
 1

An Innovative Metaheuristic Solution Approach for the

Vehicle Routing Problem with Backhauls

Emmanouil E. Zachariadis, Chris T. Kiranoudis

Department of Process Analysis and Plant Design, National Technical University of Athens,

Athens, Greece, {ezach@mail.ntua.gr, kyr@chemeng.ntua.gr}

Abstract

This paper deals with a practical transportation model known as the Vehicle Routing

Problem with Backhauls (VRPB), which aims at designing the minimum cost route set

for satisfying both delivery and pick-up demands. In methodological terms, we propose a

local search metaheuristic which explores rich solution neighborhoods composed of

exchanges of variable-length customer sequences. To efficiently investigate these rich

solution neighborhoods, tentative local search move are statically encoded by data

structures stored in Fibonacci Heaps which are special priority queue structures offering

fast minimum retrieval, insertion and deletion capabilities. To avoid cycling phenomena

and induce diversification, we introduce the concept of promises, which is a parameter-

free mechanism for coordinating the conducted search. The proposed metaheuristic

development was tested on well-known VRPB benchmark instances. It exhibited fine

performance, as it consistently generated the best-known solutions for all the examined

benchmark problems.

keywords: metaheuristics, vehicle routing, computational complexity

1. Introduction

The distribution of goods is a central operational process lying at the heart of modern

business activity. It constitutes a great proportion of a company’s total running costs. For

this reason great scientific interest has been dedicated to the development of effective

solution approaches for optimising real-life logistics operations.

 2

The most widely studied problem model in the context of logistics optimisation is the

classical Vehicle Routing Problem (VRP). VRP aims at generating the minimum cost set

of routes for a homogeneous fleet of vehicles based at a central depot. The generated

routes originate and terminate at the central depot, and they must satisfy the product

demand of a given customer population which is assumed to be fixed and known in

advance. Each customer must be visited by a single vehicle only once. In addition, the

carrying load of a vehicle cannot exceed its capacity. Based on the aforementioned

classical VRP version, researchers have proposed and examined several VRP variants

that capture the special requirements of practical logistics processes. One of these

problem variants is the VRP with backhauls (VRPB) which involves both delivery and

pick-up demands.

Briefly, the VRPB aims at designing the optimal routes to satisfy the delivery and pick-

up demand of linehaul and backhaul customers, respectively. It models the following

scenario: Each vehicle departs from the depot and is initially unloaded by satisfying the

linehaul demand. After the load of the vehicle has been exhausted, it visits the backhaul

customer where goods are again loaded onto the vehicle to be delivered back to central

depot. Consequently, the load of the vehicle monotonically decreases, as goods are

delivered to the linehaul customers, and reaches to zero after the last delivery customer

has been visited. Then, backhauls are serviced causing the vehicle load to monotonically

increase before returning back to the central station. The precedence constraint which

forces linehauls to be serviced before backhauls is imposed to the problem model due to

the fact that “the vehicles are rear-loaded and rearrangement of the loads on the trucks

at the delivery points is not deemed feasible.” (Goetschalckx and Jacobsblecha ,1989).

In graph theoretic terms, the VRPB model is defined on a complete graph G = (V, A)

where V = {v0}∪ L ∪B is the vertex set and A is the edge set. Sets L = {v1, v2,…, vl} and

B = {vl+1, vl+2,…, vl+b} denote the linehaul and backhaul customer sets, respectively,

whereas vertex v0 corresponds to the central depot which acts as the station of K vehicles

with capacity Q. With each linehaul customer vi∈L is associated a delivery product

quantity di which must be transported from the depot to the customer, while with each

backhaul customer vj∈B is associated a pick-up quantity pj which must be shipped from

the customer back to the central station. With each arc (vi, vj) ∈A is associated a fixed

 3

non-negative cost cij which reflects the cost involved for traveling from location vi to vj.

The goal of the VRPB is to design a set of routes such that:

a) The size of the generated route set is equal to K.

b) Every customer is assigned to exactly one route.

c) Every route contains at least one linehaul customer (no empty routes are allowed,

no routes servicing only backhaul customers are allowed)

d) Within every route, linehaul customers precede backhaul customers.

e) The total delivery demand of the linehaul customers assigned to a route does not

exceed vehicle capacity Q.

f) The total pick-up demand of the backhaul customers assigned to a route does not

exceed vehicle capacity Q.

g) The total cost of the generated route set is minimised.

The interested reader is referred to the works of Goetschalckx and Jacobsblecha (1989),

Toth and Vigo (1997) and Mignozzi et al (1999) for mathematical formulations of the

VRPB model.

Our interest in the VRPB is motivated both by its great practical and theoretical

importance. From the commercial viewpoint, VRPB is frequently encountered by large

companies who must transport goods from their production site to the retailer outlets

(linehauls), while at the same time the production site must be supplied from vendors

(backhauls) located within the same geographic region (Goetschalckx and Jacobsblecha,

1989). In addition, pro-environmental practices raise the necessity of bi-directional

product flows modeled by VRPB. Products are transported from the production site to the

retailers, while at the same time used and outdated products are collected from the

retailers and sent back to the production site in order to be recycled, disassembled or

appropriately processed before being disposed. From the theoretical perspective, VRPB is

a significantly challenging optimisation problem. It reduces to the classical VRP when

only linehaul customers are considered (B = Ø). Thus, being a generalisation of the VRP,

the VRPB variant is an NP-hard combinatorial optimisation problem.

The purpose of the present paper is to propose an original metaheuristic methodology to

solve the VRPB. The proposed local-search metaheuristic algorithm explores rich

solution neighborhoods, exchanging variable-length customer sequences instead of

 4

performing single customer swaps and relocations. This is efficiently achieved by

statically encoding the tentative local search moves using the Static Move Descriptor

entities (Zachariadis and Kiranoudis 2009a). To induce diversification and eliminate

cycling phenomena, we introduce the concept of promises, which is a parameter-free

mechanism for coordinating the progress of the overall local-search method. Our VRPB

metaheuristic was successfully tested on well-known benchmark instances, consistently

producing high-quality solutions.

The remainder of the present article is organized as follows: Section 2 provides a

literature review on previous VRPB solution approaches, followed by Section 3 which

presents in detail the proposed solution methodology. The computational results are

summarized in Section 4. Finally, Section 5 concludes the paper.

2. Literature Review

As previously stated, VRPB is an NP-hard combinatorial optimisation problem. Thus,

exact solution methodologies are able to solve rather small-scale instances within

acceptable computational times. On the contrary, to deal with medium- and large-scale

practical VRPB instances, researchers have concentrated on the design of heuristic and

metaheuristic solution approaches, which do not guarantee optimality but are

computationally manageable.

In terms of VRPB heuristic procedures, Deif and Bodin (1984) propose two solution

methodologies by modifying the Clarke and Wright (1964) heuristic originally designed

for the VRP. The first method imposes a constraint which forces deliveries to occur

before any pick-up services begin. For the second approach, this precedence constraint is

guaranteed by incorporating a penalty factor in the savings function. Goetschalckx and

Jacobsblecha (1989) propose a methodology that constructs a good-quality initial solution

by the application of spacefilling curve heuristics. The final solution is generated by

means of an improvement algorithm. Goetschalckx and Jacobsblecha (1993) propose a

cluster-first, route-second VRPB algorithm based on the generalised assignment approach

of Fisher and Jaikumar (1981). Another VRPB algorithm that belongs to the cluster-first,

route-second category of heuristics has been presented by Toth and Vigo (1996). Their

algorithm is based on a K-tree Lagrangian relaxation presented for the VRP (Fisher

 5

1994). Toth and Vigo (1999) propose another cluster-first route-second algorithm for

solving both the symmetric and asymmetric VRPB. Their approach exploits information

included in infeasible solutions associated with a lower-bound produced by using a

Lagrangian approach described in the study of Toth and Vigo (1997).

