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Abstract 

This paper deals with a practical transportation model known as the Vehicle Routing 

Problem with Backhauls (VRPB), which aims at designing the minimum cost route set 

for satisfying both delivery and pick-up demands. In methodological terms, we propose a 

local search metaheuristic which explores rich solution neighborhoods composed of 

exchanges of variable-length customer sequences. To efficiently investigate these rich 

solution neighborhoods, tentative local search move are statically encoded by data 

structures stored in Fibonacci Heaps which are special priority queue structures offering 

fast minimum retrieval, insertion and deletion capabilities. To avoid cycling phenomena 

and induce diversification, we introduce the concept of promises, which is a parameter-

free mechanism for coordinating the conducted search. The proposed metaheuristic 

development was tested on well-known VRPB benchmark instances. It exhibited fine 

performance, as it consistently generated the best-known solutions for all the examined 

benchmark problems. 

keywords: metaheuristics, vehicle routing, computational complexity 

 

1. Introduction 

The distribution of goods is a central operational process lying at the heart of modern 

business activity. It constitutes a great proportion of a company’s total running costs. For 

this reason great scientific interest has been dedicated to the development of effective 

solution approaches for optimising real-life logistics operations. 
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The most widely studied problem model in the context of logistics optimisation is the 

classical Vehicle Routing Problem (VRP). VRP aims at generating the minimum cost set 

of routes for a homogeneous fleet of vehicles based at a central depot. The generated 

routes originate and terminate at the central depot, and they must satisfy the product 

demand of a given customer population which is assumed to be fixed and known in 

advance. Each customer must be visited by a single vehicle only once. In addition, the 

carrying load of a vehicle cannot exceed its capacity. Based on the aforementioned 

classical VRP version, researchers have proposed and examined several VRP variants 

that capture the special requirements of practical logistics processes. One of these 

problem variants is the VRP with backhauls (VRPB) which involves both delivery and 

pick-up demands. 

Briefly, the VRPB aims at designing the optimal routes to satisfy the delivery and pick-

up demand of linehaul and backhaul customers, respectively. It models the following 

scenario: Each vehicle departs from the depot and is initially unloaded by satisfying the 

linehaul demand. After the load of the vehicle has been exhausted, it visits the backhaul 

customer where goods are again loaded onto the vehicle to be delivered back to central 

depot. Consequently, the load of the vehicle monotonically decreases, as goods are 

delivered to the linehaul customers, and reaches to zero after the last delivery customer 

has been visited. Then, backhauls are serviced causing the vehicle load to monotonically 

increase before returning back to the central station. The precedence constraint which 

forces linehauls to be serviced before backhauls is imposed to the problem model due to 

the fact that “the vehicles are rear-loaded and rearrangement of the loads on the trucks 

at the delivery points is not deemed feasible.” (Goetschalckx and Jacobsblecha ,1989). 

In graph theoretic terms, the VRPB model is defined on a complete graph G = (V, A) 

where V = {v0}∪ L ∪B is the vertex set and A is the edge set. Sets L = {v1, v2,…, vl} and 

B = {vl+1, vl+2,…, vl+b} denote the linehaul and backhaul customer sets, respectively, 

whereas vertex v0 corresponds to the central depot which acts as the station of K vehicles 

with capacity Q. With each linehaul customer vi∈L is associated a delivery product 

quantity di which must be transported from the depot to the customer, while with each 

backhaul customer vj∈B is associated a pick-up quantity pj which must be shipped from 

the customer back to the central station. With each arc (vi, vj) ∈A is associated a fixed 
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non-negative cost cij which reflects the cost involved for traveling from location vi to vj. 

The goal of the VRPB is to design a set of routes such that: 

a) The size of the generated route set is equal to K. 

b) Every customer is assigned to exactly one route. 

c) Every route contains at least one linehaul customer (no empty routes are allowed, 

no routes servicing only backhaul customers are allowed) 

d) Within every route, linehaul customers precede backhaul customers. 

e) The total delivery demand of the linehaul customers assigned to a route does not 

exceed vehicle capacity Q. 

f) The total pick-up demand of the backhaul customers assigned to a route does not 

exceed vehicle capacity Q. 

g) The total cost of the generated route set is minimised. 

The interested reader is referred to the works of Goetschalckx and Jacobsblecha (1989), 

Toth and Vigo (1997) and Mignozzi et al (1999) for mathematical formulations of the 

VRPB model. 

Our interest in the VRPB is motivated both by its great practical and theoretical 

importance. From the commercial viewpoint, VRPB is frequently encountered by large 

companies who must transport goods from their production site to the retailer outlets 

(linehauls), while at the same time the production site must be supplied from vendors 

(backhauls) located within the same geographic region (Goetschalckx and Jacobsblecha, 

1989). In addition, pro-environmental practices raise the necessity of bi-directional 

product flows modeled by VRPB. Products are transported from the production site to the 

retailers, while at the same time used and outdated products are collected from the 

retailers and sent back to the production site in order to be recycled, disassembled or 

appropriately processed before being disposed. From the theoretical perspective, VRPB is 

a significantly challenging optimisation problem. It reduces to the classical VRP when 

only linehaul customers are considered (B = Ø). Thus, being a generalisation of the VRP, 

the VRPB variant is an NP-hard combinatorial optimisation problem. 

The purpose of the present paper is to propose an original metaheuristic methodology to 

solve the VRPB. The proposed local-search metaheuristic algorithm explores rich 

solution neighborhoods, exchanging variable-length customer sequences instead of 
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performing single customer swaps and relocations. This is efficiently achieved by 

statically encoding the tentative local search moves using the Static Move Descriptor 

entities (Zachariadis and Kiranoudis 2009a). To induce diversification and eliminate 

cycling phenomena, we introduce the concept of promises, which is a parameter-free 

mechanism for coordinating the progress of the overall local-search method. Our VRPB 

metaheuristic was successfully tested on well-known benchmark instances, consistently 

producing high-quality solutions. 

The remainder of the present article is organized as follows: Section 2 provides a 

literature review on previous VRPB solution approaches, followed by Section 3 which 

presents in detail the proposed solution methodology. The computational results are 

summarized in Section 4. Finally, Section 5 concludes the paper. 

 

2. Literature Review 

As previously stated, VRPB is an NP-hard combinatorial optimisation problem. Thus, 

exact solution methodologies are able to solve rather small-scale instances within 

acceptable computational times. On the contrary, to deal with medium- and large-scale 

practical VRPB instances, researchers have concentrated on the design of heuristic and 

metaheuristic solution approaches, which do not guarantee optimality but are 

computationally manageable. 

