain threshold valueeETOL: when the norm of the strain increment is
beyond this value, then the modified Euler schemth \eautomatic error
control and substepping is applied. In other wortlIsETOL =0, then the
previously presented combined integration schembymassed. For larger
values, the integration scheme selection dependhervalues ofMSTOL
andSTOL.

-68 -



Chapter 3. Numerical methodology: Evaluation of@enance

. An error tolerance valueMSTOL, which defines whether the single-step
integration turns to a modified Euler integratiatheme. If large values of
both MSTOL and ETOL are selected (i.10%), then the integration scheme

reduces to single-step Euler integration.

o An error tolerance valueSTOL, which defines whether the automatic
substepping algorithm is turned on. It becomes extidhat in order for
automatic error control and substepping to be adpkmall values cETOL

and MSTOL must be selected, so that the modified Euler sehsrased.

In order to explain the use of the above parameleble 3.1 shows how different
integration schemes may applied, using the apmtgprialues folETOL, MSTOL
andSTOL.

Table 3.1.  Typical values for parameters ETOL, MSTOL and STQO¢ed for the

application of different integration schemes.

MMivaxkag 3.1. Tomokég Tég tov mopapétpov ETOL, MSTOL kot STOL mov

YPNOOTOOVVTAL YOO TNV EQOPUOY TOLv  KéOBe  oyNUOTOC
OAOKANPOOTG.
Integration Scheme ETOL MSTOL STOL

Modified Euler, with error control & substepping 0 0 10°
Modified Euler, without error control & substepping 0 0 10
Combined scheme, with error control & substepping 0%1 10° 10°
Combined scheme, without error control & substegpin 10° 10° 10°
Single step Euler 10° 10° 10°

Evaluation of the overall accuracy and computatiefféiciency of the UDM, with the
use of different combinations for these parameteitsbe presented in the following.
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3.3. Computational efficiency of integration algorithms

The computational efficiency of all algorithms peeted previously is evaluated
herein, through their application in the predictioinstresses, for a given undrained
shear strain path, in element level. More spedifican initial void ratio ofe =0.737

was considered, corresponding to a relative derddityp, =40%, while the initial
vertical and horizontal stresses were equal dp=80KPa and o, =36KPa
respectively, corresponding to a horizontal eardsgure coefficient oK =0.45.
The element was subjected to the shear styginpath shown in Figure 3.3. The
prescribed strain path was applied in incrementaqf =10* and 10°, which are

typical for FLAC and FLAC3D numerical analyses. idastrain conditions were

considered, while no volume change was allowgd=(e, =0).

0.015
0.01 ﬁ
0.005 /

0 /
_0_005...|...|..M..|...|...|...|...

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time

Yvh

o

Figure 3.3. Applied shear strain history.

Yympo 3.3. EmPBaidpevn ypovoictopio SOTUNTIKOV TOPAUOPPDOCEDV.

The analyses were performed in both FLAC and FLAGBIQure 3.4). The results
from all cases a-d shown in Figure 3.4 were idahtithus confirming the model’s
implementation in the multi-axial stress spacethi@a following figures, only results

from the 2-dimensional element tests are shown.
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Figure 3.4. Applied boundary conditions in (a) FLAC, and (bFDAC3D.
Yypna 3.4.  EmPoidueveg cvvoplakég cvvinkeg otovg kddkes (a) FLAC ko (b-d)

FLAC3D.

More specifically, the following cases were exandine

Vi.

Original UDM, by Andrianopoulos (2006), prograrachin FISH.
The same UDM, reprogrammed using C++.

Optimized C++ UDM code, without any algorithrmodifications. The
modified Euler integration scheme with automaticroer control and

substepping was applied (i.ETOL=0, MSTOL=0 andSTOL=10%).

Similar to case iii, though using the new altfon for the application of the

mapping rule, with(M‘c’JrM 2)/2 as an initial value for the involved iterative
procedure.

Similar to case iii, though using the new altfon for the application of the
mapping rule, with a constantly upgrading initighlve of M., for the
involved iterative procedure.

Similar to case v, though using the modifieddEuntegration scheme, without

substepping and error control (iIETOL =0, MSTOL=0 andSTOL=10).
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vii.  Similar to case v, though using the combinedegration scheme, with
automatic substepping and error control where msargs(i.e. ETOL=1C,

MSTOL=10° andSTOL=10%).

viii.  Similar to case v, though using the combinategration scheme, without
substepping and error control (i.eETOL=10", MSTOL=10° and
STOL=10).

iX. Similar to case v, though using the single-dieper integration scheme (i.e.

ETOL=1C, MSTOL=1C andSTOL= 10).

