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1. Reflection Gratings  
 
The grating equation can be written for a reflection grating: 
 
 
 d(sinθinc ± sinθdiff)  = mλ       (1) 
 
where d is the grating constant, defined as  d≡ 1/Ν, and  
N≡number of rulings per mm. Τhe + holds when the diffracted beam is on the same 

side with the incident beam with respect to the normal to the grating’s surface. The – 
sign is when incident and diffracted beams are on opposite sides with respect to the 
normal. For simplicity, we are assuming that the incident beam is a plane wave, that is 
its angular spread is near zero.  
 
Differentiating, we obtain , with θinc constant: 
 
d( ± cosθdiff)dθdiff= m dλ 
 
This equation gives us the angular resolution  dθdiff / dλ 
 of the optical grating. 
 
Now, we are ready to study the grating based monochromators. 
 
Except of the case where intense laser beam is used, we have typically small optical 

signal  directed to each angular direction due to the spectral analysis caused by the 
grating. Therefore, we are forced to use some concentrator (lens or mirror having a 
focal length f) in order to increase the signal to noise ratio. We need then to 
understand the effect of the chosen value of f on the spectrometer (monochromator) 
performance. 
To simplify the above issue, we consider the quite simple case occurs when we 

have the so called Littrow arrangement, where we assume that  
 
θinc =θdiff 
 
It is left as an exercise to show that  the linear resolution , dλ/dx is: 
 
d(  2 cosθdiff) f dθdiff= m dλ f     or: 
 
dλ/dx = d(  2 cosθdiff) /( m f)   and  δx/δλ = m f / (d 2 cosθdiff) =  
 
m f Ν / ( 2 cosθdiff) ≡Rd                                                (1)  
 
where: Rd is reciprocal linear dispersion 
      



     
 
 
Thus, for ∆x=1mm, we have ∆λ= 1 1000 mm  3600 grooves/mm  
 
/(2 x .20) if cosθdiff = 0.2, Ν=3600 grooves/mm, and f=1000mm, and 

m=1. 
Τhus,  δλ/δx=.4 mm / (1000 mm x 3600)  ≈  10-7  106 nm/ mm =  0.1 

Angstroms/mm 
Now, if the linear resolution is about 25 µm (dictated by the 

segmentation of a linear CCD array), we expect a resolution of the order : 
 
∆λlimii≈ 0.1 Αngstrom * 25 µm / 1000 µm ≈ 2.5 x 10-3 nm.   (2)  
 
Τhis could be  one approach to the limiting resolution, but there may be 

another limit coming from the resolution of optical grating: 
 
λ/∆λlimit≈ number of grooves= 3600 x 25 = 90000 for a typical grating . 
Τhus, for λ = 450 nm, we get ∆λlimit ≈ 0.6 x 10-3 nm.   
Τhus, we see that this limiting resolution arising from Rayleigh’s 

criterion is not inconsistent to the relationship (2) which gives the 
expected accuracy of the spectroscopic system considered. However, 
there may be other factors which will cause worsening of the resolution 
predicted from (2), such as small signal to noise ratio due to the weakness 
of the spectral line, optical aberrations of the mirrors or lenses used, finite 
size of the slit used in the entrance of the monochromators etc. 
 The actual resolution may be obtained experimentally by measuring 

many times an almost ideal monochromatic line and then obtaining the 
statistical error. 
 
 Another point of view on the accuracy of a grating   
               Monochromator 
 
We go now to see the effect of various aspects which limit the accuracy of 

wavelength determination. These are enumerated as follows: 
a) Νatural linewidth, b) Imaging error due to the lenses  or mirrors which are part of  

the monochromators system, c) slit size effects (in either input or output of the 
spectrometer) 
 
 
 
 



 
 
The effect of finite size of spherical mirrors may be estimated  by forming the ratio 

f/d, where f the focal length and d the effective diameter of the mirror. This ratio is 
frequently called in optics “the f/number or f/# or f/Νο ”. The larger the f/No , the 
smaller the contribution to the overall wavelength error. An optical instrument with 
large f/Νο has   more accurate  imaging capabilities  than a small f/Νο instrument. 
That is why we frequently have long telescopes.  
 
The resolution of a spectroscopic instrument is limited by the FWHM of 

Instrumental Profile: 
More specifically, 
 
FWHM = (dλ2 (slits) + dλ2 (resolution) + dλ2 (line))1/2 
 
Where   
  dλ2 (slits)  → bandpass determined by finite spectrometer slit widths and 

the linear dispersion of the grating. 
 
dλ2 (resolution) → the limiting resolution of the spectrometer which 

incorporates system aberrations, diffraction effect  of our system and the 
laser line width of our system*. 
. 
 