In terms of VRPB heuristic procedures, Deif and Bodin (1984) propose two solution 

methodologies by modifying the Clarke and Wright (1964) heuristic originally designed 

for the VRP. The first method imposes a constraint which forces deliveries to occur 

before any pick-up services begin. For the second approach, this precedence constraint is 

guaranteed by incorporating a penalty factor in the savings function. Goetschalckx and 

Jacobsblecha (1989) propose a methodology that constructs a good-quality initial solution 

by the application of spacefilling curve heuristics. The final solution is generated by 

means of an improvement algorithm. Goetschalckx and Jacobsblecha (1993) propose a 

cluster-first, route-second VRPB algorithm based on the generalised assignment approach 

of Fisher and Jaikumar (1981). Another VRPB algorithm that belongs to the cluster-first, 

route-second category of heuristics has been presented by Toth and Vigo (1996). Their 

algorithm is based on a K-tree Lagrangian relaxation presented for the VRP (Fisher 
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1994). Toth and Vigo (1999) propose another cluster-first route-second algorithm for 

solving both the symmetric and asymmetric VRPB. Their approach exploits information 

included in infeasible solutions associated with a lower-bound produced by using a 

Lagrangian approach described in the study of Toth and Vigo (1997).  

Regarding more recent metaheuristic strategies, Osman and Wassan (2002) propose a 

two-phase VRPB methodology. In the first phase the initial solution is produced by two 

construction heuristics based on the saving-insertion and saving-assignment procedures, 

respectively. The solution is then improved by a reactive Tabu Search (TS) which 

considers single-node and two-node exchange neighborhood structures. The reactive 

concept is used to control the balance between the intensification and diversification of 

the search. Another TS based algorithm has been proposed by Wassan (2007). The 

former work is a hybridization of TS and Adaptive Memory Programming (AMP). The 

proposed Adaptive Memory drives the conducted search towards unexplored solution 

regions. Brandão (2006) presents a tabu search scheme for improving the initial solution 

which is produced by two different procedures. The first way of generating the initial 

solution is to solve two distinct Open VRP (OVRP) subproblems, one for the linehaul 

and one for the backhaul customers. The other approach of building the initial solution 

consists of obtaining a pseudo-lower bound by making Lagrangian relaxations, so that the 

routing problem is transformed into a minimum K-tree problem. The proposed TS 

procedure examines three neighborhood structures that involve relocating a customer to 

another route, exchanging two customers belonging to two different routes, and 

exchanging the positions of a linehaul and a backhaul customer within the same route. 

Ropke and Pisinger (2006) present a general algorithmic framework which effectively 

deals with numerous routing variants that consider backhaul customers. Their approach is 

based on Large Neighborhood Search (Shaw, 1998). Finally, Gajpal and Abad (2009) 

present an ant colony VRPB metaheuristic which makes use of two multi-route local 

search schemes. 

Except for the above-presented heuristic and metaheuristic solution approaches, 

researchers have also proposed exact methodologies for the VRPB. The first such work is 

due to Yano et al (1987). Their methodology solves a practical VRPB application using 

customized route generation routines combined with a branch-and-bound procedure. Toth 



 6

and Vigo (1997) present a branch-and-bound algorithm for the VRPB. To derive the 

lower bound on the optimal solution cost, they propose a Lagrangian relaxation of some 

problem constraints. To strengthen the Lagrangian bound, valid inequalities are added in 

a cutting plane fashion. Finally, Mignozzi et al (1999) present a new VRPB integer 

programming formulation. They compute a valid lower bound to the optimal solution via 

the combination of different heuristic methods that deal with the dual of the LP-

relaxation of the integer programming model. Their proposed branch-and-bound 

algorithm managed to optimally solve problems of up to 100 customers. 

 

3. The Proposed Algorithm 

As mentioned in the introductory Section of the present article, the proposed VRPB 

metaheuristic makes use of the Static Move Descriptor (SMD) strategy in order to reduce 

the computational complexity required for examining very large solution neighborhoods. 

To avoid being trapped in premature local optima and effectively diversify the search, we 

introduce a parameter-free algorithmic concept called promises. In this Section, we 

thoroughly present the aforementioned algorithmic components and later discuss on the 

overall metaheuristic development. 

 

3.1 The Solution Neighborhoods and their SMD representation 

Instead of single vertex exchanges and relocations, the proposed methodology explores a 

rich neighborhood structure consisting of every possible exchange of vertex sequences 

(thereafter called bones) that involve from 0 to μ customers (Zachariadis and Kiranoudis 

2009b). Let Variable Length Bone Exchange (VLBE) denote the aforementioned 

neighborhood structure. Except for the VLBE operator, our methodology also examines 

the classical 2-opt local-search operator. 

 

3.1.1 The VLBE local search operator 

The computational complexity required for exhaustively investigating the VLBE solution 

neighborhood is obviously bounded by O(n2 μ2), as there are n2 vertex pair combinations, 

and μ2 are the 2-combinations of the two bone lengths (customers contained in the bones 
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exchanged). For practical problem instances of significant n values, the O(n2 μ2) 

complexity of the VLBE move type would lead to excessive computational times. 

To efficiently explore the VLBE neighborhood structure, we make use of the SMD 

entities which encode tentative moves in a static (solution independent) manner. In 

specific, every VLBE SMD instance includes the following static information: a pair of 

node values (n1 and n2), and a pair of bone length values (n1_len and n2_len). The move 

represented by a VLBE SMD with n1 = A, n2 = B, n1_len = a, and n2_len = b is the 

exchange of the bone beginning after node A and containing a customers and the bone 

beginning after B and containing b customers. Note that in the case where n1_len or 

n2_len is equal to 0; the SMD encodes a bone relocation move rather than an exchange 

one. Apart from the aforementioned information, every SMD instance contains a cost tag 

which corresponds to actual cost involved for performing the encoded move to the 

candidate solution. Obviously, the cost tag dynamically changes through the search 

process, as it depends on the structure of the current solution. 

To exhaustively map the VLBE neighborhood using the SMD representation, in total 

((n+K)!/(2!(n+K−2)!)) · ((μ+1)2-1) VLBE SMD instances are required, where K denotes 

the routes present in the current solution. The first term corresponds to the 2-

combinations without repetition of the n customers and K depot vertex occurrences, 

whereas the second term corresponds to the 2-combinations of the bone length values that 

vary from 0 to μ.  

Figure 1 illustrates the application of three example VLBE SMD instances to a VRPB 

solution of eight customers and two routes. 

 

3.1.2 The 2-opt local search operator 

The 2-opt operator removes two edges present in the candidate solution and replaces 

them with a new edge pair. If the 2-opt operator is applied within a route, two edges are 

deleted and two new edges are generated by reversing the route path lying between the 

deleted edges. When the 2-opt move is implemented between a route pair, the two routes 

involved are divided into their starting and terminating segments by removing two 

solution edges. Two edges are created so that the starting segment of the first route is 

connected to the terminating segment of the second one, and the beginning part of the 
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second route is linked to the terminating part of the first one. Exhaustively examining the 

2-opt neighborhood structure requires O(n2) complexity, as each vertex pair uniquely 

defines a particular 2-opt move. 

