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hapter  
1. Εκτενής Περίληψη 

 

[Οι βιβλιογραφικές αναφορές καθώς και οι αναφορές σε Σχήµατα και Πίνακες 

παραπέµπουν στην πλήρη Τεχνική Έκθεση η οποία ακολουθεί] 

ΕΙΣΑΓΩΓΗ 

Η παρούσα Τεχνική Έκθεση αποτελεί το 1ο Παραδοτέο (Π1) του Ερευνητικού 

Προγράµµατος µε τίτλο: 

ΘΑΛΗΣ-ΕΜΠ (MIS 380043) 

Πρωτότυπσ Σχεδιασµός Βάθρων Γεφυρών σε Ρευστοποιήσιµο Έδαφος µε 

Φυσική Σεισµική Μόνωση 

µε Συντονιστή (Ερευνητικό Υπεύθυνο) τον Γεώργιο Μπουκοβάλα Καθηγητή ΕΜΠ.   

Συγκεκριµένα, παρουσιάζονται τα αποτελέσµατα της ∆ράσης ∆2, η οποία αποσκοπεί 

στην:  

"Ανάπτυξη  λογισµικού για την αριθµητική ανάλυση της συζευγµένης απόκρισης 

Βάθρου - Θεµελίωσης - Ρευστοποιηµένου Εδάφους". 

Στην παρούσα Τεχνική Έκθεση, επισυνάπτεται επιπλέον το 2ο Παραδοτέο (Π2)  του 

ερευνητικού προγράµµατος, το οποίο συνίσταται στην υπο-ρουτίνα (σε γλώσσα 

προγραµµατισµού C++) η οποία είναι απαραίτητη για την εφαρµογή της νέας 

αριθµητικής µεθοδολογίας, µε την Μη Γραµµική Μέθοδο Πεπερασµένων ∆ιαφορών.  

ΙΣΤΟΡΙΚΟ 

Η ποιοτικά και ποσοτικά ακριβής προσοµοίωση της συµπεριφοράς επιφανειακών 

θεµελιώσεων υπό καθεστώς ρευστοποίησης απαιτεί την πραγµατοποίηση πλήρως 

συζευγµένων αναλύσεων ενεργών τάσεων και ροής του νερού των πόρων, µε χρήση 

ενός καταστατικού προσοµοιώµατος ικανού να προβλέψει τη συµπεριφορά άµµων 

υπό µονοτονική και ανακυκλική φόρτιση. Το προσοµοίωµα που υιοθετήθηκε για το 

σκοπό αυτό, στο παρόν ερευνητικό πρόγραµµα, είναι το προσοµοίωµα οριακής 

επιφάνειας που προτάθηκε από τους Papadimitriou et al. (1999, 2001, 2002), όπως 

αυτό τροποποιήθηκε από τους Andrianopoulos (2010a,b). 
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Το εν λόγω προσοµοίωµα βασίζεται στη θεωρία γενικευµένης πλαστικότητας, ενώ 

διαθέτει µηδενική ελαστική περιοχή, µε αποτέλεσµα οι παραµορφώσεις να είναι σε 

κάθε βήµα ελαστοπλαστικές. Σε ό,τι αφορά στις ελαστικές παραµορφώσεις, αρχικά 

υπολογίζεται το µέγιστο ελαστικό µέτρο διάτµησης Gmax, σύµφωνα τον τύπο του 

Hardin (1978), και στη συνέχεια υπολογίζεται το αποµειωµένο εφαπτοµενικό µέτρο 

διάτµησης G, σύµφωνα µε το υστερητικό προσοµοίωµα Ramberg-Osgood (1943). Η 

χρήση του εν λόγω προσοµοιώµατος επιτρέπει την ακριβή προσοµοίωση της 

αποµείωσης του µέτρου διάτµησης και της αύξησης της υστερητικής απόσβεσης µε 

την αυξανόµενη επιβαλλόµενη ανακυκλική διατµητική παραµόρφωση (π.χ. Vucetic 

& Dobry, 1991, Ishibashi & Zhang, 1993). Η προκύπτουσα µορφή της σχέσης 

διατµητικών τάσεων – διατµητικών παραµορφώσεων, και της αντίστοιχης 

αποµείωσης του εφαπτοµεντικού µέτρου διάτµησης, παρουσιάζονται στα Σχήµατα 

2.1 και 2.2 της πλήρους Τεχνικής Έκθεσης που ακολουθεί. 

Σε ό,τι αφορά στις πλαστικές παραµορφώσεις, το µέτρο πλαστικότητας Kp δίνεται 

συναρτήσει της απόστασης της τρέχουσας εντατικής κατάστασης r, στο χώρο των 

αποκλινουσών τάσεων, από ενα συζυγές σηµείο rIP, πάνω σε µία επιφάνεια που 

ονοµάζεται οριακή επιφάνεια. Για τη διεύθυνση των πλαστικών παραµορφώσεων, οι 

διατµητικές παραµορφώσεις ακολουθούν συζευγµένο νόµος ροής, ενώ οι 

ογκοµετρικές παραµορφώσεις υπολογίζονται συναρτήσει της απόστασης του 

τρέχοντος τασικού σηµείου από µία δεύτερη επιφάνεια, που ονοµάζεται επιφάνεια 

διαστολικότητας. Τόσο η οριακή επιφάνεια, όσο και η επιφάνεια διαστολικότητας 

ορίζονται συναρτήσει της παραµέτρου κατάστασης ψ (Been & Jefferies, 1985), βάσει 

µίας τρίτης επιφάνειας, που ονοµάζεται επιφάνεια κρίσιµης κατάστασης. Με τον 

τρόπο αυτό, ενσωµατώντεται στο προσοµοίωµα η Θεωρία Κρίσιµης Κατάστασης 

(Schofield & Wroth, 1968), που επιτρέπει την προσοµοίωση της συµπεριφοράς 

εδαφών µε διαφορετική αρχική κατάσταση (διαφορετική µέση ενεργό τάση και 

σχετική πυκνόητα), χρησιµοποιώντας τις ίδιες παραµέτρους. 

Η µορφή των τριών επιφανειών του προσοµοιώµατος στο χώρο των τριαξονικών 

τάσεων p΄-q και στο επίπεδο π του λόγου αποκλινουσών τάσεων, παρουσιάζεται στα 

Σχήµατα 2.3 και 2.5. Στο Σχήµα 2.5 παρουσιάζεται επίσης ο νόµος προβολής της 

τρέχουσας εντατικής κατάστασης r, στο συζυγές σηµείο rIP πάνω στην οριακή 

επιφάνεια. Όπως φαίνεται στο σχήµα, ο νόµος προβολής ορίζεται συναρτήσει της 

εντατικής κατάστασης rLR στην τελευταία αντιστροφή φόρτισης. 
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Τέλος, στο πλαστικό µέτρο Kp εισάγεται, µέσω ενός εµπειρικού συντελεστή hf, η 

επίδραση της εξέλιξης της δοµής του εδαφικού στοιχείου. Η θεώρηση αυτή επιτρέπει 

την ακριβή προσοµοίωση του ρυθµού αύξησης των υπερπιέσεων πόρων, σε 

ανακυκλική φόρτιση, µέχρι τη ρευστοποίηση. 

ΑΡΙΘΜΗΤΙΚΗ ΜΕΘΟ∆ΟΛΟΓΙΑ 

Το ανωτέρω καταστατικό προσοµοίωµα είχε ενσωµατωθεί στον κώδικα 

Πεπερασµένων ∆ιαφορών FLAC από τους Andrianopoulos et al (2010a,b), 

χρησιµοποιώντας τη γλώσσα προγραµµατισµού FISH. Το FLAC εφαρµόζει µία µη-

πεπλεγµένη διαδικασία επίλυσης, η οποία συνοψίζεται στο Σχήµα 2.6. Παρά τη 

δυνατότητα του FLAC για την πραγµατοποίηση πλήρως συζευγµένων δυναµικών 

αναλύσεων ενεργών τάσεων µε ροή του υγρού των πόρων, η χρήση της 

ενσωµατωµένης γλώσσας προγραµµατισµού FISH συνεπάγεται υπερβολικά 

αυξηµένο υπολογιστικό κόστος, µε αποτέλεσµα η εφαρµογή της εν λόγω αριθµητικής 

µεθοδολογίας σε τρεις διαστάσεις να είναι πρακτικώς αδύνατη. ∆εδοµένης της 

τρισδιάστασης φύσης της συµπεριφοράς επιφανειακών θεµελιώσεων βάθρων 

γεφυρών επί ρευστοποιήσιµου εδάφους, ο αλγόριθµος ολοκλήρωσης του 

καταστατικού προσοµοιώµατος επαναπρογραµµατίστηκε, στα πλαίσια του παρόντος 

ερευνητικού προγράµµατος, χρησιµοποιώντας τη γλώσσα C++, µε αποτέλεσµα τη 

µείωση του χρόνου των αναλύσεων σε περίπου 1/3 του αρχικού χρόνου. Εν συνεχεία, 

πραγµατοποιήθηκε βελτιστοποίηση του κώδικα, περαιτέρω µειώνοντας το χρόνο 

ανάλυσης κατά 10%. Σηµαντικό ρόλο σε αυτή τη διαδικασία είχε η βελτιστοποίηση 

του αλγορίθµου εφαρµογής του νόµου προβολής του προσοµοιώµατος και 

προσδιορισµού του συζυγούς σηµείου στην οριακή επιφάνεια. Τέλος, ο αλγόριθµος 

επεκτάθηκε στις τρεις διαστάσεις και ενσωµατώθηκε στον κώδικα FLAC3D. 

Ιδιαίτερα σηµαντική, για τον καθορισµό του τελικού χρόνου αναλύσεων, ήταν η 

επιλογή της µεθόδου ολοκλήρωσης των καταστατικών σχέσεων. Για το σκοπό αυτό, 

εξετάστηκαν τρεις διαφορετικοί αλγόριθµοι ολοκλήρωσης, και συγκεκριµένα η απλή 

ολοκλήρωση Euler, η τροποποιηµένη ολοκλήρωση Euler και η τροποποιηµένη 

ολοκλήρωση Euler µε αυτόµατη υποδιαίρεση του βήµατος ολοκλήρωσης και έλεγχο 

σφάλµατος, που προτάθηκε από τους Sloan et al (2001). Οι ανωτέρω αλγόριθµοι 

ολοκλήρωσης παρουσιάζονται γραφικά στα Σχήµατα 2.9 έως 2.11.  
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Για την αξιολόγηση των µεθόδων αυτών, κατασκευάστηκαν, για τριαξονική φόρτιση 

και για απλή διάτµηση, οι ισοκαµπύλες σφάλµατος που παρουσιάζονται στα Σχήµατα 

3.1 και 3.2, αντίστοιχα. Παρατηρήθηκε ότι η τροποποιηµένη ολοκλήρωση Euler µε 

αυτόµατη υποδιαίρεση του βήµατος ολοκλήρωσης και έλεγχο σφάλµατος, επιτρέπει 

την ακριβή ολοκλήρωση των καταστατικών σχέσεων, ακόµη και για µεγάλα βήµατα 

επιβαλλόµενων παραµορφώσεων. Παρόλα αυτά, διαπιστώθηκε ότι για µικρές 

επιβαλλόµενες παραµορφώσεις, ικανοποιητική ακρίβεια µπορεί να επιτευχθεί ακόµα 

και µε απλή ολοκλήρωση Euler. Τελικά, υιοθετήθηκε ένα σύνθετο σχήµα 

ολοκλήρωσης, που χρησιµοποιεί απλή ολοκλήρωση Euler για µικρές επιβαλλόµενες 

παραµορφώσεις, ενώ για µεγαλύτερες παραµορφώσεις επιτρέπει την αυτόµατη 

επιλογή µεταξύ της απλής ολοκλήρωσης Euler και του αυτόµατου αλγορίθµου των 

Sloan et al, συναρτήσει της τοπικής µη-γραµµικότητας της σχέσης τάσεων 

παραµορφώσεων. 

Για την αξιολόγηση του επιλεγµένου αλγορίθµου ολοκλήρωσης, εξετάστηκε η τασική 

όδευση του Σχήµατος 3.5. Τα αποτελέσµατα που προέκυψαν µε την εφαρµογή των 

διαφόρων µεθόδων ολοκλήρωσης, για διαφορετικά βήµατα επιβαλλόµενων 

παραµορφώσεων, παρουσιάζονται στα Σχήµατα 3.6 και 3.7. Στα Σχήµατα 3.8 και 3.9 

παρουσιάζεται το σχετικό σφάλµα από την εφαρµογή του κάθε αλγόριθµου 

ολοκλήρωσης, ενώ οι αντίστοιχοι απαιτούµενοι υπολογιστικοί χρόνοι συνοψίζονται 

στον Πίνακα 3.3. Όπως φαίνεται στον πινακα αυτό, η µη εφαρµογή ελέγχου 

σφάλµατος και αυτόµατης υποδιαίρεσης του βήµατος, επιτρέπει τη σηµαντική 

µείωση του χρόνου ανάλυσης, αλλά οδηγεί σε σηµαντικό σφάλµα, ειδικά στην 

περίπτωση µεγάλων επιβαλλόµενων παραµορφώσεων, και κυρίως στις περιοχές 

έντονα µη-γραµµικής συµπεριφοράς, όταν η εντατική κατάσταση πλησιάζει την 

επιφάνεια κρίσιµης κατάστασης. Παρόλα αυτά, ο προτεινόµενος αλγόριθµος 

επιτρέπει την αυτόµατη επιλογή του σχήµατος ολοκλήρωσης ανάλογα µε το 

επιβαλλόµενο βήµα παραµόρφωσης και µε την τοπική µη-γραµµικότητα, µε 

αποτέλεσµα να παρέχει ικανοποιητική ακρίβεια, επιτυγχάνοντας παράλληλα µείωση 

του υπολογιστικού χρόνου έως και κατά 90%. 

ΒΑΘΜΟΝΟΜΗΣΗ & ΑΞΙΟΛΟΓΗΣΗ 

Οι παράµετροι του καταστατικού προσοµοιώµατος που υϊοθετήθηκε στο παρόν 

ερευνητικό πρόγραµµα, προσαρµόστηκαν στη συµπεριφορά της άµµου Nevada, της 

οποίας τα φυσικά χαρακτηριστικά συνοψίζονται στον Πίνακα 3.4, ενώ η 
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κοκκοµετρική της διαβάθµιση παρουσιάζεται στο Σχήµα 3.10. Οι επιλεγµένες 

παράµετροι συνοψίζονται στον Πίνακα 3.5. Οι προβλέψεις του καταστατικού 

προσοµοιώµατος συγκρίνονται µε τα αντίστοιχα πειραµατικά αποτελέσµατα στα 

Σχήµατα 3.11 έως 3.20, σε όρους µέγιστου µέτρου διάτµησης, αποµείωσης του 

µέτρου διάτµησης και αύξησης της ιξώδους απόσβεσης µε το εύρος της 

επιβαλλόµενης ανακυκλικής διατµητικής παραµόρφωσης, ρυθµού ανάπτυξης 

υπερπιέσεων πόρων, και καµπυλών ρευστοποίησης, για διαφορετικά επίπεδα 

επιβαλλόµενης µέσης τάσης, και διαφορετικές σχετικές πυκνότητες. 

Πέραν της αξιολόγησης των προβλέψεων του καταστατικού προσοµοιώµατος έναντι 

εργαστηριακών δοκιµών εδαφοµηχανικής, η ακρίβεια της αριθµητικής µεθοδολογίας 

επαληθεύθηκε και σε επίπεδο προβλήµατος συνοριακών συνθηκών, µέσω της 

προσοµοίωσης του πειράµατος φυγοκεντριστή #12, του ερευνητικού προγράµµατος 

VELACS (Arulmoli et al., 1992, Arulanandan & Scott, 1994). Το συγκεκριµένο 

πείραµα έχει άµεση σχέση µε το αντικείµενο του παρόντος ερευνητικού 

προγράµµατος, καθώς αφορά στη σεισµική συµπεριφορά επιφανειακής θεµελίωσης, 

εδραζόµενης επί ρευστοποιήσιµου εδάφους, του οποίου υπέρκειται µη 

ρευστοποιήσιµη επιφανειακή στρώση. Η διάταξη του εν λόγω πειράµατος 

φυγοκεντριστή παρουσιάζεται στο Σχήµα 3.21, ενώ τα αντίστοιχα αποτελέσµατα 

παρουσιάζονται στα Σχήµατα 3.22 έως 3.24, σε όρους χρονοϊστοριών επιταχύνσεων, 

λόγων υπερπιέσεων πόρων και δυναµικών καθιζήσεων του θεµελίου. 

Για την επαλήθευση της ακρίβειας του αλγορίθµου σε δύο και τρεις διαστάσεις 

πραγµατοποιήθηκαν τρεις διαφορετικές αναλύσεις. Αρχικά έγινε ανάλυση σε δύο 

διαστάσεις, µε τον κώδικα FLAC, στη συνέχεια πραγµατοποιήθηκε µία ισοδύναµη 

ανάλυση επίπεδης παραµόρφωσης µε τον κώδικα FLAC3D και τέλος προσοµοιώθηκε 

το πλήρες τρισδιάστατο πρόβληµα µε τον κώδικα FLAC3D. Οι αντίστοιχοι κάνναβοι 

πεπερασµένων διαφορών που θεωρήθηκαν παρουσιάζονται στα Σχήµατα 3.25 έως 

3.27, ενώ οι αντίστοιχες αριθµητικές προβλέψεις συγκρίνονται µε τα πειραµατικά 

αποτελέσµατα στα Σχήµατα 3.29 έως 3.31. Όπως φαίνεται στα εν λόγω σχήµατα, η 

αναπτυχθείσα αριθµητική µεθοδολογία επιτρέπει την ακριβή προσοµοίωση της 

συµπεριφοράς επιφανειακών θεµελιώσεων υπό καθεστώς ρευστοποίησης, µε 

ικανοποιητική ποιοτική και ποσοτική ακρίβεια. 
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Chapter 1 
1. Introduction 

 

 

This Technical Report constitutes Final Deliverable 1 of the Research Project with 

title: 

THALIS-NTUA (MIS 380043) 

Ιnnovative Design of Bridge Piers on Liquefiable Soils with the use of Natural 

Seismic Isolation 

performed under the general coordination of Professor George Bouckovalas 

(Scientific Responsible).  

Namely, it presents the actions taken and the associated results of Work Package 

WP2, which aims at:  

"Software development for the numerical analysis of coupled bridge pier-foundation-

liquefied ground response".  

Attached to this Report is Final Deliverable D2 of the aforementioned Research 

Project, which includes the subroutine (in programming language C++) required for 

the application of the constitutive soil model developed herein to numerical (Finite 

Element and Finite Difference) computation algorithms.  

The Scope of Work Package WP2, has been described in the approved Research 

Proposal as follows: 

"The numerical analyses of liquefied ground response will be performed with an 

advanced computer software that has been developed at the Foundation Engineering 

laboratory of NTUA during long time research sponsored by OSDP (1994-1996), 

NTUA (1996-1999 & 2002-2004) and GSRT (2004-2007). This software combines the 

non linear, dynamic Finite Difference analysis method with a new constitutive model 
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for liquefiable soils which is implemented to the commercial codes FLAC and FLAC 

3D (Itasca, 2006) using the UDM (User Defined Model) option of these codes.  