Regarding more recent metaheuristic strategies, Osman and Wassan (2002) propose a

two-phase VRPB methodology. In the first phase the initial solution is produced by two

construction heuristics based on the saving-insertion and saving-assignment procedures,

respectively. The solution is then improved by a reactive Tabu Search (TS) which

considers single-node and two-node exchange neighborhood structures. The reactive

concept is used to control the balance between the intensification and diversification of

the search. Another TS based algorithm has been proposed by Wassan (2007). The

former work is a hybridization of TS and Adaptive Memory Programming (AMP). The

proposed Adaptive Memory drives the conducted search towards unexplored solution

regions. Brandão (2006) presents a tabu search scheme for improving the initial solution

which is produced by two different procedures. The first way of generating the initial

solution is to solve two distinct Open VRP (OVRP) subproblems, one for the linehaul

and one for the backhaul customers. The other approach of building the initial solution

consists of obtaining a pseudo-lower bound by making Lagrangian relaxations, so that the

routing problem is transformed into a minimum K-tree problem. The proposed TS

procedure examines three neighborhood structures that involve relocating a customer to

another route, exchanging two customers belonging to two different routes, and

exchanging the positions of a linehaul and a backhaul customer within the same route.

Ropke and Pisinger (2006) present a general algorithmic framework which effectively

deals with numerous routing variants that consider backhaul customers. Their approach is

based on Large Neighborhood Search (Shaw, 1998). Finally, Gajpal and Abad (2009)

present an ant colony VRPB metaheuristic which makes use of two multi-route local

search schemes.

Except for the above-presented heuristic and metaheuristic solution approaches,

researchers have also proposed exact methodologies for the VRPB. The first such work is

due to Yano et al (1987). Their methodology solves a practical VRPB application using

customized route generation routines combined with a branch-and-bound procedure. Toth

 6

and Vigo (1997) present a branch-and-bound algorithm for the VRPB. To derive the

lower bound on the optimal solution cost, they propose a Lagrangian relaxation of some

problem constraints. To strengthen the Lagrangian bound, valid inequalities are added in

a cutting plane fashion. Finally, Mignozzi et al (1999) present a new VRPB integer

programming formulation. They compute a valid lower bound to the optimal solution via

the combination of different heuristic methods that deal with the dual of the LP-

relaxation of the integer programming model. Their proposed branch-and-bound

algorithm managed to optimally solve problems of up to 100 customers.

3. The Proposed Algorithm

As mentioned in the introductory Section of the present article, the proposed VRPB

metaheuristic makes use of the Static Move Descriptor (SMD) strategy in order to reduce

the computational complexity required for examining very large solution neighborhoods.

To avoid being trapped in premature local optima and effectively diversify the search, we

introduce a parameter-free algorithmic concept called promises. In this Section, we

thoroughly present the aforementioned algorithmic components and later discuss on the

overall metaheuristic development.

3.1 The Solution Neighborhoods and their SMD representation

Instead of single vertex exchanges and relocations, the proposed methodology explores a

rich neighborhood structure consisting of every possible exchange of vertex sequences

(thereafter called bones) that involve from 0 to μ customers (Zachariadis and Kiranoudis

2009b). Let Variable Length Bone Exchange (VLBE) denote the aforementioned

neighborhood structure. Except for the VLBE operator, our methodology also examines

the classical 2-opt local-search operator.

3.1.1 The VLBE local search operator

The computational complexity required for exhaustively investigating the VLBE solution

neighborhood is obviously bounded by O(n2 μ2), as there are n2 vertex pair combinations,

and μ2 are the 2-combinations of the two bone lengths (customers contained in the bones

 7

exchanged). For practical problem instances of significant n values, the O(n2 μ2)

complexity of the VLBE move type would lead to excessive computational times.

To efficiently explore the VLBE neighborhood structure, we make use of the SMD

entities which encode tentative moves in a static (solution independent) manner. In

specific, every VLBE SMD instance includes the following static information: a pair of

node values (n1 and n2), and a pair of bone length values (n1_len and n2_len). The move

represented by a VLBE SMD with n1 = A, n2 = B, n1_len = a, and n2_len = b is the

exchange of the bone beginning after node A and containing a customers and the bone

beginning after B and containing b customers. Note that in the case where n1_len or

n2_len is equal to 0; the SMD encodes a bone relocation move rather than an exchange

one. Apart from the aforementioned information, every SMD instance contains a cost tag

which corresponds to actual cost involved for performing the encoded move to the

candidate solution. Obviously, the cost tag dynamically changes through the search

process, as it depends on the structure of the current solution.

To exhaustively map the VLBE neighborhood using the SMD representation, in total

((n+K)!/(2!(n+K−2)!)) · ((μ+1)2-1) VLBE SMD instances are required, where K denotes

the routes present in the current solution. The first term corresponds to the 2-

combinations without repetition of the n customers and K depot vertex occurrences,

whereas the second term corresponds to the 2-combinations of the bone length values that

vary from 0 to μ.

Figure 1 illustrates the application of three example VLBE SMD instances to a VRPB

solution of eight customers and two routes.

3.1.2 The 2-opt local search operator

The 2-opt operator removes two edges present in the candidate solution and replaces

them with a new edge pair. If the 2-opt operator is applied within a route, two edges are

deleted and two new edges are generated by reversing the route path lying between the

deleted edges. When the 2-opt move is implemented between a route pair, the two routes

involved are divided into their starting and terminating segments by removing two

solution edges. Two edges are created so that the starting segment of the first route is

connected to the terminating segment of the second one, and the beginning part of the

 8

second route is linked to the terminating part of the first one. Exhaustively examining the

2-opt neighborhood structure requires O(n2) complexity, as each vertex pair uniquely

defines a particular 2-opt move.

To encode the 2-opt local search move into SMD entities, we create one SMD instance

for each vertex pair. Thus, each 2-opt SMD instance contains two node values, namely n1

and n2. The mechanism of applying a 2-opt SMD with n1 = A and n2= B is the following:

If vertices A and B belong to the same route (and without loss of generality, assume that

A precedes B in the route vector), A is connected to B by reversing the path beginning

after A and terminating at B. Otherwise, let rtA and rtB denote the routes containing A and

B, respectively. The starting route segment of rtA terminating at node A is connected to

the rtB segment initiating after vertex B and terminating at the depot. Similarly, the

starting segment of rtB which terminates at B is linked to the rtA segment that begins after

vertex A and ends at the depot. Apart from the n1 and n2 values, with each 2-opt SMD

instance is associated a cost tag which is equal to the cost involved for applying the

encoded move to the candidate solution.

As earlier stated, each vertex pair uniquely defines a particular 2-opt move. Thus, to

exhaustively represent the 2-opt neighborhood structure in total (n + K)! / (2!(n + K− 2)!)

SMD instances are required, corresponding to the 2-combinations without repetition of

the n customers and K depot vertex occurrences.

Figure 2 provides three example applications of 2-opt SMD instances to a VRPB solution

of eight customers and two routes.