To encode the 2-opt local search move into SMD entities, we create one SMD instance 

for each vertex pair. Thus, each 2-opt SMD instance contains two node values, namely n1 

and n2. The mechanism of applying a 2-opt SMD with n1 = A and n2= B is the following: 

If vertices A and B belong to the same route (and without loss of generality, assume that 

A precedes B in the route vector), A is connected to B by reversing the path beginning 

after A and terminating at B. Otherwise, let rtA and rtB denote the routes containing A and 

B, respectively.  The starting route segment of rtA terminating at node A is connected to 

the rtB segment initiating after vertex B and terminating at the depot. Similarly, the 

starting segment of rtB which terminates at B is linked to the rtA segment that begins after 

vertex A and ends at the depot. Apart from the n1 and n2 values, with each 2-opt SMD 

instance is associated a cost tag which is equal to the cost involved for applying the 

encoded move to the candidate solution. 

As earlier stated, each vertex pair uniquely defines a particular 2-opt move. Thus, to 

exhaustively represent the 2-opt neighborhood structure in total (n + K)! / (2!(n + K− 2)!) 

SMD instances are required, corresponding to the 2-combinations without repetition of 

the n customers and K depot vertex occurrences. 

Figure 2 provides three example applications of 2-opt SMD instances to a VRPB solution 

of eight customers and two routes. 

 

3.2 Updating the cost tags of the SMD instances 

As earlier explained, the SMD instances statically encode the tentative local search 

moves defined by the neighborhoods structures. In addition, they include a cost label (cst) 

which is equal to the actual cost required for implementing the encoded move to a 

candidate solution. This cost label is obviously dynamic in the sense that it depends on 

the particular structure of a VRPB solution. Thus, as local search moves are applied to 

the candidate solution, the cost tags of the SMD instances must be appropriately updated 

in order to be valid according the modified solution states. The main advantage of the 

SMD representation of local search moves comes from the fact that when a local search 
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move is applied to a given solution, only a limited part of the solution structure is 

modified. Therefore, to keep the SMD instances updated, only the cost tags of the SMD 

instance subset which is associated with the modified solution part have to be 

reevaluated. In the following, we provide the rules that determine the SMD instance 

subset which has to be updated when either a VLBE or a 2-opt SMD instance is applied 

to the candidate solution. 

To facilitate exposition, for any VRPB solution, we introduce the following notation: 

• pred(v) denotes the bone that contains (up to) μ vertices and terminates before 

vertex v 

• bone(v, a) denotes the bone that initiates after vertex v and contains a customers. 

• succ(v, a) denotes the vertex which is located a positions after vertex v in the 

vector of the route visiting v. 

• part(v, y) denotes the bone originating after vertex v and terminating at vertex y. 

• init(v) denotes the vertex set contained in the route segment initiating from the 

depot and terminating before vertex v 

• fin(v) denotes the vertex set contained in the route segment initiating after vertex v 

and terminating at the depot. 

 

3.2.1 Update rules for the application of a VLBE SMD instance 

Consider that a VLBE instance with n1 = A, n2 = B, n1_len = a, and n2_len = b is applied 

to a candidate VRPB solution. The cost tags of following groups of SMD instances must 

be reevaluated according to the modified solution state: 

1. The VLBE SMD instances with n1 or n2 contained in the vertex set {{A}, {B}, 

{succ(A, a)}, {succ(B, b)}}, corresponding to O(μ2 n) updates. 

2. The VLBE SMD instances with n1 or n2 contained in {bone(A, a-1), bone(B, b-1)} and 

relevant bone lengths referring to the route segments lying after the bones exchanged. 

The number of vertices contained in {bone(A, a-1), bone(B, b-1)} is O(μ), thus the 

necessary cost updates are bounded by O(μ3 n). 

3. The VLBE SMD instances with n1 or n2 contained in {pred(A), pred(B)}and relevant 

bone lengths that refer to the bones exchanged. At most O(μ) vertices are contained in 

{pred(A), pred(B)}, thus at most O(μ3n) VLBE cost tags need to be reevaluated. 
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4. The 2-opt SMD instances with n1 or n2 contained in the set {{A}, {B}, {succ(A, a)}, 

{succ(A, a)}}, corresponding to O(n) necessary cost updates. 

5. The 2-opt SMD instances with their one node value included in {bone(A, a-1), bone(B, 

b-1)}, and their other node value contained in the vertex set {init(A), init(B), fin(succ(A, 

a)), fin(succ(B, b))}. The necessary updates for the aforementioned 2-opt SMD instances 

are bounded by O(μ n), as at most O(μ) nodes are contained in the two bones exchanged, 

and up to O(n) vertices are contained in the initial and terminating segments of the routes 

involved in the move. 

 

3.2.2 Update rules for the application of a 2-opt SMD instance 

The SMD instances that must be re-evaluated when applying a 2-opt move depend on 

whether the move was applied within a route or between a route pair. 

If an intra-route 2-opt SMD instance with n1 = A, n2 = B is applied to a candidate VRPB 

solution (without loss of generality, assume that A precedes B in the route vector), the 

cost tags of the following SMD instances must be updated: 

1. The VLBE SMD instances with n1 or n2 included in pred(A) and relevant bone lengths 

that refer into the part(A, B) route segment which is reversed, corresponding to O(μ3 n) 

necessary cost updates. 

2. The VLBE SMD instances with n1 or n2 contained within {{A}, part(A, B)}. The 

necessary cost updates are bounded by O(μ2 z n), where z denotes the number of vertices 

contained in part(A, B). 

3. The 2-opt SMD instances with n1 or n2 contained in {{A}, part(A, B)}, corresponding 

to O(z n), where z is the number of vertices contained in part(A, B). 

If an inter-route 2-opt SMD instance with n1 = A, n2 = B is applied to a candidate VRPB 

solution, the cost tags of the following SMD instances must be updated: 

1. The VLBE SMD instances with n1 or n2 contained in the vertex set {{A}, {B}}, 

corresponding to O(μ2 n) updates. 

2. The VLBE SMD instances with n1 or n2 contained in the vertex sets pred(A) and 

pred(B) and relevant bone lengths that refer after vertices A, and B, respectively. The 

size of this SMD subset is bounded by O(μ3 n). 
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3. The 2-opt SMD instances with n1 or n2 contained in the set {{A}, {B}}, corresponding 

to O(n) necessary cost updates. 

4. The 2-opt SMD instances with one node value (n1 or n2) contained in init(A) and the 

other node value included in {fin(A), fin(B)}. In addition, the cost tag of every 2-opt 

SMD instance with one node value contained in the vertex set init(B), and the other node 

value included in {fin(A), fin(B)}. These necessary updates are at most O(zA zB), where 

zA and zB denote the total number of vertices visited by the routes servicing nodes A and 

B, respectively. 

 

3.3. The promises concept 

As will be later presented, the proposed local search method implements the lowest-cost 

tentative moves of the examined neighborhood structures. This deterministic criterion of 

moving to subsequent solutions causes cycling phenomena to occur. To avoid these 

phenomena, we propose the concept of promises which filters out a subset of tentative 

moves so that the overall local search method escapes from premature local optima. The 

basic advantage of the proposed promises scheme is that unlike several metaheuristic 

strategies (Tabu Search, Guided Local Search, and Simulated Annealing), it does not 

require any parametric decisions and tuning. In other words, it has a flexible and robust 

structure which does not depend on problem-specific characteristics. 

