
 1

An Open Vehicle Routing Problem metaheuristic for 

examining wide solution neighborhoods 
 

Emmanouil E. Zachariadis, Chris T. Kiranoudis 
Department of Process Analysis and Plant Design, National Technical University of Athens, 

Athens, Greece, {ezach@mail.ntua.gr, kyr@chemeng.ntua.gr}  

 

Abstract 

This paper examines a practical transportation model known as the Open Vehicle Routing 

Problem (OVRP). OVRP aims at designing the minimum cost set of routes originating 

from a central depot for satisfying customer demand. Vehicles do not need to return to 

the depot after completing their delivery services. In methodological terms, we propose 

an innovative local search metaheuristic which examines wide solution neighborhoods. 

To explore these wide neighborhoods within reasonable computational effort, local 

search moves are statically encoded into Static Move Descriptor (SMD) entities. When a 

local search operator is applied to the candidate solution, only a limited solution part is 

modified. Therefore, to explore the next neighborhood only the tentative moves that refer 

to this affected solution part have to be re-evaluated, or in other words, only a subset of 

the SMD instances has to be updated, according to the modified solution state. The 

conducted search is efficiently performed by storing the SMD entities in Fibonacci 

Heaps, which are special priority queue structures offering fast minimum retrievals, 

insertions and deletions. To diversify the search, we employ a tabu scheme and a 

penalization strategy, both compatible with the SMD design. The proposed metaheuristic 

was tested on well-known OVRP instances, for two objective configurations. The first 

one primarily aims at minimizing the number of routes and secondarily minimizing the 

routing cost, whereas the second one only aims at minimizing the cost of the generated 

route set. For both configurations, it managed to produce fine results improving several 

previously best-known solutions. 

Keywords: Open Vehicle Routing, Metaheuristics, Tabu Search, Computational 

Complexity 



 2

1. Introduction 

The distribution of goods is an important operational process which lies at the heart of 

modern business activity, and constitutes a significant part of the overall running costs of 

a company. For this reason, great research interest has been focused on the development 

of distribution systems, and on the design of solution approaches for effectively 

managing real-life logistics operations. 

The most central and widely studied transportation model is the Capacitated Vehicle 

Routing Problem (CVRP), which as Li et al. [1] suggest is easy to state and difficult to 

solve. In specific, the CVRP model consists of a customer population with deterministic 

demands, and a central depot which acts as the base of a homogeneous fleet of vehicles. 

The aim of the CVRP is to design a set of Hamiltonian cycles (vehicle routes) starting 

and terminating at the central depot, such that the demand of customers is totally 

satisfied, each customer is visited once by a single vehicle, the total demand of the 

customers assigned to a route does not exceed vehicle capacity, and the overall travel cost 

of the designed route set is minimized. 

In cases where industries do not own a vehicle fleet, or their private fleet is 

inadequate for fully satisfying customer demand, distribution services (or at least a part of 

them) are either entrusted to external contractors, or assigned to a hired vehicle fleet. In 

these cases, vehicles are not required to return to the central depot after their deliveries 

have been satisfied. The above described distribution model is referred to as the Open 

Vehicle Routing Problem (OVRP). It can be seen as a slight variant of the standard 

CVRP model by simply ignoring the return trip of the vehicles to the central depot. 

Therefore, the goal of the OVRP is to design a set of Hamiltonian paths (open routes) for 

satisfying customer demand. In terms of the OVRP objective, most researchers assume 

that the cost for hiring an additional vehicle far surpasses any travel cost savings achieved 

by this additional route [2, 3]; therefore their primary target is to minimize the number of 

required vehicles and secondarily minimize the total distance traveled. Although the 

minimization of routes is the most widely considered primary OVRP objective, 

researchers have also solved the OVRP aiming at solely minimizing the total distance 

traveled without taking into account the required fleet size. 



 3

In graph theoretic terms, OVRP is defined on a graph G = (V, A), where V = {v0, v1, 

…, vn} is the vertex set and A = {(vi, vj): vi, vj∈V, i≠ j, j≠ 0} is the arc set. Vertex v0 

represents the central depot where a fleet of vehicles is located, each of them with 

maximum carrying load equal to Q. The remaining n vertices of V \ {v0} represent the 

customer set. With each customer vertex is associated a non-negative known demand qi, 

whereas with each arc (vi, vj) ∈  A is associated a cost cij which corresponds to the cost 

(travel time, distance) for transiting from vi to vj. As with most previous OVRP 

approaches, we consider that the cost matrix is obtained by calculating the Euclidean 

distances between vertex pairs, so that cij = cji (0 < i, j ≤  n, i≠ j). The primary goal of the 

problem is to design the set of Hamiltonian paths (open routes) so that: (a) the size of the 

path set is minimized (minimization of vehicles), whereas the secondary objective is to 

(b) minimize the total cost of the generated paths. The following constraints must be 

satisfied: (c) every path originates from the central depot v0, (d) each customer vertex is 

assigned to a single path, and (e) the total demand of the customer set assigned to a single 

path does not exceed the maximum carrying load Q of the vehicles (capacity constraint). 

Note that if the minimization of the fleet size is not considered to be the primary aim of 

the OVRP, only objective (b) is taken into account. 

Our interest in the OVRP is motivated both by its theoretical and practical 

importance. In theoretical terms, the OVRP is an NP-hard combinatorial optimization 

problem: solving the OVRP to optimality implies that the best Hamiltonian path is 

obtained for each cluster of customers assigned to a vehicle. Since finding the best 

Hamiltonian path for a customer set is NP-hard, so is the OVRP [4]. From the 

commercial perspective, numerous real-world distribution activities fit into the OVRP 

framework. One of them is the home delivery of packages and newspapers [5]. Some 

additional OVRP example applications are the generation of airplane delivery routes [6], 

as well as the rail freight service [7], and school bus planning [8]. 

The aim of this paper is to present an innovative OVRP metaheuristic solution 

approach. In specific, the proposed local search algorithm, instead of applying simple 

customer swaps and relocations, has the ability to perform moves that involve larger 

customer sequences. The evaluation of these wider solution neighborhoods would require 

impractical computational time if not efficiently designed. Towards this aim, we make 



 4

use of the Static Move Descriptor concept [9], so as to reduce the complexity of applying 

these rich local search operators. To diversify the search, we use a tabu strategy together 

with a simple penalization policy both of them compatible with the proposed local search 

move encoding. Our algorithm was tested on well-known OVRP benchmark instances 

derived from the literature. It managed to produce fine quality results improving several 

previously reported best solutions. 

The remainder of the present paper is as follows: Section 2 provides a literature 

review on published OVRP solution methodologies, followed by Section 3 which 

describes in detail our algorithmic development. Section 4 presents the computational 

results obtained by the proposed metaheuristic method. Finally, Section 5 concludes the 

paper. 

 

2. Literature Review 

As mentioned in the introductory Section of the article, the OVRP is an NP-hard 

combinatorial optimization problem; therefore to deal with OVRP instances of practical 

size, researchers have focused their interest on the development of effective heuristic and 

metaheuristic solution approaches. 

The article of Schrage [10] which classifies the features encountered in practical 

routing problems was the first to distinguish between closed trips traveled by private 

vehicles, and open trips assigned to common carrier vehicles. The first solution approach 

for the OVRP is due to Bodin et al. [6]. Their paper deals with a practical routing 

problem faced by the airplane fleet of FedEx. In specific, airplanes layover at the end of 

their delivery routes, to later perform their pick-up trips. These delivery routes can be 

seen as an application of the OVRP, in the sense that airplanes do not return to the depot. 

Their solution approach is a variant of the Clarke & Wright (1964) algorithm adapted to 

the examined problem. Sariklis and Powell [11] were the first to formally introduce the 

OVRP model. To solve the OVRP, they present a heuristic method based on a minimum 

spanning tree combined with a penalization procedure. Brandão [4] presents a tabu search 

procedure which makes use of customer insertion and swap local search operators. 