3.2 Updating the cost tags of the SMD instances

As earlier explained, the SMD instances statically encode the tentative local search

moves defined by the neighborhoods structures. In addition, they include a cost label (cst)

which is equal to the actual cost required for implementing the encoded move to a

candidate solution. This cost label is obviously dynamic in the sense that it depends on

the particular structure of a VRPB solution. Thus, as local search moves are applied to

the candidate solution, the cost tags of the SMD instances must be appropriately updated

in order to be valid according the modified solution states. The main advantage of the

SMD representation of local search moves comes from the fact that when a local search

 9

move is applied to a given solution, only a limited part of the solution structure is

modified. Therefore, to keep the SMD instances updated, only the cost tags of the SMD

instance subset which is associated with the modified solution part have to be

reevaluated. In the following, we provide the rules that determine the SMD instance

subset which has to be updated when either a VLBE or a 2-opt SMD instance is applied

to the candidate solution.

To facilitate exposition, for any VRPB solution, we introduce the following notation:

• pred(v) denotes the bone that contains (up to) μ vertices and terminates before

vertex v

• bone(v, a) denotes the bone that initiates after vertex v and contains a customers.

• succ(v, a) denotes the vertex which is located a positions after vertex v in the

vector of the route visiting v.

• part(v, y) denotes the bone originating after vertex v and terminating at vertex y.

• init(v) denotes the vertex set contained in the route segment initiating from the

depot and terminating before vertex v

• fin(v) denotes the vertex set contained in the route segment initiating after vertex v

and terminating at the depot.

3.2.1 Update rules for the application of a VLBE SMD instance

Consider that a VLBE instance with n1 = A, n2 = B, n1_len = a, and n2_len = b is applied

to a candidate VRPB solution. The cost tags of following groups of SMD instances must

be reevaluated according to the modified solution state:

1. The VLBE SMD instances with n1 or n2 contained in the vertex set {{A}, {B},

{succ(A, a)}, {succ(B, b)}}, corresponding to O(μ2 n) updates.

2. The VLBE SMD instances with n1 or n2 contained in {bone(A, a-1), bone(B, b-1)} and

relevant bone lengths referring to the route segments lying after the bones exchanged.

The number of vertices contained in {bone(A, a-1), bone(B, b-1)} is O(μ), thus the

necessary cost updates are bounded by O(μ3 n).

3. The VLBE SMD instances with n1 or n2 contained in {pred(A), pred(B)}and relevant

bone lengths that refer to the bones exchanged. At most O(μ) vertices are contained in

{pred(A), pred(B)}, thus at most O(μ3n) VLBE cost tags need to be reevaluated.

 10

4. The 2-opt SMD instances with n1 or n2 contained in the set {{A}, {B}, {succ(A, a)},

{succ(A, a)}}, corresponding to O(n) necessary cost updates.

5. The 2-opt SMD instances with their one node value included in {bone(A, a-1), bone(B,

b-1)}, and their other node value contained in the vertex set {init(A), init(B), fin(succ(A,

a)), fin(succ(B, b))}. The necessary updates for the aforementioned 2-opt SMD instances

are bounded by O(μ n), as at most O(μ) nodes are contained in the two bones exchanged,

and up to O(n) vertices are contained in the initial and terminating segments of the routes

involved in the move.

3.2.2 Update rules for the application of a 2-opt SMD instance

The SMD instances that must be re-evaluated when applying a 2-opt move depend on

whether the move was applied within a route or between a route pair.

If an intra-route 2-opt SMD instance with n1 = A, n2 = B is applied to a candidate VRPB

solution (without loss of generality, assume that A precedes B in the route vector), the

cost tags of the following SMD instances must be updated:

1. The VLBE SMD instances with n1 or n2 included in pred(A) and relevant bone lengths

that refer into the part(A, B) route segment which is reversed, corresponding to O(μ3 n)

necessary cost updates.

2. The VLBE SMD instances with n1 or n2 contained within {{A}, part(A, B)}. The

necessary cost updates are bounded by O(μ2 z n), where z denotes the number of vertices

contained in part(A, B).

3. The 2-opt SMD instances with n1 or n2 contained in {{A}, part(A, B)}, corresponding

to O(z n), where z is the number of vertices contained in part(A, B).

If an inter-route 2-opt SMD instance with n1 = A, n2 = B is applied to a candidate VRPB

solution, the cost tags of the following SMD instances must be updated:

1. The VLBE SMD instances with n1 or n2 contained in the vertex set {{A}, {B}},

corresponding to O(μ2 n) updates.

2. The VLBE SMD instances with n1 or n2 contained in the vertex sets pred(A) and

pred(B) and relevant bone lengths that refer after vertices A, and B, respectively. The

size of this SMD subset is bounded by O(μ3 n).

 11

3. The 2-opt SMD instances with n1 or n2 contained in the set {{A}, {B}}, corresponding

to O(n) necessary cost updates.

4. The 2-opt SMD instances with one node value (n1 or n2) contained in init(A) and the

other node value included in {fin(A), fin(B)}. In addition, the cost tag of every 2-opt

SMD instance with one node value contained in the vertex set init(B), and the other node

value included in {fin(A), fin(B)}. These necessary updates are at most O(zA zB), where

zA and zB denote the total number of vertices visited by the routes servicing nodes A and

B, respectively.

3.3. The promises concept

As will be later presented, the proposed local search method implements the lowest-cost

tentative moves of the examined neighborhood structures. This deterministic criterion of

moving to subsequent solutions causes cycling phenomena to occur. To avoid these

phenomena, we propose the concept of promises which filters out a subset of tentative

moves so that the overall local search method escapes from premature local optima. The

basic advantage of the proposed promises scheme is that unlike several metaheuristic

strategies (Tabu Search, Guided Local Search, and Simulated Annealing), it does not

require any parametric decisions and tuning. In other words, it has a flexible and robust

structure which does not depend on problem-specific characteristics.

The basic rationale of the promises concept is the following: when a local search move is

applied to a candidate solution S, some solution attributes are removed and some new

solution attributes are created to form a new solution S´. The eliminated attributes of S are

stored together with a cost tag equal to the objective function value of solution S.

Tentative moves that re-create these solution attributes at a higher cost than their cost tags

are disregarded during future neighborhood evaluations. Loosely speaking, as the local

search evolves, it gives a promise to every attribute that is eliminated from the candidate

solution. This promise is straightforward: “eliminated solution attributes are going to be

recreated in a solution of higher-quality than the one they were last contained in”. By

fulfilling these promises, the search is drastically diversified and driven towards

unexplored solution space regions. Another important algorithmic characteristic is that

the attribute cost tags do not monotonically increase: consider that an attribute A is

 12

removed from a candidate solution S, and is stored together with the solution cost z(S).

Then, it is recreated forming a solution S´ of cost z(S´) < z(S). If deteriorating structural

modifications are applied to solution attributes other than A, the search may reach to

solution S´´ (containing A) of cost z(S´´) > z(S). Then, if a local search operator is applied

to S´´ to eliminate A, the cost tag of A is set equal to z(S´´) which is greater than its

previous cost tag z(S). This backtracking behavior is crucial, as it eliminates the risk of

over-restricting the search by making promises which are very difficult to be fulfilled.