The basic rationale of the promises concept is the following: when a local search move is 

applied to a candidate solution S, some solution attributes are removed and some new 

solution attributes are created to form a new solution S´. The eliminated attributes of S are 

stored together with a cost tag equal to the objective function value of solution S. 

Tentative moves that re-create these solution attributes at a higher cost than their cost tags 

are disregarded during future neighborhood evaluations. Loosely speaking, as the local 

search evolves, it gives a promise to every attribute that is eliminated from the candidate 

solution. This promise is straightforward: “eliminated solution attributes are going to be 

recreated in a solution of higher-quality than the one they were last contained in”. By 

fulfilling these promises, the search is drastically diversified and driven towards 

unexplored solution space regions. Another important algorithmic characteristic is that 

the attribute cost tags do not monotonically increase: consider that an attribute A is 
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removed from a candidate solution S, and is stored together with the solution cost z(S). 

Then, it is recreated forming a solution S´ of cost z(S´) < z(S). If deteriorating structural 

modifications are applied to solution attributes other than A, the search may reach to 

solution S´´ (containing A) of cost z(S´´) > z(S). Then, if a local search operator is applied 

to S´´ to eliminate A, the cost tag of A is set equal to z(S´´) which is greater than its 

previous cost tag z(S). This backtracking behavior is crucial, as it eliminates the risk of 

over-restricting the search by making promises which are very difficult to be fulfilled. 

 

3.4. The proposed adaptation of the promises concept for the VRPB 

For the proposed VRPB metaheuristic, we have selected complete routes to be the 

solution attributes examined. This selection proved to be effective for the test problems 

under consideration that contained rather low n / K ratios (few customers per route). On 

the contrary, for routing problems which involve many customers per route, the 

aforementioned selection would be inappropriate: cycling would be avoided, however the 

search would not be able to intensify into promising solution space regions, as eliminated 

routes would be very difficult to be re-created into a lower objective function solution. In 

these cases, a different attribute selection (for instance sequences of consecutive vertices) 

is required to achieve a balanced algorithmic behavior. 

 

3.4.1. Making promises 

When an intra-route move is applied to route rt which belongs to a VRPB solution of cost 

z, route rt is associated with a cost label tagrt equal to z. Analogously, if an inter-route 

move is applied to a pair of routes rt1 and rt2 contained in a VRPB solution of cost z, the 

aforementioned routes rt1 and rt2 are associated with cost labels tagrt1 and tagrt2, 

respectively, both of them equal to z. 

 

3.4.2. Checking promises 

A tentative intra-route move that leads to the creation of route rt that belongs to a VRPB 

solution of cost z is considered, if and only if z < tagrt. Similarly, a tentative inter-route 

move which leads to the generation of rt1 and rt2 that belong to a VRPB solution of cost 

z is acceptable, if and only if z < tagrt1 and z < tagrt2. 
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3.5 The overall metaheuristic framework 

The proposed VRPB metaheuristic, entitled Route Promise Algorithm (RPA) is initiated 

by the application of a construction heuristic algorithm, which is aimed at generating a 

set of feasible VRPB routes which is going to be later improved by the core of the RPA 

improvement method. 

 

3.5.1. Obtaining an initial set of feasible VRPB routes  

To obtain an initial VRPB solution, we apply a construction method based on the 

Paessens (1988) heuristic for the VRP. In specific, the savings function used is: s(vi, vj) = 

ci0 + c0j – g · cij + f · | ci0 - c0j |, where f and g are stochastically generated within  [0, 1] 

and (0, 3], respectively. To satisfy the special precedence constraints imposed by the 

VRPB model which force backhauls to be serviced after linehaul customers, we set cij = 

M, for every vi ∈  L and vj  ∈  B, where M is greater than the most expensive of the arcs 

contained in set A. Furthermore, to ensure that no route consists of backhauls only, we 

consider that the cost c0j = M, for every vj  ∈  B (Brandão, 2006). Regarding the carrying 

load of the vehicles, insertion positions are only considered if they do not cause any 

capacity constraint violation. When a (linehaul) customer is assigned to an empty route, a 

new empty route is generated and becomes available for subsequent customers. The 

construction method is terminated after every customer is assigned to a route.  

 

3.5.2. Managing the fleet size 

The route set generated by the construction method described in 3.5.1 satisfies both the 

precedence and capacity constrains of VRPB. However, the size of the generated route 

set Kcons is not necessarily equal to K. Three cases may arise: if Kcons = K, the proposed 

improvement method is executed by setting the cost c00 (for every depot vertex 

occurrence) equal to M, so that no route is eliminated during the search process. If Kcons 

< K, (K - Kcons) new empty routes are generated and inserted into the VRPB route set. 

Again, the cost c00 is set equal to M, so that customers are forced into the empty routes 

and the final solutions consist of exactly K non-empty routes. Finally, if Kcons > K, we 

set the cost c0j = c0j + M for every customer vertex vj ∈  L ∪  B. Having used the 

aforementioned penalization policy, when the proposed RPA method initiates, it is 
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primarily aimed at eliminating any depot-adjacent arcs, or in other words targets to 

remove any unnecessary routes. If during the course of the RPA search, the non-empty 

routes become equal to K, the penalized costs of depot-adjacent arcs are restored to their 

original values, and the cost c00 (for every depot vertex occurrence) is set to M, so that no 

further route is removed from the VRPB candidate solution during the search progress. 

As will be later indicated in the Computational Results, for all test problems, the 

proposed scheme of managing the total number of routes succeeded on producing 

solutions consisting of exactly K non-empty VRPB routes. 

 

3.5.3. The core of the proposed VRPB metaheuristic 

After the initial set of VRPB routes is generated by the construction heuristic of 3.5.1, the 

proposed RPA metaheuristic is applied. The SMD instances for the VLBE and 2-opt 

neighborhood structures are generated and inserted into the Fibonacci heaps FHVLBE and 

FH2-opt, respectively. To reduce the total number of generated SMD instances, so that the 

algorithm is accelerated, we use the following strategy which filters out SMD instances 

which are highly unlikely to represent cost improving local search moves (Tarantilis et al, 

2008). With each vertex vi, we calculate the avgi cost equal to the average cost of every 

arc adjacent to vi in the arc set A. Vertex vi is associated to its neighboring vertex set NVi 

which contains every vertex vj such that cij < avgi. To create a (VLBE or 2-opt) SMD 

instance with n1 = A and n2= B, one of the following must hold: A∈NVB and B∈NVA, A 

or B is the depot vertex.  

After all SMD instances have been generated and stored into the Fibonacci Heaps, the 

iterative core of the RPA method initiates: At each iteration, the minimum-cost, feasible, 

and admissible (in terms of the promises concept) VLBE and 2-opt SMD instances are 

retrieved from the corresponding Fibonacci Heaps. The lowest cost of these two SMD 

instances is applied to the current solution S, if it is cost improving. Otherwise, if both 

SMD instances deteriorate the solution score, the VLBE SMD instance is selected to be 

applied to S. Before the selected SMD instance is applied, the affected route(s) are stored 

into a hashtable structure together with the cost of solution S. The selected SMD is 

applied to obtain the new candidate solution S´, and the cost tags of the affected SMD 

instances are updated according to the modified state of solution S´, following the update 
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rules presented in 3.2. Then solution S is set equal to S´ for the subsequent RPA iteration. 