Tarantilis et al. [12, 13] have published two studies on the OVRP, both belonging to the 

threshold accepting category of algorithms. The former work [12] proposes an annealing-



 5

based method that utilizes a backtracking policy of the threshold value when no 

acceptances of feasible solutions occur during the search process, whereas the latter study 

[13] presents a single-parameter metaheuristic method that exploits a list of threshold 

values to intelligently guide an advanced local search method. Tarantilis et al. [14] have 

also published an adaptive memory approach for the OVRP. Their approach involves a 

pool of routes that belong to the highest quality solutions encountered through the search 

process. Sequences of customers are extracted from the adaptive memory to form new 

partial solutions later to be improved by a tabu search procedure. The routes of these 

improved solutions are used to update the adaptive memory contents, forming in this way 

a cyclic algorithm. Note that the aforementioned three works aim at solely minimizing 

the total distance of the open routes, disregarding the required fleet size. Fu et al. [2, 3] 

propose a metaheuristic framework which constructs an initial OVRP solution via a 

farthest-first heuristic. This solution is then improved by a tabu search method which 

employs the well-known relocation, swap, and 2-opt operators. Li et al. [15] have dealt 

with the OVRP by developing a local search metaheuristic algorithm which uses the 

concept of record-to-record travel [16]. In their work, they introduce eight large-scale 

OVRP instances which have served as a comparison basis for the effectiveness of recent 

OVRP methodologies. These recent works include the general routing heuristic of 

Pisinger and Ropke [17] which has been effectively applied to the OVRP variant. Their 

approach involves the application of the adaptive large neighborhood search framework. 

Derigs and Reuter [18] have proposed a parameter-free method based on the attribute 

based hill climber concept [19]. The work of Repoussis et al. [20] proposes an 

evolutionary algorithm for the OVRP. The parent solution population creates an 

intermediate population of offspring solutions via mutation. These offspring solutions are 

improved by a hybridization of tabu search [21] and guided local search [22], to update 

the solution population. Fleszar et al. [23] propose a variable neighborhood search [24] 

approach which examines neighborhood structures defined by route segment reversals 

and exchanges. Finally, Li et al. [25] present a hybrid metaheuristic based on ant colony 

optimization and tabu search. The solution obtained by the aforementioned solution 

development is further improved via a post-optimization tabu search procedure. Except 

for the aforementioned heuristic and metaheuristic solution approaches, Letchford et al 



 6

[26] have proposed a branch-and-cut-algorithm for the OVRP. The authors provide an 

OVRP integer programming formulation together with some valid inequalities. Their 

algorithm is capable of solving to optimality small- to medium-sized OVRP instances. In 

addition, for the large scale instances, they provide lower bounds which are helpful for 

assessing the effectiveness of approximate solution methodologies. 

 

3. The Proposed Algorithm 

As mentioned in Section 1, the proposed OVRP metaheuristic is based on the Static 

Move Descriptor (SMD) concept [9], a strategy which reduces the computational 

complexity required for applying local search-based methods. Reducing the complexity 

for performing local search allows our algorithm to explore rich solution neighborhoods 

within manageable computational effort. In this section, we firstly provide a brief 

presentation of the SMD concept, followed by an in-depth description of the way in 

which the SMD strategy is adapted for the applied local search operators. Finally, the 

overall algorithmic framework is provided.  

 

3.1. Introduction to the static move descriptor concept 

A wide collection of the most effective metaheuristic strategies (Tabu Search, 

Variable Neighborhood Search, Guided Local Search etc.) fit in the category of local 

search-based methods. The basic principle of local search is to explore the search space 

by iteratively moving from a candidate solution to a new solution which belongs to the 

neighborhood of the former. The neighborhood of a solution is composed by every 

solution that can be generated from it by performing a systematic modification (move) on 

the solution structure. Thus, the computational effort for applying a local search scheme 

for dealing with an optimization problem is mainly determined by the complexity 

demanded for examining the solution neighborhoods (or, in other words, the set of 

tentative moves), a task which is repeatedly executed within a local search framework. 

The central underlying idea of the SMD concept is that when moving from one solution 

to another, only a limited solution part is affected; therefore to examine the subsequent 

solution neighborhood, only the tentative moves that are associated with this modified 

solution part have to be re-evaluated. On the other hand, tentative moves that refer to 



 7

unmodified solution characteristics have already been evaluated (during previous 

neighborhood explorations), so if they are appropriately stored, their recalculation is 

unnecessary. 

To realize this idea, we propose the Static Move Descriptors (SMD) entities which 

encode tentative local search moves in a static (solution-independent) way. Each SMD 

instance corresponds to a specific move, while it also includes the cost involved for 

performing this move. Therefore, within a local search procedure, each time a move is 

applied to a candidate solution, only the costs of the SMD entities that refer to the 

modified solution part have to be re-evaluated. To implement the best admissible local 

search scheme (moving to the highest-quality neighboring solution), SMD instances are 

stored in Fibonacci Heaps [27] which are special priority queue data structures with the 

following key capabilities: constant time minimum retrievals and insertions, and 

logarithmic time deletions. 

 

3.2. The local search operators and their SMD representation 

As previously mentioned, having realized a local-search complexity reduction 

strategy, we aimed at designing and applying powerful local search operators, the 

application of which would be computationally prohibitive without the complexity 

reduction scheme. In specific, instead of the classic 1-0 and 1-1 exchanges, we propose a 

Variable Length Bone Exchange (VLBE) local search operator, which exchanges the 

positions of any bone containing from 0 to μ customers, where bone denotes a customer 

sequence present in a candidate solution. Apart from the aforementioned VLBE operator, 

we also employ the classic 2-opt move which replaces any pair of solution arcs with a 

new arc pair. In the following, we provide analytic presentations for these two local 

search operators, and their SMD representation. 

 

3.2.1. The Variable Length Bone Exchange operator 

The VLBE operator exchanges the positions of any customer sequence pair 

containing from 0 to μ customers. Given that the number of customer pairs is O(n2), and 

that the number of combinations of the two bone lengths involved in the move is O(μ2), 

the cardinality of the neighborhood structure defined by VLBE is O(μ2·n2). Therefore, the 



 8

complexity required for exhaustively exploring the neighborhoods defined by the VLBE 

operator is O(μ2·n2), which makes exhaustive neighborhood evaluation almost 

unmanageable for instances of practical size and significant μ values. 

To encode the VLBE tentative moves into SMD instances, we use the following 

rationale: For every pair of non-identical vertices vi and vj, a collection of SMD instances 

is created, each of them corresponding to a particular VLBE move. Every such SMD 

instance contains the following information: The pair of nodes to which it belongs 

(denoted by n1 and n2), two bone lengths (denoted by n1_len, n2_len) both of them 

ranging from 0 to μ, and the cost involved for performing the encoded move. No SMD 

instance is created for n1_len = 0 and n2_len = 0, thus, for each pair of vertices, in total 

(μ + 1)2 - 1 SMD instances are generated. When a VLBE SMD with n1 = A, n2 = B, 

n1_len = a, and n2_len = b is applied to an OVRP solution, the following structural 

modification is performed: The bone beginning after A and containing a customers, and 

the bone beginning after B and containing b customers exchange their positions. 

 

0 C E B F H

00 P M T R L

n1 = E
n2 = P

n1_len = 2
n2_len = 3

VLBE 
SMD 

applied

n1 = 00
n2 = T

n1_len = 2
n2_len = 2

0 C E M T R H

P B F L

0 C E B F H

R L T P M

0 C E T R B F H

P M L

n1 = E
n2 = M

n1_len = 0
n2_len = 2

Solution S

S2 S3S1

000000  
 

Fig 1. The VLBE SMD representation 

 



 9

To exhaustively describe the VLBE neighborhood in total ((n+K)!/(2!(n+K−2)!))· 

((μ+1)2-1) SMD instances are required. The first factor corresponds to the 2-combinations 

without repetition of the n customers and K depot occurrences, where K is the total 

number of routes present in the solution, whereas the second factor corresponds to the 

total SMD instances per vertex pair. Three example VLBE SMD applications to an 

arbitrary OVRP solution of two routes and ten customers are illustrated in Fig.1. In 

specific, the first VLBE SMD applied to solution S has n1 = E, n2 = P, n1_len = 2, and 

n2_len = 3. The bone beginning after E and containing two nodes (B-F) is swapped with 

that beginning after P and containing three customers (M-T-R) to form solution S1. For 

the second illustrated intra-route SMD, we have n1 = 00, n2 = T, n1_len = 2, and n2_len = 

2. The node 00 corresponds to the depot vertex of the second OVRP route. Therefore, the 

two-customer bone beginning after the 00 depot vertex (P-M) exchanges positions with 

bone R-L to form solution S2. The third example move consists of relocating a single 

bone, as n1_len = 0. In detail, the two-customer (n2_len = 2) bone beginning after n2 = M 

(T-R) is relocated next to n1 = E. Note that when either n1_len or n2_len is equal to zero, 

the SMD encodes a relocation move rather than an exchange one. 