3.4. The proposed adaptation of the promises concept for the VRPB

For the proposed VRPB metaheuristic, we have selected complete routes to be the

solution attributes examined. This selection proved to be effective for the test problems

under consideration that contained rather low n / K ratios (few customers per route). On

the contrary, for routing problems which involve many customers per route, the

aforementioned selection would be inappropriate: cycling would be avoided, however the

search would not be able to intensify into promising solution space regions, as eliminated

routes would be very difficult to be re-created into a lower objective function solution. In

these cases, a different attribute selection (for instance sequences of consecutive vertices)

is required to achieve a balanced algorithmic behavior.

3.4.1. Making promises

When an intra-route move is applied to route rt which belongs to a VRPB solution of cost

z, route rt is associated with a cost label tagrt equal to z. Analogously, if an inter-route

move is applied to a pair of routes rt1 and rt2 contained in a VRPB solution of cost z, the

aforementioned routes rt1 and rt2 are associated with cost labels tagrt1 and tagrt2,

respectively, both of them equal to z.

3.4.2. Checking promises

A tentative intra-route move that leads to the creation of route rt that belongs to a VRPB

solution of cost z is considered, if and only if z < tagrt. Similarly, a tentative inter-route

move which leads to the generation of rt1 and rt2 that belong to a VRPB solution of cost

z is acceptable, if and only if z < tagrt1 and z < tagrt2.

 13

3.5 The overall metaheuristic framework

The proposed VRPB metaheuristic, entitled Route Promise Algorithm (RPA) is initiated

by the application of a construction heuristic algorithm, which is aimed at generating a

set of feasible VRPB routes which is going to be later improved by the core of the RPA

improvement method.

3.5.1. Obtaining an initial set of feasible VRPB routes

To obtain an initial VRPB solution, we apply a construction method based on the

Paessens (1988) heuristic for the VRP. In specific, the savings function used is: s(vi, vj) =

ci0 + c0j – g · cij + f · | ci0 - c0j |, where f and g are stochastically generated within [0, 1]

and (0, 3], respectively. To satisfy the special precedence constraints imposed by the

VRPB model which force backhauls to be serviced after linehaul customers, we set cij =

M, for every vi ∈ L and vj ∈ B, where M is greater than the most expensive of the arcs

contained in set A. Furthermore, to ensure that no route consists of backhauls only, we

consider that the cost c0j = M, for every vj ∈ B (Brandão, 2006). Regarding the carrying

load of the vehicles, insertion positions are only considered if they do not cause any

capacity constraint violation. When a (linehaul) customer is assigned to an empty route, a

new empty route is generated and becomes available for subsequent customers. The

construction method is terminated after every customer is assigned to a route.

3.5.2. Managing the fleet size

The route set generated by the construction method described in 3.5.1 satisfies both the

precedence and capacity constrains of VRPB. However, the size of the generated route

set Kcons is not necessarily equal to K. Three cases may arise: if Kcons = K, the proposed

improvement method is executed by setting the cost c00 (for every depot vertex

occurrence) equal to M, so that no route is eliminated during the search process. If Kcons

< K, (K - Kcons) new empty routes are generated and inserted into the VRPB route set.

Again, the cost c00 is set equal to M, so that customers are forced into the empty routes

and the final solutions consist of exactly K non-empty routes. Finally, if Kcons > K, we

set the cost c0j = c0j + M for every customer vertex vj ∈ L ∪ B. Having used the

aforementioned penalization policy, when the proposed RPA method initiates, it is

 14

primarily aimed at eliminating any depot-adjacent arcs, or in other words targets to

remove any unnecessary routes. If during the course of the RPA search, the non-empty

routes become equal to K, the penalized costs of depot-adjacent arcs are restored to their

original values, and the cost c00 (for every depot vertex occurrence) is set to M, so that no

further route is removed from the VRPB candidate solution during the search progress.

As will be later indicated in the Computational Results, for all test problems, the

proposed scheme of managing the total number of routes succeeded on producing

solutions consisting of exactly K non-empty VRPB routes.

3.5.3. The core of the proposed VRPB metaheuristic

After the initial set of VRPB routes is generated by the construction heuristic of 3.5.1, the

proposed RPA metaheuristic is applied. The SMD instances for the VLBE and 2-opt

neighborhood structures are generated and inserted into the Fibonacci heaps FHVLBE and

FH2-opt, respectively. To reduce the total number of generated SMD instances, so that the

algorithm is accelerated, we use the following strategy which filters out SMD instances

which are highly unlikely to represent cost improving local search moves (Tarantilis et al,

2008). With each vertex vi, we calculate the avgi cost equal to the average cost of every

arc adjacent to vi in the arc set A. Vertex vi is associated to its neighboring vertex set NVi

which contains every vertex vj such that cij < avgi. To create a (VLBE or 2-opt) SMD

instance with n1 = A and n2= B, one of the following must hold: A∈NVB and B∈NVA, A

or B is the depot vertex.

After all SMD instances have been generated and stored into the Fibonacci Heaps, the

iterative core of the RPA method initiates: At each iteration, the minimum-cost, feasible,

and admissible (in terms of the promises concept) VLBE and 2-opt SMD instances are

retrieved from the corresponding Fibonacci Heaps. The lowest cost of these two SMD

instances is applied to the current solution S, if it is cost improving. Otherwise, if both

SMD instances deteriorate the solution score, the VLBE SMD instance is selected to be

applied to S. Before the selected SMD instance is applied, the affected route(s) are stored

into a hashtable structure together with the cost of solution S. The selected SMD is

applied to obtain the new candidate solution S´, and the cost tags of the affected SMD

instances are updated according to the modified state of solution S´, following the update

 15

rules presented in 3.2. Then solution S is set equal to S´ for the subsequent RPA iteration.

The RPA method terminates when a certain time bound has been reached. The

pseudocode of the RPA metaheuristic is presented in Table 1.

Note that the cost matrix modifications presented in 3.5.1 and 3.5.2, for dealing with the

precedence and fixed-fleet requirements, are considered throughout the whole RPA

execution.

3.5.4. Computational complexity of the proposed algorithm

In this paragraph, we discuss on the computational complexity required by each of the

RPA steps, as they are presented in the pseudocode of Table 1.

In terms of the initialization phase contained in Lines 5 and 6, it is performed once in

O(μ2 n2), as the population of SMD instances is bounded by O(μ2 n2), and for each SMD

instance, the cost tag evaluation and Fibonacci Heap insertion is performed in constant

time.

To select the SMD instance to be implemented in the candidate solution (Lines 9 and 10),

the following procedure is iteratively executed until the particular SMD which is both

feasible and promise-keeping is identified: The minimum-cost SMD instance is retrieved

from the corresponding Fibonacci Heap in O(1), and its feasibility is checked in constant

time. To do so, we use the feasibility investigation approach also used for the Open VRP

(Zachariadis and Kiranoudis, 2009b). However, for the VRPB model which differentiates

between linehaul and backhaul customers, with every vertex vi, we make use of two

demand metrics, responsible for storing the total delivery and pick-up demands of all the

vi predecessors contained in its route. Finally, to check whether an SMD instance is

promise-keeping or not, the following operations are performed: the keys (string

representations) of the tentative routes are prepared in O(n_rt), where n_rt denotes the

number of customers assigned to these tentative routes. Then the cost tags are retrieved

from the hashtable, and the comparisons presented in 3.4.2 are executed in O(1). Thus,

the total computational complexity required for investigating the feasibility and promise-

keeping status of a tentative SMD instance is bounded by the complexity required for

generating the string representation of the tentative routes. Regarding the total number of

SMD instances required to be retrieved from the Fibonacci Heaps until the one to be

 16

implemented is identified, it depends on both the instance characteristics (hardness of the

capacity constraints), as well as the state of the candidate solution. Experimental runs

indicated however, that the computational time dedicated to the move selection process is

insignificant compared to the time required by the necessary cost updates (Line 19). The

complexity required for the move implementation and promise making operations (Lines

16-18) is O(n_rt), where n_rt is the number of customers assigned to the affected routes.