The RPA method terminates when a certain time bound has been reached. The 

pseudocode of the RPA metaheuristic is presented in Table 1.  

Note that the cost matrix modifications presented in 3.5.1 and 3.5.2, for dealing with the 

precedence and fixed-fleet requirements, are considered throughout the whole RPA 

execution. 

 

3.5.4. Computational complexity of the proposed algorithm 

In this paragraph, we discuss on the computational complexity required by each of the 

RPA steps, as they are presented in the pseudocode of Table 1.  

In terms of the initialization phase contained in Lines 5 and 6, it is performed once in 

O(μ2 n2), as the population of SMD instances is bounded by O(μ2 n2), and for each SMD 

instance, the cost tag evaluation and Fibonacci Heap insertion is performed in constant 

time. 

To select the SMD instance to be implemented in the candidate solution (Lines 9 and 10), 

the following procedure is iteratively executed until the particular SMD which is both 

feasible and promise-keeping is identified: The minimum-cost SMD instance is retrieved 

from the corresponding Fibonacci Heap in O(1), and its feasibility is checked in constant 

time. To do so, we use the feasibility investigation approach also used for the Open VRP 

(Zachariadis and Kiranoudis, 2009b). However, for the VRPB model which differentiates 

between linehaul and backhaul customers, with every vertex vi, we make use of two 

demand metrics, responsible for storing the total delivery and pick-up demands of all the 

vi predecessors contained in its route. Finally, to check whether an SMD instance is 

promise-keeping or not, the following operations are performed: the keys (string 

representations) of the tentative routes are prepared in O(n_rt), where n_rt denotes the 

number of customers assigned to these tentative routes. Then the cost tags are retrieved 

from the hashtable, and the comparisons presented in 3.4.2 are executed in O(1). Thus, 

the total computational complexity required for investigating the feasibility and promise-

keeping status of a tentative SMD instance is bounded by the complexity required for 

generating the string representation of the tentative routes. Regarding the total number of 

SMD instances required to be retrieved from the Fibonacci Heaps until the one to be 
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implemented is identified, it depends on both the instance characteristics (hardness of the 

capacity constraints), as well as the state of the candidate solution. Experimental runs 

indicated however, that the computational time dedicated to the move selection process is 

insignificant compared to the time required by the necessary cost updates (Line 19). The 

complexity required for the move implementation and promise making operations (Lines 

16-18) is O(n_rt), where n_rt is the number of customers assigned to the affected routes. 

The most effort consuming task of a complete RPA iteration (Lines 8-22) is the cost tag 

update process of Line 19: a detailed discussion on the number of the necessary updates 

is given in 3.2. Each of these cost updates involves three steps: deleting the SMD 

instance from the heap, evaluating the new cost tag, inserting the SMD instance back to 

the heap. The deletion step requires O(log m), where m denotes the number of SMD 

instances stored in the heap, while the cost tag evaluation and insertion steps are both 

executed in O(1). 

 

4. Computational Results 

To assess the effectiveness of the proposed method, we have applied it to the VRPB 

benchmark instances introduced by Goetschalckx and Jacobs-Blecha (1989). The RPA 

solution approach was coded in Visual C# and executed on a single core of an Intel 

T5500 (1.66GHz). The aforementioned benchmark problems and the solutions obtained 

are available at http://users.ntua.gr/ezach/. 

 

4.1 Benchmark Instances 

To test the effectiveness of the proposed method, we have solved the VRPB instance set 

generated and introduced by Goetschalckx and Jacobs-Blecha (1989). It consists of 62 

problem instances in total. For all 62 instances, the depot is located at (12000, 16000), 

whereas the x- and y- customer coordinates are stochastically taken from [0, 24000] and 

[0, 32000], respectively. The customer demand is generated from a normal distribution 

with a mean and standard deviation equal to 500 and 200 product units, respectively. The 

details of the VRPB data set of Goetschalckx and Jacobs-Blecha (1989) are presented in 

Table 2. 
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To obtain the cost cij of an arc (vi, vj), researchers have followed two different schemes: 

Under the first scheme - also used in our work - the Euclidean distance between a vertex 

pair is calculated using double precision, and then it is multiplied by 10. The product is 

then rounded to the nearest integer to obtain the arc cost. For this scheme of arc cost 

evaluation, the cost of the final solution is divided by 10 and then rounded to the nearest 

integer value. Under the second scheme, the cost matrix is obtained as the Euclidean 

distances without rounding but the solution score is rounded to two decimal places. These 

two distinct ways of obtaining the VRPB cost matrix make algorithmic comparison a 

little problematic. However, the deviation between the solution scores evaluated with the 

use of the two above-mentioned schemes is rather small, so that the obtained solution 

scores can be securely compared. 

 

4.2 Parameter Setting 

As seen from the detailed presentation of the proposed metaheuristic, the promises 

concept which constitutes the core of the search strategy does not contain any parameters. 

Thus, complex parameter tuning experiments were avoided before executing the RPA 

method. The only parameter that had to be fixed is the bone length μ which determines 

the number of vertices in the sequences considered by the VLBE local search operator. 

Obviously, the setting of μ depends on the number of customers per route which is an 

instance-specific characteristic. For the 62 VRPB test problems, the n / K ratio varies 

from 3.1 to 21.4, averaging at 11.9. Following the computational experience of the VLBE 

operator applied to OVRP instances of similar customer per route ratios (Zachariadis and 

Kiranoudis, 2009b), we set μ = 6, for problems with n / K ≥ 6. For the other problems 

(with n / K < 6), we set μ = ⎡ ⎤Kn / . 

Regarding the termination condition used for a single RPA execution, it was set to the 

completion of 300 CPU seconds for problems with n ≥ 50, and 120 CPU seconds for 

instances involving up to 50 vertices. 

 

4.3 Computational Results on the VRPB instances 

To test the effectiveness of the robustness of the RPA method, we executed it 10 times to 

solve each of the 62 VRPB test problems. Note that although the RPA search is 
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deterministic, the final solution was not necessarily the same for all 10 executions, 

because each run involved a different initial VRPB solution (the f and g savings 

parameters of the construction heuristic are randomly generated). The results obtained are 

summarized in Table 3. RPA exhibited a rather robust behavior, as for 23 test instances, 

the same final solution was obtained for all ten algorithmic executions. The percent gap 

between the best and the average solution score over the ten runs obtained for each 

VRPB instance varied from 0.000% and 1.586%, averaging at a satisfactory 0.378%. In 

terms of the fixed fleet vehicle requirement, the proposed methodology consistently 

generated VRPB solutions of K non-empty routes, for every test problem, and for all ten 

runs. Regarding the computational time elapsed before the overall best solutions were 

generated, it varies from 2 seconds for the 25-customer instances A2 and A3 to 172 

seconds for the 150-customer problem N4. 

