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This article focuses on the mechanism of evaluating solution neighborhoods, an algorithmic 

aspect which plays a crucial role on the efficiency of local-search based approaches. In specific, it 

presents a strategy for reducing the computational complexity required for applying local search 

to tackle various combinatorial optimization problems. The value of this contribution is twofold. 

It helps practitioners design efficient local search implementations, and it facilitates the 

application of robust commercial local search-based algorithms to practical instances of very 

large size. The central rationale underlying the proposed complexity reduction strategy is 

straightforward: when a local search operator is applied to a given solution, only a limited part of 

this solution is modified. Thus, to exhaustively examine the neighborhood of the new solution, 

only the tentative moves that refer to the modified solution part have to be evaluated. To reduce 

the complexity of neighborhood evaluation, the Static Move Descriptor (SMD) data structures are 

introduced, which encode local search moves in a systematic and solution independent manner. 

The proposed strategy is applied to the Vehicle Routing Problem (VRP) which is of high 

importance both from the practical and theoretical viewpoints. The use of the SMD concept, for 

encoding three commonly applied quadratic local search operators, results into a VRP local 

search method which exhibits an almost linearithmic complexity in respect to the instance size. 

Furthermore, exploiting the SMD representation of tentative moves, a metaheuristic strategy is 

proposed, which is aimed at diversifying the conducted search via a simple penalization policy. 

The proposed metaheuristic was tested on various large and very large scale VRP benchmark 

instances. It produced fine results, and managed to improve several best known solutions. The 

method was also executed on real-world instances of 3,000 customers, the data of which reflects 

the actual geographic distribution of customers within four major cities. 
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1. Introduction 
Business operations involve a wide variety of highly complex optimization problems, practical 

medium and large scale instances of which cannot be solved to optimality within manageable 

computational times. To deal with such real-life problem instances, the decision maker should be 

focused on approximate optimization methods, which are capable of producing satisfactory 

solutions at the expense of reasonable computational effort. Numerous effective approximate 

optimization methods are based on the local search strategy [1]. Pure local search methods were 

introduced in the 1960s for improving solutions obtained by simple constructive heuristics, while 

during the last two decades local search is incorporated as the basic optimization component of 

general purpose algorithmic strategies called metaheuristics. These strategies aim at intelligently 

guiding the local search process towards diverse trajectories of the solution space in order to 

escape from premature local optima and obtain high quality solutions. Some of the most effective 

and commercially used paradigms of local search metaheuristic strategies are Tabu Search [2], 

Guided Local Search [3] and Variable Neighborhood Search [4], which are briefly described 

later.  

The generic local search scheme starts from a candidate solution and then iteratively 

transits to a new solution which belongs to the neighborhood of the current one. To implement 

these transitions, a systematic relation must be determined to link every solution with its 

neighboring ones. The neighborhood of a given solution consists of every solution generated from 

it, by performing (usually simple) modifications. The simplicity of these modifications is an 

objective mainly for computational reasons: a) the population of generated solutions 

(neighborhood cardinality) should be limited within manageable levels, and b) the evaluation of 

the neighboring solution quality should require constant time (independent of the instance size). 

In the general case, to pass from one solution to the subsequent one, the neighborhood involved is 

exhaustively examined, and the method implements the move towards the highest quality 

neighboring solution, if it improves the current one. The computational time required per iteration 

is mainly determined by the neighborhood cardinality and is bounded by a polynomial function of 

the instance size. Local search methods terminate when no neighboring solutions improve the 

quality of the current one, or in other words, the current solution is locally optimal in respect to 

the neighborhood structure under consideration. 