The most effort consuming task of a complete RPA iteration (Lines 8-22) is the cost tag

update process of Line 19: a detailed discussion on the number of the necessary updates

is given in 3.2. Each of these cost updates involves three steps: deleting the SMD

instance from the heap, evaluating the new cost tag, inserting the SMD instance back to

the heap. The deletion step requires O(log m), where m denotes the number of SMD

instances stored in the heap, while the cost tag evaluation and insertion steps are both

executed in O(1).

4. Computational Results

To assess the effectiveness of the proposed method, we have applied it to the VRPB

benchmark instances introduced by Goetschalckx and Jacobs-Blecha (1989). The RPA

solution approach was coded in Visual C# and executed on a single core of an Intel

T5500 (1.66GHz). The aforementioned benchmark problems and the solutions obtained

are available at http://users.ntua.gr/ezach/.

4.1 Benchmark Instances

To test the effectiveness of the proposed method, we have solved the VRPB instance set

generated and introduced by Goetschalckx and Jacobs-Blecha (1989). It consists of 62

problem instances in total. For all 62 instances, the depot is located at (12000, 16000),

whereas the x- and y- customer coordinates are stochastically taken from [0, 24000] and

[0, 32000], respectively. The customer demand is generated from a normal distribution

with a mean and standard deviation equal to 500 and 200 product units, respectively. The

details of the VRPB data set of Goetschalckx and Jacobs-Blecha (1989) are presented in

Table 2.

 17

To obtain the cost cij of an arc (vi, vj), researchers have followed two different schemes:

Under the first scheme - also used in our work - the Euclidean distance between a vertex

pair is calculated using double precision, and then it is multiplied by 10. The product is

then rounded to the nearest integer to obtain the arc cost. For this scheme of arc cost

evaluation, the cost of the final solution is divided by 10 and then rounded to the nearest

integer value. Under the second scheme, the cost matrix is obtained as the Euclidean

distances without rounding but the solution score is rounded to two decimal places. These

two distinct ways of obtaining the VRPB cost matrix make algorithmic comparison a

little problematic. However, the deviation between the solution scores evaluated with the

use of the two above-mentioned schemes is rather small, so that the obtained solution

scores can be securely compared.

4.2 Parameter Setting

As seen from the detailed presentation of the proposed metaheuristic, the promises

concept which constitutes the core of the search strategy does not contain any parameters.

Thus, complex parameter tuning experiments were avoided before executing the RPA

method. The only parameter that had to be fixed is the bone length μ which determines

the number of vertices in the sequences considered by the VLBE local search operator.

Obviously, the setting of μ depends on the number of customers per route which is an

instance-specific characteristic. For the 62 VRPB test problems, the n / K ratio varies

from 3.1 to 21.4, averaging at 11.9. Following the computational experience of the VLBE

operator applied to OVRP instances of similar customer per route ratios (Zachariadis and

Kiranoudis, 2009b), we set μ = 6, for problems with n / K ≥ 6. For the other problems

(with n / K < 6), we set μ = ⎡ ⎤Kn / .

Regarding the termination condition used for a single RPA execution, it was set to the

completion of 300 CPU seconds for problems with n ≥ 50, and 120 CPU seconds for

instances involving up to 50 vertices.

4.3 Computational Results on the VRPB instances

To test the effectiveness of the robustness of the RPA method, we executed it 10 times to

solve each of the 62 VRPB test problems. Note that although the RPA search is

 18

deterministic, the final solution was not necessarily the same for all 10 executions,

because each run involved a different initial VRPB solution (the f and g savings

parameters of the construction heuristic are randomly generated). The results obtained are

summarized in Table 3. RPA exhibited a rather robust behavior, as for 23 test instances,

the same final solution was obtained for all ten algorithmic executions. The percent gap

between the best and the average solution score over the ten runs obtained for each

VRPB instance varied from 0.000% and 1.586%, averaging at a satisfactory 0.378%. In

terms of the fixed fleet vehicle requirement, the proposed methodology consistently

generated VRPB solutions of K non-empty routes, for every test problem, and for all ten

runs. Regarding the computational time elapsed before the overall best solutions were

generated, it varies from 2 seconds for the 25-customer instances A2 and A3 to 172

seconds for the 150-customer problem N4.

To compare the RPA performance against that of the most effective VRPB metaheuristics

previously published, we provide Table 4. In specific the best solution values obtained by

the RPA method are presented together with those obtained by the Tabu Search of

Brandão (TS) (2006), the LNS heuristic of Ropke and Pisinger (LNS) (2006), and the

Multi Ant Colony System (MACS) proposed by Gajpal and Abad (2009). Note that for

the three aforementioned methods, we provide the solution scores obtained with their

standard parameter setting, so that a fair comparison is conducted. For the TS and LNS

methods, we present the K-tree_r and 6R-no learning algorithmic versions, respectively,

which, on average, yielded the best results. The solution scores presented for the TS, LNS

and MACS approaches are the best ones obtained after five, ten and eight algorithmic

runs, respectively. To facilitate comparisons, we have rounded the reported results to

integer values, because researchers have used different schemes for obtaining the VRPB

cost matrix (see 4.1).

The computational time reported for the LNS and MACS methods is the average time

required for a complete run. For the TS method, it is the average time required by the

runs which achieved the best solutions. On the contrary, for the proposed RPA

metaheuristic, we provide the average (over the 62 problems) CPU time elapsed, when

the best solutions were encountered during the best of the ten RPA executions (column

tbst of Table 2).

 19

As seen from Table 3, the RPA method consistently matched the best-known solution

scores for all 62 benchmark instances. In terms of the best reported standard algorithmic

scores, the proposed metaheuristic reached higher-quality solutions for six test problems.

Regarding the computational time required by the compared algorithms, we do not intend

to make a detailed comparison, as the algorithmic speed depends on various factors

which cannot be securely compared: processors, programming languages, compilers,

memory frequencies, programming skills, etc. Furthermore, the RPA method involved a

fixed time bound, whereas the TS, LNS and MACS approaches were executed for a fixed

number of iterations.

At this point, we should note that for the five test problems (F1, F2, F3, F4, and L1)

marked with an asterisk in Table 2, two discrepant instance versions seem to have been

studied in the VRPB literature: in specific, for the four problems of group F, the website

of Prof. Marc Goetschalckx provides two different instance sources. The first one

suggests that the demand of the linehaul customer lying at (x, y) = (5103, 11065) is 101

(used for obtaining the RPA results reported in Table 3), whereas the second one sets this

customer demand equal to 1013 product units. For problem L1, although both instance

sources set the vehicle capacity equal to 4000, the works of Brandão (2006) and Gajpal

and Abad (2009) suggest that the capacity is equal to 4400 product units (used for

obtaining the RPA results in Table 3). To test the RPA method for both instance versions,

we solved the F1, F2, F3, F4, and L1 VRPB instances, setting the demand of the F-group

customer at (x, y) = (5103, 11065) equal to 1013, and the vehicle capacity of instance L1

equal to 4000. As seen from the results, all of the best solutions scores exactly match the

ones obtained by the LNS method (small deviations are due to different rounding

schemes used), implying that Ropke and Pisinger (2006) have considered the instance

versions presented in Table 4.