As described in the above, analyses i to v weréopaed in order to assess the
increase in computational efficiency, which wasieebd by reprogramming the
UDM in C++, rearranging and optimizing the coded amproving the algorithm for
the application of the model's mapping rule. As extpd, the results from all these
analyses are identical. The resulting shear stressertical stress path, shear stress
vs. shear strain relationship and excess pore ymess. shear strain relationship are

presented in Figure 3.5.

As it may be observed in this figure, the results1f analyses i to v were identical.
However, significant differences were obseved, amms of computational effort.
Table 3.2 shows the averagemputational time required to perform the UDM

computations, per zone and per timesteghe above cases, with the prescribed shear

strain path being applied in increments &f , =10 and 10°. These times were

measured in a Personal Computer with an 3.0 GHz# Rentium Processor and 1GB
of RAM. The analyses were performed using the Z2etisional code FLAC. The

corresponding computational time in FLAC3D is irased by an average of 150%, as
model computations in FLAC3D are performed ten srper zone, compared to the

four subzones used in FLAC.
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Figure 3.5. Results of element tests i to v, in terms of slséi@ss vs. vertical stress
path, shear stress vs. shear strain relationshipacess pore pressure
vs. shear strain relationship.

Yyqpa 3.5.  Amotehéopato SOKIM®OV | MG V, 6€ OpOoLG SOOPOUNG SLOTUNTIKNAG
TAONG TPOG KATAKOPLEY TAGT, OYEONG OLTUNTIKNG TAONG TPOG
SWTUNTIKY  TOPOUOPP®OT KOl OYECNG VAEP-TIEONG TOPWV  TPOG
SLOTUNTIKT TOPOUOPPDON.

Observation of the computational time values presknn Table 3.2 vyields the

following conclusions:

o A significant decrease of the average computatiting is observed for all

cases, when the strain path is applied using smalteements. This is due to
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the smaller average number of substeps requiredaiatain the integration

error within the allowable tolerance values.

. Regardless of the applied strain increment, the @ritten UDM performs at
least 3 times faster than the one written in FISKHs does not imply that the
total analysis time in boundary value problems Ww# reduced to 1/3. The
computational times presented herein involve theMUperformance alone,
while in a FLAC analysis, an important amount oimgmtational time is
consumed for other purposes, independent of the UfiMdh as the solution
and integration of the equations of motion, thawdgion of strain rates from

gridpoint velocities and groundwater flow assodatalculations.

. Comparison between cases ii and iii indicates tredtrrangement and
optimization of the C++ code resulted in a compatel efficiency increase
of about 10%.

. As shown in cases iii and iv, the new algorithm floe application of the
model’s mapping rule speeds up the UDM by 12%.

. Comparison between cases iv and v indicates tretutie of a constantly
upgrading initial value oM; in the iterative procedure for the application of
the model’s mapping rule, reduces the computatitma by another 12% in
the case ofAy, =10, and by 16% forAy, =10°. The higher increase of
computational efficiency in the case of smalleaistincrements is justified by
the fact that the direction of the unity vectof, as well as the resulting
bounding surface radiu/;, do not intensely fluctuate during subsequent

timesteps and, consequently, the required numbiggrations is minimized.
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Table 3.2. Comparison of the computational efficiency for saséo v, with the

prescribed strain path being applied using diffenecrement sizes.

Mivokog 3.2. LHykpion VTOAOYIGTIKOD YPOVOL OTIS TEPIMTOOES | £0C V, Yo
SLPOPETIKG Pripota MPOANG TNG TPOSIAYEYPAUUEVIG YPOVOicTOPLOG

TOPALOPPDOTG.
Case Average computational time
Number & per zone and per timestep (ius)
Description Ay, =10 Ay, =107
i | FISH compiled UDM ~ 7500 ~ 2000
ii | C++ compiled UDM 2350 620
iii | Optimized UDM code 2139 561
iv | New mapping rule algorithm 1879 494
V| Constantly upgrading/; 1620 416

Analyses v to ix were performed to assess the aseren computational efficiency

achieved by the application of different computatischemes. As expected,
simplifications in the integration algorithm havenegative effect on the accuracy of
predicted stresses. This effect is evaluated throogmparison with the higher

accuracy algorithm, that is the modified Euler sohevith automatic substepping and
error control (Case v). More specifically, a ralatierror measure was computed for
each case, as shown in Equation (3.2):

(Aci'j - Aci;(v) ) (qu’ - qu'(v) )

Gi'j(V)Gi;(V)

R.E.= (3.2)