 

3.2.2. The 2-opt operator 

The 2-opt local search operator replaces two arcs present in the solution. The 

mechanism of the move depends on the arc pair involved in the move. If both arcs belong 

to the same route (intra-route 2-opt move), then these arcs are deleted, two new arcs are 

generated, and the path lying between the deleted arcs is reversed. If the arcs to be 

removed belong to different routes (inter-route 2-opt move), then their deletion implies 

the division of these routes to their initial and final segments. The generated arc pair 

connects the initial segment of the first route to the terminating segment of the second 

one and vice versa. 

To encode 2-opt moves using the SMD representation, we generate one 2-opt SMD 

instance per distinct vertex pair. Each 2-opt SMD instance contains the pair of nodes to 

which it belongs (denoted by n1 and n2), and the cost involved for implementing the 

encoded move. When a 2-opt SMD with n1 = A, n2 = B, is applied to an OVRP solution, 

the following structural change takes place: If vertices A and B belong to different routes, 



 10

the route segment beginning at the depot and terminating at A is connected to the route 

path beginning after B. Analogously, the route segment originating from the depot and 

terminating at B is connected to the route segment which begins after vertex A. 

Otherwise, if vertices A and B are assigned to the same route and B precedes A in the 

route vector, the A and B values are swapped. Then, vertex A is connected to B, by 

reversing the path beginning after A and terminating at B.  

To exhaustively describe the 2-opt solution neighborhood, in total ((n + K)!/(2!(n + K 

− 2)!)) SMD instances are required, corresponding to the 2-combinations without 

repetition of the n customers and K depot occurrences, where K is the total number of 

routes present in the solution. Three example 2-opt SMD moves to an arbitrary OVRP 

solution of two routes and ten customers are illustrated in Fig.2. The first illustrated SMD 

has n1 = E, and n2 = M. As previously mentioned, the initial segment of the first route (0-

C-E) is connected to the terminating segment of the second one (T-R-L) and the initial 

segment of the second route (00-P-M) is connected to the terminating segment of the first 

one (B-F-H), so that solution S1 is generated. In an analogous way, the first route of S2 is 

formed by linking the initial and terminating segments of the first and the second route, 

respectively (0-C and P-M-T-R-L), whereas the second S2 route is obtained by 

connecting the initial and terminating segments of the second and the first route, 

respectively (00 and E-B-F-H). The third SMD instance represents an intra-route move. 

Customer C is connected to customer F by replacing arcs CE and FH with CF and EH. In 

addition, as seen in Figure 2, the path originating after node C and terminating at F is 

reversed to form solution S3. 

At this point, we should note that for problem instances involving few customers per 

route (relatively close to the considered bone length μ), there are several pairs of 2-opt 

and VLBE instances which encode the same local search move. In specific, for problems 

with up to μ customers assigned to each vehicle, 2-opt SMD instances should be designed 

for representing only the intra-route 2-opt moves, as the inter-route part of the 2-opt 

neighborhood is fully described by the VLBE operator. For our research, however, which 

involved solving problem instances with large customer sequences per route, considering 

the complete 2-opt neighborhood structure was proven useful, as it enabled the exchanges 

of bones which contained more than μ customer vertices. 



 11

 

0 C E B F H

00 P M T R L

n1 = E
n2 = M

2-opt 
SMD 

applied

n1 = C
n2 = 00

0 C P M T R L

E B F H

0 C E T R L

P M B F H

n1 = C
n2 = F

Solution S

S2

00 00

0 C F B E H

P M T R L00

Reversed Path
S1 S3

 
 

Fig 2. The 2-opt SMD representation 

 

3.3. Feasibility checking for the 2-opt and VLBE local search operators 

As will be later shown, the proposed algorithmic framework does not allow infeasible 

tunneling, or in other words, it only applies SMD instances which do not lead to capacity 

constraint violations. To examine feasibility of the VLBE and 2-opt SMD instances in 

constant time, we use the following rationale: Let dRT(i) be the total product demand of 

the route RT bone beginning at the depot and containing i customers, with i varying from 

0 to zRT, where zRT denotes the total number of customers assigned to route RT. 

Obviously, dRT(0) is equal to zero (depot product demand), and dRT(zRT) is equal to the 

total product demand of the customer set assigned to route RT. In addition, let pos(vi) 

denote the position of vertex vi in its route. 

An inter-route SMD instance with n1 = A, n2 = B, n1_len = a, and n2_len = b, with A 

and B assigned in routes RTA and RTB, respectively, is feasible if the following two 

conditions hold: 

• dRTA(zRTA) - ( dRTA(pos(A) + a) - dRTA(pos(A)) ) + ( dRTB(pos(B) + b) - dRTB(pos(B)) ) ≤ Q, 



 12

• dRTB(zRTB) - ( dRTB(pos(B) + b) - dRTB(pos(B)) ) + ( dRTA(pos(A) + a) - dRTA(pos(A)) ) ≤ Q. 

 

An inter-route 2-opt SMD instance with n1 = A, n2 = B, with A and B assigned in 

routes RTA and RTB, respectively, is feasible if both of the following conditions hold: 

• dRTA(pos(A)) + ( dRTB(zRTB) - dRTB(pos(B)) ) ≤ Q, 

• dRTB(pos(B)) + ( dRTA(zRTA) - dRTA(pos(A)) ) ≤ Q. 

 

Note that all VLBE and 2-opt SMD instances encoding intra-route moves are feasible 

because they do not cause any effect on the total product quantities assigned to the 

vehicles. 

 

3.4. Keeping the SMD cost tags updated 

As previously mentioned, when the operators described in 3.2 are performed on a 

candidate solution, the cost tags of the SMD subset that refers to the modified solution 

part have to be updated. In the following, we provide the rules of the necessary cost 

updates, together with an analysis on their total number. 

 

3.4.1. Cost update rules for the application of a VLBE move 

Consider that a VLBE SMD instance with n1 = A, n2 = B, len_n1 = a, and len_n2 = b 

is applied to a candidate OVRP solution, as in Fig. 3. Let pred(A) and pred(B) denote the 

bones terminating before nodes A, and B respectively and containing μ customers. In 

addition, let exch(A) and exch(B) denote the two bones exchanged (the final nodes of the 

exchanged bones are excluded) which include up to μ-1 customers, whereas lst(A) and 

lst(B) denote the ending nodes of the exchanged bones. 

To keep every VLBE SMD cost updated, the cost tag of every VLBE SMD instance 

with either its n1 or n2 equal to A, B, lst(A), and lst(B) must be calculated. In addition, the 

VLBE SMD instances whose n1 or n2 belongs to pred(A) (or pred(B)) and the relevant 

bone length referring to the route segment after node A (node B) must be re-evaluated 

according to the modified solution state. Finally, every VLBE SMD instance with n1 or n2 

belonging to exch(A) or exch(B) and the relevant bone length reaching after the 

exchanged bones must also be updated. Obviously, at most O(μ3·n) updates are required, 



 13

as there are O(μ·n) groups of VLBE SMD instances with their n1 or n2 belonging to {A, 

B, lst(A), lst(B), pred(A), pred(B), exch(A), exch(B)} and each of these groups contains 

O(μ2) (2-combinations of bone lengths) VLBE SMD instances. 

 

0 K L A P Q….. …..M

pred(A) lst(A)

N

exch(A)

a

S T B X Y….. …..U

pred(B) lst(B)

V

exch(B)

b

00

….. R

….. Z

n1 = A
n2 = B

n1_len = a
n2_len = b

0 K L A X Y….. …..M

pred(A) lst(B)

V

exch(B)

b

S T B P Q….. …..U

pred(B) lst(A)

N

exch(A)

a

00

….. R

….. Z

Apply VLBE SMD

 
Fig 3. Applying a VBLE SMD to an OVRP solution 

 

Regarding the cost of the 2-opt tentative moves, firstly the cost of every 2-opt SMD 

instance with either its n1 or n2 value equal to A, B, lst(A), and lst(B) must be updated. 

Apart from these O(n) updates, when the applied VLBE SMD encodes an inter-route 

move, some additional 2-opt SMD cost tags need to be updated to capture the fact that 

the vertices of the exchanged bones are moved from their current route to another one. In 



 14

specific, let init(v) and fin(v) denote the route segments lying before and after node v, 

respectively (node v is excluded in both cases). Then for the move presented in Fig 3, the 

following 2-opt SMD instances have to be updated: those with their one node value (n1 or 

n2) equal to exch(A) or exch(B), and their other node value belonging to {init(A), init(B), 

fin(lst(A)), fin(lst(B))}. The necessary updates in this case are bounded by O(μ·n), as at 

most O(μ) nodes are included in the exchanged bones, and up to O(n) nodes are contained 

in the initial and terminating segments of the routes involved in the move. 