To comply with the project requirements, the aforementioned software will have to be 

upgraded as described below:   

(a) The accuracy of computations will be improved for problems where excess pore 

pressure dissipation and soil consolidation takes place concurrently with seismic 

shaking. In addition, the numerical integration algorithm of the constitutive model 

will be optimized with respect to the required computational effort so that the 

parametric investigation of actual 3D boundary value problems, such as the one 

treated herein, can be performed in reasonable time. 

(b) The constitutive model parameters will be calibrated against results from 

conventional geotechnical investigations in order to promote the application of the 

new model in practice by experienced but not necessarily expert users.  

(c)  The upgraded software that will be used for the numerical analysis of liquefied 

ground response will be verified against experimental results from two (2) relevant 

centrifuge tests performed during the well known VELACS research project (Αrurmoli 

et al., 1992, Prevost et al 1994, Manzari & Arulanandan 1994): (a) seismic response 

of horizontally layered, liquefiable ground, and (b) seismic response of a square 

footing on liquefiable ground covered by a silty crust." 

Work Tasks (a), (b) and (c) above have been successfully executed, as described in 

the following Chapters. In addition, a CD has been prepared, and attached at the end 

of the report, with the electronic version of the constitutive model in C++, a detailed 

Users' Manual for its calibration and implementation to the Finite Difference codes 

FLAC (version 5) and FLAC 3D (version 4), as well as sample input files for typical 

analyses of liquefied ground response. 
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Chapter 2 
2. Numerical methodology: 

Background & new developments 
 

 

2.1. General 

The qualitatively and quantitatively accurate numerical simulation of the seismic 

behavior of shallow foundations in a liquefiable regime would not be possible with 

the simple constitutive models (i.e. Mohr-Coulomb, Finn) which are offered by most 

commercial finite element and finite difference codes today. However, these 

commercial codes provide useful features, such as the ability to perform coupled 

dynamic effective stress analysis with groundwater flow, discretization into 

complicated meshes and use of structural elements (beams, shells and cables) together 

with a user-friendly application environment. Furthermore, many of them also allow 

the implementation of user-defined models. Therefore, the most efficient way to 

perform such a rigorous numerical analysis is to implement a constitutive model, 

capable of predicting accurately the basic aspects of cyclic response of sands under 

variable cyclic shear strain amplitudes, into one of the currently available commercial 

codes. 

The constitutive model selected in this work, is the one proposed by Papadimitriou et 

al. (1999, 2001, 2002), as it was consequently modified by Andrianopoulos (2010a,b). 

This model provides the following advantages: 

• The incorporation of the Critical State theory of Soil Mechanics (CSSM) 

(Schofield & Wroth, 1968) and the association of shear behavior to the state 

parameter ψ (Been & Jefferies, 1985), which allows the simulation of the 

effect of initial state (relative density and mean effective stress) with a single 

set of model parameters. 
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• The Ramberg-Osgood formulation adopted for elastic strain increments, which 

can simulate the non-linear hysteretic behaviour of sands (decrease of shear 

modulus and increase of hysteretic damping with increasing cyclic shear 

strain), at low strain levels. 

• The introduction of an empirical coefficient, which quantifies the effect of 

fabric evolution during shearing and thus allows the accurate modeling of the 

excess pore pressure buildup rate, towards liquefaction. 

• The vanished elastic region, a modification introduced by Andrianopoulos 

(2010a,b) to the original model by Papadimitriou et al. (2001), which increases 

the efficiency of the integration scheme, since it eliminates the iterative 

procedures required to estimate the crossing point on the yield surface and to 

ensure the consistency condition. 

This constitutive model has been successfully implemented into the Finite Difference 

Code FLAC by Andrianopoulos (2010a,b). The same computer program, together 

with its 3D version, namely FLAC3D is also used herein. The selection of the specific 

computer code was based on the following criteria: 

• FLAC uses an explicit integration scheme, which makes it more efficient and 

robust for modeling highly nonlinear problems (Frydman and Burd, 1997). 

• FLAC allows the performance of fully coupled groundwater flow and dynamic 

analysis. 

• Many special features, such as grid adjustment to fit any shape and use of 

structural and interface elements, are contained in the code. 

• Most importantly, FLAC allows the implementation of new, user-defined 

constitutive models (UDMs), written in C++ and compiled as dynamic link 

libraries (DLLs) that can be loaded when needed. With slight modifications, a 

UDM compiled for FLAC, may be also used in FLAC3D. 

• The currently available version of FLAC3D incorporates a parallel processing 

feature, which improves the code’s efficiency by 1.7 times. UDMs compiled 

with C++ integrate with this feature, without any special modifications. 

Initially, the implementation of the constitutive model by Andrianopoulos (2006), was 

achieved using the built-in programming language FISH. Extensive verification 
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through comparison of the enhanced code’s predictions to the experimental results of 

three different centrifuge tests from the VELACS project (Arulanandan et al., 1994), 

proved the model’s qualitative and quantitative accuracy in the analysis of soil 

liquefaction problems. However, the high computational cost of these analyses made 

the algorithm’s extension to rigorous 3-dimensional analyses practically impossible. 

Therefore, as part of this Thesis: 

• The UDM was rewritten in C++ and compiled as a DLL file, reducing the 

analysis time to about 1/3. 

• Optimization of the new code resulted in an additional reduction in analysis 

time, of the order of 10%. 

• Function profiling of the C++ code showed that the algorithm adopted by 

Andrianopoulos (2006) with regard to the model’s mapping rule was very time 

consuming. Therefore, this algorithm was simplified, without altering the 

model’s accuracy. 

• Less accurate, but simpler and time efficient integration schemes were tested 

and evaluated in both element level (using isoerror maps) and boundary value 

problems (performing a benchmark analysis), in order to draw conclusions for 

their range of application. 

• An automatic algorithm was developed, that switches between different 

integration schemes, based on the local non-linearity of the stress-strain 

relationship. 

In the rest of this Chapter, a thorough presentation is provided for the finally 

implemented constitutive model, the finite difference codes FLAC and FLAC3D, as 

well as the adopted integration scheme, with emphasis upon the modifications which 

were applied to enhance the efficiency of the numerical algorithm. 
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2.2. Constitutive model description 

The numerical methodology presented herein uses the constitutive model originally 

proposed by Papadimitriou et al. (1999, 2001, 2002), and consequently modified by 

Andrianopoulos (2006). The model is built on the general framework of 

elastoplasticity. It was originally developed in the triaxial space (p,q) (Papadimitriou 

et al., 2001), though the following presentation focuses on its multiaxial 

generalization (Papadimitriou et al, 2001, Andrianopoulos, 2006), which will be also 

used for the implementation to the finite difference codes FLAC and FLAC3D. 

Following the elastoplasticity formulation, the stress increment ijσɺ  is computed for 

any given strain increment ijεɺ , using the elastoplastic tangent modulus ep
ijklC : 

ep
ij ijkl klCσ = εɺɺ         (2.1) 

The elastoplastic modulus is a fourth order tensor: 

e e
ijmn mn pq pqklep e

ijkl ijkl e
p ij ijkl kl

C R L C
C C

K L C R
= −

+
      (2.2) 

where: 

e
ijklC  the elastic stiffness modulus 

ijR  the perpendicular to the plastic potential surface in the stress space 

ijL   the perpendicular to the yield surface in the stress space 

pK  the plastic hardening modulus 

The expressions adopted for the above moduli and tensors will be presented in the 

following paragraphs. 

In Soil Mechanics, it is common practice to decompose stresses into an isotropic (p ) 

and a deviatoric (ijs ) component. This deconvolution is also used in the model 

presented herein, and the corresponding stress components are defined as: 

ij ij ijs pσ = + δ         (2.3) 
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where kkp
3

σ
= . 

Of importance is also the deviatoric stress ratio, which is defined as: 

ij
ij

s
r

p
=          (2.4) 

Accordingly, strains may be also decomposed to volumetric ( volε ) and deviatoric (ije ) 

as follows: 

vol
ij ij ije

3

ε
ε = + δ        (2.5) 

where vol kkε = ε . 

2.2.1. Elastic moduli 

As previously mentioned, Andrianopoulos (2006) modified the original model by 

Papadimitriou et al. (2001), by incorporating a vanished yield surface. This 

modification eliminates the iterative procedures which are required in order to 

estimate the crossing point on the yield surface and ensure the consistency condition, 

thus increasing the efficiency of the integration algorithm. The absence of a purely 

elastic region does not imply that strain increments do not have an elastic part. On the 

contrary, the deconvolution of strain increments into an elastic and a plastic 

component continues to apply, so that the plastic component is always present, even 

for small strain amplitudes. 

The elastic moduli used herein follow a hypo-elastic formulation, based on the well-

established one-dimensional hysteretic model by Ramberg and Osgood (1943). This 

formulation allows the smooth decrease of the tangential shear modulus tG  from its 

maximum value maxG , and the consequent smooth increase of viscous damping, with 

increasing shear strain amplitude (e.g. Vucetic & Dobry, 1991, Ishibashi & Zhang, 

1993). 

According to isotropic elasticity, the elastic stiffness coefficient is given from 

Equation (2.6): 
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e
ijkl t ik jl il jk ij kl

2
C G

1 2

ν = δ δ + δ δ + δ δ − ν 
    (2.6) 

where ν  is the Poisson’s ratio, which is assumed to be constant. 

The maximum shear modulus maxG  is given from the well-established Hardin (1978) 

formula: 

a
max

a

Bp p
G

0.3 0.7e p
=

+
      (2.7) 

where: 

B  model parameter 

e void ratio 

p  isotropic stress 

ap  atmospheric pressure (98.1kPa= ) 

It must be stressed out that the value of parameter B  differs for monotonic and for 

cyclic loading. This is due to the fact that the constitutive model presented herein does 

not predict plastic behavior when the deviatoric stress ratio ijr  remains constant. 

Therefore, for loading with constant ijr , such as in one-dimensional consolidation, the 

value of parameter B  must be adjusted to a smaller maxG  value, corresponding to 

larger strain amplitudes. 

The tangent shear modulus tG  used in Equation (2.6), is related to the maximum 

shear modulus maxG  as: 

max
t

GG T=         (2.8) 

where T is a positive scalar (1≥ ) defined in Equation (2.9), which is used to express 

the reduction of the elastic shear modulus taking place as the current deviatoric stress 

ratio ijr  diverts from a reference ratio ref
ijr . The expression of T  is different for initial 

shearing ( LR∉ ) and subsequent load reversals (LR∈ ). 
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1 1

1 1

X1
1 2 1 LR

a 2
T

X1
1 2 1 LR

a

   
+ − ∈    η   

= 
   + − ∉   η  

     (2.9) 

In the above equation, X  is a scalar quantifying the variation of the current deviatoric 

stress ratio ijr  from the reference ratio ref
ijr . The latter is defined as the deviatoric 

stress ratio corresponding to the point of load reversal, while for the first shearing, it 

is the initial stress ratio. 

( )( )ref ref
ij ij ij ij

1
X r r r r

2
= − −       (2.10) 

Variable 1η  is defined as: 

LR
max

1 1 1LR

G
a

p

 
η = γ 

 
       (2.11) 

where: 

LR
maxG  the maximum shear modulus at last load reversal 

LRp  the isotropic stress at last load reversal 

1a , 1γ  model parameters 

To provide insight to the above formulation, one may assume pure shearing τ − γ  

conditions, so that ( )ref
oX p= τ − τ . The elastic stress-strain relationship resulting 

from the specified formula in this simple case, is depicted in Figure 2.1. The variation 

of the secant shear modulus, normalized with the maximum shear modulus, is shown 

in Figure 2.2, as a function of the shear strain amplitude γ. As shown in both Figures, 

1a  is the ratio of the secant shear modulus to the maximum shear modulus, for the 

characteristic shear strain value 1γ . More specifically, model parameter 1a  quantifies 

the non-linearity for small strain amplitudes, where plastic strains are minor. A 

decrease of 1a  leads to increased non-linearity, while for 1a 1=  the behavior is linear. 

On the other hand, model parameter 1γ  may be interpreted as a threshold shear strain 
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beyond which any further degradation to the overall stiffness is due to the 

development of plastic strain. 

 

Figure 2.1. Exemplary pure shear stress-strain relation according to the Ramberg-
Osgood formulation: shear reversal and effect of 1a . 

Σχήµα 2.1. Τυπική σχέση διατµητικής τάσης-παραµόρφωσης σύµφωνα µε το νόµο 
Ramberg-Osgood: αντιστροφή φόρτισης και επίδραση του 1a . 
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Figure 2.2. Exemplary shear modulus degradation with increasing shear strain, 
according to the Ramberg-Osgood formulation: effect of 1γ . 

Σχήµα 2.2. Τυπική σχέση αποµείωσης του µέτρου διάτηµηση µε αυξανόµενη 
διατµητική παραµόρφωση, σύµφωνα µε το νόµο Ramberg-Osgood: 
επίδραση του 1γ . 

2.2.2. Plastic moduli 

According to the framework of classical elastoplasticity, the following functions need 

to be defined, in order to have a complete set of constitutive relations: 

• An expression for the yield surface ( )ij nf ,q 0σ = , where nq  represent the 

model’s internal variables. 

• The gradient of the plastic potential surface ( )ij ij n ijR dg ,q d= σ σ , which is 

multiplied by the loading index Λ  to define the plastic strain increment 

p ijRε = Λɺ . 

• A rate equation n nq q= Λɺ  which is necessary in order to define the evolution 

of the model’s internal variables. 

Combining the above functions with the kinematical assumption for the 

decomposition of total strain into elastic and plastic parts e p
ij ij ijε = ε + εɺ ɺ ɺ , the consistency 
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condition f f 0= =ɺ  and the elasticity equation e e e
ij ijkl klCσ = εɺɺ , yields Equation (2.2) for 

the elastoplastic modulus ep
ijklC . However, as shown in Equation (2.2), in generalized 

plasticity, it suffices to define the gradients ( )ij ij n ijL df ,q d= σ σ  and 

( )ij ij n ijR dg ,q d= σ σ , as well as the plastic modulus 
( )ij n

p n
n

f ,q
K q

q

∂ σ
= −

∂
. In the 

constitutive model used herein, ijL  and ijR  are defined as: 

kl kl
ij ij ij ij ij

ij

n rf V
L n n

3 3

∂
= = − δ = − δ
∂σ

     (2.12) 

ij ij ij
ij

g D
R n

3

∂
= = + δ
∂σ

       (2.13) 

where V  and D  are scalar variables, and ijn  is a unit vector, which will be defined in 

the following paragraphs. It should be stressed that D V≠ − , implying that the model 

incorporates a non-associated flow rule.  

2.2.3. Model surfaces 

The adopted constitutive model belongs to the family of bounding surface models, 

where the plasticity equations are defined with the aid of two surfaces in the stress 

space, namely the Bounding Surface and the Dilatancy Surface. In order to 

incorporate the Critical State Theory of Soil Mechanics, the state parameter ψ  (Been 

& Jefferies, 1985) is used to correlate the above to a third surface, namely the Critical 

State Surface. All three surfaces have the shape of a cone, with their apex at the origin 

of the stress space. 

In the triaxial stress space ( )11 33

1
p 2

3
′ ′ ′= σ + σ , 11 33q ′ ′= σ −σ  the surfaces are defined as 

shown in Figure 2.3, using the deviatoric stress ratios cM  for compression and eM  

for extension. More specifically, c
cM , b

cM  and d
cM  are used for the critical state 

surface, the bounding surface and the dilatancy surface, respectively, for triaxial 

compression, while, for triaxial extension, the respective stress ratios are ceM , b
eM  and 

d
eM . 
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Figure 2.3. Projection of model surfaces on the triaxial stress space p’-q. 

Σχήµα 2.3. Προβολή των επιφανειών του προσοµοιώµατος στον χώρο των 
τριαξονικών τάσεων p’-q. 

The full description of the conical shape of the surfaces in the multiaxial stress space, 

requires the definition of the surfaces’ shape on the π-plane, i.e. the plane in the 

1 2 3r , r , r  space which is perpendicular to the hydrostatic axis ( 1 2 3r r r= = ). The Lode 

angle θ , defined in Equation (2.14), is used for this purpose (Figures 2.4 and 2.5). 
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Figure 2.4. Projection of model surfaces on the π-plane – Mapping rule adopted by 
Papadimitriou et al (2002). 

Σχήµα 2.4. Προβολή των επιφανειών του προσοµοιώµατος στο επίπεδο π – Νόµος 
προβολής σύµφωνα µε Papadimitriou et al (2002). 
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Figure 2.5. Projection of model surfaces on the π-plane – Mapping rule adopted by 
Andrianopoulos (2006). 

Σχήµα 2.5. Προβολή των επιφανειών του προσοµοιώµατος στο επίπεδο π – Νόµος 
προβολής σύµφωνα µε Andrianopoulos (2006). 
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Namely, this angle corresponds to the direction of the deviatoric stress ratio ijr  and 

ranges between 0° and 60°, where 0° corresponds to triaxial compression and 60° 

corresponds to triaxial extension. Intermediate values refer to non-triaxial loading. 

( ) 3
3

2
2

J3 3
cos 3

2 J
θ =        (2.14) 

where: 

( )2 ij ij

1
J r r

2
=  the second invariant of ijr  

( )3 ij ij ij

1
J r r r

3
=  the third invariant of ijr  

Incorporating the effect of the Lode angle, the generally non-circular shape of the 

model surfaces on the π-plane is given by Equation (2.15): 

( )c c c
cM g ,c Mθ = θ        (2.15) 

where: 

c
c e

c
c

M
c

M
=         (2.16) 

( )
( )

( )
c c c

c
c c

2c 1 c 1 c
g ,c cos 3

1 c 1 c 2 2
cos 3

2 2

 + −
θ = − + θ + −  − θ

  (2.17) 

As described in the above, both the Bounding and Dilatancy Surfaces are correlated to 

the Critical State Surface, through the critical state parameter ψ  (Been & Jefferies, 

1985), defined as: 

cse eψ = −         (2.18) 

where cse  is the void ratio at Critical State, for an average stress equal to p . In the 

e ln p−  space, the Critical State Surface is assumed to have the form of a straight line, 

described as: 



Chapter 2. Numerical methodology: Background & new developments 

- 19 - 

( )cs cs a
a

p
e e ln

p

 
= −λ  

 
      (2.19) 

where: 

ap  atmospheric pressure (98.1kPa= ) 

( )cs a
e  void ratio at critical state, for ap p=  

λ  slope of Critical State Line (CSL) in the e ln p−  space 

It becomes clear that the state parameter ψ  combines the effect of soil density 

(through the void ratio e) and the average consolidation (effective) pressure p  

(through cse ). Positive ψ  values ( 0ψ ≥ ) imply contractive behavior and max csφ = φ , 

while negative ψ  values ( 0ψ < ) indicate dilative behavior and max csφ > φ . This is 

incorporated into the model through Equations (2.20) to (2.23): 

b c b
c c cM M k= + −ψ        (2.20) 

b c b
e e eM M k= + −ψ        (2.21) 

d c d
c c cM M k= + ψ        (2.22) 

d c d
e e eM M k= + ψ        (2.23) 

where c
cΜ , c

eΜ , b
ck , b

ek , d
ck , d

ek  are user defined model parameters. 