The resulting shear stress vs. vertical stress, psitear stress vs. shear strain
relationship and excess pore pressure vs. sheam sttationship for cases v to ix are
presented in Figures 3.6 and 3.7, with the straiin peing applied at increments of
Ay,,=10" and Ay, =10° respectively. Time histories of shear strain, sist@ss,
vertical effective stress and the error measurgqfation (3.2) are shown in Figures
3.8 and 3.9. Finally, the average computationaktimequired to perform the UDM
computations, per zone and per timestep, is preddat each case in Table 3.3.
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Figure 3.6. Results of element tests v to ix, in terms of shetegss vs. vertical
stress path, shear stress vs. shear strain redaipand excess pore
pressure vs. shear strain relationship, for apieain increments of
4
Ay, =10".
Yyqna 3.6. Amotehéouata doKudV V ¢ IX, o& Opovg S1dPOUNG SLOTUNTIKNG

TAONG TPOG KOTOKOPLPN TACT, OXEONG OTUNTIKNG TAONG TPOG
SWITUNTIKY  TOPOUOPP®CT KOl OYEONG VREP-TIEONG TOPWOV  TPOC
SWTUNTIKY  TopApdpe®on, Otav 1 OTUNTIKY]  TOPAUOPPOOT
emBailetan og Prpato Ay, =107,
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Figure 3.7. Results of element tests v to ix, in terms of shstegss vs. vertical
stress path, shear stress vs. shear strain redaipand excess pore
pressure vs. shear strain relationship, for apieain increments of
Ay, =107,
Yyquna 3.7.  Amotehéouata SOKUOV V £mG IX, o& Opovg S1dPOUNG SLOTUNTIKNG

TAONG TPOG KOTOKOPLPN TACT, OXEONG OTUNTIKNG TAONG TPOG
SWITUNTIKY  TOPOUOPP®CT KOl OYEONG VREP-TIEONG TOPWOV  TPOC

SWTUNTIKY  TOPAUOPP®ON,

emBailetan og Prpato Ay, =107,
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Figure 3.8. Results of element tests v to ix, in terms of steain, shear stress,
vertical effective stress and error time historié®, applied strain
increments ofAy,, =10,
Yyqpoe 3.8. Amoteléouato SOKIU®VY V £0C IX, GE OPOVS XPOVOIGTOPIDOV SLOTUNTIKY
ANy [ n S povg ¥p p UNTiKNg

TOPOUOPPMOONG, OTUNTIKNG TAONG, KOTAKOPLONG EVEPYOD TAOMG KOl
OYETIKOV GOAAUOTOG, OTAV 1] SLOTUNTIKY] TOPAUOPP®ST EMPAALETOL GE
BAnato Ay, =107,
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Figure 3.9. Results of element tests v to ix, in terms of steain, shear stress,
vertical effective stress and error time historié®, applied strain

increments ofAy,, =107°,

Yypa 3.9. Anotehéopata SOKIU®Y V EmG IX, GE OPOVG YPOVOIGTOPIDOV SIOTUNTIKNG
TOPOUOPPMOONG, OTUNTIKNG TAONG, KOTAKOPLONG EVEPYOD TAOMG KOl
OYETIKOV GOAAUOTOG, OTAV 1] SLOTUNTIKY] TOPAUOPP®ST EMPAALETOL GE
BAnato Ay, =107,
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Table 3.3. Comparison of the computational efficiency for cagdo ix, with the

prescribed strain path being applied using diffenecrement sizes.

Mivokog 3.3. TOykpion LTOAOYIGTIKOD YPOVOV OTIC TMEPMTOCELS V €m¢G IX, Yo

SLPOPETIKG Pripota MPOANG TNG TPOSAYEYPAUUEVIG Y POVOicTOPLOG

TAPAUOPPOOTG.
Case Computational time

Number & per zone and per timestep (ius)

Description Ay,, =10 Ay,, =10°
v v'\ci?r?i(feirergrEclg(ne{rol and substepping 1620 416
vi v'\ci?r?(i)fliﬁift?skteerpping 355 342
Vil| it error corrbl and subsiopping 306 215
vil| Combined inegraon sherne 224 199
IX | Single step Euler integration 202 197

Observation of Figures 3.6 to 3.9 as well as TaRlg, yields the following

conclusions:

Comparison between computational times for appsgdin increments of

Ay, =10" and Ay, =10"° indicates that effective integration algorithms

(cases v, vii and viii), where either the integvatischeme or the number of
substeps depends on the estimated local errotEiM performs much faster,
as the strain increment decreases. However, snsillein incremens also
affect the computational times in cases vi andvikiere the integration
algorithm does not include any form of error cohtrbhis is due to the
algorithm used for the application of the mappintgy as the application of

smaller strain increments minimizes the numbetarshtions.