αnd, 
dλ2 (line) → natural line width of the spectral line being probed. 
This FWHM is our limit of resolution for the spectrometer. 
------ 
* In case the spectrometric system studies some laser line 

 
How do you calculate the FWHM of the Instrumental Profile? 

• The instrumental profile FWHM is something you can measure 
experimentally. 

• dλ2 (line): By only observing a  laser line with the spectrometer we can 
eliminate the broadening of the FWHM due to the natural line width of a 
spectral line **. 

• dλ2 (slits): The bandpass due to the slit width and the grating of the spectrometer 
can be calculated. 

• dλ2 (resolution): The limiting resolution of the spectrometer is something that you 
solve for knowing the other variables of the FWHM equation. 

 
 
------ 

** see the following graph to understand the thermal broadening of a line and at 
the same time the peaks corresponding to , longitudinal, laser modes within this 
line width: 
 

 
 
 
 
 
 
 



How to Calculate Bandpass (BP) 
 We can apply , for this purpose, equation (1), above. 
 
Then, 
 
BP = W × Rd 
 Where W is the slit width of the entrance or exit slit 
       (which ever is larger) 
 
Therefore, due to Equation (1), 
 
ΒP = W m f Ν / ( 2 cosθdiff)                                        (2) 
 
Thus, if we wish to achieve a specific band pass (BP), we can select the appropriate 

value of entrance slit , W, given the other values of m, f, N, and cosθdiff. 
 
Further discussion about the slit size W: 
 We may stress that we have two slits, the entrance slit and the exit slit of a 

monochromators. Normally, the two slits should be conjugate, that is the exit slit 
should be the image of the entrance slit. However, this need not be always the case. 
Thus, we propose that the value W inserted in formula (2) above, is the smallest of the 
two slits in the case that they are conjugage. If they are not conjugate, the W value 
should be the part of the smaller slit width imaged on the larger slit. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. 
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We present in figure 3, a bibliographical case in which the bandwidth is computed 

with respect to the entrance slitwidth. 
 
Ιn the case we study in our lab exercise, where the number of groves per millimeter 

is 3600, we estimate that we may expect up to 3 times better bandpass than the one 
corresponding to the case 1200 groves per mm, all the other factors being equal. 
 To achieve this  better result could be achieved, with a CCD based monochromators 

we must be careful that each CCD pixel is equivalent to an effective output slit size. 
We, therefore, must always take into account the pixel size.  
 
Signal to Noise Ratio 
 We must be aware, and worry!!, that frequently the CCD area is very small as 

typically, the CCD has a 20 µm x 100 µm area or even smaller.  This means that the 
overall signal must be compared to the optical noise, which is independed from the 
optical signal to be measured. This is described by the so called “signal to noise ratio, 
or simply S/Ν”.  Τhis can add another uncertainty in the wavelength to be measured, 
and therefore we have the expression: 
 
FWHM = (dλ2 (slits) + dλ2 (resolution) + dλ2 (line) + dλ2 (S/ N))1/2 
 
 
Τhe latter expression is appropriate when we deal with weak line sources or line 

sources in the presence of appreciable optical background. 
 
Αpplication of Monochromator Theory in design of 1 meter 

spectrograph 
 
Having discussed in some detail the monochromators design, we focus now in 

specific implementation to achieve a reasonable  approach to the theoretical limit. 
We have available one concave aluminum mirror of reflectivity near 93%, focal 

length 914 mm, and diameter 152 mm.  The situation is seen in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
In the plane xz, the view can be described as seen in Figure: 
 
 
 
 

 
 
 
 
 
Figure. A: input slit, B: Μirror, C : Spectrum image 
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Factors influencing grating efficiency 
 
 
 
 
The efficiency depends on: 
  

•  m (diffraction order) 
•  angles of incidence and   diffraction 
•  λ/d 
•  polarization  

   P- Plane => no anomalies 
   S- Plane => anomalies 
 
P-plane is TE polarized light 
S-plane is TM polarized light 
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The above graph shows that the efficiency, that is , the percentage of intensity 
dispersed at a certain angle, depends on the wavelength. 
 