To compare the RPA performance against that of the most effective VRPB metaheuristics 

previously published, we provide Table 4. In specific the best solution values obtained by 

the RPA method are presented together with those obtained by the Tabu Search of 

Brandão (TS) (2006), the LNS heuristic of Ropke and Pisinger  (LNS) (2006), and the 

Multi Ant Colony System (MACS) proposed by Gajpal and Abad (2009). Note that for 

the three aforementioned methods, we provide the solution scores obtained with their 

standard parameter setting, so that a fair comparison is conducted. For the TS and LNS 

methods, we present the K-tree_r and 6R-no learning algorithmic versions, respectively, 

which, on average, yielded the best results. The solution scores presented for the TS, LNS 

and MACS approaches are the best ones obtained after five, ten and eight algorithmic 

runs, respectively. To facilitate comparisons, we have rounded the reported results to 

integer values, because researchers have used different schemes for obtaining the VRPB 

cost matrix (see 4.1). 

The computational time reported for the LNS and MACS methods is the average time 

required for a complete run. For the TS method, it is the average time required by the 

runs which achieved the best solutions. On the contrary, for the proposed RPA 

metaheuristic, we provide the average (over the 62 problems) CPU time elapsed, when 

the best solutions were encountered during the best of the ten RPA executions (column 

tbst of Table 2). 
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As seen from Table 3, the RPA method consistently matched the best-known solution 

scores for all 62 benchmark instances. In terms of the best reported standard algorithmic 

scores, the proposed metaheuristic reached higher-quality solutions for six test problems. 

Regarding the computational time required by the compared algorithms, we do not intend 

to make a detailed comparison, as the algorithmic speed depends on various factors 

which cannot be securely compared: processors, programming languages, compilers, 

memory frequencies, programming skills, etc. Furthermore, the RPA method involved a 

fixed time bound, whereas the TS, LNS and MACS approaches were executed for a fixed 

number of iterations. 

At this point, we should note that for the five test problems (F1, F2, F3, F4, and L1) 

marked with an asterisk in Table 2, two discrepant instance versions seem to have been 

studied in the VRPB literature: in specific, for the four problems of group F, the website 

of Prof. Marc Goetschalckx provides two different instance sources. The first one 

suggests that the demand of the linehaul customer lying at (x, y) = (5103, 11065) is 101 

(used for obtaining the RPA results reported in Table 3), whereas the second one sets this 

customer demand equal to 1013 product units. For problem L1, although both instance 

sources set the vehicle capacity equal to 4000, the works of Brandão (2006) and Gajpal 

and Abad (2009) suggest that the capacity is equal to 4400 product units (used for 

obtaining the RPA results in Table 3). To test the RPA method for both instance versions, 

we solved the F1, F2, F3, F4, and L1 VRPB instances, setting the demand of the F-group 

customer at (x, y) = (5103, 11065) equal to 1013, and the vehicle capacity of instance L1 

equal to 4000. As seen from the results, all of the best solutions scores exactly match the 

ones obtained by the LNS method (small deviations are due to different rounding 

schemes used), implying that Ropke and Pisinger (2006) have considered the instance 

versions presented in Table 4. 

 

5. Conclusions 

In the present paper we have proposed a local-search algorithm for the VRPB. The 

proposed metaheuristic method has the ability of efficiently examining very rich solution 

neighborhoods by statically encoding local search moves using the SMD representation 

(Zachariadis and Kiranoudis, 2009a). To avoid cycling phenomena and induce 
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diversification, we introduce the concept of promises which is a parameter-free 

mechanism for coordinating the solution space exploration. Briefly, the promises concept 

can be summarized as follows: solution attributes which are eliminated by a local search 

move applied to a solution of cost z, can only be recreated by a local search move that 

leads to a solution of cost z′ < z. The proposed methodology was applied to 62 well-

known VRPB benchmark instances, exhibiting fine performance. In specific, it managed 

to match the best-known solution scores for all 62 test problems. 

Regarding future research directions, the promises concept can be tested to combinatorial 

optimisation problems taking under consideration various solution attributes. These tests 

can be easily performed, as the promises mechanism does not require time-consuming 

parametric tuning experiments. 
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TABLES 

 
Table 1. Pseudocode of the proposed RPS metaheuristic 

 VRPB Solution RPS (VRPB Solution S0) 
1 Fibonacci Heap FHVLBE, FH2-OPT 
2 VRPB Solution S, S´, S* 
3 HashTable RoutePromises 
4 SMD app, VLBE SMD vlbe, 2-opt SMD 2opt 

  
 -- initialization phase 

5 generate every VLBE SMD instances according to S0 and store them in FHVLBE 
6 generate every 2-opt SMD instances according to S0 and store them in FH2-opt 
7 set S = S0, S* = S0 

  
 -- improvement phase 

8 while (termination condition = false) 
 -- local search move selection 

9 vlbe = lowest-cost, feasible, and promise-keeping VLBE SMD instance stored in FHVLBE 
10 2opt = lowest-cost, feasible, and promise keeping 2-opt SMD instance stored in FH2-OPT 
11 if ( z(S0) + vlbecst < z(S*) OR z(S0) + 2optcst < z(S*) ) 
12 if (vlbecst < 2optcst) app = vlbe else app = 2opt end if 
13 else 
14 app = vlbe 
15 end if 

  
 -- local search move application 

16 let rt1 (and rt2) denote the route (routes) affected by the move encoded by SMD app 
17 store the rt1 (rt2) route key (keys) together with the value z(S) into RoutePromises 
18 implement the SMD app to S to obtain S´ 
19 apply the update rules (3.2) for the affected VLBE and 2-opt SMD instances according to S´ 
20 set S = S´ 