Bypassing the automatic error control and substeppiprocedure,
considerably increases computational efficiencpeemlly for larger applied
strain increments, as shown by comparison of casesl vi, or cases vii and
viii. However, a significant increase in computatb error is also observed.
This error increases when the stress path entecsfispregions of highly non-
linear behavior. More specifically, peaks in thenpauted error are observed

when the dilation surface is crossed, and the magptoaches the critical
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state. In liquefaction related boundary value peois, behavior is expected to

be highly non-linear, thus bypassing error congtauld not be recommended.

. On the other hand, a significant decrease of coatjpumal time is also
observed when the combined integration algorithm ajgplied. More
specifically, computational time in case vii rensipetween cases v and ix.
However, even though the local error in case igiggificantly increased, the
combined integration algorithm seems to effectisiytch to the higher order
scheme when highly non-linear behavior is obsertkds minimizing the

computational error.

As described above, the combined integration algoriwhich allows to switch
between single step Euler integration and modifiader integration with error
control, provides increased computational efficigneithout any major sacrifice in
accuracy, and may be therefore recommended foinubeundary value problems.
The use of this new integration scheme, togethén wie reprogramming of the
original code of Andrianopoulos et al (2008) intot#C the consequent code
optimization and the modifications in the algoritiion the application of the mapping
rule, resulted in a total decrease of computatitina, of the order of 90%! In other
words, as shown from the comparison between caaed vii, the developed UDM
executes at 1/10 (one tenth) of the initial comportal time, without any significant
loss in the accuracy of the predictions. It shoddd stressed out that this
computational time is increased by 150% for apgbes in FLAC3D, due to the
different discretization of elements into a largeimber of subzones. However, the
improved computational efficiency of the new UDMpws the performance of both
2-D and 3-D finite difference analyses, in ratiotiales, which would not be possible

with the original non-optimized code.
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3.4. Model calibration

The model parameters were been calibrated agdiestessults of tests performed
during the VELACS research program (Arulmoli et 4092). These tests have been
performed on Nevada sand #120, with the physicatagtteristics presented in Table
3.4, and the gradation curve of Figure 3.10. M@recHically, the calibration was
based on resonant column tests, as well as on wwoand cyclic undrained simple
shear and triaxial tests. These tests cover a wadge of initial relative density
(D ,=40-60%), and initial consolidation stressti§—160kP¢). Thus, they can be
considered adequate for quantifying the behaviorthef sand in terms of shear

modulus reduction and damping increase with inéngashear strain, as well as the

rate of excess pore pressure development and éitieh resistance.

Table 3.4. Summary of Nevada Sand physical characteristics.

IMvokoeg 3.4. Hvoyn QUOIKGV Yapaktnplotikdv ¢ Appov Nevada.

Density of grains §, ) 2.67Mgr/ nf
Maximum dry density 6, ) | 1.77Mgy/ n?
Minimum dry density py, ..) | 1.41Mgr/ ni
Maximum void ratio €, ) 0.887
Minimum void ratio €,,,) 0.511
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Figure 3.10. Gradation curve of Nevada Sand #120.

Yyua 3.10. Koumdin kokkouetpikng dapdduonc e Appov Nevada #120.

The procedures which were followed in order to detbe model parameters are

covered extensively in Papadimitriou (1999, 20@X02) and Andrianopoulos (2006).

The parameters which were finally incorporatedhe present thesis, are shown in

Table ?7.
Table 3.5.  Constitutive model parameters for Nevada Sand #120.
IMivaokog 3.5. Tlopauetpol KotooToTiKOD Tpocopotduatog v v Auuo Nevada
#120.
Parameter Parameter Name Value
used in FLAC & FLAC3D
M¢ mc_comp 1.25
M¢ mc_ext 0.90
(&), void_cr 0.809
A lamda 0.022
B m b 600
— (180 for monotonic loading)
v m_poiss 0.33
kP kb_comp 1.45
ke kb_ext 1.044
k¢ kd_comp 0.30
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k¢ kd_ext 0216
" m_gi 0.00025

0.6
& mal (1.0 for monotonic loading)
A ao 0.8
h, ho 15000
Ho ho_fab 40000

Figures 3.11 to 3.20 summarize the comparison legtvexperimental results and

numerical predictions:

More specifically, Figure 3.11 compares experimemésults and model

predictions in terms of maximum shear modulgs,, variation with applied

isotropic pressure, for relative densitie®, = 40% and 60%.