The deviatoric stress ratios ccΜ  and c
eΜ  are related to the friction angles at Critical 

State cs,cφ  and cs,eφ  (for triaxial compression and extension, respectively), as: 

( )
( )

cs,cc
c

cs,c

6sin

3 sin

φ
Μ =

− φ
       (2.24) 

( )
( )

cs,ec
e

cs,e

6sin

3 sin

φ
Μ =

+ φ
       (2.25) 

while b
ek  and d

ek  can be computed by the following simplified expressions: 
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c
b be
e cc

c

M
k k

M
=         (2.26) 

c
d de
e cc

c

M
k k

M
=         (2.27) 

In order to incorporate the model surfaces in the constitutive equations, an image 

point IP
ijr  must be defined on each surface, and its distance from the current deviatoric 

stress ratio ijr  must be computed. In the original model presented by Papadimitriou et 

al. (2002), this was achieved using the unit deviatoric stress ratio tensor ijn , which is 

normal to the yield surface at the current crossing point, as shown in Figure 2.4. The 

model adopted herein, presented by Andrianopoulos (2006) has a vanished yield 

surface, and therefore the unit vector ijn  must be defined otherwise. Andrianopoulos 

(2006) studied how various mapping rules affect the simulated sand response and 

concluded to the one schematically presented in Figure 2.5. Namely, the image point 

IP
ijr  is located on the bounding surface, as the projection along the ( )LR

ij ijr r−  direction, 

where ijr  is the current deviatoric stress ratio, and LR
ijr  is the deviatoric stress ratio at 

load reversal. This mapping rule has the advantage of taking into account the recent 

shear stress history. However, it must be stressed that a perturbation of ijr  leads to the 

definition of a new LR
ijr , which may affect the simulated soil behavior. Finally, the 

unit vector ijn  is computed as: 

IP
ij

ij IP IP
kl kl

r
n

r r
=         (2.28) 

Given the unit vector ijn , the image points on the model surfaces may be computed 

using Equation (2.29), while their scalar distances from the current state ijr  may be 

computed using Equation (2.30). Positive c,b,dd  values imply that the current state is 

inside the corresponding surface, while for negative values, it is outside. 

IP,c,b,d c,b,d
ij ij

2
r M n

3 θ=        (2.29) 
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( )c,b,d IP,c,b,d
ij ij ijd r r n= −       (2.30) 

Both the interpolation rule and flow rule of the adopted constitutive model are 

functions of the above scalar distances, normalized against two reference distances, 

namely b
refd  and d

refd , defined as: 

( )b,d b,d b,d
ref

2
d M M

3 θ θ+π= +       (2.31) 

2.2.4. Flow rule 

Having defined the unit vector ijn , the gradient of the yield surface may be readily 

computed using Equation (2.12). However, in order to compute the direction ijR  of 

plastic strain increment (Equation (2.13)), the variable D  must also be defined. This 

is expressed as a function of the scalar distance from the dilatancy surface, using the 

following expression: 

d

d
o d

ref

d
D A d 2.0

d

 
 = −
 
 

      (2.32) 

where: 

oA  non-dimensional model parameter 

Note that the value of D  affects only the volumetric component of plastic strains. 

Moreover, Equations (2.30) and (2.32) imply that positive volumetric strain (i.e. 

contraction) will occur when the current deviatoric stress ratio is inside the dilatancy 

surface, whereas dilative behavior will be simulated if loading continues beyond the 

dilatancy surface. In this sense, the dilatancy surface closely corresponds to the phase 

transformation line of Ishihara et al (1975). 

2.2.5. Plastic hardening modulus 

In order to have a complete set of constitutive equations, the plastic hardening 

modulus pK  remains to be defined. This modulus is related to the scalar distance bd  

from the image point on the bounding surface, through the expression: 
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b
p b fK ph h d=         (2.33) 

where: 

p  average stress, giving units to pK  

bh  positive scalar, used to define the interpolation rule to the model’s 

bounding surface 

fh  positive scalar, used to quantify the effect of fabric change 

bd  distance from the bounding surface 

All parameters in Equation (2.33) are positive valued, except from bd , which 

essentially controls the sign of pK , thus differentiating hardening and softening 

behavior. More specifically, when the current deviatoric stress ratio lies inside the 

bounding surface, bd 0>  and hardening occurs. When the bounding surface is 

crossed, then bd 0<  and the post-peak strain softening behavior of dilative soils is 

simulated. 

The interpolation rule used in the adopted constitutive model is described as: 

3b

b o b b
ref

d
h h

d d
=

−
       (2.34) 

where oh  is a non-dimensional model parameter. 

This expression of bh  was presented by Andrianopoulos (2006), and is different than 

the one originally proposed form by Papadimitriou et al (2002), where the quantity 

bd  in the nominator was not raised to the 3rd power. This modification became 

necessary after the adoption of a vanished yield surface. The plastic modulus pK  

resulting from this new expression, takes larger values when the current stress ratio ijr  

is not far from the last shear reversal, while its reduction as the stress ratio ijr  moves 

closer to the bounding surface, is highly non-linear. 

The fabric evolution is assumed to merely affect the plastic strain rates, and is 

introduced to the expression for the plastic modulus pK  through an empirical factor 

fh , expressed as: 
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p

f

ij ij

1 f
h

1 f n

+
=

+
        (2.35) 

According to Equation (2.35), the value of fh  is a function of the scalar variable pf  

and the tensor ijf , which take initial values equal to zero, and evolve as plastic 

volumetric strains accumulate, i.e.: 

p
p volf H= εɺ ɺ         (2.36) 

( )p
ij vol ij ijf H Cn f= − −ε +ɺ ɺ       (2.37) 

where: 

2

pC 4max f=         (2.38) 

1,o
o o

a

H H
p

σ 
= −ψ 

 
       (2.39) 

In Equation (2.39): 

1,oσ  is the maximum principal stress at the initial state of consolidation 

oψ  is the value of the state parameter ψ  at the initial state of consolidation 

ap  is the atmospheric pressure 

oH  is a positive non-dimensional model parameter 

According to Equation (2.36), pf  follows the whole shearing history of the sand. 

Therefore, when the shearing path remains under the phase transformation line, it 

simulates the continuously stiffening unloading-reloading behavior (Ladd et al, 1977, 

Seed et al, 1977), by increasing the nominator of fh  and thus the plastic modulus pK . 

On the other hand, according to Equation (2.37), ijf  develops only during dilation, and 

in the opposite sense relative to tensor ( )ij ijCn f+ , so that both ( )ij ijCn f+  and ijf
ɺ  will 

asymptotically tend to zero, until a potential load reversal will change the direction of 

ijn . However, during this dilative shear path, the denominator of fh  remains equal to 

1, because ijf  develops in the opposite sense of ijn  and thus ij ijf n 0= . The 
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denominator becomes larger than 1 , only after a load reversal that follows a dilative 

path, and maintains its value until the next load reversal, or until tensor ijf  starts 

developing towards a different direction. This increase of the fh  denominator 

simulates the compliant unloading paths, observed after successive shearing cycles of 

larger amplitude (Ishihara et al, 1975, Ladd et al, 1977, Nemat-Nasser et al, 1982). 

2.2.6. Stress increment and load reversal 

Finally, in order to define a load reversal, the consistency condition is considered, and 

Equation (2.1) is rearranged as follows: 

e e
ij ijkl ij ijmn mnC C Rσ = ε − Λɺɺ       (2.40) 

where Λ  is the loading index, defined in Equation (2.41): 

ij ij

p

L

K

σ
Λ =

ɺ

        (2.41) 

For the specific constitutive model, the above equations may be simplified as follows: 

( )ij t ij t vol ij t ij t ij2G e K 2G n K Dσ = + ε δ − Λ + δɺ ɺɺ     (2.42) 

t ij ij t vol

p t t

2G n e VK

K 2G VK D

− ε
Λ =

+ −

ɺ ɺ

      (2.43) 

The above expressions allow the distinction of three cases: 

0Λ >  Loading occurs and plastic strains accumulate. 

0Λ =  Neutral loading occurs and plastic strains are equal to zero. 

0Λ <  Unloading occurs. In this case, a load reversal point is defined, and the 

reference state LRijr  is reassigned. Therefore, the negative value of the loading 

index Λ  is only instant, as the reassignment of the reference state yields a 

positive value for Λ . 
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2.3. FLAC & FLAC3D finite difference codes 

The above presented constitutive model was implemented into the commercial codes 

FLAC and FLAC3D, using the program’s option for User Defined Models (UDM). 

FLAC (standing for Fast Lagrangian Analysis of Continua) is an explicit finite 

difference program for geotechnical engineering mechanics computation. Materials 

are represented by elements, or zones, which form a grid that is adjusted by the user to 

fit the shape of the object to be modeled. Each element behaves according to a 

prescribed linear or nonlinear stress/strain law, in response to the applied forces or 

boundary restraints. The selection of the specific computer code for the purposes of 

this thesis was based on a number of available special features, including the 

following: 

• FLAC offers the capability of performing dynamic effective stress analyses, 

together with fully coupled groundwater flow, thus satisfying the basic 

requirement for the numerical modeling of liquefaction related problems. 

• A new feature added to the currently available version of FLAC 5 is the 

capacity to add user-defined constitutive models written in C++ and compiled 

as dynamic link libraries (DLLs). In all previous versions, the implementation 

of UDMs was made through the built-in programming language FISH. The 

main advantage of this modification is improved efficiency: UDMs compiled 

with C++ may perform 3 times faster than the ones written in FISH. 

Moreover, only slight modifications are needed for the UDM to be used in 

FLAC3D. 

• FLAC also allows the use of interface elements to simulate distinct planes 

along which slip and/or separation can occur, as well as structural elements to 

simulate structural support. Therefore, the enhanced code may be used for the 

analysis of the most complicated liquefaction related problems. 

• Finally, FLAC contains the powerful built-in programming language FISH, 

which allows the user to write his own functions and extend FLAC’s pre- and 

post-processing capabilities. This feature may be used to define boundary 

conditions (such as tied nodes) for the dynamic analyses, as well as to 

manipulate the analyses output (i.e. create time histories and contours of 

excess pore pressures and excess pore pressure ratios). 
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2.3.1. The explicit finite difference method 

The Finite Element Method has a central requirement, namely that the field quantities 

(stresses and displacements) vary throughout each element in a prescribed fashion, 

using specific functions controlled by nodal parameters. The formulation involves the 

adjustment of these parameters to minimize energy terms. In contrast, in the Finite 

Difference Method, every derivative in the set of governing equations is replaced 

directly by an algebraic expression written in terms of the field variables (stress, 

displacement) at discrete points in space, while these variables are not defined within 

elements. 

Therefore, even for the solution of static problems, the dynamic equations of motion 

are the ones included in the formulation, using the general calculation sequence 

illustrated in Figure 2.6. This procedure first invokes the equations of motion to 

derive new velocities and displacements from stresses and forces. Then, strain rates 

are derived from velocities, and new stresses from strain rates. Each full cycle of this 

loop is taken as one timestep. 

 

Figure 2.6. Explicit calculation sequence used in FLAC. 

Σχήµα 2.6. Μη πεπλεγµένη διαδικασία υπολογισµού που χρησιµοποιείται στον 
κώδικα FLAC. 

The most important characteristic of the explicit finite difference method is that each 

box in Figure 2.6 updates all of its grid variables (stresses or displacements) from 

known values that remain fixed while control is within the box. For example, the new 
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stresses computed in the lower box are based on the set of velocities which has been 

already calculated, and is assumed to be “frozen” for the operation of the box. This 

could be unreasonable, since a local stress change should influence the neighboring 

nodes and change their velocities. In order to justify this “frozen velocities” 

assumption, the integration timestep must be adequately small, so that information 

cannot physically pass from one element to another during that interval. This timestep 

value is dependant on the maximum speed at which information can propagate within 

each material, i.e. the pressure wave velocity, as well as the size of elements used. Of 

course, after several cycles of the loop, disturbances can propagate across several 

elements, just as they would propagate physically. 

The most important advantage of the explicit finite difference method is that no 

iteration process is necessary when computing stresses from strains in an element, 

even if the constitutive law is highly nonlinear. In implicit methods, which are 

commonly used in finite element programs, every element communicates with every 

other element during one solution step, and therefore numerous iterations must be 

performed in order to obtain compatibility and equilibrium. It becomes obvious that 

the disadvantage of the explicit method is the small timestep required, and the 

consequently large number of computation steps, which makes the method inefficient 

for the modeling of linear, small-strain problems. However, it is more suitable for ill-

behaved systems, where nonlinear constitutive laws, large-strain effects and physical 

instabilities become important. Therefore, in the case of the highly non-linear 

liquefaction related problems, FLAC is expected to perform better than most implicit 

finite element methods. 

2.3.2. The finite difference equations 

The first set of equations of dynamic equilibrium is the generalized Newton’s law of 

motion for a continuous solid body, which is expressed as: 

iji
i

j

u
g

t x

∂σ∂
ρ = + ρ
∂ ∂

ɺ
       (2.44) 

where: 

t  time 

ix  coordinate vector 
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ρ  mass density 

ig  gravitational acceleration 

iuɺ  velocity vector 

ijσ  stress tensor 

The other set of equations is the constitutive relation, or stress/strain law, which has 

the following form: 

( )ij ij ij nM , ,qσ = σ εɺɺ        (2.45) 

where: 

( )Μ  is the functional form of the constitutive law, 

ijεɺ  represents strain rates and 

nq  are history parameters depending on the particular law. 

The strain rate ijεɺ  is derived from velocity gradients as: 

ji
ij

j i

uu1

2 x x

 ∂∂
ε = +  ∂ ∂ 

ɺɺ
ɺ        (2.46) 

2.3.3. Mixed discretization 

In order to solve the system of the above equations, the continuous medium is 

replaced by a discrete one, where velocities and forces are assumed to be concentrated 

on the nodes of a grid (or mesh). Therefore, the laws of motion for the continuum are 

transformed into discrete forms of Newton’s law at the nodes. The spatial derivatives 

of velocities and forces (i.e. strain rates and stresses) are assumed to be constant 

within the zones (or elements) defined by the nodes mentioned above. 

In FLAC, the finite difference mesh is composed of quadrilateral elements, which are 

internally subdivided into two overlaid sets of constant-strain triangular elements, as 

shown in Figure 2.7. The use of triangular elements eliminates problems which may 

occur with the deformational patterns of constant-strain finite difference 

quadrilaterals. More specifically, for polygons with more than three nodes, 

combinations of nodal displacements exist which produce no strain and may result in 

no opposing forces. To overcome this problem, the isotropic stress and strain 
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components are taken to be constant and are averaged over the whole quadrilateral 

element, while the deviatoric components are maintained and treated independently 

for each triangular sub-element. This procedure, referred to as mixed discretization, is 

described by Marti and Cundall (1982). The term mixed discretization arises from the 

different discretizations for the isotropic and deviatoric parts of the stress and stain 

tensors. 

 

Figure 2.7. (a) Overlaid quadrilateral elements used in FLAC, (b) typical 
triangular element with velocity vectors and (c) typical triangular 
element with force vectors and unit normal vectors to the element’s 
surfaces. 

Σχήµα 2.7. (a) Επικαλυπτόµενα τετραπλευρικά στοιχεία που χρησιµοποιούνται 
στον κώδικα FLAC, (b) διανύσµατα ταχύτητας στους κόµβους τυπικού 
τριγωνικού στοιχείου και (c) διανύσµατα δυνάµεων στους κόµβους και 
µοναδιαία διανύσµατα κάθετα στις πλευρές τυπικού τριγωνικού 
στοιχείου. 

A mixed discretization technique is also used in FLAC3D. More specifically, the 

continuum is discretized into tetrahedra, which have the advantage of not generating 

hourglass deformations (i.e., deformation patterns created by combinations of nodal 

velocities producing no strain-rate and, thus, no nodal force increments). Similarly to 

FLAC, a coarser discretization in zones is superposed to the tetrahedral discretization 

(Figure 2.8). Isotropic stresses and volumetric strains in a zone are evaluated as the 

volumetric-average value over all tetrahedra in the zone, while the deviatoric 

components are manipulated independently. 

It must be noted that one brick element in FLAC3D contains 2 overlays of 5 sub-

zones each, and therefore model computations are performed 10 times per zone and 

per cycle, thus increasing the computational cost by 2.5 times, compared to the 4 sub-
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zones of the 2-dimensional quadrilateral elements of FLAC. Moreover, in FLAC3D, 

all 6 stress components need to be computed, while in the plane strain conditions of 

FLAC, only 4 components are required. Finally, taking into account the increased 

number of elements required to perform a full 3-dimensional analysis, the importance 

of the computational efficiency of the User Defined Model’s code is realized. 

 

Figure 2.8. A 8-node zone in FLAC3D, with 2 overlaid sets of 5 tetrahedra each. 

Σχήµα 2.8. 8-κοµβικό στοιχείο του κώδικα FLAC3D, µε δύο επικαλυπτόµενες 
οµάδες των 5 τετραεδρικών στοιχείων. 

2.3.4. Discrete-model form of the finite difference equations 

The finite difference equations for the triangular sub-elements of FLAC are derived 

using the generalized form of Gauss’ divergence theorem. According to this theorem, 

the average value of the gradient 
i

f

x

∂
∂

 of a scalar, vector or tensor f  over the area 

A  may be computed as follows: 
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∂ ∂
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    (2.47) 
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where: 

S  the boundary of a closed surface 

in  is the unit normal to the surface 

s  the length of a side of the triangle 

f  is taken to be the average over the side 

The summation occurs over the three sides of the triangular sub-zone, and ( )a  and 

( )b  are two consecutive nodes on a side. Equation (2.47) can be used to derive all the 

components of the strain rate tensor based on nodal velocities. 

In FLAC3D, Equation (2.47) takes the following 3-dimensional form: 

( ) ( ) ( )

∂ ∂
= = ⇒

∂ ∂

∂
= ∆ = + + ∆

∂

∫ ∫

∑ ∑

iV A
i i

f f(a) (b) (c)
i i

f fi

f 1 f 1
dA n fdA

x V x V

f 1 1
n f A n f f f A

x V 3V

  (2.48) 

where: 

V  is the volume of the tetrahedron in consideration 

A  is the tetrahedron surface 

in  is the unit normal to the surface 

f  is taken to be the average over the surface 

Here, the summation occurs over the four surfaces of each tetrahedron, denoted with 

the superscript ( )f , while ( )a , ( )b  and ( )c  denote the nodes of each surface. 

Given the strain-rate tensor, the constitutive law of Equation (2.45) can be used to 

derive a new stress tensor. Once the stresses have been calculated, the equivalent 

forces applied to each nodal point need to be determined. 

In FLAC, each quadrilateral zone contains two sets of two triangular sub-zones. Each 

corner of these sub-zones receives two force contributions, one from each adjoining 

side: 

( )(1) (1) (2) (2)
i ij j j

1
F n S n S

2
= σ +       (2.49) 
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Within each set of sub-zones, the forces from triangles meeting at each node are 

summed. The forces from both sets are then averaged, to give the nodal force 

contribution of the quadrilateral. At each node, the forces from all surrounding 

quadrilaterals are summed to give the net nodal force vector, which includes 

contributions from applied loads and from body forces due to gravity. Gravity forces 
(g )
iF  are computed as: 

(g )
i i gF g m= F        (2.50) 

where gm  is the gravitational mass at the node, defined as the sum of one-third of the 

masses of triangles connected to the node. 