 
Exercise: 
Consider the grating with the following parameters: 
 
    Focal length(mm)     no. grooves/mm       blaze λ          blaze angle      ruled dimensions (Ηx W) 
 998.8                         2400            580 nm     44.2°         30mm x 80mm 
 
(α)Determine the resolution of this grating,(β) A monochromators is constructed 
using this grating, with input and output slit of 50µm. Determine at the exit of the 
monochromators the plate factor, that is, the δλ/δx , where δx is the width of slit. 
(γ) Determine the wavelength resolution of the monochromators for the above slit 
sizes. Examine, the case with slit sizes 20 µm, and 10 µm 
Solution: 
 
(α)Ιt is  λ/∆λ = Νο. Grooves x m = 192 000. Τhus, for λ=580 nm, we have 
 ∆λ= 3 x10-3 nm 
 
(β) 
Plate factor: 
dλ/dx = d(  2 cosθdiff) /( m f) = (  2 cosθdiff) /(Ν m f) ≈ 2  /(2400mm-1 x  
1000mm)= 2 nm/ (2400 x 1000 x 10 -6 mm)  =0.83 nm/  mm 
 
(γ) The best we can expect , for the accuracy, is  ∆λslit = (0.83 nm/  mm)x 50 µm= 

λΒ 

m1 <m2 <m3 

m1 

m2



=0.04 nm. For the case of 10 µm, we obtain, ∆λ≈0.008 nm.  Be careful, however, 
for the diffraction effects in the slits, as we have that the slit size is 20 times less than 
the wavelength. 
 
2. Transmission gratings 
 In this case, we have the simplified expression, 
 
d sin θm,i=m λi 

 
where i is the index of the wavelength under consideration, assuming that the light 
beam is perpendicular to the grating surface. In reality, we have a deviation from the 
fully perpendicular case, and therefore , the exact expression is: 
 
± d sinθin+ d sin θm,i=m λi 

 
with θin very near zero, and thus sinθin ≈ θin. For symmetrical orders, we have :  
   
d θin – (-d θin)   +  d sin θm,i   - d sin θ-m,i = 2 m λi 

 
or  
   θin +    sin θm,i   =  m λi/d      (1)  
 
etc. 
 
and  
 
θin=  m λi/d   - |sin θm,i|  
    
This gives us an estimate   of   θin. By changing in very small steps the orientation of 

the grating, we may reduce very much the  absolute value of θin until it is zero within 
errors. In this case, the angles θm,i and θ-m,I should be equal, and in this way, we may 
get rid of one important systematic error. This systematic error may lead to 
wavelength errors of the order of 5-20 nm!! If we donnot pay enough  attention to 
assure a perpendicular to the grating beam. 
Οn the other hand, by using a calibrated spectral line λcalib , we may use equation (1) 

to determine the value of θin  , which we may use to determine unknown spectral lines  
with respect to the line λcalib. Thus, we may use as calibration line the one at 586 nm 
of the Hg spectrum, and therefore determine the value of wavelength of the line at 588 
nm with respect the calibration line. If we work with the 4th order, then the 
experimental deviation from the expected 2 nm difference is normally around 1 nm, 
which indicates the  expected statistical error in determining the peak corresponding 
to the 588 nm  yellow line. Remember, that this error does not include the systematic 
error discussed above, which is due to the non perpendicular beam and perhaps to 
other reasons. 
 

 
 
 
Vibrational spectroscopy. Atom spectroscopy: 
http://www.tau.ac.il/~phchlab/Spect2005/Spectroscopy2005-6.pdf 



  
Grating theory files: 

1. GratingTheory-joa4_5_026 
2. http://www.stsci.edu/stsci/meetings/nhst/talks/ErikWilkinson.pdf 
3. http://www.physics.arizona.edu/~haar/ADV_LAB/ROWLAND.pdf 
 ROWLAND.pdf 
 
4. Optical grating fabrication: 
4.1 http://snl.mit.edu/papers/papers/2002/cc_SPIE2002.pdf 
αρχείο:ΝanometerAccurateGrating…. 
4.2 GratingFabricationInterferenceLaserBeams 

       5.  ΝIST:   
          http://physics.ship.edu/~mrc/pfs/308/atomic_spectroscopy/Pubs/AtSpec/index.html 

5. http://www.astro.su.se/utbildning/kurser/astro_obs/spectroscopy2006.pdf 
Αρχείο: AstrophysicsSweden-spectroscopy2006.pdf 

 
6. http://www.chem.utoronto.ca/coursenotes/CHM249/StructureA.pdf 
7. http://www.chem.utoronto.ca/coursenotes/CHM249/StructureΒ1.pdf 
Αρχείο:SpectroscopyNotesStructureB1 
8. http://www.chem.utoronto.ca/coursenotes/CHM249/StructureB2.pdf 
Αρχείο:SpectroscopyNotesStructureB2.pdf 
9. http://www.astro.su.se/utbildning/kurser/astro_obs/spectroscopy2006.pdf 
Αρχείο¨AstrophysicsSweden-spectroscopy2006.pdf 