5. Conclusions

In the present paper we have proposed a local-search algorithm for the VRPB. The

proposed metaheuristic method has the ability of efficiently examining very rich solution

neighborhoods by statically encoding local search moves using the SMD representation

(Zachariadis and Kiranoudis, 2009a). To avoid cycling phenomena and induce

 20

diversification, we introduce the concept of promises which is a parameter-free

mechanism for coordinating the solution space exploration. Briefly, the promises concept

can be summarized as follows: solution attributes which are eliminated by a local search

move applied to a solution of cost z, can only be recreated by a local search move that

leads to a solution of cost z′ < z. The proposed methodology was applied to 62 well-

known VRPB benchmark instances, exhibiting fine performance. In specific, it managed

to match the best-known solution scores for all 62 test problems.

Regarding future research directions, the promises concept can be tested to combinatorial

optimisation problems taking under consideration various solution attributes. These tests

can be easily performed, as the promises mechanism does not require time-consuming

parametric tuning experiments.

References

Brandão J (2006). A new tabu search algorithm for the vehicle routing problem with

backhauls. Eur J Opl Res 173: 540–555

Clarke G and Wright J W (1964). Scheduling of vehicle from a central depot to a number

of delivery points. Opns Res 1964; 12:568 –581.

Deif I and Bodin L (1984). Extension of the Clarke and Wright algorithm for solving the

vehicle routing problem with backhauling. In Kidder A (ed). Proceedings of the Babson

Conference on Software Uses in Transportation and Logistic Management 1984, pp 75–

96.

Fisher M (1994). Optimal solution of vehicle routing problems using minimum k-trees.

Opns Res 42: 626–642.

Fisher M L and Jaikumar R (1981). A generalised assignment heuristic for vehicle

routing. Networks 11: 109 –124.

Goetschalckx M and Jacobs-Blecha C (1989). The vehicle routing problem with

Backhauls. Eur J Opl Res 42: 39-51.

Goetschalckx M and Jacobs-Blecha C (1993). The vehicle routing problem with

backhauls: properties and solution algorithms. Technical Report MHRC-TR-88-13,

Georgia Institute of Technology.

 21

Mingozzi A, Giorgi S, and Baldacci R (1999). An exact method for the vehicle routing

problem with backhauls. Transportation Sci 33: 315–329.

Osman I H and Wassan N A (2002). A reactive tabu search meta-heuristic for the vehicle

routing problem with back-hauls. J Sched 5: 263–285.

Paessens H (1988). The savings algorithm for the vehicle routing problem. Eur J Opl Res

34: 336–344.

Ropke S and Pisinger D (2006). A unified heuristic for a large class of vehicle routing

problems with backhauls. Eur J Opl Res 171: 750-775.

Shaw P (1998). Using constraint programming and local search methods to solve vehicle

routing problems. Proceedings CP-98 (Fourth International Conference on Principles and

Practice of Constraint Programming).

Tarantilis C D, Zachariadis E E and Kiranoudis C T (2008). A Hybrid Guided Local

Search for the Vehicle-Routing Problem with Intermediate Replenishment Facilities.

INFORMS J Comput 20: 154-168.

Toth P and Vigo D (1996). A heuristic algorithm for the vehicle routing problem with

backhauls. In: Bianco L and Toth P (eds). Advanced Methods in Transportation Analysis

1996. Springer, pp. 585–608.

Toth P and Vigo D (1997). An exact algorithm for the vehicle routing problem with

backhauls. Transportation Sci 31: 372–385.

Toth P and Vigo D (1999). A heuristic algorithm for the symmetric and asymmetric

vehicle routing problem with backhauls. Eur J Opl Res 113: 528 –543.

Wassan N A (2007). Reactive tabu adaptive memory programming search for the vehicle

routing problem with backhauls. J Opl Res Soc 58: 1630–1641.

Yano C, Chan T, Richter L, Cutler T, Murty K and McGettigan D (1987). Vehicle

routing at quality stores. Interfaces 17: 52–63.

Yuvraj G and Abad P L (2009). Multi-ant colony system (MACS) for a vehicle routing

problem with backhauls. Eur J Opl Res 196: 102-117.

Zachariadis E E and Kiranoudis C T (2009a). A Strategy for Reducing the Computational

Complexity of Local Search-Based Methods, and its Application to the Vehicle Routing

Problem. Technical Report. National Technical University of Athens.

(http://users.ntua.gr/ezach/).

 22

Zachariadis E E and Kiranoudis C T (2009b). An Open Vehicle Routing Problem

metaheuristic for examining wide solution neighborhoods. Technical Report. National

Technical University of Athens. (http://users.ntua.gr/ezach/).

 23

TABLES

Table 1. Pseudocode of the proposed RPS metaheuristic

 VRPB Solution RPS (VRPB Solution S0)
1 Fibonacci Heap FHVLBE, FH2-OPT
2 VRPB Solution S, S´, S*
3 HashTable RoutePromises
4 SMD app, VLBE SMD vlbe, 2-opt SMD 2opt

 -- initialization phase

5 generate every VLBE SMD instances according to S0 and store them in FHVLBE
6 generate every 2-opt SMD instances according to S0 and store them in FH2-opt
7 set S = S0, S* = S0

 -- improvement phase

8 while (termination condition = false)
 -- local search move selection

9 vlbe = lowest-cost, feasible, and promise-keeping VLBE SMD instance stored in FHVLBE
10 2opt = lowest-cost, feasible, and promise keeping 2-opt SMD instance stored in FH2-OPT
11 if (z(S0) + vlbecst < z(S*) OR z(S0) + 2optcst < z(S*))
12 if (vlbecst < 2optcst) app = vlbe else app = 2opt end if
13 else
14 app = vlbe
15 end if

 -- local search move application

16 let rt1 (and rt2) denote the route (routes) affected by the move encoded by SMD app
17 store the rt1 (rt2) route key (keys) together with the value z(S) into RoutePromises
18 implement the SMD app to S to obtain S´
19 apply the update rules (3.2) for the affected VLBE and 2-opt SMD instances according to S´
20 set S = S´