  
21 if (z(S) < z(S*)) S* = S end if 
22 end while 
23 return S* 
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Table 2. VRPB benchmark instances characteristics 
Instance n line back K Q cpr  Instance n line back K Q cpr 
A1 26 20 5 8 1550 3.1  H4 69 45 23 5 6100 13.6 
A2 26 20 5 5 2550 5.0  H5 69 45 23 4 7100 17.0 
A3 26 20 5 4 4050 6.3  H6 69 45 23 5 7100 13.6 
A4 26 20 5 3 4050 8.3  I1 91 45 45 10 3000 9.0 
B1 31 20 10 7 1600 4.3  I2 91 45 45 7 4000 12.9 
B2 31 20 10 5 2600 6.0  I3 91 45 45 5 5700 18.0 
B3 31 20 10 3 4000 10.0  I4 91 45 45 6 5700 15.0 
C1 41 20 20 7 1800 5.7  I5 91 45 45 7 5700 12.9 
C2 41 20 20 5 2600 8.0  J1 95 75 19 10 4400 9.4 
C3 41 20 20 5 4150 8.0  J2 95 75 19 8 5600 11.8 
C4 41 20 20 4 4150 10.0  J3 95 75 19 6 8200 15.7 
D1 39 30 8 12 1700 3.2  J4 95 75 19 7 6600 13.4 
D2 39 30 8 11 1700 3.5  K1 114 75 38 10 4100 11.3 
D3 39 30 8 7 2750 5.4  K2 114 75 38 8 5200 14.1 
D4 39 30 8 5 4075 7.6  K3 114 75 38 9 5200 12.6 
E1 46 30 15 7 2650 6.4  K4 114 75 38 7 6200 16.1 
E2 46 30 15 4 4300 11.3  L1 151 75 75 10 4400 15.0 
E3 46 30 15 4 5225 11.3  L2 151 75 75 8 5000 18.8 
F1 61 30 30 6 3000 10.0  L3 151 75 75 9 5000 16.7 
F2 61 30 30 7 3000 8.6  L4 151 75 75 7 6000 21.4 
F3 61 30 30 5 4400 12.0  L5 151 75 75 8 6000 18.8 
F4 61 30 30 4 5500 15.0  M1 126 100 25 11 5200 11.4 
G1 58 45 12 10 2700 5.7  M2 126 100 25 10 5200 12.5 
G2 58 45 12 6 4300 9.5  M3 126 100 25 9 6200 13.9 
G3 58 45 12 5 5300 11.4  M4 126 100 25 7 8000 17.9 
G4 58 45 12 6 5300 9.5  N1 151 100 50 11 5700 13.6 
G5 58 45 12 5 6400 11.4  N2 151 100 50 10 5700 15.0 
G6 58 45 12 4 8000 14.3  N3 151 100 50 9 6600 16.7 
H1 69 45 23 6 4000 11.3  N4 151 100 50 10 6600 15.0 
H2 69 45 23 5 5100 13.6  N5 151 100 50 7 8500 21.4 
H3 69 45 23 4 6100 17.0  N6 151 100 50 8 8500 18.8 
n: Number of depot and customer vertices, line: number of linehaul customers, back: number of backhaul 
customers, K: number of vehicles, Q: vehicle capacity, cpr: customers per route (= n-1/K) 
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Table 3. RPA results for the Goetschalckx & Jacobs-Blecha VRPB benchmark instances  
    avg  bst    
Instance n K  zavg Kavg tavg  zbst Kbst tbst  %gap tot_t 
A1 26 8  229,886 8.0 5  229,886 8 4  0.000 120 
A2 26 5  180,119 5.0 3  180,119 5 2  0.000 120 
A3 26 4  163,405 4.0 2  163,405 4 2  0.000 120 
A4 26 3  155,796 3.0 3  155,796 3 3  0.000 120 
B1 31 7  239,080 7.0 14  239,080 7 14  0.000 120 
B2 31 5  198,048 5.0 12  198,048 5 11  0.000 120 
B3 31 3  169,372 3.0 5  169,372 3 3  0.000 120 
C1 41 7  250,556 7.0 22  250,556 7 19  0.000 120 
C2 41 5  215,020 5.0 20  215,020 5 18  0.000 120 
C3 41 5  199,346 5.0 12  199,346 5 10  0.000 120 
C4 41 4  195,366 4.0 9  195,366 4 8  0.000 120 
D1 39 12  322,530 12.0 18  322,530 12 10  0.000 120 
D2 39 11  316,708 11.0 15  316,708 11 8  0.000 120 
D3 39 7  239,479 7.0 10  239,479 7 8  0.000 120 
D4 39 5  205,832 5.0 11  205,832 5 8  0.000 120 
E1 46 7  238,880 7.0 27  238,880 7 26  0.000 120 
E2 46 4  212,263 4.0 20  212,263 4 12  0.000 120 
E3 46 4  206,659 4.0 22  206,659 4 14  0.000 120 
F1 61 6  263,274 6.0 34  263,173 6 22  0.038 300 
F2 61 7  265,655 7.0 36  265,213 7 30  0.166 300 
F3 61 5  241,120 5.0 28  241,120 5 22  0.000 300 
F4 61 4  234,604 4.0 32  233,861 4 26  0.317 300 
G1 58 10  306,980 10.0 38  306,306 10 24  0.220 300 
G2 58 6  245,441 6.0 32  245,441 6 23  0.000 300 
G3 58 5  229,968 5.0 31  229,507 5 34  0.201 300 
G4 58 6  232,521 6.0 38  232,521 6 32  0.000 300 
G5 58 5  222,872 5.0 32  221,730 5 29  0.512 300 
G6 58 4  214,381 4.0 25  213,457 4 32  0.431 300 
H1 69 6  270,056 6.0 38  268,933 6 33  0.416 300 
H2 69 5  253,910 5.0 35  253,365 5 30  0.215 300 
H3 69 4  247,449 4.0 36  247,449 4 22  0.000 300 
H4 69 5  251,094 5.0 40  250,221 5 33  0.348 300 
H5 69 4  246,121 4.0 35  246,121 4 19  0.000 300 
H6 69 5  250,060 5.0 42  249,135 5 44  0.370 300 
I1 91 10  351,082 10.0 67  350,246 10 51  0.238 300 
I2 91 7  309,979 7.0 61  309,944 7 57  0.011 300 
I3 91 5  294,790 5.0 55  294,507 5 62  0.096 300 
I4 91 6  297,910 6.0 66  295,988 6 50  0.645 300 
I5 91 7  303,485 7.0 72  301,236 7 66  0.741 300 
J1 95 10  335,780 10.0 97  335,006 10 83  0.231 300 
J2 95 8  312,509 8.0 90  310,417 8 96  0.669 300 
J3 95 6  280,433 6.0 78  279,219 6 70  0.433 300 
J4 95 7  298,322 7.0 88  296,533 7 82  0.600 300 
K1 114 10  397,382 10.0 101  394,071 10 117  0.833 300 
K2 114 8  365,458 8.0 82  362,130 8 72  0.911 300 
K3 114 9  369,436 9.0 90  365,694 9 102  1.013 300 
K4 114 7  349,717 7.0 87  348,950 7 79  0.219 300 
L1 151 10  421,683 10.0 165  417,896 10 142  0.898 300 
L2 151 8  405,199 8.0 136  401,228 8 121  0.980 300 
L3 151 9  405,756 9.0 173  402,678 9 167  0.759 300 
L4 151 7  388,142 7.0 140  384,636 7 129  0.903 300 
L5 151 8  390,458 8.0 154  387,565 8 130  0.741 300 
M1 126 11  400,499 11.0 132  398,593 11 144  0.476 300 
M2 126 10  401,914 10.0 120  396,917 10 106  1.243 300 
M3 126 9  378,073 9.0 106  375,696 9 95  0.629 300 
M4 126 7  352,030 7.0 94  348,140 7 88  1.105 300 
N1 151 11  411,722 11.0 192  408,101 11 152  0.880 300 
N2 151 10  412,311 10.0 169  408,066 10 138  1.029 300 
N3 151 9  398,760 9.0 144  394,338 9 152  1.109 300 
N4 151 10  396,159 10.0 196  394,788 10 172  0.346 300 
N5 151 7  376,895 7.0 152  373,476 7 161  0.907 300 
N6 151 8  379,784 8.0 170  373,759 8 145  1.586 300 
avg: average values over the ten RPA executions, bst: values for the run which yielded the highest quality solution, z: 
objective function value, t: time elapsed when the best solution was generated through the search, tot_t: total time 
required for one complete RPA execution, %gap: percent gap between the average and the best solution scores 
obtained (= 100 · (zavg - zbst) / zavg) 
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Table 4. Comparative results of the best performing metaheuristic methods for the VRPB 
Instance  TS  LNS  MACS  BAS  %gapBAS  RPA  BKS 
A1  229,886   229,886  229,886  229,886  0.000  229,886  229,886 
A2  180,119   180,119  180,119  180,119  0.000  180,119  180,119 
A3  163,405   163,405  163,405  163,405  0.000  163,405  163,405 
A4  155,796   155,796  155,796  155,796  0.000  155,796  155,796 
B1  239,080   239,080  239,080  239,080  0.000  239,080  239,080 
B2  198,048   198,048  198,048  198,048  0.000  198,048  198,048 
B3  169,372   169,372  169,372  169,372  0.000  169,372  169,372 
C1  250,557   250,557  250,557  250,557  0.000  250,556  250,556 
C2  215,020   215,020  215,020  215,020  0.000  215,020  215,020 
C3  199,346   199,346  199,346  199,346  0.000  199,346  199,346 
C4  195,366   195,367  195,367  195,366  0.000  195,366  195,366 
D1  322,530   322,530  322,530  322,530  0.000  322,530  322,530 
D2  316,709   316,709  316,709  316,709  0.000  316,708  316,708 
D3  239,479   239,479  239,479  239,479  0.000  239,479  239,479 
D4  205,832   205,832  205,832  205,832  0.000  205,832  205,832 
E1  238,880   238,880  238,880  238,880  0.000  238,880  238,880 
E2  212,263   212,263  212,263  212,263  0.000  212,263  212,263 
E3  206,659   206,659  206,659  206,659  0.000  206,659  206,659 
F1*  263,173   267,060  263,174  263,173  0.000  263,173  263,173 
F2*  265,493   265,214  265,214  265,214  0.000  265,213  265,213 
F3*  241,120   241,970  241,121  241,120  0.000  241,120  241,120 
F4*  233,861   235,175  233,862  233,861  0.000  233,861  233,861 
G1  306,306   306,305  306,537  306,305  0.000  306,306  306,305 
G2  245,441   245,441  245,441  245,441  0.000  245,441  245,441 
G3  229,507   229,507  229,507  229,507  0.000  229,507  229,507 
G4  232,521   232,521  232,521  232,521  0.000  232,521  232,521 
G5  221,730   221,730  221,730  221,730  0.000  221,730  221,730 
G6  213,457   213,457  213,457  213,457  0.000  213,457  213,457 
H1  268,933   268,933  268,933  268,933  0.000  268,933  268,933 
H2  253,365   253,366  253,366  253,365  0.000  253,365  253,365 
H3  247,449   247,449  247,449  247,449  0.000  247,449  247,449 
H4  250,221   250,221  250,221  250,221  0.000  250,221  250,221 
H5  246,121   246,121  246,121  246,121  0.000  246,121  246,121 
H6  249,135   249,135  249,135  249,135  0.000  249,135  249,135 
I1  350,435   350,245  350,245  350,245  0.000  350,246  350,245 
I2  309,944   309,944  309,944  309,944  0.000  309,944  309,944 
I3  294,507   294,507  294,507  294,507  0.000  294,507  294,507 
I4  295,988   295,988  295,988  295,988  0.000  295,988  295,988 
I5  301,236   301,236  301,236  301,236  0.000  301,236  301,236 
J1  335,007   335,007  335,007  335,007  0.000  335,006  335,006 
J2  310,793   310,417  310,417  310,417  0.000  310,417  310,417 
J3  279,306   279,219  279,219  279,219  0.000  279,219  279,219 
J4  296,860   296,533  296,533  296,533  0.000  296,533  296,533 
K1  394,974   394,376  395,076  394,376  0.077  394,071  394,071 
K2  363,829   362,130  362,130  362,130  0.000  362,130  362,130 
K3  366,246   365,694  365,694  365,694  0.000  365,694  365,694 
K4  351,345   348,949  349,870  348,949  0.000  348,950  348,949 
L1*  426,401   426,013  417,922  417,922  0.006  417,896  417,896 
L2  402,152   401,229  401,248  401,229  0.000  401,228  401,228 
L3  404,391   402,678  402,678  402,678  0.000  402,678  402,678 
L4  384,999   384,636  384,636  384,636  0.000  384,636  384,636 
L5  389,044   387,565  387,565  387,565  0.000  387,565  387,565 
M1  400,384   398,914  398,730  398,730  0.034  398,593  398,593 
M2  398,924   399,336  397,324  397,324  0.102  396,917  396,917 
M3  377,433   377,212  377,329  377,212  0.402  375,696  375,696 
M4  349,091   348,418  348,418  348,418  0.080  348,140  348,140 
N1  409,531   410,789  408,101  408,101  0.000  408,101  408,101 
N2  408,287   409,385  408,065  408,065  0.000  408,066  408,065 
N3  394,338   394,338  394,338  394,338  0.000  394,338  394,338 
N4  399,029   398,965  394,788  394,788  0.000  394,788  394,788 
N5  376,522   373,476  373,723  373,476  0.000  373,476  373,476 
N6  374,774   373,759  373,759  373,759  0.000  373,759  373,759 
average 
time(sec) 