 

3.4.2. Cost update rules for the application of a 2-opt move 

The mechanism for updating the cost tags of the VLBE and 2-opt SMD instances 

when a 2-opt move is applied depends on whether this move involves a single route or a 

route pair: 

 

Inter-Route 2-opt move: 

Consider that an inter-route 2-opt SMD with n1 = A and n2 = B is applied to an OVRP 

solution, and let pred(A) and pred(B) denote the bones terminating before nodes A, and 

B, respectively and containing μ customers, as illustrated in Fig. 4.  

In terms of the necessary VLBE cost updates, every SMD with n1 or n2 belonging to 

pred(A) or pred(B) and relevant bone lengths that point after A and B, respectively, has 

to be updated. Thus, O(μ3·n) updates are required in total. Additionally, the cost tag of 

every VLBE SMD with n1 or n2 equal to A or B has to be re-calculated, corresponding to 

O(μ2·n) updates. 

Regarding the necessary cost updates for the 2-opt operator, O(n) cost re-evaluations 

must be made corresponding to the SMD instances with node values equal to A or B. In 

addition, we have to capture the fact that the initial segment of the first route is connected 

to the final segment of the second one, and vice versa. To do so, let init(v) and fin(v) 

denote the route segments lying before and after node v, respectively. The 2-opt SMD 

instances with their one node value (n1 or n2) within init(A), and their other node value 

belonging either to fin(A) or fin(B) have to be updated. In an analogous way, every 2-opt 

SMD with one node value included in init(B), and the other node value within either 

fin(A) or fin(B) must be re-evaluated. The amount of required cost evaluations depends 



 15

on the number of vertices within the routes involved in the move. If n_rt denotes the total 

number of customers assigned to the route pair involved in the move, at most O(n_rt2) 

updates are required, which for instances involving few customer per route, as well as, 

for significant μ values, is considerably lower compared to the cost updates required 

when a VLBE move is applied (O(μ3·n)). 

 

0 K L A P... …M

pred(A)

N

00 S T B X... …U

pred(B)

V

n1 = A
n2 = B

Apply
2-opt 
SMD

0 K L A X... …M

pred(A)

V

00 S T B P... …U

pred(B)

N
 

 

Fig 4. Applying an inter-route 2-opt SMD to an OVRP solution 

 

Intra-Route 2-opt move: 

Consider that an intra-route 2-opt SMD with n1 = A and n2 = B is applied to an OVRP 

solution, as illustrated in Fig.5. Let rev(A) denote the route path which begins after node 

A, includes n_rev customers and is reversed when the intra-route 2-opt is applied, and 

pred(A) be the route path before A containing up to μ customers. 

In terms of the VLBE operator, the VLBE SMD instances with their node values 

contained in pred(A) and the relevant bone length pointing after A are updated. Thus, 

O(μ3·n) cost re-evaluations are required. Furthermore, the cost of the VLBE SMD 



 16

instances for which n1 or n2 is equal to A and the relevant bone length does not exceed 

n_rev must be re-calculated regarding the modified solution, corresponding to O(μ2·n) 

SMD cost updates. Finally, every VLBE instance with one node value belonging to 

rev(A) (for all 2-combinations of bone lengths) must also be updated. The number of 

required updates is O(n·n_rev·μ2). 

 

K L N BA P0 Q … T…

K L B NA P0 Q … T…

n1 = A
n2 = B

Apply
2-opt 
SMD

rev(A)

M…

M…

pred(A)

pred(A)

n_rev

…

…

n_rev

 
 

Fig 5. Applying an intra-route 2-opt SMD to an OVRP solution 

 

Regarding the 2-opt neighborhood, in total O(n·n_rev) updates are necessary, 

corresponding to the 2-opt SMD instances with one node value either equal to A or 

contained in rev(A). 

Note that the updates required for both the VLBE (O(μ2·n·n_rev)), and 2-opt 

(O(n·n_rev)) neighborhood structures depend on the size of the route path reversed, and 

therefore on the characteristics of the OVRP instance solved. The aforementioned 

complexity levels are comparable to those required for the cost updates of the VLBE 

moves, in cases of significant μ values and limited sizes of the reversed route segments. 

 

3.5. The overall structure of the proposed solution approach 

Our algorithmic framework is initiated with the application of a construction heuristic 

for obtaining an initial feasible OVRP solution. This solution is then improved by means 



 17

of the proposed metaheuristic approach denoted by Broad Local Search Algorithm 

(BLSA). 

 

3.5.1. Obtaining the initial OVRP solution 

Our algorithmic development was applied to the OVRP considering both the 

hierarchical objective of primarily minimizing vehicles and secondarily the total route 

length, and the single objective of minimizing the total route length. Depending on the 

objective considered, our metaheuristic employs a different construction methodology: 

when the hierarchical objective is taken into account, the construction method primarily 

aims at generating the minimum number of routes, and secondarily at minimizing the 

total cost of the generated route set. In specific, the lower bound for the required routes is 

calculated as Kmin = ⎥
⎥

⎤
⎢
⎢

⎡ ∑
= ni

i Qq
...1

/)( , and a set rts consisting of Kmin empty routes is 

generated. With each route j ∈  rts, is associated the corresponding residual capacity. At 

each iteration, the method calculates the trial residual capacity for inserting every 

unassigned customer vi into every possible route j ∈  rts. The customer-route pair yielding 

the lowest, non-negative trial residual capacity is identified, and the customer is inserted 

to the route position that minimizes the insertion cost. If, for a customer, no feasible 

insertion route exists, an additional empty route becomes available and our metaheuristic 

method is executed primarily aiming at eliminating any unnecessary routes. This is 

achieved by penalizing the cost of every arc containing the depot. In specific, we set c´0i 

= c0i + M, where M far exceeds the greatest arc cost in graph A. Therefore, the primary 

goal of the search is to remove any depot-adjacent arcs from the candidate solution, or in 

other words, to minimize the required vehicle fleet. As previously mentioned the 

minimum number of vehicles was obtained through Kmin = ⎥
⎥

⎤
⎢
⎢

⎡ ∑
= ni

i Qq
...1

/)( . This bound has 

also been used by several OVRP researchers in the past [2, 4, 15, 23] when only capacity 

constraints are imposed on the problem model. For all benchmark instances examined, it 

proved to be a good lower bound, as it matched the actual number of vehicles in the 

solutions obtained (see Section 4.3). We must note, however, that for problems which 

involve customers with large qi values compared to the vehicle capacity, the 



 18

aforementioned bound may be unattainable. In these cases, a better bound could be 

obtained by heuristically solving the one dimensional bin packing problem, setting the 

size of the bins equal to Q and the item sizes equal to the customer product demands [23]. 

When the single objective of route cost minimization is considered, customers are 

sorted in increasing order of the angle that they form with the depot and a randomly taken 

radius [28]. Then, customers are selected iteratively to be assigned to some route 

according to the minimum insertion cost criterion. Note that insertions must respect the 

capacity constraints posed by the problem, and that when a customer is inserted into an 

empty route, a new empty route becomes available for subsequent customers. 

 

3.5.2. The adopted tabu and penalization strategies 

As will be later presented, the BLSA metaheuristic employs the best-admissible scheme 

for moving to neighboring solutions, or in other words, solution neighborhoods are 

exhaustively explored and the local search move minimizing the problem objective 

function is selected to be applied. This deterministic criterion of moving between 

solutions causes cycling phenomena to occur. To avoid this risk we have adopted the 

following rather aggressive tabu strategy which apart from avoiding cycling, proved to 

effectively diversify the overall metaheuristic: When an SMD instance (either VLBE or 

2-opt) is applied to the candidate solution, one of its n1 and n2 node values is randomly 

selected to be declared tabu for a horizon of tab algorithmic iterations. Declaring a node 

tabu implies that every tentative local search move represented by an SMD instance with 

either its n1 or n2 value equal to this node is considered tabu, and therefore not allowed to 

be applied to the candidate solution. Note that if a tentative move improves the best 

solution obtained through the search process, the tabu policy is overridden. 

To further diversify the conducted search, the BLSA improvement metaheuristic 

employs a penalization scheme based on the proposed SMD representation of moves. In 

specific, except for the actual cost tag, every VLBE SMD instance also contains a 

penalized cost label which is calculated as follows: with each problem vertex vi is 

associated a counter counti, responsible for keeping track of the number of times that a 

VLBE SMD instance with n1 or n2 equal to vi has been implemented to the candidate 

solution by increasing the solution cost. Thus each time, a cost-increasing VLBE SMD 



 19

instance is applied to the candidate solution, both its n1 and n2 node counters are 

augmented by one. The penalized cost tag of every VLBE SMD instance with n1 = A and 

n2 = B is set equal to its actual cost tag augmented by (countA + countB) · pen, where pen 

is a penalization parameter. Note that as per the discussion on the update rules in 3.3, 

each time a VLBE SMD with n1 = A and n2 = B is applied, every SMD instance with 

either its n1 or n2 node value equal to A and B is updated, thus every penalized cost tag is 

always calculated via the updated countA and  countB values. 