The local search scheme described above is a myopic method doomed to be trapped to 

the first local optimum encountered. To overcome this limitation, metaheuristic local search 

strategies make use of additional mechanisms aimed at driving the local search process out of 

local optima and towards higher-quality solutions. One of the most known local search 
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metaheuristic strategy is Tabu Search (TS), which makes use of memory components to avoid 

getting trapped in local optima. As earlier mentioned, the generic local search implements the 

move towards the best quality neighbor. This deterministic criterion causes cycling phenomena to 

occur (looping between the same solutions) when the local optimum is reached. To eliminate 

cycling, attributes of recently performed moves are declared tabu, so that during neighborhood 

investigation, moves with tabu attributes are discarded. Guided Local Search (GLS) is another 

effective metaheuristic approach which works by controlling the objective function of the 

problem examined, so that local optima are overcome. In specific, the basic principle of GLS is to 

use penalization terms for local optimum solution characteristics which are not likely to belong to 

high quality solutions. Another effective local search metaheuristic method is the Variable 

Neighborhood Search (VNS). The central idea of the VNS strategy is to systematically change 

the neighborhood structure examined when a local optimum is reached, because a local optimum 

with respect to one neighborhood structure is not necessary so for another. 

The computational complexity of every local search based method is defined by the 

number of calculations required for exhaustively evaluating the neighborhood of a candidate 

solution. Although this algorithmic aspect plays a crucial role in the overall efficiency of local 

search approaches, researchers do not usually focus on the way in which solution neighborhoods 

are explored. This lack of detailed information on neighborhood evaluation does not help 

practitioners to design efficient local search algorithms. At this very point lies the purpose of this 

paper, which presents a strategy for reducing the computational complexity to perform local 

search to various practical combinatorial optimization problems such as routing, ordering, and 

scheduling variants. The central idea for achieving this complexity reduction is straightforward: 

when moving from one solution to another, only a limited part of the solution characteristics is 

modified. Thus, to examine the next solution neighborhood, only the tentative moves that are 

related to these previously modified solution elements have to be evaluated from the beginning. 

On the contrary, moves that refer to unaffected solution characteristics have already been 

evaluated during previous neighborhood explorations, and therefore, if appropriately recorded, 

their recalculation is unnecessary. To implement this idea, we introduce the static move 

descriptors, which as their name suggests, are static (solution independent) entities that describe 

every possible move towards new solutions. These move descriptors are stored into special 

priority queue structures which provide constant time minimum-retrieval and insertion, and 

logarithmic time update capabilities.  

To improve clarity of exposition, we present the local search complexity reduction 

strategy by applying it to the Vehicle Routing Problem (VRP), which is a highly complex 
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combinatorial problem with significant commercial importance. More specifically, we tackle the 

aforementioned problem by employing a blend of some commonly used quadratic complexity 

(O(n2), where n is the instance size) local search operators. The application of the proposed 

complexity reduction scheme leads to a VRP local search method with almost linearithmic 

complexity in respect to the instance size. Reducing the complexity of such local search operators 

is of great importance, as it allows them to be incorporated within robust commercial local search 

metaheuristics for effectively dealing with very large scale practical instances. Furthermore, we 

propose a simple penalization mechanism specially designed for the VRP, which takes advantage 

of the static move descriptor entities, and is aimed at diversifying the search process. The overall 

algorithmic development is tested on large and very large-scale test instances with very promising 

results both in terms of the solution quality, and computational speed. Apart from the VRP 

benchmark instances, we also executed the proposed methodology on four real-world instances 

involving 3,000 customers. These instances, introduced in the present paper, were provided by a 

logistics company and contain the actual coordinates of customer locations within four major 

Greek cities 

The remainder of the present article is organized as follows: Section 2 presents the VRP 

model. It also provides information on VRP local search operators, and surveys some of the most 

effective VRP local search based metaheuristics. In Section 3, the proposed static move 

descriptor concept is introduced, followed by the detailed presentation of the proposed 

complexity reduction strategy and its application to the VRP. Section 4 describes a VRP 

metaheuristic algorithm based on the static move descriptor concept, whereas the computational 

results obtained by the proposed metaheuristic are provided in Section 5. Finally, Section 6 

concludes the paper and offers some further research directions. 

 

2. The Vehicle Routing Problem 
The standard version of the Vehicle Routing Problem (VRP) is a central problem in the area of 

operations management, as it models a wide variety of practical distribution systems, which, in 

turn, play a key role in the global business environment. Nearly every activity in the field of 

logistics can be interpreted as a generalization of the standard VRP version, which, as Li et al. 

mention [5], is easy to state and difficult to solve.  