Figure 3.12 concerns shear modulus degradaGp(® and dampingg

max

increase with increasing cyclic shear strain amgéty, .. In order to
demonstrate the contribution of the Ramberg-Osgfmsthulation and the
effect of plasticity on the model's behaviour, thbove curves were also
obtained usinga, =1.0 (which essentially turns off the Ramberg-Osgood
formulation for the computation of elastic strainay well as with a large

value for h, (which essentially turns plastic strains equalem).

Finally, Figures 3.13 to 3.20 show the comparis@iwieen experimental
results and model predictions, in terms of excesse pressure ratia,
generation rate, as well as in terms of liquefactorves, in both dynamic
simple shear and triaxial tests, with initial effee consolidation stresses
(vertical and isotropic, respectively) equal 80 and 160kPe, and relative
densities ofD, = 40% and 60%.
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Figure 3.11.

Yympo 3.11.
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Comparison between experimental results and mpdeictions in
terms of maximum shear modulu§, , variation with applied

isotropic pressure, for relative densitie®, = 40% and 60%.

20YKpIo  TEWPOUOTIKOV — OTOTEAECUATOV Kol TpoPAéyemv
KOTOGTOTIKOD TPOGOUOIOUATOS GE OpOvS UETAPOANG TOL UEYIGTOV

uétpov ddtunong G, ,, ne v emPariopevn péon taon P, Yo TIES
™G oxeTkng mukvotntag D, = 40% wkar 60%.
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Yympo 3.12.
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Figure 3.13.

Yypa 3.13.
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Comparison between experimental results and mpdalictions in
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Figure 3.15.

Xypa 3.15.
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Figure 3.17.
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Figure 3.19.
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3.5. Application — verification in boundary value problems

In order to verify the model’'s accuracy and perfante, a number of analyses were
performed, simulating a well established centrifegperiment, namely the Model 12
performed during the VELACS research project (Armolinet al., 1992, Arulanandan
& Scott, 1994). The selection of this test is diecelated to the problem investigated
in the following chapters, that is, the dynamicpeesse of a surface foundation,
resting on liquefiable soil. Moreover, the 3-dimensl nature of the experiment
allows to evaluate the capabilities of the 2-D, &lsb the 3-D numerical methodology

developed herein.

3.5.1.Experiment Results

Model Nol12 was tested in a rigid box, with a plassaof 2&13m in prototype scale.
The model consists of a 6m deep sand layer, oddolaia 1m thick silt layer. Nevada
sand #120 and Bonnie Silt were used as soil. Tinel seas pluviated through a
raining device, from a constant height which wasbcated to obtain a relative
density of 60%. A 4m high structure was placedchim ¢enter of the sample, applying
a bearing pressure of 150KPa on a surfacex8h8 0.5m below the surface of the
sand layer. The structure model was made out @l@minium container, filled with
lead shoot in order to achieve the desired presSua¢er was used as pore fluid, with
the water table being 1m above the surface ofitheTke target input motion for the
test was 10 cycles of 2Hz sine wave, with an amnbdit of 0.25g, while the
experiment was performed at a centrifuge accetardevel of 100g. Finally, soil-
structure behavior was monitored via 4 acceleroraefdccB, AccC, AccD and
AccF), 4 pressure transducers (PPT1 to PPT4) ab¥ [T, placed as shown in
Figure 3.21.

As far as model construction is concerned, the dagdr was placed first, with

pluviation interrupted four times, in order to ialst accelerometers, pressure
transducers, as well as the structure. Next, thekdiuwas sealed and vacuum was
applied to the sample. Water was subjected to dlsewum amd drawn into the testing
container. Finally, Silt was poured on the top loé sand and spread to cover the
entire sand layer. The experiment was performedcaintrifugal acceleration of 100g.
The sample was first left in flight for approximgtel0 minutes. Following the

consolidation process, the centrifuge was stoppedtlae structure was checked for
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standing. The centrifuge was again spun up to Hd@bthe test was performed after

the pore pressure transducers had stabilized.

E 97
AT F SO

wo'g
q ws

woge

Wil

Figure 3.21. VELACS Model 12 centrifuge test setup.
Yyna 3.21.  Awdtaén mepapartoc puyokevipioty VELACS Model 12.

Model Test No12 was duplicated several times, iedldifferent Universities, namely
Princeton University (six times, | to VI), Univetgiof California at Davis (U.C.

Davis) and Reanseller Polytechnical Institute (R.PResults of Tests Il and IV of
Princeton University are not available due to peamd with instrumentation

malfunction, while Test Ill had a higher excitatitevel of 0.35g, instead of the
prescribed 0.25g. Moreover, not all pore pressume tistories are available from a
single test, as an average of one pressure tramsdwdfunctioned during each test.