 

3.5.3. The BLSA improvement metaheuristic 

After the initial OVRP solution is obtained, the SMD instances for the VLBE and 2-

opt neighborhood structures are constructed. To reduce both the space required for 

storing the SMD instances, as well as the computational time required for updating their 

cost tags, we use the following rationale for generating the SMD instances: we solve the 

OVRP using an OVRP-modified Clarke and Wright [29] heuristic. Let zC&W and KC&W 

denote the cost and the number of routes of the solution obtained. Then a threshold value 

θ is calculated as θ = β zC&W / (n + KC&W), where β is the sparsification parameter set to 

2.5 as proposed by Toth and Vigo [30] for the CVRP. For every vertex pair vi and vj, such 

that cij < θ or vi is the depot node, we generate a collection of (μ + 1)2 - 1 VLBE SMD 

instances (corresponding to every possible pair of bone lengths ranging from 0 to μ, with 

no SMD created for both bone lengths equal to 0), and a single 2-opt SMD instance. 

Using this filtering scheme for the generation of SMD instances, the overall search 

process is drastically accelerated without its quality being affected, as the excluded SMD 

instances represent tentative moves that are highly unlikely to improve the solution 

quality. 

With each of the generated VLBE SMD instances are associated two cost labels, 

denoted by cst and p_cst. The former is always equal to the actual cost for implementing 

the move represented by the SMD instance, whereas the latter is equal to this cost 

augmented via the penalization strategy presented in 3.5.2, and is used for diversifying 

the conducted search. With each 2-opt SMD is associated only the actual cost tag cst. 

These aforementioned cost labels are evaluated according to the status of the initial 

solution. Note that initially, the p_cst label is set equal to the cst one. Then, the generated 



 20

SMDs are inserted into the appropriate Fibonacci Heaps. Specifically, two heaps are 

created for the VLBE neighborhood structure. The first heap (FHVLBE) is responsible for 

keeping the VLBE SMD instances sorted according to their non-penalized cost tag (cst), 

whereas the second one (P_FHVLBE) sorts the VLBE SMD instances according to their 

penalized cost values (p_cst). For the 2-opt operator, a single Fibonacci Heap (FH2-OPT) is 

created for keeping the 2-opt SMD instances sorted according to their non-penalized cost 

tags. 

After the SMD representation and the Fibonacci Heaps have been prepared, the core 

of the BLSA improvement methodology is iteratively applied. At each iteration, the 

minimum cost, feasible and non-tabu, VLBE and 2-opt moves are retrieved from FHVLBE 

and FH2-OPT, respectively. The lower cost of these two tentative moves is selected to be 

applied to the solution, if it reduces the cost of the current solution. If none of these two 

moves are improving, a diversification step is applied: a random value λ uniformly 

distributed within [1, μ] is generated, and from the P_FHVLBE heap, we identify the lowest 

p_cst SMD which satisfies the following requirements: it is non-tabu, encodes an inter-

route move, and the sum of its n1_len and n2_len is equal to or greater than λ. These 

requirements are intended to drastically diversify the search process, as they lead to 

significant solution structure modifications, and therefore drive the algorithm towards 

unexplored solution trajectories. 

The local search move represented by the selected SMD is applied to the current 

solution, and the cost tags of the affected SMD instances are updated according to the 

update rules presented in 3.4. Updating the cost of a single SMD instance involves its 

deletion from the corresponding Fibonacci Heap, the evaluation of its new cost label, and 

its re-insertion to the Heap. The cost evaluation and insertion operations are performed in 

constant time, thus the required computational complexity for a single SMD update is 

determined by the deletion process which requires logarithmic complexity. The BLSA 

metaheuristic is terminated when a certain time bound has been reached. The pseudocode 

of the BLSA method is provided in Table 1. 

The BLSA was executed for two different objective configurations: a) hierarchical 

objective (minimize routes then minimize cost), and b) single objective (minimize cost). 

As previously mentioned, depending on the objective considered, a different construction 



 21

method was employed for obtaining the initial solution. Furthermore, when the single 

objective is considered, the BLSA framework always maintains an empty route through 

the search process. 

 

Table 1. Pseudocode of the BLSA 
OVRP Solution BLSA (OVRP Solution S0, int μ, int minT, int maxT) 

OVRP Solution S, S′, S* 
Fibonacci Heap FHVLBE, P_FHVLBE, FH2-OPT 
SMD twoOpt, vlbe, app 
 
-- initialization phase 
generate the SMD instances for the VLBE and 2-opt neighborhood structures 
calculate the cost tags for the generated SMD instances according to the state of S0 
insert the VLBE SMD instances into FHVLBE and P_FHVLBE 
insert the 2-OPT SMD instances into FH2-OPT 
S = S0 
-- improvement phase 
while (termination condition = false) 

--identify local search move 
vlbe = best, feasible, non-tabu VLBE SMD extracted from FHVLBE 

 twoOpt =  best, feasible, non-tabu 2-opt SMD extracted from FH2-OPT 
 if (vlbecst < 0 OR twoOptcst < 0) 

if (vlbecst < vlbecst ) 
app = vlbe 

else 
app = twoOpt 

end if 
else 

stochastically generate λ in [0, μ] 
app = best, feasible, non-tabu, inter-route VLBE SMD such that n1_len + n2_len ≥ λ 
Node app1 = appn1, Node app2 = appn2 
countapp1 = countapp1 + 1, countapp2 = countapp2 + 1 

 end if 
stochasticaly generate tab in [mint, maxT] 
declare app1 and app2 tabu for tab iterations of the outer while loop  

 
-- apply local search move 
apply app to S so that S′ is obtained, S = S′ 
for every affected SMD instance aff (according to the update rules of Section 3.4) 

remove aff from the corresponding Fibonacci heap(s) 
calculate affcst according to the modified solution state 
if (app is a VLBE SMD instance) 

Node n1 = affn1, Node n2 = affn2 
affp_cst = affcst + (countn1 + countn2) · pen 

end if 
reinsert aff into the corresponding Fibonacci heap(s) 

end for 
 if (cost (S) < cost (S*)) 
  S* = S 
 end if 
end while 
return S* 
 

 



 22

4. Computational Results 

In this Section we discuss on the BLSA parameter setting, and analytically present the 

algorithmic performance on a set of well-known OVRP instances. The BLSA method 

was implemented in Visual C#, and executed on a single core of an Intel T5500 processor 

(1.66 GHz). All instances and results can be found at http://users.ntua.gr/ezach/ 

 

4.1. Benchmark instances 

To tune the algorithmic parameters, as well as to assess the performance of the BLSA 

metaheuristic, we have tested it on a collection of widely studied OVRP benchmark 

instances. In specific, we have solved seven OVRP instances taken from the CVRP data 

set of Christofides et al. [31] involving from 50 to 199 customers (C1-C5 and C11-C12), 

two instances originally introduced for the CVRP by Fisher [32] (F11-F12), and eight 

large-scale OVRP test problems (O1-O8) which involve from 200 to 480 customers and 

were introduced by Li et al. [15]. For all seventeen OVRP instances, the cost matrix is 

obtained by calculating the Euclidean distances of the vertex locations. Regarding the 

constraints imposed, all seventeen instances consider vehicles to have a maximum 

carrying capacity. On the contrary, no restriction is imposed on the total length traveled 

by a route. Note that we did not solve instances C6-C10 of Christofides et al. [31], 

because these test problems impose maximum route cost constraints on the OVRP model, 

which are not considered by the BLSA method. Table 2 presents in detail the seventeen 

OVRP test problems used for testing the proposed metaheuristic. It contains the problem 

size n, the maximum carrying load of the vehicles Q, and the lower bound for the number 

of routes required Kmin, calculated as shown in 3.5.1. 