Similarly, in FLAC3D, each corner of the tetrahedral sub-zones receives three force 

contributions, from each adjoining face: 

( )= σ + +(1) (1) (2) (2) (3) (3)
i ij j j j

1
F n A n A n A

3
     (2.51) 

Within each set of sub-zones, the forces from the tetrahedra meeting at each node are 

summed. The nodal force contribution of each element is derived as the average of the 

sums of the two sets of overlaid tetrahedral sub-zones. The forces from all elements 

surrounding each node are summed and consequently added to externally applied 

loads and gravitational body forces to give the nodal force vector. The gravitational 

mass at each node, which is required for the computation of gravity forces, is defined 

as the sum of one-fourth of the masses of tetrahedra connected to the node. 

In both FLAC and FLAC3D, if the body is at equilibrium, or in steady-state flow 

(e.g., plastic flow), iF  on the node will be zero. Otherwise, the node will be 

accelerated according to the finite difference form of Newton’s second law of motion: 

( ) ( )t t 2 t t 2 (t )
i i i

t
u u F

m

+∆ −∆ ∆
= +∑ɺ ɺ       (2.52) 

where the superscripts denote the time at which the corresponding variable is 

evaluated. 

For large-strain problems Equation (2.52) is integrated over time to determine the 

coordinates ix  of the gridpoints: 
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( ) ( ) ( )+∆+∆ = + ∆ɺ
t t 2t t t

i i ix x u t        (2.53) 

Note that Equations (2.52) and (2.53) are both centered in time (central finite 

differences), with velocities existing at points in time that are shifted by half a 

timestep from the displacements and forces. 

The above formulation is modified for the solution of static problems, by introducing 

into Equation (2.52) a form of damping, called local non-viscous damping, as follows: 

( ) ( ) ( )+∆ −∆ ∆
= + −∑ɺ ɺ

t t 2 t t 2 (t )
i i i d ,i

t
u u F F

m
     (2.54) 

where d,iF  is the damping force, given by Equation (2.55): 

( ) ( )( )−∆= α ɺ
t t 2t

d,i i iF F sgn u       (2.55) 

and, by default, 0.80α = . 

2.3.5. Numerical stability 

As described previously, the explicit finite difference solution procedure is not 

unconditionally stable. The speed of the “calculation front” must be greater than the 

maximum speed at which information propagates. This stability condition is 

expressed in terms of a critical timestep: 

∆
∆ =crit

x
t

C
        (2.56) 

where 

∆x  is the minimum propagation distance, estimated as ∆ maxA x  in FLAC, 

and ∆ maxV A  in FLAC3D. 

C  is the maximum speed at which information can propagate, namely the 

p-wave velocity 
+

=
ρp

4GK 3C . 

It can be easily shown that the above expression is equivalent to Equation (2.57), 

which refers to a general system of solid materials and networks of interconnected 

masses and springs: 
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∆ =
π
min

crit

T
t         (2.57) 

where minT  is the smallest eigen-period of the system. For a single mass-spring 

element, the above equation becomes: 

∆ =crit

m
t 2

k
        (2.58) 

For the simple case of a rectangular zone, with area zA , thickness T  and diagonal 

length dL , the gridpoint mass and the zone stiffness can be expressed as shown in 

Equations (2.59) and (2.60), respectively: 

= ρ z

1
m A T

4
        (2.59) 

( )= +
2
d

z

L4Gk K T3 A
       (2.60) 

It is obvious that the combination of Equations (2.58), (2.59) and (2.60) yields 

Equation (2.56). This implies that Equation (2.56) may be regarded as an estimate of 

the local critical timestep, which can be easily calculated without computing the 

eigen-period of the complete system. 

In all cases, a timestep must be chosen that is smaller than the above critical timestep. 

In both FLAC and FLAC3D, a safety factor of 2 is applied for this purpose. In 

dynamic analyses the above timestep refers to the simulated problem time. In static 

analyses, it is more efficient to assume a pseudo-timestep ∆ =t 1  and adjust the nodal 

masses of Equation (2.54). In FLAC, nodal masses are computed by Equation (2.61): 

( )+ ∆
=∑

2
max

n

4GK x3m
6A

      (2.61) 

In FLAC3D, the above expression takes the following form: 

( ) ( ){ }+ ∆Α
=∑

2

i

n

4GK max n3m
9V

     (2.62) 
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In the case of effective stress analyses, where groundwater is present, the bulk 

modulus of the fluid increases the mechanical stiffness of the saturated zone, thus 

reducing the selected timestep. This is done by modifying the apparent mechanical 

bulk modulus of the zone, according to Equation (2.63): 

= + 2K : K a M         (2.63) 

where: 

a  Biot coefficient 

M  Biot modulus 

If the compressibility of grains is neglected compared to that of the drained material, 

then =a 1  and = wM K n , where wK  is the fluid bulk modulus and n  is the porosity. 

Taking into account the large value of the water bulk modulus (e.g. about 200MPa), it 

becomes evident that in the analysis of liquefaction-related problems, where 

groundwater flow is present, the dynamic timestep is very small (of the order of 

−410 sec ), thus resulting to generally small strain increments. This observation is 

crucial for the selection of the integration algorithm of the implemented constitutive 

model, since the use of small integration steps improves the model’s accuracy, and 

reduces the necessity for high-order integration schemes and complicated error-

control algorithms. 

2.3.6. Fluid-mechanical interaction 

One of the basic features of FLAC is the capacity to model groundwater flow through 

permeable soils. The modeling of flow may be done uncoupled, i.e. independent of 

the mechanical calculations, or it may be done in a coupled way, so as to capture the 

effects of fluid/solid interaction. According to the latter: 

• The fluid in a zone reacts to mechanically induced volume changes by a 

change in the pore pressure. 

• Changes in pore pressures induce changes in the effective stresses, thus 

affecting the response of the solid. 

Both FLAC and FLAC3D can calculate pore pressure effects, with or without pore 

pressure dissipation. They also provide a number of features, including isotropic and 

anisotropic permeability, partial saturation, compressibility of the saturated material, 
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two-phase flow, as well as a number of boundary conditions and fluid sources 

(prescribed inflow or outflow, varying with time). 

Finally, dynamic pore pressure generation can be modeled using the “Finn” and the 

“Byrne” built-in constitutive models. In the model implemented herein though, 

dynamic pore pressure generation is modeled indirectly, as a result of the simulated 

decrease of effective stress. 

In the simpler case of saturated flow, where grains are assumed to be incompressible 

compared to the soil skeleton, the equations governing the coupled fluid-deformation 

mechanisms are presented in the following. 

First of all, water flow is described by Darcy’s law: 

( )∂
= − −ρ

∂i ij w k k

j

q k P g x
x

      (2.64) 

where: 

iq  specific charge vector 

ijk  mobility coefficient tensor (measure of permeability, equal to the 

hydraulic conductivity Hk  – the commonly used permeability when 

Darcy’s law is expressed in terms of head - divided by the fluid’s unit 

weight: = ρH w
k k g ) 

P  fluid pressure 

ρw  mass density of the fluid 

kg  gravitational acceleration vector 

The fluid pressure follows the constitutive law of Equation (2.65): 

∂ε∂
= −

∂ ∂
volP

M
t t

        (2.65) 

where: 

M  Biot’s fluid modulus, equal to wK n , where wK  is the fluid bulk 

modulus and n  is the porosity (this only applies when grains are 

considered incompressible, compared to the soil skeleton) 

εvol  volumetric strain 
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Finally, Equations (2.44) and (2.45) are expressed in terms of effective stresses 

′σ = σ − δij ij ijP , while the mass density ρ  in Equation (2.44) is the saturated density 

ρ = ρ + ρsat d wn  (where ρd  is the dry density). 

The discretization and finite difference methods follow the general scheme presented 

in previous paragraphs: 

• Pore pressures P  are defined at gridpoints and assumed to vary linearly within 

each sub-zone. 

• The specific charge vector iq  in Equation (2.64) is derived for each sub-zone 

through the Gauss divergence theorem (Equations (2.47) and (2.48)). 

• The volumetric strain εvol  in Equation (2.65) is the equivalent nodal volume 

increase arising from mechanical deformations of the grid. It is computed as 

the sum of the contributions from all sub-zones connected to the node. Each 

triangle contributes a third of its volume in FLAC, while each tetrahedron 

contributes one fourth of its volume in FLAC3D. The resulting sum is divided 

by two, to account for the double overlay scheme. 

• Finally, zone pressures necessary to perform an effective stress analysis 

(stresses are also defined in zones), are derived from the surrounding nodal 

values by simple averaging. 

Similar to the mechanical solution scheme, a critical timestep is defined to ensure the 

stability of the explicit solution of the fluid flow equations. In this case, the expression 

of the critical timestep has the following form: 

∆ =
∑crit

kk

V
t

M K
       (2.66) 

where: 

V  equivalent nodal volume 

ijK  permeability matrix, relating nodal pore pressures to nodal flow rate (it 

is derived from the application of the Gauss divergence theorem to 

Equation (2.64)) 

The value of the timestep used in FLAC (and FLAC3D), is obtained by multiplication 

of the critical timestep with a safety factor of 0.8. Since the permeability appears at 



Chapter 2. Numerical methodology: Background & new developments 

- 38 - 

the denominator of Equation (2.66), the flow timestep in many practical applications 

with low permeability values, becomes larger than the corresponding mechanical 

timestep, and is therefore not critical. The maximum flow timestep may become 

critical in cases that gravel or other high permeability materials are present (e.g. 

gravel drains), or in the numerical modeling of centrifuge experiments, where the 

prototype permeability is derived from the actual permeability of the model, 

multiplied by the centrifugal acceleration of the test. 

2.3.7. User defined models 

Both FLAC and FLAC3D allow the user to implement Used Defined Models 

(UDMs), written in C++ and compiled as Dynamic Link Libraries (DLLs). Once 

compiled successfully, UDMs behave just like built-in models, as far as the user is 

concerned. They can be installed and removed from specified zones, while their 

properties can be assigned, printed and plotted. 

The basic incremental numerical algorithm is the following: 

Given the former stress state and the total strain increment for the current timestep, 

the corresponding stress increment is determined and the new stress state is 

calculated. 

It should be noted that all models are defined in terms of effective stresses. Pore 

pressures are used to convert total stresses to effective stresses before the constitutive 

model is called, while the reverse process occurs after the model calculations are 

complete.  

The most important factor to be taken into account when implementing new 

constitutive models into FLAC is the fact that the UDM is called once per sub-zone 

(four times per quadrilateral zone in FLAC, and ten times per brick zone in 

FLAC3D), for every solution step. The averaging of the stress outputs is internally 

handled by FLAC, according to the mixed discretization technique described in the 

previous paragraphs. On the other hand, model parameters are stored once per zone, 

including the history variables used in elasto-plastic models, like the one adopted in 

the present work. The accumulation and averaging of these parameters must be 

performed inside the UDM. It must be noted that this averaging procedure may 

invoke errors in the application of the consistency condition of elasto-plastic model, 
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and was one of the main reasons for the adoption of a vanished yield surface in the 

constitutive model presented by Andrianopoulos (2006). 

In previous versions of FLAC, constitutive models could only be written in the built-

in programming language FISH. This technique was the one used by Andrianopoulos 

(2006). However, constitutive models written in FISH are executed with a speed 

which lays somewhere between one-quarter and one-third of the speed of built-in 

models. This problem has been overcome with C++, since the compiled DLLs 

perform 3 times faster than FISH models. It becomes evident that without 

reprogramming the model into C++, the computational cost of performing a 3-D 

dynamic analysis would make the numerical solution of 3-D liquefaction-related 

problems (e.g. seismic resoponse of shallow footings or pile foundations in a 

liquefaction regime) pratically impossible. 

In the C++ language, the emphasis is on an object-oriented approach to program 

structure, where objects are represented by classes. Each object may contain data, 

which are encapsulated by the object and are invisible outside it. Communication with 

the object (and the associated data) is achieved by member functions that operate on 

the encapsulated data. 

In addition, there is strong support for a hierarchy of objects: new object types may be 

derived from a base object and the base-object’s member functions may be 

superseded by similar functions provided by the derived objects. This arrangement is 

very efficient in terms of program modularity. For example, the main program may 

need to access many different varieties of the derived objects in many different parts 

of the code. However, it does not need to make reference to the derived objects, but 

only to the base-objects. In this case, the appropriate member functions of the derived 

objects are automatically called. 

This methodology is exploited in FLAC’s support for UDMs. A base class, called 

ConstitutiveModel, provides the framework for actual constitutive models. No object 

of this base class can be created. However, new classes may be derived from the base 

class, representing the User Defined Models. Objects of the derived classes may be 

created, referring to zones with the assigned UDM. 

The ConstitutiveModel base class is termed an “abstract” class because it declares a 

number of “virtual” member functions. The derived classes must supply real member 
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functions to replace the virtual functions of ConstitutiveModel, and to define the 

name, the properties and the mechanical behavior of the specific user-defined 

constitutive model. The most important member functions are summarized in the 

following: 

• The Keyword() function returns a pointer to a character array containing the 

name of the constitutive model, as the user will refer to it within FLAC. 

• The Name() function returns a pointer to a character array containing the 

name of the constitutive model that is to be used on printout. 

• The Properties() function returns a pointer to an array of strings, containing 

the names of model properties, with a null pointer to denote the end of the 

character array of strings. 

• The SetProperty(unsigned n, const double &dVal)  function is used to store 

the supplied value dVal, given to FLAC as user input, to the model’s private 

memory location, corresponding to the model property with sequential number 

n. 

• The GetProperty(unsigned n) function returns to FLAC the value of the 

property with sequential number n. 

• An Initialize( unsigned uDim, State *ps) function is called once for each 

model object (i.e., for each full zone), allowing to perform initialization of its 

variables. 

• The Run(unsigned uDim, State ps) function is called from FLAC at each 

cycle, once for each sub-zone. The dimensionality (2 for FLAC and 3 for 

FLAC3D) is given as uDim, while the structure ps contains the current stress 

components and the computed strain increment components for the sub-zone 

being processed. The model must update the stress tensor from strain 

increments. 

• The  ConfinedModulus() function must return a value for the maximum 

confined modulus, which is used by FLAC to compute the stable timestep, as 

described in the previous paragraphs. 

• The ShearModulus() function must return a value for the current tangent 

shear modulus, which is used by FLAC to determine coefficients for the quiet 
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and free-field boundaries, that can by used when performing dynamic 

analyses. 

• Finally, the SaveRestore(ModelSaveObject *mso) function allows the model 

to save and restore data members of each object. 

FLAC is made aware of a user-written constitutive model by a constructor call 

invoked by a static global instance of the model class. This call causes the base 

constructor to “register” the new model, and add it to the list of models. The static 

instance of the model is consulted whenever FLAC needs any information about the 

model (i.e. model name or property name), or when it needs to create a copy of the 

model (i.e. assign the model to a zone). 

As previously described, the most important link between FLAC and a UDM is the 

member-function Run(unsigned nDim, State *ps), which computes the mechanical 

response of the model during cycling. A structure, State *ps, is used to transfer 

information to and from the model. The most important members of ps are 

summarized in the following: 

• bySubZone is the sequence number of the sub-zone currently being 

processed, while byTotSubZones is the total number of sub-zones in the 

specific zone (including those from all overlays - byOverlay is the number of 

overlays). This information is used in the UDM to scale accumulated sub-zone 

data correctly. For example, if four sub-zones are present (as in the 2-D 

version of FLAC), accumulated values will need to be divided by four, in 

order to obtain the average for the whole zone. 

• dSubZoneVolume is the volume of the current sub-zone, while 

dZoneVolume is the total zone volume. 

• STensor stnE is the strain increment tensor, which is input to the constitutive 

model. 

• STensor stnS is the Stress tensor. The current effective stress tensor is input 

to the constitutive model, and the model must return the updated tensor. 

In order for the user to load UDMs into FLAC, the program must be first configured 

to accept DLL models by giving the CONFIG cppudm command. Then, the model 

DLL may be loaded by giving the command MODEL load <filename>, with the 



Chapter 2. Numerical methodology: Background & new developments 

- 42 - 

filename of the DLL. Thereafter, the new model name and property names will be 

recognized by FLAC, and can be used just like any built-in models. 

2.4. Integration scheme 

In previous paragraphs, it is explained that the implementation of a user-defined 

constitutive model into the finite difference code FLAC essentially requires to 

develop a numerical algorithm for the computation of the stress increment, for a given 

current stress state and a given strain increment. In other words, the constitutive 

stress-strain relationship needs to be explicitly integrated. In the general framework of 

elasto-plasticity, this relationship has the form of Equation (2.1), while for the specific 

constitutive model, this equation can be rearranged into Equation (2.42). 

It must be stressed that explicit integration schemes can be easily applied for the 

numerical integration of exceedingly complex constitutive laws, as they are 

straightforward to implement. In contrast, implicit methods, which are commonly 

used with the Finite Element Method, are difficult to implement, except for the case 

of relatively simple soil models. This is because the gradients of the yield and the 

plastic potential surface, as well as the hardening law need to be evaluated for the 

final stress state, which is unknown. Therefore, the resulting system of non-linear 

equations must be solved iteratively. If the modified Newton-Raphson scheme is used 

for this purpose, then second derivatives of the yield function and plastic potential 

need to be computed in order to implement the iterative procedure, thus leading to 

much tedious algebra for complex soil plasticity models. In the model used herein, the 

gradients of the yield and the plastic potential surface, ijL  and ijR  respectively, are 

given by Equations (2.12) and (2.13), as functions of the unit vector ijn . Figure 2.5 

schematically illustrates the mapping rule adopted for the definition of ijn , thus 

indicating the complexity of deriving the differentials of ijL  and ijR , and justifying 

the selection of the explicit finite difference code FLAC, for the implementation of 

the model. 

Effective algorithms for the explicit numerical integration of complex elastoplastic 

constitutive models, have been presented by Sloan et al (2001) and incorporated in the 

work of Andrianopoulos (2006). These algorithms may automatically divide the 

applied strain increment into sub-increments (sub-steps), in order to control the global 
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integration error. Using an estimate of the local error, the size and the number of sub-

steps become a function of the specified error tolerance, the magnitude of the imposed 

strain increment, and the non-linearity of the constitutive relations. The algorithms 

presented by Sloan et al (2001) use either a modified Euler scheme or a Runge-Kutta-

Dormand-Prince scheme to estimate the local error in the computed stresses and to 

control the sub-division of the applied strain increment. 

2.4.1. Modified Euler integration scheme, with automatic 
substepping and error control 

Following the work of Andrianopoulos (2006), the modified Euler scheme is used 

herein, together with the aforementioned sub-stepping and automatic error control 

algorithm. According to this specific algorithm, for each timestep t∆  a pseudo time 

T  (0 T 1≤ ≤ ) is defined, as: 

ot t
T

t

−
=

∆
        (2.67) 

where: 

t  is the current time 

ot  is the time at the start of the load increment 

Differentiating Equation (2.67) yields: 

dT 1

dt t
=
∆

        (2.68) 

Therefore, Equation (2.1) becomes: 

( ) ( ) ( )ij ep ep
ij ij ijkl ij ijkl ij

d
T T t C T t C T

dT
∆Τ σ

∆σ = ∆ = ∆ ∆ σ = ∆ ∆ ε = ∆ ∆εɺɺ   (2.69) 

In this way, the stress-strain relationship can be integrated over the pseudo-time 

interval T 0=  to T 1= , with the stress sub-increment ( )
ij
∆Τ∆σ  corresponding to the 

pseudo-time increment T∆ , being computed from the same constitutive equations, for 

a strain sub-increment ( )
ij
∆Τ∆ε  equal to: 

( )
ij ijT∆Τ∆ε = ∆ ∆ε        (2.70) 
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where ij∆ε  is the total strain increment for the full timestep. 