Despite the above difficulties, good overall repbdity was observed between the
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available recordings, in terms of acceleration. sy, there was a scatter in the
recorded foundation settlements, which ranged f2ano 27cm at the end of shaking.
The test was duplicated in R.P.l., where three tidehtests were performed, with

similar results being reached in each trial. Themefthe resulting value of 13cm for
the foundation settlements, may be regarded as rebable than the ones recorded
in Princeton University. Acceleration and pore gugs time histories were more or
less similar to the ones recorded in Princetonmalisinin U.C. Davis, the input motion

amplitude was similar to Princeton Test Ill, with average of 0.33g and a maximum

of 0.37g, and are therefore not presented herein.

Figure 3.22 shows the recorded results in termsexafess pore pressure ratios

AU/G' where Au is the excess pore water pressure afigd is the initial vertical

v,0 !
effective stress. It may be observed that in thetjpm of the transducer PPT4, excess
pore pressure ratios reach values larger thanr@iating that liquefaction occurred
in the free field. However, underneath the footirgxcess pore ratios remain
significantly lower, implying that the presence tfe superstructure inhibited
liquefaction. As a result, no significant deamgktfiion was observed in the respective
acceleration recordings, which are shown in Figugs3.

The final foundation settlements are presentedalbrtests in Table 3.6. Larger
foundation settlements were recorded in test lIPohceton University, as well as in
the test performed in U.C.Davis. This may be atted to the larger amplitudes of the
applied acceleration. The evolution of foundatiettliements for the tests performed
with the originally prescribed acceleration ammiuof 0.25g is shown in Figure
3.24.

Table 3.6. Recorded foundation settlements in VELACS Model cghtrifuge
experiments.

IMivaxkag 3.6. Kataysypappéves kabilnoeig Beperiov oto TEpALOTO QUYOKEVTPLOTY
VELACS Model 12.

University | Test Settlement (cm)
Princeton I 27

11l 47

V 22

VI 21
U.C. Davis - 18
R.P.I. I, 1 &I 13
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Figure 3.22 Recorded time histories of excess pore pressiiasr

Yypa 3.22  Katayeypappéves ypovoioTopiec AOymv VIEPTIECEMY TOPM®V.
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Figure 3.23. Recorded acceleration time histories.
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Figure 3.24. Recorded foundation settlement time histories.

Yympo 3.24. Kotayesypopupéveg ypovoiotopieg kabilnoewv Oepeiiov.

3.5.2.Numerical Simulation

In order to assess the qualitative and quantitatoeeiracy of the developed numerical

methodology, a total of three (3) numerical simolat were performed:

Initially, a 2-dimensional simulation was contleat, using the finite difference
code FLAC. In this case, the square foundationssestially replaced by a
strip footing. Therefore, the structure’s densitgsweduced, as described in
the following, in order to convert the actual apglpressure into an equivalent

2-dimensional loading.

Next, a similar analysis was performed, usidg ftfinite difference code
FLAC3D. In this case, a single row of 1m wide eletsewas used and plane
strain conditions were considered, in order tovallbe comparison of the
results with the 2-dimensional analysis, aiming \erify the correct
implementation of the UDM in FLAC3D.

The equivalent plane strain analyses wereofe#d by a real 3-dimensional
analysis. This analysis demonstrates the capasiliof the developed
numerical methodology, as the full 3-dimensionallpem may be accurately
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simulated without any simplifications, regardinge trequivalent applied

pressure.

Figures 3.25 to 3.27 show the meshes used for eaehof the above numerical
simulations. In the first (2-dimensional) analy€l82 zones and 541 gridpoints were
used, with dimensions varying from 0.60m0.50m (widthx height), in the region
near the structure, to 0.75m0.75m away from the foundation. In the second (3-
dimensional, equivalent plane strane) analysis, tmber and the dimensions of
zones in the problem’s plane were the same asi-tiimensional analysis. A single
row of 1m wide elements was used, while the totahiber of gridpoints was equal to
2x541=1082. Finally, in the third (complete 3-dimemsl) analysis, the total number
of zones reached 4680, corresponding to 5751 gntpoWithin the plane of the
applied excitation, the mesh was similar to thevioes plane strain analyses. In the
third dimension, only one half of the model was Wabed, as the behavior is
symmetrical. A total width of 10 zones was consedemwith zone dimensions varying

from 0.60m near the footing to 0.75m further away.

As it may be observed in Figures 3.25 to 3.27, ninedeled footing width was
considered equal tox®.60m=2.40m. According to Itasca (2005), the bepdrea is
found by assuming that vertical velocity developiag the footing settles varies
linearly, from the value at the last gridpoint dfetfooting, to zero at the next
gridpoint. Therefore, half the width of the adjasicelements should be added to the
actual footing width, resulting to a total width 2#40m+2*0.30m=3.00m. Of course,

the applied pressure was appropriately adjusted.