 

4.2. Parameter Setting 

The BLSA algorithmic framework contains three parameters, namely μ, tab and pen, 

the values of which have to be decided before the algorithm is executed. To determine the 

standard parameter setting of the BLSA metaheuristic, we performed extensive tests 

solving the Christofides et al. [31] and Li et al. [15] OVRP benchmark instances 

considering the hierarchical objective function of primarily minimizing the vehicle fleet 

and secondarily optimizing the total travel distance. The first parameter μ is the 



 23

maximum length of the bones considered by the VLBE operator. Obviously, the setting 

of μ depends on how many customers are assigned to each route, which is an instance-

specific characteristic. For example, if each route can service up to 5 customers, there is 

no meaning into setting μ higher than the value of 5. For the class of seven instances, 

introduced by Christofides et al. [31], each route services approximately 11 customers, on 

average. For this set of instances, we executed the BLSA method for values taken from 

{4, 5, 6, 7, 8}. The best solution scores were observed for μ set to 6, 7, and 8. For the 

standard parameter setting, we used μ = 6, as the best balance between algorithmic 

effectiveness and efficiency was observed. The same μ value (6) was also considered for 

the two instances of Fisher [32]. For the large scale OVRP instances of Li et al. [15] 

about 40 customers are assigned to each route. Thus, we tested the BLSA performance 

for greater μ values. In specific, BLSA was executed with μ values taken from [6, 12] 

interval. Higher μ values (10 to 12) did well in terms on the quality of the final solution 

produced. However, for these values the algorithm was rather slow, as the computational 

complexity demanded by BLSA exhibits a cubic dependence on the μ parameter. The 

value of μ was therefore fixed at 8, for which a satisfactory algorithmic performance was 

achieved. 

 

Table 2. OVRP benchmark instances 
Christofides et al. [31] data set  Fisher [32] data set  Li et al. [15] data set 
Problem 
Instance n Q Kmin 

 Problem 
Instance n Q Kmin 

 Problem 
Instance n Q Kmin 

C1 50 160 5  F11 71 30000 4  O1 200 900 5 
C2 75 140 10  F12 134 2210 7  O2 240 550 9 
C3 100 200 8       O3 280 900 7 
C4 150 200 12       O4 320 700 10 
C5 199 200 16       O5 360 900 8 
C11 120 200 7       O6 400 900 9 
C12 100 200 10       O7 440 900 10 
          O8 480 1000 10 
n: number of customers, Q: vehicle capacity, Kmin: Lower bound for the routes required 
 

Regarding the second algorithmic parameter, tab controls the horizon for which a 

node (and correspondingly the associated SMD instance population) is declared tabu. The 

greater the value of tab the stronger is the diversification effect on the search process. 

Preliminary experiments indicated a more robust and effective performance when tab 



 24

was stochastically set in every BLSA iteration rather than being fixed throughout the 

search process. Thus, at each iteration, the proposed method stochastically generates μ 

values uniformly distributed within [minT, maxT]. Various intervals were used for 

generating the tab values. In specific several minT and maxT values were tested from the 

[3, 10], and [5, 20] ranges, respectively. For all three instance sets, tab values uniformly 

taken from the [3, 12] interval resulted in a satisfactory algorithmic behavior, both in 

terms of solution quality and speed. 

The third and last calibrated parameter pen determines the penalization term used for 

augmenting the penalized cost tags of the VLBE instanced. Apparently, the setting of the 

pen parameter depends on both the cost matrix and the solution characteristics of the 

instance examined. To capture this dependence the penalization term was expressed as 

pen = a · θ, where θ is the threshold value used for filtering out poor-quality SMD 

instances, introduced in 3.5.3. We performed several BLSA executions with a values 

taken from the [0.001, 0.01] range. The best algorithmic behavior was recorded when 

0.006≤  a ≤  0.01, thus the penalization parameter pen was set equal to 0.008 · θ. 

 

4.3. Computational results on the OVRP benchmark instances 

As earlier mentioned, the BLSA framework was applied to the seventeen OVRP test 

problems for two different objective configurations: a) the hierarchical objective 

configuration which primarily aims at minimizing the number of routes required and 

secondarily at minimizing the total cost of the vehicle routes; and b) the single objective 

configuration which solely calls for the minimization of the produced route set cost. 

 

4.3.1. Results obtained for the hierarchical objective 

To test the proposed algorithm’s performance considering the hierarchical OVRP 

objective function, we applied BLSA ten times to each test problem. Note that the initial 

solution was the same for all ten algorithmic executions, as the relevant construction 

method behaves deterministically. After performing some preliminary experiments, for 

the instances of Christofides et al. [31] and Fisher [32], we set the computational time 

bound to 600 seconds, which proved adequate for ensuring a thorough exploration of the 

solution space. For the large scale problems of Li et al. [15], solution improvement was 



 25

frequently observed after the 600-second time bound; therefore the termination condition 

of the algorithm was set to the completion of 1800 seconds. The results obtained are 

summarized in Table 3. In specific, the first set of columns presents the average values 

over all ten BLSA executions, whereas the second column group refers to the algorithmic 

run which managed to obtain the highest quality solution. From the results of Table 3, we 

can see that BLSA managed to consistently generate OVRP solutions minimizing the 

required fleet of vehicles, for all benchmark problems. In terms of the routing cost, it has 

shown adequate stability as the gaps between the best and average solution scores 

obtained over the ten runs are limited from 0.00% to 0.55%, averaging at a satisfactory 

0.13%. The least stable performance, which was observed for instance O5, is mainly 

attributed to the fact that this instance exhibits tightly binding capacity constraints: the 

eight routes available through the search process offer a maximum carrying load of 7200 

units which is equal to the total customer demand. Thus, the local search conducted by 

BLSA is confined to a rather narrow feasible search space, without the capability of 

being drastically diversified by employing significant solution modifications. Regarding 

the average computational times required for obtaining the best solution of each run, they 

ranged from 28 seconds for the 50-customer instance C1, up to 1590 seconds for the 360-

customer problem O5. The aforementioned computational times are satisfactory, 

considering both the instance scale and the great cardinality of the neighborhood 

structures explored. Table 3 also presents the solution cost lower bounds obtained in [26] 

for the Chrostofides et al. [31] and Fisher [32] instances, and the percent gaps between 

the best BLSA solution and the corresponding lower bound. From the results, we see that 

BLSA solved four instances to optimality. The maximum deviation was observed for 

instance C5 (5.0%), whereas the average deviation was limited to 1.3%. 

Table 4 compares the best results obtained by BLSA against those obtained by some 

of the most effective previously published OVRP approaches. These include the 

algorithms of Pisinger and Ropke [17], Fleszar et al. [23], Li et al. [15], and Repoussis et 

al. [20], denoted by ALNS, VNS, ORTR, and H-ES, respectively. In addition the BLSA 

results are compared to the best known solutions scores denoted by BK. Regarding the 

computational times reported in Table 4, for the ALNS and the VNS methods, we 

provide the average CPU consumption required for a single algorithmic run. For the H-



 26

ES method, as well as for the proposed BLSA approach, the elapsed time when the best 

solution was firstly encountered through the search process (and not the total time 

required for an algorithmic run) is provided. Finally, for the ORTR methodology, the 

authors do not explicitly point out whether the reported CPU times refer to the total 

running time of a single algorithmic execution, or the time involved when the best 

solution was obtained. 

 

Table 3. BLSA results for the hierarchical OVRP objective 

   AVG    BST   %Gap  LB  %GapLB 
Instance  z K t  z K t       
C1  416.06 5.0 28  416.06 5 25  0.00  416.1*  0.0 
C2  568.38 10.0 72  567.14 10 68  0.22  559.2  1.4 
C3  639.98 8.0 97  639.74 8 103  0.04  639.7*  0.0 
C4  733.93 12.0 204  733.13 12 190  0.11  730.2  0.4 
C5  895.62 16.0 332  893.39 16 355  0.25  848.5  5.0 
C11  682.34 7.0 76  682.12 7 85  0.03  657.1  3.7 
C12  534.24 10.0 47  534.24 10 39  0.00  534.2*  0.0 
F11  177.00 4.0 132  177.00 4 93  0.00  177.0*  0.0 
F12  770.57 7.0 278  769.55 7 301  0.13  762.9  0.9 
O1  6018.52 5.0 635  6018.52 5 612  0.00     

O2  4562.88 9.0 832  4557.38 9 774  0.12     

O3  7735.10 7.0 921  7731.00 7 681  0.05     

O4  7264.32 10.0 1009  7253.20 10 957  0.15     

O5  9243.69 8.0 1590  9193.15 8 1491  0.55     

O6  9824.44 9.0 1108  9793.72 9 1070  0.31     

O7  10363.28 10.0 1094  10347.70 10 1257  0.15     

O8  12430.06 10.0 1273  12415.36 10 1512  0.12     
average          0.13    1.3 
AVG: Column set referring to the average values over the ten BLSA executions 
BST: Column set referring to the BLSA run which generated the highest quality solution 
z: the cost of the generated route set 
K: the number of routes present in the solution 
t: time elapsed when the best solution was produced 
%Gap: the percent gap between the best and average solution cost  (= 100·(AVG-BST)/AVG) 
BLSA was coded in Visual C# and executed on a single core of a T5500 processor (1.66 GHz) 
LB: the cost lower bound reported in [26] (instances solved to optimality are marked with *) 
%GapLB: the percent gap between the best BLSA cost and the LB values  (= 100·(BST-LB)/BST) 

 

As seen from Table 4, BLSA was successful to improve eight of the seventeen 

previously best-known solutions. For the other nine test problems, it consistently 

produced solutions matching the best-known ones. The average solution improvement is 

equal to 0.06% (0.01% for the small-scale instances, and 0.11% for the large-scale ones). 