The pseudo-time is consequently divided into smaller increments (n )T∆  where n  

denotes the pseudo-time ( ) ( ) ( )n n 1 nT T T−= + ∆ , as well as the associated stresses ( )n
ijσ  

and the values ( )nq  of the model’s hardening parameters. 

In the constitutive model used herein, the hardening parameters are: 

• The deviatoric stress ratio LR
ijr  which is defined at load reversal, i.e. when 

0Λ < . 

• The fabric variables pf  and ijf , evolving according to Equations (2.36) and 

(2.37). 

For convenience, the evolution of the above hardening parameters will be expressed 

as ( ) ( )ij ijq ,q q∆ = Λ σ σ . 

The applied integration algorithm is schematically illustrated in Figure 2.9 and 

summarized in the following steps: 

σ

ε

∆σ(2)

 ∆σ(2) 

∆σ(1)

σ(n)

σ(n+1)

(∆σ(1)+∆σ(2))/2

T =
 0

T
(n

)
T
(n

) +∆
T
(n

)

T=1

∆ε(n)
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Figure 2.9. Modified Euler integration scheme with automatic sub-stepping and 
error control. 

Σχήµα 2.9. Τροποποιηµένη ολοκλήρωση κατά Euler µε αυτόµατη υποδιαίρεση 
του βήµατος ολοκλήρωσης και έλεγχο σφάλµατος. 
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Step 1 

The current stress (0)ijσ , the strain increment ij∆ε , and the current values of the 

hardening parameters ( )0q  are given by FLAC and input to the UDM code, while 

variables (0)T  and (1)T∆  are initialized: 

(0)T 0=         (2.71) 

( )1T 1∆ =         (2.72) 

Step 2 

Steps 3-7 are repeated, for n 1,2,3...= , until 
n

(n) (i )

i 1

T T 1
=

= ∆ =∑ . 

Step 3 

The stress increment (n)
ij∆σ  and the corresponding increment of the hardening 

parameters (n)q∆  are estimated using the Modified Euler integration scheme, for a 

strain increment given by Equation (2.73): 

( ) ( )n n
ij ijT∆ε = ∆ ∆ε        (2.73) 

More specifically, a first stress increment estimate (1)
ij∆σ  is computed using Equation 

(2.74): 

( )(1) ep (n 1) (n 1) (n)
ij ijkl ij ijC ,q− −∆σ = σ ∆ε       (2.74) 

The corresponding increment (1)q∆  of the hardening parameters is computed using 

Equation (2.75): 

( ) ( )(1) (n 1) (n 1) (n 1)
ij ijq ,q q− − −∆ = Λ σ σ      (2.75) 

A second pair of estimates (2)
ij∆σ  and (2 )q∆  is computed using Equations (2.76) and 

(2.77). 

( ) ( ) ( ) ( ) ( )( ) ( )2 n 1 1 n 1 1 nep
ij ijkl ij ij ijC ,q q− −∆σ = σ + ∆σ + ∆ ∆ε     (2.76) 
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( ) ( )(2) (n 1) (1) (n 1) (1) (n 1) (1)
ij ij ij ijq ,q q q− − −∆ = Λ σ + ∆σ + ∆ σ + ∆σ    (2.77) 

Finally, the increments (n)
ij∆σ  and (n)q∆  are given from Equations (2.78) and (2.79): 

(1) (2)
ij ij(n )

ij
2

∆σ + ∆σ
∆σ =        (2.78) 

(1) (2)
(n) q q

q
2

∆ + ∆
∆ =        (2.79) 

Step 4 

Since the local error in the Euler and modified Euler integration schemes is ( )2O T∆  

and ( )3O T∆  respectively, the error in (n)
ij∆σ  and (n)q∆  can be estimated from: 

( )

( )

( )

( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( )
( ) ( )( )

1 2 1 2 1
n n ij ij ij ij ij

ij ij

n n
1 2 1 2 1

1 1
ˆ 2 2

1 1q̂ q q q q q q
2 2

   ∆σ + ∆σ −∆σ ∆σ −∆σ       ∆σ ∆σ       
− = =       

           ∆ + ∆ −∆ ∆ −∆
      

(2.80) 

Therefore, a relative error measure ( )nR  can be computed using Equation (2.81): 

( )
( ) ( )

( )

( ) ( )

( )

2 1 2 1
ij ijn

n n
ij

q q1
R max ,

2 q

 ∆σ −∆σ ∆ −∆ 
=  

σ  

   (2.81) 

It may be observed that for strain increments tending to zero, this relative error would 

become equal to the second derivative of the stress-strain relationship, for the given 

loading direction, normalized by the current stress: 

ij

ij

ij

0

ij

R∆ε →

∂σ
∂ε

=
σ

       (2.82) 

Therefore, this relative error may also be regarded as a measure of the local degree of 

non-linearity, of the stress-strain relationship. 
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Step 5 

The relative error ( )nR  is compared to the tolerance variable STOL . This variable has 

been implemented as a model property, that can be externally defined by the UDM 

user. The optimum value for STOL  proposed by Sloan et al (2001) is 3STOL 10−= , 

and this is the current default value for STOL  in the UDM. 

If ( )nR STOL>  (and ( )n
minT T∆ > ∆ ) then the substep is rejected, and steps 3-4 are 

repeated for a smaller time increment ( )nT ′∆ : 

( ) ( ){ }n n
minT max q T , T′∆ = ∆ ∆       (2.83) 

where: 

( )n

STOL
q 0.9 0.1

R
= ≥        (2.84) 

The value of minT∆  is the minimum timestep value, introduced by Sloan et al (2001) 

for reasons of code robustness. In the implemented UDM, it can be defined by the 

user, with 3
minT 10−∆ =  being the default minimum timestep, corresponding to a 

maximum of 1000 sub-steps. 

Equation (2.84) is obtained from the requirement: 

( )nR STOL′ ≤         (2.85) 

Given that the local error estimated by Equation (2.80) is ( )2O T∆ , yields Equation 

(2.86): 

( )
( )

( )
( ) ( )

2n '
n n n2

n

T
R R q R

T
′  ∆
= =  ∆ 

     

 (2.86) 

which, combined with Equation (2.85) yields: 

( )n

STOL
q

R
=         (2.87) 
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The coefficient of 0.9 in Equation (2.84) acts as a safety factor for cases of highly 

non-linear behavior. Even though it leads to smaller sub-increment sizes, and 

consequently more sub-increments, it reduces the number of failed sub-increments 

and increases the algorithm’s efficiency (Sloan et al, 2001). 

Step 6 

If ( )nR STOL≤ , or if ( )n
minT T∆ = ∆ , then the substep is accepted, stresses and 

hardening parameters are updated and a new timestep ( )n 1T +∆  is selected: 

(n 1) (n) (n)
ij ij ij

+σ = σ + ∆σ        (2.88) 

(n 1) (n) (n)q q q+ = + ∆        (2.89) 

(n 1) (n) (n)T T T+ = + ∆        (2.90) 

( ) ( )n 1 nT q T+∆ = ∆        (2.91) 

where: 

( )n

STOL
q 0.9 1.1

R
= ≤        (2.92) 

If the last substep had been accepted with nR STOL>  and (n)
minT T∆ = ∆ , then q 1= . 

Step 7 

The new timestep must be checked so that total time T  will not overcome unity: 

(n 1) (n)T 1 T+∆ ≤ −        (2.93) 

Step 8 

Return the final values of ijσ  and q  to FLAC, and continue with the next timestep. 

2.4.2. Simple integration schemes 

The aforementioned modified Euler integration algorithm, with automatic sub-

stepping and error control, has been shown to provide accurate results 

(Andrianopoulos, 2006). However, its main disadvantage is the high computational 
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cost, which noticeably increases the analysis time. On the other hand, FLAC and 

FLAC3D both use a very small timestep, in order to ensure the stability of the explicit 

finite difference solution scheme. In the case of liquefaction-related problems, this 

timestep is further reduced, due to the large value of the water’s bulk modulus. Thus, 

strain increments are restricted to relatively small values (of the order of 510−  for a 

typical liquefaction analysis, such as the ones shown in the following chapters). It 

becomes clear that if strain increments are sufficiently small, further sub-stepping 

might not be necessary. This observation indicates that simpler integration schemes 

could be used for the UDM’s implementation, thus increasing the model’s 

computational efficiency and reducing the analysis time. However, as these simpler 

algorithms would lack in accuracy, further investigation was conducted, focusing on 

the following issues: 

• The development of an automatic algorithm, based on the error control 

concept presented by Sloan et al (2001). This algorithm switches between 

different integration schemes, depending on the local degree of non-linearity 

of the stress-strain relationship. 

• The determination of a critical strain increment value, beyond which, sub-

stepping and error control would become indispensable. 

Before proceeding to the finally adopted algorithm, two more simplified integration 

schemes will be presented, namely the modified Euler integration scheme and the 

single-step Euler integration scheme. 

2.4.3. Modified Euler integration scheme, without error-control and 
substepping 

The version of the modified Euler integration scheme is schematically illustrated in 

Figure 2.10 and summarized in the following steps: 

Step 1 

The current stress (0)ijσ , the strain increment ij∆ε , and the current values of the 

hardening parameters (0)q  are given by FLAC and input to the UDM code. 
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Figure 2.10. Modified Euler integration scheme without sub-stepping. 

Σχήµα 2.10. Τροποποιηµένη ολοκλήρωση κατά Euler χωρίς υποδιαίρεση του 
βήµατος ολοκλήρωσης. 

Step 2 

The stress increment ij∆σ  and the corresponding increment of the hardening 

parameters q∆  are estimated using the Modified Euler integration scheme. More 

specifically, a first stress increment estimate (1)ij∆σ  is computed using Equation (2.94): 

( )(1) ep (0) (0)
ij ijkl ij ijC ,q∆σ = σ ∆ε       (2.94) 

The corresponding increment (1)q∆  of the hardening parameters is computed using 

Equation (2.95): 

(1)q∆ = ( ) ( )(1) (0) (0)
ij ijq ,q q∆ = Λ σ σ      (2.95) 

A second pair of estimates (2)
ij∆σ  and (2 )q∆  is computed using Equations (2.96) and 

(2.97). 

( )(2) ep (0) (1) (0) (1)
ij ijkl ij ij ijC ,q q∆σ = σ + ∆σ + ∆ ∆ε     (2.96) 

(1)q∆ = ( ) ( )(2) (0) (1) (0) (1) (0) (1)
ij ij ij ijq ,q q q∆ = Λ σ + ∆σ + ∆ σ + ∆σ   (2.97) 
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Finally, the increments ij∆σ  and q∆  are given from Equations (2.98) and (2.99): 

(1) (2)
ij ij

ij
2

∆σ + ∆σ
∆σ =        (2.98) 

(1) (2)q q
q

2

∆ + ∆
∆ =        (2.99) 

Step 3 

Stresses and hardening parameters are updated and returned to FLAC. 

(0)
ij ij ijσ = σ + ∆σ         (2.100) 

(0)q q q= + ∆         (2.101) 

It may be observed that this integration scheme essentially consists of a reduced form 

of the algorithm presented by Sloan et al (2001), which may be alternatively achieved 

by either setting a large value of STOL  (i.e. 310 ), or using small strain increments in 

order to minimize the relative error. As explained previously, strain increments are 

already limited to small values, due to the small timestep incorporated by FLAC and 

FLAC3D, in order to resolve stability-related issues. Therefore, integration steps are 

not expected to be further divided into smaller substeps, except for the cases where 

the predicted soil behavior becomes highly non-linear. In other words, the application 

of a modified Euler scheme, without substepping and error control, is not expected to 

perform much faster than the effective integration algorithm of Sloan et al (2001). The 

only computational benefit will arise when the stress-strain relationship enters regions 

of intense non-linearity. However, it would be definitely unsuitable to bypass 

automatic error control and substepping in these integration steps, as this local 

increase in computational efficiency would have been obviously accompanied by a 

significant lack in accuracy. 

2.4.4. Single-step Euler integration scheme 

The simplest integration scheme applied in the present work consists of the 

performance of a single Euler integration step. The integration procedure is 

schematically illustrated in Figure 2.11 and summarized in the following steps: 
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Figure 2.11. Single-step Euler integration scheme. 

Σχήµα 2.11. Απλή ολοκλήρωση κατά Euler. 

Step 1 

The current stress (0)ijσ , the strain increment ij∆ε , and the current values of the 

hardening parameters (0)q  are given by FLAC and input to the UDM code. 

Step 2 

The stress increment ij∆σ  and the corresponding increment of the hardening 

parameters q∆  are estimated using Equations (2.106) and (2.107): 

( )ep (0) (0)
ij ijkl ij ijC ,q∆σ = σ ∆ε       (2.102) 

( ) ( )(0) (0)
ij ijq ,q q∆ = Λ σ σ        (2.103) 

Step 3 

Finally, stresses and hardening parameters are updated and returned to FLAC. 

(0)
ij ij ijσ = σ + ∆σ         (2.104) 

(0)q q q= + ∆         (2.105) 
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It becomes obvious that in this integration scheme, model computations are only 

performed once for each step. The algorithm is therefore expected to perform 2 times 

faster than the modified Euler scheme without error-control and substepping. 

However, the penalty paid for the considerably increased efficiency, is the lack of 

accuracy, as the error increases by one order of magnitude ( ( )2O t∆  instead ( )3O t∆  

in the modified Euler scheme). Moreover, this scheme does not allow for any 

estimation of the local error to be made, thus it is not possible to have any control on 

the accuracy of the integration procedure, and automatic substepping algorithms may 

not be applied. 

2.4.5. Combined integration scheme 

As explained in the above, the single-step integration scheme may become twice as 

effective than the double-step modified Euler scheme, but it does not allow for any 

error control to be applied and thus lacks in robustness. Therefore, a combined 

integration scheme was developed and adopted in the UDM, automatically switching 

from single-step integration to modified Euler integration with automatic substepping 

and error control. Substepping and error control may be omitted, depending on the 

value of the STOL  variable, defined by the UDM user. 

The main concept of the proposed algorithm is similar to the error estimation 

procedure proposed by Sloan et al (2001). In both schemes, the error is measured 

from the difference of two consecutive stress increments, as shown in Equation  

(2.81). In the original algorithm of Sloan et al (2001), this difference is derived from 

the two increments of the modified Euler integration procedure. In the proposed 

algorithm, the local error measure is estimated using the stress increments of two 

consecutive steps. If this error measure remains below a given tolerance value 

MSTOL , then integration is performed using the single-step Euler scheme. If this 

value is exceeded, then modified Euler integration is activated. 

According to this procedure, the current stress increment is actually regarded as the 

second stress increment of a modified Euler procedure that would have been applied 

in the previous step. Therefore, the estimated error does not correspond to the current 

step, but to the previous one. Since FLAC and FLAC3D do not allow for any 

corrections to be made in previously completed timesteps, it may seem that the 

application of a higher order integration scheme is not performed where necessary, 
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but actually it is performed with the delay of one timestep, thus not contributing to the 

increase of integration accuracy. 

However, application of the previously presented integration schemes has indicated 

that there are distinct regions in the stress-strain relationship where non-linear 

behavior is not predominant, and where the single-step integration scheme is 

sufficiently accurate. Similarly, there are highly non-linear regions, where the use of 

higher-order integration schemes and potential substepping becomes imperative. 

These two regions are not singular timesteps, but entire sections of the stress-strain 

relationship, with a duration of many subsequent timesteps. According to the 

proposed methodology, when the stress state enters a region of high non-linearity, the 

estimated error increases and the modified Euler scheme is applied. Of course, during 

the first timestep of this highly non-linear region, the stress increment is not 

accurately predicted. However, the increased error measure implies the use of the 

modified Euler scheme in the subsequent timesteps. In other words, even with the 

delay of one single substep, this “combined integration” algorithm essentially allows 

to switch between the two different integration schemes, depending on the current 

highly or weakly non-linear soil behavior. In other words, the developed algorithm 

allows the integration scheme to adapt to the local degree of non-linearity of the 

stress-strain relationship, thus achieving the optimum balance between the accuracy 

of the integration procedure and the involved computational cost. Finally, it should be 

stressed that the small integration timestep which is used by FLAC in order to ensure 

the stability of the explicit finite difference solution scheme, results in the 

minimization of the effect of this single step delay on the overall accuracy. 

The combined integration scheme is summarized in the following steps: 

Step 1 

The current stress ( )k
ijσ , the strain increment ( )k

ij∆ε , and the current values of the 

hardening parameters ( )kq  are given by FLAC and input to the UDM code. 

Step 2 

The stress increment ( )k
ij∆σ  and the corresponding increment of the hardening 

parameters ( )kq∆  are estimated using Equations (2.106) and (2.107): 
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( ) ( ) ( )( ) ( )k k k kep
ij ijkl ij ijC ,q∆σ = σ ∆ε       (2.106) 

( ) ( ) ( )( ) ( )( )k k k k
ij ijq ,q q∆ = Λ σ σ       (2.107) 

Step 3 

The accuracy of the single-step integration scheme for the previous step is evaluated. 

More specifically, the current stress increment ( )k
ij∆σ  is regarded as the second stress 

increment of a modified Euler scheme that would have been applied during the 

previous timestep. Therefore, a more accurate estimation ( )k 1
ijˆ −∆σ  of the previous 

step’s stress increment and the current stress ( )k
ijσ̂  may be given by Equations (2.108) 

and (2.109), respectively: 

( )
( ) ( )k 1 k

k 1 ij ij
ijˆ

2

−
− ∆σ + ∆σ

∆σ =       (2.108) 

( ) ( ) ( )k k 1 k 1
ij ij ijˆ ˆ− −σ = σ + ∆σ        (2.109) 

In order to account for the different strain increments of the two individual integration 

steps, the current stress increment value ( )k
ij∆σ  is adjusted as: 

( )
( )

( )
( )

k 1
ijk k

ij ijk
ij

−∆ε
∆σ = ∆σ

∆ε
       (2.110) 

This adjustment is not totally accurate, as it does not take into account changes in the 

direction of the strain increment. This would have great significance in load reversals. 

However, in this case, the error computed in the following steps would increase, thus 

forcing the algorithm to switch into the use of the more accurate modified Euler 

integration scheme. 