21 if (z(S) < z(S*)) S* = S end if
22 end while
23 return S*

 24

Table 2. VRPB benchmark instances characteristics
Instance n line back K Q cpr Instance n line back K Q cpr
A1 26 20 5 8 1550 3.1 H4 69 45 23 5 6100 13.6
A2 26 20 5 5 2550 5.0 H5 69 45 23 4 7100 17.0
A3 26 20 5 4 4050 6.3 H6 69 45 23 5 7100 13.6
A4 26 20 5 3 4050 8.3 I1 91 45 45 10 3000 9.0
B1 31 20 10 7 1600 4.3 I2 91 45 45 7 4000 12.9
B2 31 20 10 5 2600 6.0 I3 91 45 45 5 5700 18.0
B3 31 20 10 3 4000 10.0 I4 91 45 45 6 5700 15.0
C1 41 20 20 7 1800 5.7 I5 91 45 45 7 5700 12.9
C2 41 20 20 5 2600 8.0 J1 95 75 19 10 4400 9.4
C3 41 20 20 5 4150 8.0 J2 95 75 19 8 5600 11.8
C4 41 20 20 4 4150 10.0 J3 95 75 19 6 8200 15.7
D1 39 30 8 12 1700 3.2 J4 95 75 19 7 6600 13.4
D2 39 30 8 11 1700 3.5 K1 114 75 38 10 4100 11.3
D3 39 30 8 7 2750 5.4 K2 114 75 38 8 5200 14.1
D4 39 30 8 5 4075 7.6 K3 114 75 38 9 5200 12.6
E1 46 30 15 7 2650 6.4 K4 114 75 38 7 6200 16.1
E2 46 30 15 4 4300 11.3 L1 151 75 75 10 4400 15.0
E3 46 30 15 4 5225 11.3 L2 151 75 75 8 5000 18.8
F1 61 30 30 6 3000 10.0 L3 151 75 75 9 5000 16.7
F2 61 30 30 7 3000 8.6 L4 151 75 75 7 6000 21.4
F3 61 30 30 5 4400 12.0 L5 151 75 75 8 6000 18.8
F4 61 30 30 4 5500 15.0 M1 126 100 25 11 5200 11.4
G1 58 45 12 10 2700 5.7 M2 126 100 25 10 5200 12.5
G2 58 45 12 6 4300 9.5 M3 126 100 25 9 6200 13.9
G3 58 45 12 5 5300 11.4 M4 126 100 25 7 8000 17.9
G4 58 45 12 6 5300 9.5 N1 151 100 50 11 5700 13.6
G5 58 45 12 5 6400 11.4 N2 151 100 50 10 5700 15.0
G6 58 45 12 4 8000 14.3 N3 151 100 50 9 6600 16.7
H1 69 45 23 6 4000 11.3 N4 151 100 50 10 6600 15.0
H2 69 45 23 5 5100 13.6 N5 151 100 50 7 8500 21.4
H3 69 45 23 4 6100 17.0 N6 151 100 50 8 8500 18.8
n: Number of depot and customer vertices, line: number of linehaul customers, back: number of backhaul
customers, K: number of vehicles, Q: vehicle capacity, cpr: customers per route (= n-1/K)

 25

Table 3. RPA results for the Goetschalckx & Jacobs-Blecha VRPB benchmark instances
 avg bst
Instance n K zavg Kavg tavg zbst Kbst tbst %gap tot_t
A1 26 8 229,886 8.0 5 229,886 8 4 0.000 120
A2 26 5 180,119 5.0 3 180,119 5 2 0.000 120
A3 26 4 163,405 4.0 2 163,405 4 2 0.000 120
A4 26 3 155,796 3.0 3 155,796 3 3 0.000 120
B1 31 7 239,080 7.0 14 239,080 7 14 0.000 120
B2 31 5 198,048 5.0 12 198,048 5 11 0.000 120
B3 31 3 169,372 3.0 5 169,372 3 3 0.000 120
C1 41 7 250,556 7.0 22 250,556 7 19 0.000 120
C2 41 5 215,020 5.0 20 215,020 5 18 0.000 120
C3 41 5 199,346 5.0 12 199,346 5 10 0.000 120
C4 41 4 195,366 4.0 9 195,366 4 8 0.000 120
D1 39 12 322,530 12.0 18 322,530 12 10 0.000 120
D2 39 11 316,708 11.0 15 316,708 11 8 0.000 120
D3 39 7 239,479 7.0 10 239,479 7 8 0.000 120
D4 39 5 205,832 5.0 11 205,832 5 8 0.000 120
E1 46 7 238,880 7.0 27 238,880 7 26 0.000 120
E2 46 4 212,263 4.0 20 212,263 4 12 0.000 120
E3 46 4 206,659 4.0 22 206,659 4 14 0.000 120
F1 61 6 263,274 6.0 34 263,173 6 22 0.038 300
F2 61 7 265,655 7.0 36 265,213 7 30 0.166 300
F3 61 5 241,120 5.0 28 241,120 5 22 0.000 300
F4 61 4 234,604 4.0 32 233,861 4 26 0.317 300
G1 58 10 306,980 10.0 38 306,306 10 24 0.220 300
G2 58 6 245,441 6.0 32 245,441 6 23 0.000 300
G3 58 5 229,968 5.0 31 229,507 5 34 0.201 300
G4 58 6 232,521 6.0 38 232,521 6 32 0.000 300
G5 58 5 222,872 5.0 32 221,730 5 29 0.512 300
G6 58 4 214,381 4.0 25 213,457 4 32 0.431 300
H1 69 6 270,056 6.0 38 268,933 6 33 0.416 300
H2 69 5 253,910 5.0 35 253,365 5 30 0.215 300
H3 69 4 247,449 4.0 36 247,449 4 22 0.000 300
H4 69 5 251,094 5.0 40 250,221 5 33 0.348 300
H5 69 4 246,121 4.0 35 246,121 4 19 0.000 300
H6 69 5 250,060 5.0 42 249,135 5 44 0.370 300
I1 91 10 351,082 10.0 67 350,246 10 51 0.238 300
I2 91 7 309,979 7.0 61 309,944 7 57 0.011 300
I3 91 5 294,790 5.0 55 294,507 5 62 0.096 300
I4 91 6 297,910 6.0 66 295,988 6 50 0.645 300
I5 91 7 303,485 7.0 72 301,236 7 66 0.741 300
J1 95 10 335,780 10.0 97 335,006 10 83 0.231 300
J2 95 8 312,509 8.0 90 310,417 8 96 0.669 300
J3 95 6 280,433 6.0 78 279,219 6 70 0.433 300
J4 95 7 298,322 7.0 88 296,533 7 82 0.600 300
K1 114 10 397,382 10.0 101 394,071 10 117 0.833 300
K2 114 8 365,458 8.0 82 362,130 8 72 0.911 300
K3 114 9 369,436 9.0 90 365,694 9 102 1.013 300
K4 114 7 349,717 7.0 87 348,950 7 79 0.219 300
L1 151 10 421,683 10.0 165 417,896 10 142 0.898 300
L2 151 8 405,199 8.0 136 401,228 8 121 0.980 300
L3 151 9 405,756 9.0 173 402,678 9 167 0.759 300
L4 151 7 388,142 7.0 140 384,636 7 129 0.903 300
L5 151 8 390,458 8.0 154 387,565 8 130 0.741 300
M1 126 11 400,499 11.0 132 398,593 11 144 0.476 300
M2 126 10 401,914 10.0 120 396,917 10 106 1.243 300
M3 126 9 378,073 9.0 106 375,696 9 95 0.629 300
M4 126 7 352,030 7.0 94 348,140 7 88 1.105 300
N1 151 11 411,722 11.0 192 408,101 11 152 0.880 300
N2 151 10 412,311 10.0 169 408,066 10 138 1.029 300
N3 151 9 398,760 9.0 144 394,338 9 152 1.109 300
N4 151 10 396,159 10.0 196 394,788 10 172 0.346 300
N5 151 7 376,895 7.0 152 373,476 7 161 0.907 300
N6 151 8 379,784 8.0 170 373,759 8 145 1.586 300
avg: average values over the ten RPA executions, bst: values for the run which yielded the highest quality solution, z:
objective function value, t: time elapsed when the best solution was generated through the search, tot_t: total time
required for one complete RPA execution, %gap: percent gap between the average and the best solution scores
obtained (= 100 · (zavg - zbst) / zavg)