Figure 3.25. Mesh used in the 2-dimensional numerical simufatio

Yympo 3.25. Aiktvo otoreimv mov ypnowomomdnke ot 2-01dotatn aplOunTikn
TPOGOUOIGT.
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Figure 3.26. Mesh used in the 3-dimensional, equivalent plamairs numerical
simulation.

Yympo 3.26. Aiktvo ototyeiov mov ypnoporo)dnke oty 3-01doTaTn aplOuUnTIKY
TPOCOUOI®ST VIO GLVONKES EMITEONG TAPAUOPPDONG.
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Figure 3.27. Mesh used in the complete 3-dimensional numesicalilation.

Yypa 3.27. Aiktvo otoygiov mov ypnoyomodnke oty 3-01dotatn oplOunTikn
TPOCOUOIWOT).

As far as boundary conditions are concerned, owolyzbntal displacements were

restrained in the lateral boundaries of the 2-dsimral analysis, while no restraint

was considered in the vertical direction, in order allow the development of

settlements. In the 3-dimensional analysis, hotelomstraints refer to the directions

vertical to the lateral boundaries’ planes. Durthg initial static loading and the

computation of initial stresses, only vertical rasits were applied in the bottom

boundaries of all three numerical models. Horizbdliaplacements of the bottom
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gridpoints were allowed to move horizontally, irder to avoid the development of
parasitic shear stresses. Horizontal displacemehtthe bottom boundary were

restrained during shaking, simulating rigid bedrookditions.

In all three numerical analyses, the constitutivael presented in previous chapters
was used to simulate sand behaviour. The parametarsidered were the ones
presented in the prevous paragraphs, correspondifigvada Sand, with an initial

void ratio of e= 0.66J, corresponding to a relative densityDf =60%. Both the silt

cap and the superstructure were simulated as @lastierials. More specifically, a
shear modulus ofc = 5760kP¢ was considered for the silt layer. This value itssu

from a maximum shear wave velocity &f, =60m/se¢, and a shear modulus

degradation of 20%, corresponding to cyclic shéairss of the order of 0.01%, for
soils with a plasticity index ofPI=15% (Vucetic & Dobry, 1991). The elastic
parameters of aluminium were considered for theessipucture, namely shear

modulus equal td& = 2.9- 10 kP: and bulk modulus equal t§ =3.9-1F kPe.

Local nonviscous damping was considered for allemals. According to this form of
damping, the damping force on a gridpoint is prtipoal to the magnitude of the
unbalanced force, while its direction is such teaergy is always dissipated. This
formulation does not influence the mode of fail@® it does not introduce body
forces in flowing regions, while it allows for défifent amounts of damping to be
defined for different regions. Most importantlydibes not require the performance of
a complete modal analysis to compute the eigensahfethe matrix, as it is
independent of properties or boundary conditiorsciwvalso makes it appropriate for
highly non-linear problems as the one addressegirheh damping value of 2% was
selected for the sand, corresponding to the minintamping value reported by
Vucetic & Dobry (1991), for very small cyclic sheatrains (0.001%). For larger
shear strain amplitudes, hysteretic damping will ds@ulated by the non-linear
behavior of the model itself. A value of 10% wadested for the silt cap,
corresponding to cyclic shear strains of the oafed.01%, for soils with a plasticity
index of PI=15% (Vucetic & Dobry, 1991). Finally, 5% damping wased for the

superstructure material.

As far as permeability is concerned, a valuekof 2.1-10° m se was used for

Nevada Sand, that is 100 times larger than theahetlue, for reasons of scaling to
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prototype conditions. The corresponding valuestha relatively impermeable silt
and the superstructure were smaller, by 4 and dérsrof magnitude respectively. In
order to simulate the water table level, pore pnesss and vertical stresses equal to
9.81kPa were applied to the ground surface, cooretipg to 1m of water.

As mentioned in the previous paragraphs, in tre fivo plane strane analyses, the
bearing pressure of the superstructure was redinoadthe initial value of 150kPa
into an equivalent strip foundation pressure of R&bkThis value was suggested by
Popescu & Prevost (1994), as the applied presswae would produce the same
elastic static settlements in plane strain conaéti@nd in the full 3-dimensional
problem. It is noted that in the third (3-dimengijnanalysis there was no need to

make such simplifications and the value of 150kRa used directly.