Chapter 2. Numerical methodology: Background & new developments 

- 56 - 

Step 4 

Similarly to the integration scheme presented by Sloan et al (2001), an error estimate 

for the stress increment ( )k 1
ij
−∆σ  may be calculated using Equation (2.111): 

( ) ( )

( )

k k 1
ij ij

k 1
ij

1
R

2 ˆ

−

−

∆σ −∆σ
=

σ
     

 (2.111) 

Step 5 

The error estimate computed in Step 4 is compared to a tolerance variable MSTOL , 

which has been implemented as a model property and can be externally defined by the 

UDM user: 

• If R MSTOL≤ , then the single-step integration scheme is considered 

accurate, either due to the small strain increment defined by FLAC, or because 

the current stress state is far from the highly non-linear regions of the 

constitutive relation. Therefore, the stress increment ( )k
ij∆σ  is used to compute 

( )k 1
ij
+σ , which is consequently returned to FLAC. 

• If R MSTOL> , then the single-step integration scheme is not accurate, and a 

more accurate scheme (i.e. the modified Euler scheme) needs to be applied. In 

this case, the stress increment ( )k
ij∆σ  may be used as the first increment of the 

modified Euler scheme, thus only the second increment needs to be computed. 

The use of automatic substepping and error control depends on the selected 

value for the STOL variable. For small tolerance values, the UDM performs 

the previously described error control procedure, while for larger values (i.e. 

3STOL 10= ) substepping does not occur and the integration scheme reduces 

to a simple modified Euler scheme. 

The accuracy and computational efficiency of this combined algorithm is evaluated in 

Chapter 3, and compared to the simple single-step algorithm, the modified Euler 

algorithm, and the modified Euler algorithm with automatic error control and 

substepping. 
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2.5. Mapping rule 

An important part of the integration algorithm is the application of the model’s 

mapping rule, which was described in previous paragraphs and schematically 

illustrated in Figure 2.5. Due to the complicacy of the mapping rule, an iterative 

procedure is required, which demands high computational effort and increases the 

analysis time. Therefore, the algorithm adopted by Andrianopoulos (2006) for the 

application of the mapping rule was modified, aiming to increase the code’s 

computational efficiency. This modification takes advantage of the small critical 

timestep used by FLAC to ensure the stability of the explicit finite difference scheme, 

by using the results from the previous step, as an initial value for the iterative 

procedure. 

The application of the mapping rule essentially refers to the determination of the 

image point IPijr  on the bounding surface (Figure 2.5). This conjugate point lies on the 

line defined by the current deviatoric stress ratio ijr  and a reference point, namely the 

deviatoric stress ratio at last load reversal LR
ijr . The location of this point may be 

expressed as a function of ijr  and LR
ijr , with the aid of a variable a , as shown in 

Equation (2.112): 

( ) ( )IP LR LR
ij ij ij ijr a r a r r= + −       (2.112) 

The value of a  must satisfy the condition that IPijr  lies on the bounding surface. In 

agreement with the definition of the model surfaces, presented in the previous 

paragraphs, the distance ( )BSF a  from the bounding surface can be computed using 

Equation (2.113): 

( ) ( ) ( ) ( )IP IP b
BS ij ij ij

2
F a r a r a M n

3
θ= −      (2.113) 

where ijn  is the unit vector in the direction of IPijr : 

IP
ij

ij IP IP
kl kl

r
n

r r
=         (2.114) 
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and bMθ  is computed according to Equation (2.15). 

Positive values of ( )BSF a 0>  correspond to points IPijr  lying outside the Bounding 

Surface, while if ( )BSF a 0<  the corresponding point IPijr  is located inside the surface. 

In order for IP
ijr to be the required image point, the condition ( )BSF a 0=  must be 

satisfied. It becomes evident that the above equations are interlaced, and an iterative 

procedure is necessary for the determination of coefficient a  and the consequent 

computation of the unit vector ijn . 

2.5.1. Algorithm proposed by Andrianopoulos (2006) 

The iterative algorithm proposed by Andrianopoulos (2006) for this purpose is 

summarized in the following steps: 

Step 1 

The final value of coefficient a  is assumed to lie between two variables, namely 0a  

and 1a . The initial values for these variables are 0a : 0=  and 1a : 1= . 

Step 2 

The distances ( )BS 0F a  and ( )BS 1F a  of the points corresponding to the values 0a  and 

1a , from the model’s Bounding Surface are initially computed. 

Step 3 

If ( )BS 1F a 0>  then 0a  and 1a  are accepted as bounding values of a , and the 

procedure continues with Step 4. 

If ( )BS 1F a 0<  then 0a  and 1a  are updated to 0 1a : a=  and 1 1a : 2a= , and Steps 2-3 are 

repeated, until a proper pair of 0a  and 1a  is determined. ( )BS 0F a  does not need to be 

recomputed, as it is equal to ( )BS 1F a  from the previous step. 

Step 4 

The value of a  is estimated by Equation (2.115): 
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( ) ( )
( ) ( )

BS 1
1 1 0

BS 1 BS 0

F a
a a a a

F a F a
= − −

−
     (2.115) 

Step 5 

The distance ( )BSF a  of the point corresponding to the value a  is computed. 

Step 6 

If ( ) 5
BSF a 10−≤  then the image point has been found ( ( )IP IP

ij ijr r a= ) and the procedure 

is finished. 

If ( ) 5
BSF a 10−>  and ( )BSF a 0<  then the correct value lies between a  and 1a . 

Therefore, 0a : a= , ( ) ( )BS 0 BSF a : F a=  and Steps 4-6 are repeated. 

If ( ) 5
BSF a 10−>  and ( )BSF a 0>  then the correct value lies between 0a  and a . 

Therefore, 1a : a= , ( ) ( )BS 1 BSF a : F a=  and Steps 4-6 are repeated. 

2.5.2. Modified algorithm for the application of the model’s mapping 
rule 

Due to the complicacy of the equations involved in the calculation of ( )BSF a , the 

above algorithm is associated to relatively high computational cost. In order to 

increase the computational efficiency of the UDM, the above algorithm was replaced 

with a more straight-forward procedure. More specifically, combining Equations 

(2.112) and (2.113) with the condition ( )BSF a 0= , yields a binomial for the variable 

a : 

( ) ( ) ( )2 LR LR LR b
ij ij ij ij ij ij ij

2
dr dr a 2dr r a r r M n 0

3
θ

 
+ + − = 

 
   (2.116) 

where: 

LR
ij ij ijdr r r= −         (2.117) 

Equation (2.116) is interlaced, as bMθ  is a function of the unity vector ijn , defined in 

the direction of IPijr , which in turn is a function of a . However, it can be easily solved 

iteratively: 
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• Since bMθ  takes values between b
cM  and b

eM , an initial value of 

( ) ( )b b b
ij c eM n M M 2θ = +  can be used, so that a first estimate of a  is computed 

from Equation (2.116). 

• Next, IP
ijr  may be computed from Equation (2.112), allowing a more precise 

estimate of bMθ . 

• Introducing this new value of bM θ  into Equation (2.116) allows a more 

accurate estimate of a. This procedure may be continued iteratively until 

convergence. Experience from the application of this algorithm indicates that 

in most cases, convergence is achieved in less than 2-4 iterations. 

Apart from reducing the size of the algorithm, and the number of equations involved, 

an important benefit from this modification is that the quantities ij ijdr dr , LR
ij ijdr r  and  

LR LR
ij ijr r  that appear in Equation (2.116) need to be calculated only once. Therefore, the 

required computational effort is significantly reduced. 

An even more important benefit from this algorithm is that the final estimate of bM θ  

may be stored into memory and used as an initial value for the next step’s iterative 

procedure. As thoroughly explained in the previous paragraphs, the integration 

timestep in both FLAC and FLAC3D is restrained to very small values, in order to 

ensure the stability of the explicit finite difference solution scheme. Moreover, 

according to the model’s mapping rule, the direction of the unit vector ijn  is only 

indirectly related to the current deviatoric stress ratio ijr . As shown in Figure 2.5, the 

unit vector ijn  is associated with the direction of shearing ( LR
ij ijr r− ), and is therefore 

relatively insensitive to small changes in the current deviatoric stress ratio. As a 

result, the direction of the unit vector ijn  and the resulting value of ( )b
ijM nθ , are not 

expected to intensely fluctuate, during shearing. Therefore, the number of iterations 

needed for convergence is minimized and the computational efficiency is significantly 

increased. 
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2.6. Drift Correction 

An important part of the constitutive model’s integration scheme is the application of 

a drift correction algorithm, which ensures that the stress point does not move far 

outside the model’s bounding surface. This correction becomes necessary due to the 

form of the adopted mapping rule, which was presented in the previous section. More 

specifically, if the current stress point lies far outside the bounding surface, it could 

become impossible to determine a conjugate image point. 

Therefore, after each modification of the stress state, the distance from the bounding 

surface FBS(rij) is computed, and consequently compared to a given tolerance value 

FBS,tol. Following a sensitivity analysis, the tolerance value inherited in this work is 

equal to FBS,tol=10-2. If the distance is larger than this value, i.e. FBS(rij) > FBS,tol, the 

following drift correction algorithm is applied. 

Step 1 

The stress state is moved in the stress space, along the direction of the plastic potential 

derivative, i.e. ij
ij

gR ∂= ∂σ : 

( )corr
ij ij t ij t ij2G n K Dσ = σ + Λ + δ      (2.118) 

where: 

( )BS ij

p t t

F r

K 2G VK D
Λ =

+ +
      (2.119) 

Step 2 

The result of the above correction is evaluated: 

Case a:  FBS(rij
corr) > FBS,tol 

The corrected stress point is still far outside the bounding surface, thus the correction 

of Step 1 is repeated. 

Case b:  FBS(rij
corr) < 0 

The applied drift correction was larger than necessary, thus Step 1 is repeated, using 

Λ΄=0.9Λ. 
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Case c:  FBS(rij
corr) < FBS,tol and FBS(rij

corr) < 0 

The applied drift correction is accepted. 
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Chapter 3 
3. Numerical methodology: 

Evaluation of performance 
 

 

3.1. General 

The numerical methodology presented in Chapter 2 is evaluated herein, in both 

element level and boundary value conditions. The accuracy of the addressed 

integration schemes was first assessed, through the development of isoerror maps. 

Their computational efficiency was also evaluated, through their application for a 

given undrained shear strain path and the comparison of the required computational 

times. 

Consequently, the adopted constitutive model was calibrated against a wide range of 

resonant column, as well as monotonic and cyclic undrained simple shear and triaxial 

tests. Having achieved a good comparison between the experimental results and the 

respective numerical predictions, in element level, the accuracy of the developed 

numerical methodology in boundary value problems was evaluated in both 2- and 3- 

dimensions. This was achieved through the simulation of a well established centrifuge 

experiment, concerning the liquefaction performance of a shallow foundation, which 

will be the problem dealt with in the following chapters. 
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3.2. Accuracy of integration schemes 

In the previous paragraphs, three different integration schemes have been adressed, 

namely the: 

• Modified Euler integration with automatic sub-stepping and error control 

• Modified Euler integration without sub-stepping and error control 

• Single step Euler integration 

In order to assess the accuracy of the above algorithms, and derive conclusions on 

their range of application, isoerror maps were developped. This procedure has been 

employed by a number of authors, e.g. Krieg & Krieg (1977), Schreyer, Kulak & 

Kramer (1979), Iwan & Yoder (1983), Ortiz & Popov (1985), Ortiz & Simo (1986) 

and Simo & Taylor (1986), as well as by Andrianopoulos (2006). 

It must be noted, herein, that the combined integration scheme may not be evaluated 

using the isoerror maps procedure, as this procedure involves the accuracy evaluation 

of the integration algorithm over one single strain increment, while the developed 

scheme involves a sequence of increments. 

The procedure for the creation of isoerror maps, is as follows: 

• A minimum of three points in the stress space is selected, representing a wide 

range of possible stress states. 

• A sequence of specified strain increments is applied to each selected point, 

and the integration algorithm is used for the computation of the corresponding 

stresses. 

• The exact stresses for the prescribed strain increments are computed by 

repeatedly applying the algorithm with an increasing number of 

subincrements. The value for which further sub-incrementing produces no 

change in the numerical result is taken as the exact solution. 

• Finally, results are reported as the relative root mean square of the error 

between the exact and computed solution, as obtained by Equation (3.1): 

( )( )* *
ij ij ij ij

* *
ij ij

σ −σ σ −σ
δ =

σ σ
      (3.1) 
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In the work presented herein, three different points in the stress space were examined. 

An initial void ratio of e 0.737=  was considered, corresponding to a relative density 

of rD 40%= . Starting from an initial isotropic pressure of v h 80kPaσ = σ = , the 

material was subjected to:  

• undrained triaxial compression 

• undrained triaxial extension 

• undrained simple shear 

More specifically, in the first case of triaxial compression, a vertical compressive 

strain of v 0.01%ε =  was applied to the specimen, accompanied by an equal and 

opposite horizontal strain of h 0.01%ε = − , in order to achieve initial yielding. In the 

case of triaxial extension, the specimen was subjected to a vertical strain of 

v 0.01%ε = −  and a horizontal strain of h 0.01%ε = . The application of these strains 

was performed incrementally, in 10.000 steps ( 810−∆ε = ). Finally, in order for the 

isoerror maps to be constructed, different combinations of vertical ( v∆ε ) and 

horizontal ( h∆ε ) strains were consequently applied, ranging from 510−  to 310− ,. 

In the third case, yielding was achieved by initially applying a shear strain of 

vh 0.01%ε = . Similar to the previous cases, shearing was applied under constant 

volume, in 10.000 steps ( 810−∆ε = ). At the final stage, different combinations of shear 

( vh∆ε ) and vertical ( v∆ε ) strain were applied, ranging from 510−  to 310− .  

In all cases, the exact solutions were obtained by applying the stain increments in 

steps of 810−∆ε = , and using the Modified Euler integration scheme with automatic 

sub-stepping and error control, with an error tolerance value of 5STOL 10−= . 

The above procedure was performed three times, corresponding to the different 

integration algorithms presented in the above. The resulting isoerror maps are shown 

in Figures 3.1 and 3.2. 
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Figure 3.1. Isoerror maps for undrained triaxial compression and extension, 
created using (a) the Modified Euler integration scheme, with 
automatic sub-stepping and error control, (b) the Modified Euler 
scheme without substepping and error control and (c) the single-step 
Euler integration scheme. 

Σχήµα 3.1. Ισοκαµπύλες σφάλµατος για αστράγγιστη τριαξονική θλίψη και 
εφελκυσµό, θεωρώντας (a) τροποποιηµένη ολοκλήρωση κατά Euler µε 
αυτόµατη υποδιαίρεση βήµατος και έλεγχο σφάλµατος, (b) 
τροποποιηµένη ολοκλήρωση κατά Euler χωρίς υποδιαίρεση βήµατος 
και (c) απλή ολοκλήρωση κατά Euler. 
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Figure 3.2. Isoerror maps for simple shear, created using (a) the Modified Euler 
integration scheme, with automatic sub-stepping and error control, (b) 
the Modified Euler scheme without substepping and error control and 
(c) the single-step Euler integration scheme. 

Σχήµα 3.1. Ισοκαµπύλες σφάλµατος για απλή διάτµηση, θεωρώντας (a) 
τροποποιηµένη ολοκλήρωση κατά Euler µε αυτόµατη υποδιαίρεση 
βήµατος και έλεγχο σφάλµατος, (b) τροποποιηµένη ολοκλήρωση κατά 
Euler χωρίς υποδιαίρεση βήµατος και (c) απλή ολοκλήρωση κατά 
Euler. 
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Thorough observation of Figures 3.1 and 3.2 yields the following conclusions: 

• As it was expected, the computed relative error increases with increasing 

strain increments, for all initial stress states and for all integration schemes. 

• Relative error increases when large tensile strain increments are applied. 

• The Modified Euler integration scheme with automatic sub-stepping and error 

control is proved to provide the most accurate results, with the relative error 

not exceeding 5 to 10%, even for the largest applied strain increments. 

• Compared to the single step Euler integration scheme, the benefit from the 

application of the modified Euler algorithm without sub-stepping and error 

control, is proved to be relatively small. It should be taken into account that 

model computations in the modified Euler scheme are performed twice, and 

thus the single-step Euler scheme is expected to be twice as efficient. 

• For strain increments smaller than 410− , all algorithms provide accurate 

results, with the relative error not exceeding 5%. 

This last observation was incorporated into the combined integration scheme of the 

UDM code, by adding the restriction not to perform a single-step Euler integration, 

when the norm of the applied strain increment ij ij ij∆ε = ∆ε ∆ε  is beyond a threshold 

strain value ETOL . This tolerance value was implemented as a UDM property and 

may be defined by the user. According to the above presented isoerror maps, this 

value should not be larger than 410− . However, taking into account that these maps do 

not cover the whole range of possible stress states and strain increments, a smaller 

default value of 510−  was conservatively selected. 

Therefore, the implemented combined integration scheme, features the following 

parameters: 

• A strain threshold value ETOL : when the norm of the strain increment is 

beyond this value, then the modified Euler scheme with automatic error 

control and substepping is applied. In other words, if ETOL 0= , then the 

previously presented combined integration scheme is bypassed. For larger 

values, the integration scheme selection depends on the values of MSTOL 

and STOL. 
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• An error tolerance value MSTOL , which defines whether the single-step 

integration turns to a modified Euler integration scheme. If large values of 

both MSTOL  and ETOL  are selected (i.e. 310 ), then the integration scheme 

reduces to single-step Euler integration. 

• An error tolerance value STOL, which defines whether the automatic 

substepping algorithm is turned on. It becomes evident that in order for 

automatic error control and substepping to be applied, small values of ETOL  

and MSTOL must be selected, so that the modified Euler scheme is used. 

In order to explain the use of the above parameters, Table 3.1 shows how different 

integration schemes may applied, using the appropriate values for ETOL , MSTOL 

and STOL. 

Table 3.1. Typical values for parameters ETOL, MSTOL and STOL, used for the 
application of different integration schemes. 

Πίνακας 3.1. Τυποκές τιµές των παραµέτρων ETOL, MSTOL και STOL που 
χρησιµοποιούνται για την εφαρµογή του κάθε σχήµατος 
ολοκλήρωσης. 

Integration Scheme ETOL MSTOL STOL 
Modified Euler, with error control & substepping 0 0 10-3 

Modified Euler, without error control & substepping 0 0 103 

Combined scheme, with error control & substepping 10-4 10-3 10-3 

Combined scheme, without error control & substepping 10-4 10-3 103 

Single step Euler 103 103 103 

 

Evaluation of the overall accuracy and computational efficiency of the UDM, with the 

use of different combinations for these parameters, will be presented in the following. 
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3.3. Computational efficiency of integration algorithms 

The computational efficiency of all algorithms presented previously is evaluated 

herein, through their application in the prediction of stresses, for a given undrained 

shear strain path, in element level. More specifically, an initial void ratio of e 0.737=  

was considered, corresponding to a relative density of rD 40%= , while the initial 

vertical and horizontal stresses were equal to v 80KPaσ =  and h 36KPaσ =  

respectively, corresponding to a horizontal earth pressure coefficient of oK 0.45= . 

The element was subjected to the shear strain vhγ  path shown in Figure 3.3. The 

prescribed strain path was applied in increments of 4
vh 10−∆γ =  and 510− , which are 

typical for FLAC and FLAC3D numerical analyses. Plane strain conditions were 

considered, while no volume change was allowed (v h 0ε = ε = ).  
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Figure 3.3. Applied shear strain history. 

Σχήµα 3.3. Επιβαλόµενη χρονοϊστορία διατµητικών παραµορφώσεων. 