 
13.6  1.18  1.13 

   
0.98 

 
 

  

TS: The K-tree_r Tabu Search version (Brandão, 2006) - Pentium III 500 MHz, C, LNS: The 6R-no learning version of the LNS 
metaheuristic (Ropke and Pisinger, 2006) - Pentium IV 1.5 GHz, C++, MACS: The metaheuristic proposed by Gajpal and Abad (2009) 
- Intel Xeon 2.4 GHz, C. RPA: The proposed metaheuristic - single core of Intel T5500 1.66 GHz, Visual C#. BAS: Best algorithmic 
solution among TS, LNS and MACS. BKS: The best known solution for each problem, %gapBAS: The percent gap between the BAS 
and the RPA solution scores (= 100 · (BAS - RPA) / BAS). * Ropke and Pisinger (2006) appear to have considered some different 
instance characteristics (see Table 4). Any slight discrepancies are due to different rounding schemes. 
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Table 4. Solution scores for five VRPB instances with different characteristics 
Instance  LNS  RPA  Instance  LNS  RPA 
F1  267,060  267,060  L1  426,013  426,014 
F2  265,214  265,213       
F3  241,970  241,969       
F4  235,175  235,175       
LNS: The 6R-no learning version of the LNS metaheuristic (Ropke and Pisinger, 2006), RPA: The proposed metaheuristic.  
For the F group of instances, the demand of customer lying at (x, y) = (5103, 11065) is 1013. For the L1 instance the vehicle capacity 
is 4000 product units. Any slight discrepancies are due to different rounding schemes. 
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FIGURES 
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Fig 1. Applying a VLBE SMD to a VRPB solution 
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Fig 2. Applying a 2-opt SMD to a VRPB solution 