In order to produce the initial stress state, tmec@dure followed during the
preparation of the sample in the experiments wae &llowed in the numerical

simulation. More specifically:

. The lowest 5.5m of the sand layer were first pladedial stresses were
computed considering water level at 7m. In ordeadbieve this, the density
of all elements corresponding to the higher 0.5nthef sand layer, the silt
layer, and the submerged part of the superstructuas set equal to water
density (0:1.0Mgr/n13), while pore pressures and vertical stresses were

applied at the surface, as described above. Thesitdeof the part of the

superstructure that is above water level was setatemall value of

p=0.001Mgy/ ni.

o The structure was then added, by gradually incngasihe density of the

corresponding model zones.

o Consequently, the rest 0.5m of sand and the siirlavere added, also as a

gradual increase of the density of the correspandames.

o Taking into account that the experiment was peréanm a rigid box, the
excitation was applied to both the bottom bound#rthe model's mesh, as
well as to the lateral boundaries, in the direct@inshaking. The applied

excitation time history is presented in Figure 3.28
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Figure 3.28. Applied acceleration time-history.

Yympo 3.28. EmiPoaidpevn ypovoictopio ETITOYOVOEWDV.

Figures 3.29 to 3.31 quantify the results of thenarical analyses and compare them

to experimental recordings, in terms of excess ppressure ratiosAu/cs’

v,0 !

accelerations, and settlement timehistories, res@dye. It may be observed that:

. The developed numerical methodology accurately ipiedhe evolution of
excess pore pressure ratios, indicating higheogam the free filed than in the
region underneath the footing. The effect of thepesstructure on the

underlying soil is therefore successfully quantifie

o The fact that there is no degradation of accelanati due to the non-
liquefaction of the subsoil, is also well predictddy the numerical

methodology.

. Finally, predicted settlements match fairly wek tbnes recorded in the R.P.I.
centruifuge, being smaller than the ones resultirgm the Princeton
centrifuge tests. It has been explained though, rtsults of the R.P.I. test

showed higher repeatability and may be regardedaase reliable.

Furthermore, comparison between the rusults offitts¢ (2-dimensional) and the
second (3-dimensional plane-strain) analysis, atéig that the 2-D model has been
correctly extended to three (3) dimensions and emgnted into FLAC3D. Any small
differences noticed in the results are attributeddifferences in the numerical

methodology, combined with the complexity and thghhnon-linearity of the
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analyzed phenomenon. As described in the previdwapters, finite difference
computations in FLAC are performed after the diszation of the quadrilateral
zones into four (4) triangular subzones. On theerotiand, the 8-noded zones of
FLAC3D are divided into ten (10) tetrahedral sukemn

Finally, the results of the plane-strain analysesveell compared to the ones of the
complete 3-dimensional analysis. It should be sa@sthough, that the full 3-

dimensional analysis succeeds to provide accuratigtions without the necessity to
make any simplifications regarding the foundatidmegring pressure.
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Figure 3.29. Comparison of experimental results and numerig&diptions, in
terms of excess pore pressure ratio timehistories.

Yympo 3.29. XHykpiomn TEPAPATIKOV ATOTEAEGUATOV Kot aptOunTikdv TpofAéyemv
o€ OPOLG YPOVOIGTOPLHOV AOYOV VIEPTECEWDY TOPMV.

-107 -



Chapter 3. Numerical methodology: Evaluation of@enance

-0.5

[o0)
. 1 ]
- = ]
[ .
Z ]
5 £ ]
g ne =3 = -
—— |2 £ 00 .
— raoyoo 7
=00 8§ 8 E
e (S S 222 ]
= — . w w S S S
> >2Z2 2 2 —_
| | I —
= || ‘ I ‘ ]
— Jd« ]
= J 4 ]
""I""""I""_o NS NS RS N
[Te} [Te} o n n n n o n
o [ N s o N N
o OI ' o OI
(B) @oov (B) 400v
[o0)
] F- ]
] S % i
J -~ > ]
1 P
dw == -
R
y e
—q ™ _____ ——‘ —
1 e ]
] ——— ]
1 /' — .
""I""""I""_o S NS RS s
n Yo} o [Te} n o) n o n
S [ [N s o N N
o OI ' o OI
(6) goov (6) 020V
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Yyqpa 3.30. Z0yKpilorn TEPOUATIKOV OTOTEAEGULATOV Kot oplOunTIKdV TpoPAéyemv

G€ OPOVC YPOVOTIGTOPLDV ETITAYVOVGEWMV.
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Figure 3.31.

Xypa 3.31.
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Comparison of experimental results and numerigadiptions, in

terms of foundation settlement timehistories.

2OYKPION TEPOUATIKOV OTOTELECUATOV Kot aplOuNTIK®V TpoPAEyemv
o€ 6povg ypovoiotopldv kKahlnoewv Beperiov.
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