The analyses were performed in both FLAC and FLAC3D (Figure 3.4). The results 

from all cases a-d shown in Figure 3.4 were identical, thus confirming the model’s 

implementation in the multi-axial stress space. In the following figures, only results 

from the 2-dimensional element tests are shown. 
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Figure 3.4. Applied boundary conditions in (a) FLAC, and (b-d) FLAC3D. 

Σχήµα 3.4. Επιβαλόµενες συνοριακές συνθήκες στους κώδικες (a) FLAC και (b-d) 
FLAC3D. 

More specifically, the following cases were examined: 

i. Original UDM, by Andrianopoulos (2006), programmed in FISH. 

ii. The same UDM, reprogrammed using C++. 

iii. Optimized C++ UDM code, without any algorithm modifications. The 

modified Euler integration scheme with automatic error control and 

substepping was applied (i.e. ETOL 0= , MSTOL 0=  and 3STOL 10−= ). 

iv. Similar to case iii, though using the new algorithm for the application of the 

mapping rule, with ( )b b
c eM M 2+  as an initial value for the involved iterative 

procedure. 

v. Similar to case iii, though using the new algorithm for the application of the 

mapping rule, with a constantly upgrading initial value of bM θ , for the 

involved iterative procedure. 

vi. Similar to case v, though using the modified Euler integration scheme, without 

substepping and error control (i.e. ETOL 0= , MSTOL 0=  and 3STOL 10= ). 
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vii. Similar to case v, though using the combined integration scheme, with 

automatic substepping and error control where necessary (i.e. 3ETOL 10= , 

3MSTOL 10−=  and 3STOL 10−= ). 

viii. Similar to case v, though using the combined integration scheme, without 

substepping and error control (i.e. 3ETOL 10= , 3MSTOL 10−=  and 

3STOL 10= ). 

ix. Similar to case v, though using the single-step Euler integration scheme (i.e. 

3ETOL 10= , 3MSTOL 10=  and 3STOL 10= ). 

As described in the above, analyses i to v were performed in order to assess the 

increase in computational efficiency, which was achieved by reprogramming the 

UDM in C++, rearranging and optimizing the code, and improving the algorithm for 

the application of the model’s mapping rule. As expected, the results from all these 

analyses are identical. The resulting shear stress vs. vertical stress path, shear stress 

vs. shear strain relationship and excess pore pressure vs. shear strain relationship are 

presented in Figure 3.5. 

As it may be observed in this figure, the results from analyses i to v were identical. 

However, significant differences were obseved, in terms of computational effort. 

Table 3.2 shows the average computational time required to perform the UDM 

computations, per zone and per timestep, in the above cases, with the prescribed shear 

strain path being applied in increments of 4
vh 10−∆γ =  and 510− . These times were 

measured in a Personal Computer with an 3.0 GHz Intel Pentium Processor and 1GB 

of RAM. The analyses were performed using the 2-dimensional code FLAC. The 

corresponding computational time in FLAC3D is increased by an average of 150%, as 

model computations in FLAC3D are performed ten times per zone, compared to the 

four subzones used in FLAC. 
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Figure 3.5. Results of element tests i to v, in terms of shear stress vs. vertical stress 
path, shear stress vs. shear strain relationship and excess pore pressure 
vs. shear strain relationship. 

Σχήµα 3.5. Αποτελέσµατα δοκιµών i έως v, σε όρους διαδροµής διατµητικής 
τάσης προς κατακόρυφη τάση, σχέσης διατµητικής τάσης προς 
διατµητική παραµόρφωση και σχέσης υπερ-πίεσης πόρων προς 
διατµητική παραµόρφωση. 

Observation of the computational time values presented in Table 3.2 yields the 

following conclusions: 

• A significant decrease of the average computational time is observed for all 

cases, when the strain path is applied using smaller increments. This is due to 
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the smaller average number of substeps required to maintain the integration 

error within the allowable tolerance values. 

• Regardless of the applied strain increment, the C++ written UDM performs at 

least 3 times faster than the one written in FISH. This does not imply that the 

total analysis time in boundary value problems will be reduced to 1/3. The 

computational times presented herein involve the UDM performance alone, 

while in a FLAC analysis, an important amount of computational time is 

consumed for other purposes, independent of the UDM, such as the solution 

and integration of the equations of motion, the derivation of strain rates from 

gridpoint velocities and groundwater flow associated calculations. 

• Comparison between cases ii and iii indicates that rearrangement and 

optimization of the C++ code resulted in a computational efficiency increase 

of about 10%. 

• As shown in cases iii and iv, the new algorithm for the application of the 

model’s mapping rule speeds up the UDM by 12%. 

• Comparison between cases iv and v indicates that the use of a constantly 

upgrading initial value of bM θ  in the iterative procedure for the application of 

the model’s mapping rule, reduces the computational time by another 12% in 

the case of 4
vh 10−∆γ = , and by 16% for 5

vh 10−∆γ = . The higher increase of 

computational efficiency in the case of smaller strain increments is justified by 

the fact that the direction of the unity vector ijn , as well as the resulting 

bounding surface radius bM θ , do not intensely fluctuate during subsequent 

timesteps and, consequently, the required number of iterations is minimized. 
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Table 3.2. Comparison of the computational efficiency for cases i to v, with the 
prescribed strain path being applied using different increment sizes. 

Πίνακας 3.2. Σύγκριση υπολογιστικού χρόνου στις περιπτώσεις i έως v, για 
διαφορετικά βήµατα επιβολής της προδιαγεγραµµένης χρονοϊστορίας 
παραµόρφωσης. 

Case 
Number & 
Description 

Average computational time 
per zone and per timestep (in µs) 

4
vh 10−∆γ =  5

vh 10−∆γ =  

i FISH compiled UDM ≈ 7500 ≈ 2000 
ii C++ compiled UDM 2350 620 
iii Optimized UDM code 2139 561 
iv New mapping rule algorithm 1879 494 
v Constantly upgrading bM θ  1620 416 

 

Analyses v to ix were performed to assess the increase in computational efficiency 

achieved by the application of different computation schemes. As expected, 

simplifications in the integration algorithm have a negative effect on the accuracy of 

predicted stresses. This effect is evaluated through comparison with the higher 

accuracy algorithm, that is the modified Euler scheme with automatic substepping and 

error control (Case v). More specifically, a relative error measure was computed for 

each case, as shown in Equation (3.2): 

( )( ) ( )( )
( ) ( )

v v
ij ij ij ij

v v
ij ij

R.E.
′ ′ ′ ′∆σ −∆σ ∆σ −∆σ

=
′ ′σ σ

    (3.2) 

The resulting shear stress vs. vertical stress path, shear stress vs. shear strain 

relationship and excess pore pressure vs. shear strain relationship for cases v to ix are 

presented in Figures 3.6 and 3.7, with the strain path being applied at increments of 

4
vh 10−∆γ =  and 5

vh 10−∆γ =  respectively. Time histories of shear strain, shear stress, 

vertical effective stress and the error measure of Equation (3.2) are shown in Figures 

3.8 and 3.9. Finally, the average computational time required to perform the UDM 

computations, per zone and per timestep, is presented for each case in Table 3.3. 
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Figure 3.6. Results of element tests v to ix, in terms of shear stress vs. vertical 
stress path, shear stress vs. shear strain relationship and excess pore 
pressure vs. shear strain relationship, for applied strain increments of 

4
vh 10−∆γ = . 

Σχήµα 3.6. Αποτελέσµατα δοκιµών v έως ix, σε όρους διαδροµής διατµητικής 
τάσης προς κατακόρυφη τάση, σχέσης διατµητικής τάσης προς 
διατµητική παραµόρφωση και σχέσης υπερ-πίεσης πόρων προς 
διατµητική παραµόρφωση, όταν η διατµητική παραµόρφωση 
επιβάλλεται σε βήµατα 4

vh 10−∆γ = . 



Chapter 3. Numerical methodology: Evaluation of performance 

- 77 - 

0 10 20 30 40 50 60 70 80
σ'v  (KPa)

-20

-10

0

10

20

τ v
h
 (K

P
a

)

Case v:  Modified Euler
with error control & substepping

Case vi:  Combined integration scheme
without substepping

Case vii:  Combined integration scheme
with error control and substepping

Case viii: Combined integration scheme
without substepping

Case ix:  Single-step Euler integration

-0.01 0 0.01 0.02
γvh

-20

-10

0

10

20

τ v
h
 (K

P
a

)

-0.01 0 0.01 0.02
γvh

0

20

40

60

80
∆

u 
(K

P
a

)

 

Figure 3.7. Results of element tests v to ix, in terms of shear stress vs. vertical 
stress path, shear stress vs. shear strain relationship and excess pore 
pressure vs. shear strain relationship, for applied strain increments of 

5
vh 10−∆γ = . 

Σχήµα 3.7. Αποτελέσµατα δοκιµών v έως ix, σε όρους διαδροµής διατµητικής 
τάσης προς κατακόρυφη τάση, σχέσης διατµητικής τάσης προς 
διατµητική παραµόρφωση και σχέσης υπερ-πίεσης πόρων προς 
διατµητική παραµόρφωση, όταν η διατµητική παραµόρφωση 
επιβάλλεται σε βήµατα 5

vh 10−∆γ = . 
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Figure 3.8. Results of element tests v to ix, in terms of shear strain, shear stress, 
vertical effective stress and error time histories, for applied strain 
increments of 4

vh 10−∆γ = . 

Σχήµα 3.8. Αποτελέσµατα δοκιµών v έως ix, σε όρους χρονοϊστοριών διατµητικής 
παραµόρφωσης, διατµητικής τάσης, κατακόρυφης ενεργού τάσης και 
σχετικού σφάλµατος, όταν η διατµητική παραµόρφωση επιβάλλεται σε 
βήµατα 4

vh 10−∆γ = . 
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Figure 3.9. Results of element tests v to ix, in terms of shear strain, shear stress, 
vertical effective stress and error time histories, for applied strain 
increments of 5

vh 10−∆γ = . 

Σχήµα 3.9. Αποτελέσµατα δοκιµών v έως ix, σε όρους χρονοϊστοριών διατµητικής 
παραµόρφωσης, διατµητικής τάσης, κατακόρυφης ενεργού τάσης και 
σχετικού σφάλµατος, όταν η διατµητική παραµόρφωση επιβάλλεται σε 
βήµατα 5

vh 10−∆γ = . 
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Table 3.3. Comparison of the computational efficiency for cases v to ix, with the 
prescribed strain path being applied using different increment sizes. 

Πίνακας 3.3. Σύγκριση υπολογιστικού χρόνου στις περιπτώσεις v έως ix, για 
διαφορετικά βήµατα επιβολής της προδιαγεγραµµένης χρονοϊστορίας 
παραµόρφωσης. 

Case 
Number & 
Description 

Computational time 
per zone and per timestep (in µs) 

4
vh 10−∆γ =  5

vh 10−∆γ =  

v Modified Euler 
with error control and substepping 1620 416 

vi Modified Euler 
without substepping 355 342 

vii Combined integration scheme 
with error control and substepping 306 215 

viii Combined integration scheme 
without substepping 234 199 

ix Single step Euler integration 202 197 

 

Observation of Figures 3.6 to 3.9 as well as Table 3.3, yields the following 

conclusions: 

• Comparison between computational times for applied strain increments of 

4
vh 10−∆γ =  and 5

vh 10−∆γ =  indicates that effective integration algorithms 

(cases v, vii and viii), where either the integration scheme or the number of 

substeps depends on the estimated local error, the UDM performs much faster, 

as the strain increment decreases. However, smaller strain incremens also 

affect the computational times in cases vi and ix, where the integration 

algorithm does not include any form of error control. This is due to the 

algorithm used for the application of the mapping rule, as the application of 

smaller strain increments minimizes the number of iterations. 

• Bypassing the automatic error control and substepping procedure, 

considerably increases computational efficiency, especially for larger applied 

strain increments, as shown by comparison of cases v and vi, or cases vii and 

viii. However, a significant increase in computational error is also observed. 

This error increases when the stress path enters specific regions of highly non-

linear behavior. More specifically, peaks in the computed error are observed 

when the dilation surface is crossed, and the model approaches the critical 



Chapter 3. Numerical methodology: Evaluation of performance 

- 81 - 

state. In liquefaction related boundary value problems, behavior is expected to 

be highly non-linear, thus bypassing error control should not be recommended. 

• On the other hand, a significant decrease of computational time is also 

observed when the combined integration algorithm is applied. More 

specifically, computational time in case vii remains between cases v and ix. 

However, even though the local error in case ix is significantly increased, the 

combined integration algorithm seems to effectively switch to the higher order 

scheme when highly non-linear behavior is observed, thus minimizing the 

computational error. 

As described above, the combined integration algorithm which allows to switch 

between single step Euler integration and modified Euler integration with error 

control, provides increased computational efficiency, without any major sacrifice in 

accuracy, and may be therefore recommended for use in boundary value problems. 

The use of this new integration scheme, together with the reprogramming of the 

original code of Andrianopoulos et al (2008) into C++, the consequent code 

optimization and the modifications in the algorithm for the application of the mapping 

rule, resulted in a total decrease of computational time, of the order of 90%! In other 

words, as shown from the comparison between cases i and vii, the developed UDM 

executes at 1/10 (one tenth) of the initial computational time, without any significant 

loss in the accuracy of the predictions. It should be stressed out that this 

computational time is increased by 150% for applications in FLAC3D, due to the 

different discretization of elements into a larger number of subzones. However, the 

improved computational efficiency of the new UDM, allows the performance of both 

2-D and 3-D finite difference analyses, in rational times, which would not be possible 

with the original non-optimized code. 
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3.4. Model calibration 

The model parameters were been calibrated against the results of tests performed 

during the VELACS research program (Arulmoli et al., 1992). These tests have been 

performed on Nevada sand #120, with the physical characteristics presented in Table 

3.4, and the gradation curve of Figure 3.10. More specifically, the calibration was 

based on resonant column tests, as well as on monotonic and cyclic undrained simple 

shear and triaxial tests. These tests cover a wide range of initial relative density 

( rD 40 60%= − ), and initial consolidation stress (40 160kPa− ). Thus, they can be 

considered adequate for quantifying the behavior of the sand in terms of shear 

modulus reduction and damping increase with increasing shear strain, as well as the 

rate of excess pore pressure development and liquefaction resistance. 

Table 3.4. Summary of Nevada Sand physical characteristics. 

Πινακας 3.4. Σύνοψη φυσικών χαρακτηριστικών της Άµµου Nevada. 

Density of grains ( sρ ) 32.67 Mgr m  

Maximum dry density ( dry,maxρ ) 
31.77 Mgr m  

Minimum dry density ( dry,minρ ) 31.41Mgr m  

Maximum void ratio ( maxe ) 0.887 

Minimum void ratio ( mine ) 0.511 
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Figure 3.10. Gradation curve of Nevada Sand #120. 

Σχήµα 3.10. Καµπύλη κοκκοµετρικής διαβάθµισης της Άµµου Nevada #120. 

The procedures which were followed in order to select the model parameters are 

covered extensively in Papadimitriou (1999, 2001, 2002) and Andrianopoulos (2006). 

The parameters which were finally incorporated to the present thesis, are shown in 

Table ??. 

Table 3.5. Constitutive model parameters for Nevada Sand #120. 

Πίνακας 3.5. Παράµετροι καταστατικού προσοµοιώµατος για την Άµµο Nevada 
#120. 

Parameter Parameter Name 
used in FLAC & FLAC3D 

Value 

c
cM  mc_comp 1.25 
c
eM  mc_ext 0.90 

( )cs a
e  void_cr 0.809 

λ  lamda 0.022 

B  m_b 
600 

(180 for monotonic loading) 
ν  m_poiss 0.33 

b
ck  kb_comp 1.45 
b
ek  kb_ext 1.044 
d
ck  kd_comp 0.30 
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d
ek  kd_ext 0.216 

1γ  m_g1 0.00025 

1a  m_a1 
0.6 

(1.0 for monotonic loading) 

oA  ao 0.8 

oh  ho 15000 

oH  ho_fab 40000 

 

Figures 3.11 to 3.20 summarize the comparison between experimental results and 

numerical predictions: 

• More specifically, Figure 3.11 compares experimental results and model 

predictions in terms of maximum shear modulus maxG  variation with applied 

isotropic pressure p , for relative densities rD 40%=  and 60%. 

• Figure 3.12 concerns shear modulus degradation maxG G  and damping ξ  

increase with increasing cyclic shear strain amplitude cycγ . In order to 

demonstrate the contribution of the Ramberg-Osgood formulation and the 

effect of plasticity on the model’s behaviour, the above curves were also 

obtained using 1a 1.0=  (which essentially turns off the Ramberg-Osgood 

formulation for the computation of elastic strains), as well as with a large 

value for oh  (which essentially turns plastic strains equal to zero). 

• Finally, Figures 3.13 to 3.20 show the comparison between experimental 

results and model predictions, in terms of excess pore pressure ratio ur  

generation rate, as well as in terms of liquefaction curves, in both dynamic 

simple shear and triaxial tests, with initial effective consolidation stresses 

(vertical and isotropic, respectively) equal to 80 and 160kPa, and relative 

densities of rD 40%=  and 60%. 
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Figure 3.11. Comparison between experimental results and model predictions in 
terms of maximum shear modulus maxG  variation with applied 

isotropic pressure p , for relative densities rD 40%=  and 60%. 

Σχήµα 3.11. Σύγκριση πειραµατικών αποτελεσµάτων και προβλέψεων 
καταστατικού προσοµοιώµατος σε όρους µεταβολής του µέγιστου 
µέτρου διάτµησης maxG  µε την επιβαλλόµενη µέση τάση p , για τιµές 

της σχετικής πυκνότητας rD 40%=  και 60%. 
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Figure 3.12. Comparison between experimental results and model predictions in 
terms of shear modulus degradation maxG G  and damping ξ  increase 

with increasing cyclic shear strain amplitude cycγ . 

Σχήµα 3.12. Σύγκριση πειραµατικών αποτελεσµάτων και προβλέψεων 
καταστατικού προσοµοιώµατος σε όρους αποµείωσης του 
κανονικοποιηµένου µέτρου διάτµησης maxG G  και αύξησης της 

απόσβεσης ξ  µε το αυξανόµενο πλάτος της επιβαλλόµενης 

ανακυκλικής διατµητικής παραµόρφωσης cycγ . 
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Figure 3.13. Comparison between experimental results and model predictions in 
terms of excess pore pressure ratio ur  generation rate, in dynamic 

simple shear tests, for relative density rD 60%= . 

Σχήµα 3.13. Σύγκριση πειραµατικών αποτελεσµάτων και προβλέψεων 
καταστατικού προσοµοιώµατος σε όρους ρυθµού ανάπτυξης 
υπερπιέσεων πόρων ur  σε ανακυκλικές δοκιµές απλής διάτµησης, για 

σχετική πυκνότητα rD 60%= . 
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Figure 3.14. Comparison between experimental and model predicted liquefaction 
curves, derived from dynamic simple shear tests, at relative density 

rD 60%= . 

Σχήµα 3.14. Σύγκριση πειραµατικών αποτελεσµάτων και προβλέψεων 
καταστατικού προσοµοιώµατος σε όρους καµπύλων ρευστοποίησης 
από ανακυκλικές δοκιµές απλής διάτµησης, για σχετική πυκνότητα 

rD 60%= . 
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Figure 3.15. Comparison between experimental results and model predictions in 
terms of excess pore pressure ratio ur  generation rate, in dynamic 

simple shear tests, for relative density rD 40%= . 