 26

Table 4. Comparative results of the best performing metaheuristic methods for the VRPB
Instance TS LNS MACS BAS %gapBAS RPA BKS
A1 229,886 229,886 229,886 229,886 0.000 229,886 229,886
A2 180,119 180,119 180,119 180,119 0.000 180,119 180,119
A3 163,405 163,405 163,405 163,405 0.000 163,405 163,405
A4 155,796 155,796 155,796 155,796 0.000 155,796 155,796
B1 239,080 239,080 239,080 239,080 0.000 239,080 239,080
B2 198,048 198,048 198,048 198,048 0.000 198,048 198,048
B3 169,372 169,372 169,372 169,372 0.000 169,372 169,372
C1 250,557 250,557 250,557 250,557 0.000 250,556 250,556
C2 215,020 215,020 215,020 215,020 0.000 215,020 215,020
C3 199,346 199,346 199,346 199,346 0.000 199,346 199,346
C4 195,366 195,367 195,367 195,366 0.000 195,366 195,366
D1 322,530 322,530 322,530 322,530 0.000 322,530 322,530
D2 316,709 316,709 316,709 316,709 0.000 316,708 316,708
D3 239,479 239,479 239,479 239,479 0.000 239,479 239,479
D4 205,832 205,832 205,832 205,832 0.000 205,832 205,832
E1 238,880 238,880 238,880 238,880 0.000 238,880 238,880
E2 212,263 212,263 212,263 212,263 0.000 212,263 212,263
E3 206,659 206,659 206,659 206,659 0.000 206,659 206,659
F1* 263,173 267,060 263,174 263,173 0.000 263,173 263,173
F2* 265,493 265,214 265,214 265,214 0.000 265,213 265,213
F3* 241,120 241,970 241,121 241,120 0.000 241,120 241,120
F4* 233,861 235,175 233,862 233,861 0.000 233,861 233,861
G1 306,306 306,305 306,537 306,305 0.000 306,306 306,305
G2 245,441 245,441 245,441 245,441 0.000 245,441 245,441
G3 229,507 229,507 229,507 229,507 0.000 229,507 229,507
G4 232,521 232,521 232,521 232,521 0.000 232,521 232,521
G5 221,730 221,730 221,730 221,730 0.000 221,730 221,730
G6 213,457 213,457 213,457 213,457 0.000 213,457 213,457
H1 268,933 268,933 268,933 268,933 0.000 268,933 268,933
H2 253,365 253,366 253,366 253,365 0.000 253,365 253,365
H3 247,449 247,449 247,449 247,449 0.000 247,449 247,449
H4 250,221 250,221 250,221 250,221 0.000 250,221 250,221
H5 246,121 246,121 246,121 246,121 0.000 246,121 246,121
H6 249,135 249,135 249,135 249,135 0.000 249,135 249,135
I1 350,435 350,245 350,245 350,245 0.000 350,246 350,245
I2 309,944 309,944 309,944 309,944 0.000 309,944 309,944
I3 294,507 294,507 294,507 294,507 0.000 294,507 294,507
I4 295,988 295,988 295,988 295,988 0.000 295,988 295,988
I5 301,236 301,236 301,236 301,236 0.000 301,236 301,236
J1 335,007 335,007 335,007 335,007 0.000 335,006 335,006
J2 310,793 310,417 310,417 310,417 0.000 310,417 310,417
J3 279,306 279,219 279,219 279,219 0.000 279,219 279,219
J4 296,860 296,533 296,533 296,533 0.000 296,533 296,533
K1 394,974 394,376 395,076 394,376 0.077 394,071 394,071
K2 363,829 362,130 362,130 362,130 0.000 362,130 362,130
K3 366,246 365,694 365,694 365,694 0.000 365,694 365,694
K4 351,345 348,949 349,870 348,949 0.000 348,950 348,949
L1* 426,401 426,013 417,922 417,922 0.006 417,896 417,896
L2 402,152 401,229 401,248 401,229 0.000 401,228 401,228
L3 404,391 402,678 402,678 402,678 0.000 402,678 402,678
L4 384,999 384,636 384,636 384,636 0.000 384,636 384,636
L5 389,044 387,565 387,565 387,565 0.000 387,565 387,565
M1 400,384 398,914 398,730 398,730 0.034 398,593 398,593
M2 398,924 399,336 397,324 397,324 0.102 396,917 396,917
M3 377,433 377,212 377,329 377,212 0.402 375,696 375,696
M4 349,091 348,418 348,418 348,418 0.080 348,140 348,140
N1 409,531 410,789 408,101 408,101 0.000 408,101 408,101
N2 408,287 409,385 408,065 408,065 0.000 408,066 408,065
N3 394,338 394,338 394,338 394,338 0.000 394,338 394,338
N4 399,029 398,965 394,788 394,788 0.000 394,788 394,788
N5 376,522 373,476 373,723 373,476 0.000 373,476 373,476
N6 374,774 373,759 373,759 373,759 0.000 373,759 373,759
average
time(sec)

13.6 1.18 1.13

0.98

TS: The K-tree_r Tabu Search version (Brandão, 2006) - Pentium III 500 MHz, C, LNS: The 6R-no learning version of the LNS
metaheuristic (Ropke and Pisinger, 2006) - Pentium IV 1.5 GHz, C++, MACS: The metaheuristic proposed by Gajpal and Abad (2009)
- Intel Xeon 2.4 GHz, C. RPA: The proposed metaheuristic - single core of Intel T5500 1.66 GHz, Visual C#. BAS: Best algorithmic
solution among TS, LNS and MACS. BKS: The best known solution for each problem, %gapBAS: The percent gap between the BAS
and the RPA solution scores (= 100 · (BAS - RPA) / BAS). * Ropke and Pisinger (2006) appear to have considered some different
instance characteristics (see Table 4). Any slight discrepancies are due to different rounding schemes.

 27

Table 4. Solution scores for five VRPB instances with different characteristics
Instance LNS RPA Instance LNS RPA
F1 267,060 267,060 L1 426,013 426,014
F2 265,214 265,213
F3 241,970 241,969
F4 235,175 235,175
LNS: The 6R-no learning version of the LNS metaheuristic (Ropke and Pisinger, 2006), RPA: The proposed metaheuristic.
For the F group of instances, the demand of customer lying at (x, y) = (5103, 11065) is 1013. For the L1 instance the vehicle capacity
is 4000 product units. Any slight discrepancies are due to different rounding schemes.

 28

FIGURES

E F G H00 00

A B C D0 0

Initial Solution VLBE SMD
Applied

n1 = A, n1_len = 2
n2 = E, n2_len = 2

n1 = C, n1_len = 0
n2 = G, n2_len = 1

n1 = A, n1_len = 1
n2 = 00, n2_len = 2

E B C H00 00

A F G D0 0

E F G00

A B C0

Transformed Solutions

00

H D 0

B G H00

A E F0

00

C D 0

Depot Vertex Linehaul Vertex Backhaul Vertex

Fig 1. Applying a VLBE SMD to a VRPB solution

Initial Solution 2-opt SMD
Applied

n1 = B
n2 = F

n1 = 0
n2 = D

n1 = D
n2 = G

F C D E00 0

A B G H0 00

F G H00

D C B0

Transformed Solutions

00

A E 0

F G E00

A B C0

0

D H 00

Depot Vertex Linehaul Vertex Backhaul Vertex

F G H00

A B C0

00

D E 0

Fig 2. Applying a 2-opt SMD to a VRPB solution