 27

In particular, for the large scale instances of Li et al. [15], BLSA robustly improved seven 

out of the eight instances, while for the smallest instance O1, it matched the previously 

best reported solution score. In terms of the computational times required by the 

algorithms compared, we do not intend to perform an analytic comparison, as the running 

times depend on a variety of computational factors which are difficult to be securely 

compared. Furthermore, for the presented previous approaches, no detailed information is 

always provided by the authors on whether the presented CPU times refer to the time 

required for the algorithms to run to completion, or to the CPU time elapsed when the 

best solutions were obtained. However, as an overall comment, we observe that the 

ORTR and VNS methods appear to be faster than the other three approaches. 

 

Table 4. Comparison of effective metaheuristics for the hierarchical OVRP objective 
 BK  ALNS  VNS  ORTR  H-ES  BLSA  %Gap 
                   
Instance   z t     z t  z t  z t   
C1 416.06(5)  416.06 23  416.06 1  416.06 6  416.06 98  416.06 25  0.00 
C2 567.14(10)  567.14 53  567.14 1  567.14 31  567.14 143  567.14 68  0.00 
C3 639.74(8)  641.76 128  639.74 12  639.74 40  639.74 330  639.74 103  0.00 
C4 733.13(12)  733.13 279  733.13 29  733.13 129  733.13 613  733.13 190  0.00 
C5 894.11(16)  896.08 237  905.96 15  924.96 381  894.11 1272  893.39 355  0.08 
C11 682.12(7)  682.12 141  682.12 12  682.54 122  682.12 318  682.12 85  0.00 
C12 534.24(10)  534.24 118  534.24 8  534.24 33  534.24 363  534.24 39  0.00 
F11 177.00(4)  177.00 104  178.09 7  177.00 20  177.00 264  177.00 93  0.00 
F12 769.55(7)  770.17 359  769.66 62  769.66 158  769.55 753  769.55 301  0.00 
O1 6018.52(5)  -   -   6018.52 365  6018.52 452  6018.52 612  0.00 
O2 4583.70(9)  -   -   4584.55 440  4583.70 613  4557.38 774  0.57 
O3 7731.46(7)*  -   -   7732.85 493  7733.77 736  7731.00 681  0.01 
O4 7260.60(10)*  -   -   7291.89 574  7271.24 833  7253.20 957  0.10 
O5 9197.61(8)  -   -   9197.61 767  9254.15 1365  9193.15 1491  0.05 
O6 9803.80(9)  -   -   9803.80 977  9821.09 1213  9793.72 1070  0.10 
O7 10348.57(10)*  -   -   10374.97 935  10363.40 1547  10347.70 1257  0.01 
O8 12420.16(10)*  -   -   12429.56 1127  12428.20 1653  12415.36 1512  0.04 
average                  0.06 
BK: Objective value of the best known solution, followed by the required number of vehicles in the parentheses 
ALNS: Adaptive Large Neighborhood Search of Pisinger and Ropke [17] - Pentium IV 3GHz 
VNS: The Variable Neighborhood Search of Fleszar et al. [23] - Pentium M 2 GHz 
ORTR: The Record to Record Algorithm of Li et al. [15] - Athlon 1GHz 
H-ES: The Hybrid Evolutionary Algorithm of Repoussis et al. [20] - C++, Pentium IV 2.8GHz 
BLSA: The proposed Broad Local Search Algorithm - Visual C#, T5500 1,66 GHz 
z: the cost of the generated route set 
t: CPU times reported for the algorithmic executions 
%Gap: the percent gap between the best BLSA solutions and the previously best-known solution scores (= 100·(BK-BLSA)/BK) 
* Solution scores obtained by the ABHC algorithm of Derigs and Reuter [18] for 400000 iterations. 
Bold characters represent higher quality solutions, whereas bold and italic characters represent new best-known solutions obtained by the proposed BLSA method. 

 

4.3.2. Results obtained for the single objective 

The algorithm was executed ten times on each test problem considering the single 

objective. For the single objective, each algorithmic run involved a different initial 

solution, as the construction procedure works stochastically (customers are arbitrarily 



 28

sorted for being assigned to the routes). The computational time bounds were again fixed 

at 600 seconds for the instances of Christofides et al. [31] and Fisher [32], and 1800 

seconds for the large scale problems of Li et al. [15]. Table 5 presents the results 

obtained. The first column set presents the average values over all ten BLSA executions, 

whereas the second group of columns refers to the BLSA run which yielded the best 

solution score. Again, BLSA appears to be adequately stable, as the percent deviation 

between the best and average solution scores over the ten runs ranged from 0.00% to 

0.31%, averaging at 0.14%. Regarding the average CPU times required for obtaining the 

best solution of each algorithmic execution, they varied from 30 seconds for the 50-

customer problem C1, up to 1414 seconds for the 480-customer instance O8. 

 

Table 5. BLSA results for the single OVRP objective 
  AVG  BST  %Gap 
Instance  z K t  z K t   
C1  412.96 6.0 30  412.96 6 24  0.00 
C2  564.06 11.0 62  564.06 11 55  0.00 
C3  641.20 8.8 98  639.26 9 106  0.30 
C4  734.92 12.0 179  733.13 12 167  0.24 
C5  871.67 17.0 268  869.00 17 256  0.31 
C11  679.27 9.3 103  678.54 9 87  0.11 
C12  534.24 10.0 32  534.24 10 29  0.00 
F11  177.00 4.0 103  177.00 4 83  0.00 
F12  763.10 8.0 229  761.68 8 189  0.19 
O1  5996.71 6.0 583  5988.35 6 648  0.14 
O2  4560.32 9.0 770  4549.46 9 804  0.24 
O3  7733.65 7.0 843  7731.00 7 864  0.03 
O4  7258.07 10.0 997  7251.30 10 1058  0.09 
O5  9176.85 9.0 1107  9152.47 9 956  0.27 
O6  9819.56 9.0 1220  9793.72 9 1180  0.26 
O7  10362.44 10.0 1206  10347.70 10 1332  0.14 
O8  12428.91 10.0 1414  12412.26 10 1582  0.13 

average          0.14 
AVG: Column set referring to the average values over the ten BLSA executions 
BST: Column set referring to the BLSA run which generated the highest quality solution 
z: the cost of the generated route set 
K: the number of routes present in the solution 
t: time elapsed when the best solution was produced 
%Gap: the percent gap between the best and average solution cost  (= 100·(AVG-BLSA)/AVG) 
BLSA was coded in Visual C# and executed on a single core of a T5500 processor (1.66 GHz) 
Bold characters used in the K column of the BST group denote solutions that require Kmin vehicles  

 

Table 6 compares the best results obtained by BLSA for the single objective 

configuration against the results obtained by previously published OVRP solution 

methodologies which also considered the aforementioned objective. These are the BATA 

[12], LBTA [13] and the BoneRoute [14] approaches. Note that comparisons are made 



 29

only for the instances of Christofides et al. [31], as to our knowledge, this is the first time 

that the single objective is considered for the Fisher [32], and the Li et al. [15] large-scale 

OVRP instances. The BLSA method improved the previously best reported solutions for 

three out of the seven examined instances. For the other four test problems, it robustly 

matched the best solution scores previously published. The average improvement over 

the previously published best solutions is equal to 0.02 %, which is satisfactory 

considering the small size of the Christofides et al. [31] instances, and the effectiveness 

of the LBTA, BATA and BoneRoute methods. 