Σχήµα 3.15. Σύγκριση πειραµατικών αποτελεσµάτων και προβλέψεων 
καταστατικού προσοµοιώµατος σε όρους ρυθµού ανάπτυξης 
υπερπιέσεων πόρων ur  σε ανακυκλικές δοκιµές απλής διάτµησης, για 

σχετική πυκνότητα rD 40%= . 
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Figure 3.16. Comparison between experimental and model predicted liquefaction 
curves, derived from dynamic simple shear tests, at relative density 

rD 40%= . 

Σχήµα 3.16. Σύγκριση πειραµατικών αποτελεσµάτων και προβλέψεων 
καταστατικού προσοµοιώµατος σε όρους καµπύλων ρευστοποίησης 
από ανακυκλικές δοκιµές απλής διάτµησης, για σχετική πυκνότητα 

rD 40%= . 
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Figure 3.17. Comparison between experimental results and model predictions in 
terms of excess pore pressure ratio ur  generation rate, in dynamic 

triaxial tests, for relative density rD 60%= . 

Σχήµα 3.17. Σύγκριση πειραµατικών αποτελεσµάτων και προβλέψεων 
καταστατικού προσοµοιώµατος σε όρους ρυθµού ανάπτυξης 
υπερπιέσεων πόρων ur  σε ανακυκλικές τριαξονικές δοκιµές, για 

σχετική πυκνότητα rD 60%= . 
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Figure 3.18. Comparison between experimental and model predicted liquefaction 
curves, derived from dynamic triaxial tests, at relative density 

rD 60%= . 

Σχήµα 3.18. Σύγκριση πειραµατικών αποτελεσµάτων και προβλέψεων 
καταστατικού προσοµοιώµατος σε όρους καµπύλων ρευστοποίησης 
από ανακυκλικές τριαξονικές δοκιµές, για σχετική πυκνότητα 

rD 60%= . 
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Figure 3.19. Comparison between experimental results and model predictions in 
terms of excess pore pressure ratio ur  generation rate, in dynamic 

triaxial tests, for relative density rD 40%= . 

Σχήµα 3.19. Σύγκριση πειραµατικών αποτελεσµάτων και προβλέψεων 
καταστατικού προσοµοιώµατος σε όρους ρυθµού ανάπτυξης 
υπερπιέσεων πόρων ur  σε ανακυκλικές τριαξονικές δοκιµές, για 

σχετική πυκνότητα rD 40%= . 
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Figure 3.20. Comparison between experimental and model predicted liquefaction 
curves, derived from dynamic triaxial tests, at relative density 

rD 40%= . 

Σχήµα 3.20. Σύγκριση πειραµατικών αποτελεσµάτων και προβλέψεων 
καταστατικού προσοµοιώµατος σε όρους καµπύλων ρευστοποίησης 
από ανακυκλικές τριαξονικές δοκιµές, για σχετική πυκνότητα 

rD 40%= . 
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3.5. Application – verification in boundary value problems 

In order to verify the model’s accuracy and performance, a number of analyses were 

performed, simulating a well established centrifuge experiment, namely the Model 12 

performed during the VELACS research project (Arulmoli et al., 1992, Arulanandan 

& Scott, 1994). The selection of this test is directly related to the problem investigated 

in the following chapters, that is, the dynamic response of a surface foundation, 

resting on liquefiable soil. Moreover, the 3-dimensional nature of the experiment 

allows to evaluate the capabilities of the 2-D, but also the 3-D numerical methodology 

developed herein. 

3.5.1. Experiment Results 

Model No12 was tested in a rigid box, with a plan area of 28×13m in prototype scale. 

The model consists of a 6m deep sand layer, overlaid by a 1m thick silt layer. Nevada 

sand #120 and Bonnie Silt were used as soil. The sand was pluviated through a 

raining device, from a constant height which was calibrated to obtain a relative 

density of 60%. A 4m high structure was placed in the center of the sample, applying 

a bearing pressure of 150KPa on a surface of 3×3m, 0.5m below the surface of the 

sand layer. The structure model was made out of an aluminium container, filled with 

lead shoot in order to achieve the desired pressure. Water was used as pore fluid, with 

the water table being 1m above the surface of the silt. The target input motion for the 

test was 10 cycles of 2Hz sine wave, with an amplitude of 0.25g, while the 

experiment was performed at a centrifuge acceleration level of 100g. Finally, soil-

structure behavior was monitored via 4 accelerometers (AccB, AccC, AccD and 

AccF), 4 pressure transducers (PPT1 to PPT4) and 1 LVDT, placed as shown in 

Figure 3.21. 

As far as model construction is concerned, the sand layer was placed first, with 

pluviation interrupted four times, in order to install accelerometers, pressure 

transducers, as well as the structure. Next, the bucket was sealed and vacuum was 

applied to the sample. Water was subjected to the vacuum amd drawn into the testing 

container. Finally, Silt was poured on the top of the sand and spread to cover the 

entire sand layer. The experiment was performed at a centrifugal acceleration of 100g. 

The sample was first left in flight for approximately 10 minutes. Following the 

consolidation process, the centrifuge was stopped and the structure was checked for 
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standing. The centrifuge was again spun up to 100g and the test was performed after 

the pore pressure transducers had stabilized. 

 

Figure 3.21. VELACS Model 12 centrifuge test setup. 

Σχήµα 3.21. ∆ιάταξη πειράµατος φυγοκεντριστή VELACS Model 12. 

Model Test No12 was duplicated several times, in three different Universities, namely 

Princeton University (six times, I to VI), University of California at Davis (U.C. 

Davis) and Reanseller Polytechnical Institute (R.P.I.). Results of Tests II and IV of 

Princeton University are not available due to problems with instrumentation 

malfunction, while Test III had a higher excitation level of 0.35g, instead of the 

prescribed 0.25g. Moreover, not all pore pressure time histories are available from a 

single test, as an average of one pressure transducer malfunctioned during each test. 

Despite the above difficulties, good overall repeatability was observed between the 
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available recordings, in terms of acceleration. However, there was a scatter in the 

recorded foundation settlements, which ranged from 21 to 27cm at the end of shaking. 

The test was duplicated in R.P.I., where three identical tests were performed, with 

similar results being reached in each trial. Therefore, the resulting value of 13cm for 

the foundation settlements, may be regarded as more reliable than the ones recorded 

in Princeton University. Acceleration and pore pressure time histories were more or 

less similar to the ones recorded in Princeton. Finally, in U.C. Davis, the input motion 

amplitude was similar to Princeton Test III, with an average of 0.33g and a maximum 

of 0.37g, and are therefore not presented herein. 

Figure 3.22 shows the recorded results in terms of excess pore pressure ratios 

v,ou ′∆ σ , where u∆  is the excess pore water pressure and v,o′σ  is the initial vertical 

effective stress. It may be observed that in the position of the transducer PPT4, excess 

pore pressure ratios reach values larger than 0.9, indicating that liquefaction occurred 

in the free field. However, underneath the footing, excess pore ratios remain 

significantly lower, implying that the presence of the superstructure inhibited 

liquefaction. As a result, no significant deamplification was observed in the respective 

acceleration recordings, which are shown in Figure 3.23. 

The final foundation settlements are presented for all tests in Table 3.6. Larger 

foundation settlements were recorded in test III of Princeton University, as well as in 

the test performed in U.C.Davis. This may be attributed to the larger amplitudes of the 

applied acceleration. The evolution of foundation settlements for the tests performed 

with the originally prescribed acceleration amplitude of 0.25g is shown in Figure 

3.24. 

Table 3.6. Recorded foundation settlements in VELACS Model 12 centrifuge 
experiments. 

Πίνακας 3.6. Καταγεγραµµένες καθιζήσεις θεµελίων στα πειράµατα φυγοκεντριστή 
VELACS Model 12. 

University Test Settlement (cm) 
Princeton Ι 27 

III 47 
V 22 
VI 21 

U.C. Davis - 18 
R.P.I. I, II & III 13 
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Figure 3.22. Recorded time histories of excess pore pressure ratios. 

Σχήµα 3.22. Καταγεγραµµένες χρονοϊστορίες λόγων υπερπιέσεων πόρων. 
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Figure 3.23. Recorded acceleration time histories. 

Σχήµα 3.23. Καταγεγραµµένες χρονοϊστορίες επιταχύνσεων. 
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Figure 3.24. Recorded foundation settlement time histories. 

Σχήµα 3.24. Καταγεγραµµένες χρονοϊστορίες καθιζήσεων θεµελίου. 

3.5.2. Numerical Simulation 

In order to assess the qualitative and quantitative accuracy of the developed numerical 

methodology, a total of three (3) numerical simulations were performed: 

i. Initially, a 2-dimensional simulation was conducted, using the finite difference 

code FLAC. In this case, the square foundation is essentially replaced by a 

strip footing. Therefore, the structure’s density was reduced, as described in 

the following, in order to convert the actual applied pressure into an equivalent 

2-dimensional loading. 

ii. Next, a similar analysis was performed, using the finite difference code 

FLAC3D. In this case, a single row of 1m wide elements was used and plane 

strain conditions were considered, in order to allow the comparison of the 

results with the 2-dimensional analysis, aiming to verify the correct 

implementation of the UDM in FLAC3D. 

iii. The equivalent plane strain analyses were followed by a real 3-dimensional 

analysis. This analysis demonstrates the capabilities of the developed 

numerical methodology, as the full 3-dimensional problem may be accurately 
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simulated without any simplifications, regarding the equivalent applied 

pressure. 

Figures 3.25 to 3.27 show the meshes used for each one of the above numerical 

simulations. In the first (2-dimensional) analysis, 482 zones and 541 gridpoints were 

used, with dimensions varying from 0.60m × 0.50m (width × height), in the region 

near the structure, to 0.75m × 0.75m away from the foundation. In the second (3-

dimensional, equivalent plane strane) analysis, the number and the dimensions of 

zones in the problem’s plane were the same as in the 2-dimensional analysis. A single 

row of 1m wide elements was used, while the total number of gridpoints was equal to 

2×541=1082. Finally, in the third (complete 3-dimensional) analysis, the total number 

of zones reached 4680, corresponding to 5751 gridpoints. Within the plane of the 

applied excitation, the mesh was similar to the previous plane strain analyses. In the 

third dimension, only one half of the model was simulated, as the behavior is 

symmetrical. A total width of 10 zones was considered, with zone dimensions varying 

from 0.60m near the footing to 0.75m further away. 

As it may be observed in Figures 3.25 to 3.27, the modeled footing width was 

considered equal to 4×0.60m=2.40m. According to Itasca (2005), the bearing area is 

found by assuming that vertical velocity developing as the footing settles varies 

linearly, from the value at the last gridpoint of the footing, to zero at the next 

gridpoint. Therefore, half the width of the adjascent elements should be added to the 

actual footing width, resulting to a total width of 2.40m+2*0.30m=3.00m. Of course, 

the applied pressure was appropriately adjusted. 

 

Figure 3.25. Mesh used in the 2-dimensional numerical simulation. 

Σχήµα 3.25. ∆ίκτυο στοιχείων που χρησιµοποιήθηκε στη 2-διάστατη αριθµητική 
προσοµοίωση. 
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Figure 3.26. Mesh used in the 3-dimensional, equivalent plane strain numerical 
simulation. 

Σχήµα 3.26. ∆ίκτυο στοιχείων που χρησιµοποιήθηκε στην 3-διάστατη αριθµητική 
προσοµοίωση υπό συνθήκες επίπεδης παραµόρφωσης. 

 

Figure 3.27. Mesh used in the complete 3-dimensional numerical simulation. 

Σχήµα 3.27. ∆ίκτυο στοιχείων που χρησιµοποιήθηκε στην 3-διάστατη αριθµητική 
προσοµοίωση. 

 

As far as boundary conditions are concerned, only horizontal displacements were 

restrained in the lateral boundaries of the 2-dimensional analysis, while no restraint 

was considered in the vertical direction, in order to allow the development of 

settlements. In the 3-dimensional analysis, horizontal restraints refer to the directions 

vertical to the lateral boundaries’ planes. During the initial static loading and the 

computation of initial stresses, only vertical restraints were applied in the bottom 

boundaries of all three numerical models. Horizontal displacements of the bottom 
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gridpoints were allowed to move horizontally, in order to avoid the development of 

parasitic shear stresses. Horizontal displacements of the bottom boundary were 

restrained during shaking, simulating rigid bedrock conditions. 

In all three numerical analyses, the constitutive model presented in previous chapters 

was used to simulate sand behaviour. The parameters considered were the ones 

presented in the prevous paragraphs, corresponding to Nevada Sand, with an initial 

void ratio of e 0.661= , corresponding to a relative density of rD 60%= . Both the silt 

cap and the superstructure were simulated as elastic materials. More specifically, a 

shear modulus of G 5760kPa=  was considered for the silt layer. This value results 

from a maximum shear wave velocity of sV 60m sec= , and a shear modulus 

degradation of 20%, corresponding to cyclic shear strains of the order of 0.01%, for 

soils with a plasticity index of PI 15%=  (Vucetic & Dobry, 1991). The elastic 

parameters of aluminium were considered for the superstructure, namely shear 

modulus equal to 6G 2.9 10 kPa= ⋅  and bulk modulus equal to 6K 3.9 10 kPa= ⋅ . 

Local nonviscous damping was considered for all materials. According to this form of 

damping, the damping force on a gridpoint is proportional to the magnitude of the 

unbalanced force, while its direction is such that energy is always dissipated. This 

formulation does not influence the mode of failure as it does not introduce body 

forces in flowing regions, while it allows for different amounts of damping to be 

defined for different regions. Most importantly, it does not require the performance of 

a complete modal analysis to compute the eigenvalues of the matrix, as it is 

independent of properties or boundary conditions, which also makes it appropriate for 

highly non-linear problems as the one addressed herein. A damping value of 2% was 

selected for the sand, corresponding to the minimum damping value reported by 

Vucetic & Dobry (1991), for very small cyclic shear strains (0.001%). For larger 

shear strain amplitudes, hysteretic damping will be simulated by the non-linear 

behavior of the model itself. A value of 10% was selected for the silt cap, 

corresponding to cyclic shear strains of the order of 0.01%, for soils with a plasticity 

index of PI 15%=  (Vucetic & Dobry, 1991). Finally, 5% damping was used for the 

superstructure material. 

As far as permeability is concerned, a value of 5k 2.1 10 m sec−= ⋅  was used for 

Nevada Sand, that is 100 times larger than the actual value, for reasons of scaling to 



Chapter 3. Numerical methodology: Evaluation of performance 

- 104 - 

prototype conditions. The corresponding values for the relatively impermeable silt 

and the superstructure were smaller, by 4 and 10 orders of magnitude respectively. In 

order to simulate the water table level, pore pressures and vertical stresses equal to 

9.81kPa were applied to the ground surface, corresponding to 1m of water. 

As mentioned in the previous paragraphs, in the first two plane strane analyses, the 

bearing pressure of the superstructure was reduced from the initial value of 150kPa 

into an equivalent strip foundation pressure of 95kPa. This value was suggested by 

Popescu & Prevost (1994), as the applied pressure that would produce the same 

elastic static settlements in plane strain conditions and in the full 3-dimensional 

problem. It is noted that in the third (3-dimensional) analysis there was no need to 

make such simplifications and the value of 150kPa was used directly. 

In order to produce the initial stress state, the procedure followed during the 

preparation of the sample in the experiments was also followed in the numerical 

simulation. More specifically: 

• The lowest 5.5m of the sand layer were first placed. Initial stresses were 

computed considering water level at 7m. In order to achieve this, the density 

of all elements corresponding to the higher 0.5m of the sand layer, the silt 

layer, and the submerged part of the superstructure, was set equal to water 

density ( 31.0Mgr mρ = ), while pore pressures and vertical stresses were 

applied at the surface, as described above. The density of the part of the 

superstructure that is above water level was set to a small value of 

30.001Mgr mρ = . 

• The structure was then added, by gradually increasing the density of the 

corresponding model zones. 

• Consequently, the rest 0.5m of sand and the silt layer were added, also as a 

gradual increase of the density of the corresponding zones. 

• Taking into account that the experiment was performed in a rigid box, the 

excitation was applied to both the bottom boundary of the model’s mesh, as 

well as to the lateral boundaries, in the direction of shaking. The applied 

excitation time history is presented in Figure 3.28.  
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Figure 3.28. Applied acceleration time-history. 

Σχήµα 3.28. Επιβαλόµενη χρονοϊστορία επιταχύνσεων. 

Figures 3.29 to 3.31 quantify the results of the numerical analyses and compare them 

to experimental recordings, in terms of excess pore pressure ratios v,ou ′∆ σ , 

accelerations, and settlement timehistories, respectively. It may be observed that: 

• The developed numerical methodology accurately predicts the evolution of 

excess pore pressure ratios, indicating higher ratios in the free filed than in the 

region underneath the footing. The effect of the superstructure on the 

underlying soil is therefore successfully quantified. 

• The fact that there is no degradation of accelerations, due to the non-

liquefaction of the subsoil, is also well predicted by the numerical 

methodology. 

• Finally, predicted settlements match fairly well the ones recorded in the R.P.I. 

centruifuge, being smaller than the ones resulting from the Princeton 

centrifuge tests. It has been explained though, that results of the R.P.I. test 

showed higher repeatability and may be regarded as more reliable. 

Furthermore, comparison between the rusults of the first (2-dimensional) and the 

second (3-dimensional plane-strain) analysis, indicates that the 2-D model has been 

correctly extended to three (3) dimensions and implemented into FLAC3D. Any small 

differences noticed in the results are attributed to differences in the numerical 

methodology, combined with the complexity and the high non-linearity of the 
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analyzed phenomenon. As described in the previous chapters, finite difference 

computations in FLAC are performed after the discretization of the quadrilateral 

zones into four (4) triangular subzones. On the other hand, the 8-noded zones of 

FLAC3D are divided into ten (10) tetrahedral subzones. 

Finally, the results of the plane-strain analyses are well compared to the ones of the 

complete 3-dimensional analysis. It should be stressed though, that the full 3-

dimensional analysis succeeds to provide accurate predictions without the necessity to 

make any simplifications regarding the foundation’s bearing pressure. 
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Figure 3.29. Comparison of experimental results and numerical predictions, in 
terms of excess pore pressure ratio timehistories.  

Σχήµα 3.29. Σύγκριση πειραµατικών αποτελεσµάτων και αριθµητικών προβλέψεων 
σε όρους χρονοϊστοριών λόγου υπερπιέσεων πόρων. 
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Figure 3.30. Comparison of experimental results and numerical predictions, in 
terms of acceleration timehistories.  

Σχήµα 3.30. Σύγκριση πειραµατικών αποτελεσµάτων και αριθµητικών προβλέψεων 
σε όρους χρονοϊστοριών επιταχύνσεων. 
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Figure 3.31. Comparison of experimental results and numerical predictions, in 
terms of foundation settlement timehistories. 

Σχήµα 3.31. Σύγκριση πειραµατικών αποτελεσµάτων και αριθµητικών προβλέψεων 
σε όρους χρονοϊστοριών καθιζήσεων θεµελίου. 
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