 

Table 6. Comparison of effective metaheuristics for the single OVRP objective 
 BAS  BATA  LBTA  BR  BLSA  %Gap 
Instance   z t  z t  z t  z t   
C1 412.96(5)  412.96 6  412.96 23  412.96 98  412.96 24  0.00 
C2 564.06(10)  564.06 31  564.06 53  564.06 143  564.06 55  0.00 
C3 639.57(8)  642.42 40  639.57 128  641.77 330  639.26 106  0.05 
C4 733.68(12)  736.89 129  733.68 279  735.47 613  733.13 167  0.07 
C5 869.24(17) *  879.37 381  870.26 237  877.13 1272  869.00 256  0.03 
C11 678.54(10)  679.60 122  678.54 141  679.38 318  678.54 87  0.00 
C12 534.24(10)  534.24 33  534.24 118  534.24 363  534.24 29  0.00 
average               0.02 

BAS: Score of the best algorithmic solution previously reported, followed by the number of solution routes in the parentheses 
BATA: The Backtracking Adaptive Threshold Accepting Algorithm of Tarantilis et al. [12] - Pentium II 400MHz 
LBTA: The List Based Threshold Accepting method of Tarantilis et al. [13] - Pentium II 400MHz 
BR: The BoneRoute algorithm of Tarantilis et al. [14] - Pentium II 400MHz 
BLSA: The proposed Broad Local Search Algorithm - Visual C#, T5500 1,66 GHz 
z: the cost of the generated route set 
t: CPU times reported for the algorithmic executions 
%Gap: percent gap between the scores of the BLSA solutions and the previously reported best solutions (=100·(BAS-BLSA)/BAS) 
* These solution scores were obtained by the ABHC algorithm of Derigs and Reuter [18] for 400,000 iterations. 
Bold characters represent higher quality solutions, whereas bold and italic characters represent new best-known solutions obtained 
by the proposed BLSA method. 

 

5. Conclusions 

This article presented an original OVRP method which examines rich neighborhood 

structures formed by exchanging large customer sequences, instead of single customer 

vertices. This is achieved at the expense of manageable computational effort, as the 

proposed metaheuristic adopts the static move descriptor (SMD) concept for reducing the 

complexity of local search based-methods. The central idea of the SMD concept is that 

when moving from one solution to another, only a limited solution part is modified; 

therefore to examine the subsequent neighborhoods, only the tentative moves that refer to 

this modified solution part must be re-evaluated. On the contrary, moves associated with 



 30

the unaffected solution characteristics do not need to be re-evaluated, if appropriately 

stored. The conducted local search is diversified via a tabu strategy and a penalization 

scheme both of them compatible with the static representation of tentative moves. 

The proposed algorithm (abbreviated by BLSA) was applied to a collection of 

seventeen well-known OVRP benchmark instances considering two different objective 

configurations. The first one primarily aims at minimizing the vehicle fleet required, and 

secondarily at minimizing the routing cost, whereas the second objective only aims at the 

minimization of the cost of the routes produced. For both objective configurations, BLSA 

managed to improve several previously reported best-known solutions. 

In terms of future research directions, the static move descriptor concept can be 

applied to numerous combinatorial optimization applications. Furthermore, effective and 

time-consuming neighborhood structures could be encoded into SMD instances to be 

incorporated into efficient local-search frameworks. Finally, the SMD design can be 

extended to contain feasibility information, so that infeasible tunneling is allowed 

through the search process. 

 

Acknowledgments 

We are indebted to the anonymous referees, for extensively reviewing our paper, and 

offering constructive remarks and directions for the completion of our work. 

 

References 

[1]  Li F, Golden B, Wasil E. Very large-scale vehicle routing: new test problems, 

algorithms, and results. Comput Oper Res 2005;32(5):1165-79. 

[2]  Fu Z, Eglese RW, Li LYO. A new tabu search heuristic for the open vehicle routing 

problem. J Oper Res Soc 2005;56:267–74.  

[3]  Fu Z, Eglese RW ,Li LYO. Corrigendum. A new tabu search heuristic for the open 

vehicle routing problem. J Oper Res Soc 2006;57:1018. 

[4]  Brandão J. A tabu search algorithm for the open vehicle routing problem. Eur J 

Oper Res 2004; 157(3): 552-64. 

[5]  Russell R, Chiang W-C, Zepeda D. Integrating multi-product production and 

distribution in newspaper logistics. Comput Oper Res;35(5):1576-1588. 



 31

[6]  Bodin L, Golden B, Assad A, Ball M. Routing and scheduling of vehicles and 

crews : The state of the art. Comput Oper Res 1983;10(2):63-211. 

[7]  Fu Z, Wright M. Train plan model for British Rail freight services through the 

Channel Tunnel. J Oper Res Soc 1994;45:384–91. 

[8]  Li LYO, Fu Z. The school bus routing problem: a case study. J Oper Res Soc 

2002;53:552–58. 

[9]  Zachariadis EE, Kiranoudis CT. A Strategy for Reducing the Computational 

Complexity of Local Search-Based Methods, and its Application to the Vehicle Routing 

Problem. Under Review. Available at: http://users.ntua.gr/ezach/ 

[10]  Schrage L. Formulation and structure of more complex/realistic routing and 

scheduling problems. Networks 1981;11(2):229-32. 

[11]  Sariklis D, Powell S. A heuristic method for the open vehicle routing problem. J 

Oper Res Soc 2000;51(5):564-573. 

[12]  Tarantilis CD, Ioannou G, Kiranoudis CT, Prastacos GP. A threshold accepting 

approach to the open vehicle routing problem. RAIRO 2004;38:345–60. 

[13]  Tarantilis CD, Kiranoudis CT, Ioannou G, Prastacos GP. Solving the open vehicle 

routing problem via a single parameter metaheuristic algorithm. J Oper Res Soc 

2005;56:588–96. 

[14]  Tarantilis CD, Diakoulaki D, Kiranoudis CT. Combination of geographical 

information system and effective routing algorithms for real life distribution operations. 

Eur J Oper Res 2004;152:437–53. 

[15]  Li F, Golden B, Wasil E. The open vehicle routing problem: Algorithms, large-

scale test problems, and computational results. Comput Oper Res 2004;34(10):2918-30. 

[16]  Dueck G. New optimization heuristics: the great deluge algorithm and the record-

to-record travel. J Comput Phys 1993;104:86–92. 

[17]  Pisinger D, Ropke S. A general heuristic for vehicle routing problems. Comput 

Oper Res 2007;34(8):2403-35. 

[18]  Derigs U, Reuter K. A simple and efficient tabu search heuristic for solving the 

open vehicle routing problem. J Oper Res Soc; doi:10.1057/jors.2008.107. 

[19]  Whittley IM, Smith GD. The Attribute Based Hill Climber. J Math Model Algor 

2004;3(2):167-78. 



 32

[20]  Repoussis PP, Tarantilis CD, Bräysy O, Ioannou G. A hybrid evolution strategy for 

the open vehicle routing problem. Comput Oper Res;doi:10.1016/j.cor.2008.11.003. 

[21]  Glover F. Future paths for integer programming and links to artificial intelligence. 

Comput Oper Res 1998;13:533–49. 

[22]  Voudouris C, Tsang E. Guided local search. Eur J Oper Res 1998;113:80–119. 

[23]  Fleszar K, Osman IH, Hindi KS. A variable neighbourhood search algorithm for the 

open vehicle routing problem. Eur J Oper Res 2009;195:803-9. 

[24]  Hansen P, Mladenović N. Variable neighborhood search: Principles and 

applications. Eur J Oper Res 2001;130:449-67. 

[25]  Li X-Y, Tian P, Leung SCH. An ant colony optimization metaheuristic hybridized 

with tabu search for open vehicle routing problems. J Oper Res 2008; In press 

(doi:10.1057/palgrave.jors.2602644). 

[26]  Letchford AN, Lysgaard J, Eglese RW. A branch-and-cut algorithm for the 

capacitated open vehicle routing problem. J Oper Res Soc 2007;58:1642-51. 

[27]  Fredman M, Tarjan R. Fibonacci heaps and their uses in improved network 

optimization algorithms. J. ACM 1987; 34:596-615. 

[28]  Cordeau J-F, Gendreau M, Laporte G. A Tabu Search Heuristic for Periodic and 

Multi-Depot Vehicle Routing Problems. Networks 1997;30:105-119. 

[29]  Clarke G, Wright JW. Scheduling of vehicles from a central depot to a number of 

delivery points. Oper Res 1964; 12: 568–89. 

[30]  Toth P, Vigo D. The granular tabu search (and its application to the vehicle routing 

problem). INFORMS J Comput  2003;15:333-48. 

[31]  Christofides N, Mingozzi A, Toth P. The vehicle routing problem. In: Christofides 

N, Mingozzi A, Toth P, Sandi C, editors. Combinatorial optimization. Chichester, UK: 

Wiley; 1979. p. 315–38. 

[32]  Fisher M. Optimal solution of vehicle routing problems using minimum k-trees, 

Oper Res 1994;42:626-42. 
 
 