Let G = (V, E) be a complete graph where V = {v0, v1, …, vn} is the vertex set and E = 

{(vi, vj): vi, vj∈V, i≠ j} is the arc set. Vertex v0 represents the central depot where a fleet of 

vehicles is located. The remaining n vertices of V \ {v0} represent the customer set. With each arc 

(vi, vj) ∈E is associated a travel cost cij which may express the distance, the required time or the 
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actual monetary cost for traveling along an arc (vi, vj). The goal of the VRP model is to design the 

minimum cost set of circuits (routes) with respect to the following constraints: each route begins 

and terminates at the central station v0, and every customer is visited once by exactly one route. 

Usually, additional requirements are incorporated in the standard VRP version, to model practical 

routing applications. In specific, the Capacitated VRP (CVRP) considers each customer vi (i = 1, 

2,… , n) to raise a deterministic product demand qi, whereas vehicles are assumed to have a 

maximum carrying load equal to Q. The CVRP model imposes the capacity constraint which 

guarantees that the total demand of customers assigned to a single route does not exceed vehicle 

capacity Q. Another commonly considered constraint sets an upper bound D to the total cost of a 

route. The resulting model is referred to as the Distance Constrained VRP (DVRP). As with most 

of the solution approaches proposed for the VRP, this paper deals with the Euclidean CVRP, the 

cost matrix of which is obtained by computing the Euclidean distance between vertex locations. 

As a result, the cost matrix is both symmetric, and satisfies the triangular inequality. 

 

2.1. Local Search Operators for the VRP 

The most common local search methods designed for the VRP consider neighborhood structures 

defined by simple arc exchange moves [6]. In the general case, a k-exchange move involves the 

deletion of (up to) k arcs of the current solution and the generation of k new ones to produce the 

subsequent solution. The complexity of exhaustively examining the k-exchange neighborhood of 

a solution is O(nk), so that in practical local search methods the value of k rarely exceeds 3 or 4, 

because this would lead to excessive computational times [7]. 

 Three common paradigms of simple and effective VRP local search operators, also used 

in the proposed methodology, are: (a) the 1-0 exchange (customer relocation), (b) the 1-1 

exchange (customer exchange), and (c) the 2-opt move (route crossover) illustrated in Fig.1. The 

1-0 exchange move (Fig. 1(a)) relocates a customer from its current position to another, by 

replacing three solution arcs. The 1-1 exchange (Fig. 1(b)) swaps the positions of a customer pair 

by removing four arcs and creating four new ones. Last, the 2-opt move involves the deletion and 

creation of an arc pair. The aforementioned local search operators can be characterized as 2-

exchange methods, although they involve the deletion and generation of more than two arcs 

(three for the 1-0 exchange, and four for the 1-1 exchange). This is because only two arcs have to 

be determined to fully describe a given move [7]. In specific, the 1-0 exchange of Fig.1 (a) can be 

fully described by the deleted arcs AB and DE, while arc BC is implicitly defined by the move 

mechanism. Analogously, the 1-1 exchange of Fig.1 (b) can be determined by the deleted arc pair 

AB and DE. The other two deleted arcs (EF and BC) are implicitly defined by the rationale of the 
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move. As a result, the cardinality of these neighborhoods is O(n2), and taking into account that 

their evaluation requires constant time [8], it can be easily seen that exhaustively examining one 

of these neighborhoods requires O(n2) computational effort.  

To accelerate local search algorithms, researchers have proposed several schemes for 

reducing the solution neighborhood cardinality and the mechanism of exploring the solution 

neighborhoods. In terms of the neighborhood cardinality, Glover and Laguna [9] introduce the 

candidate list strategies, which generate only a small subset of all tentative local search moves. 

Similarly, Coy et al. [10] propose a fixed length neighbor list for the Traveling Salesman Problem 

(TSP). Their method associates every vertex to a fixed number of neighboring vertices. Moves 

are evaluated, only if they lead to the creation of an arc connecting two neighboring vertices. Li et 

al. [5] extend this idea by considering a variable length neighbor list for solving the VRP. Toth 

and Vigo [7] propose another neighborhood reduction scheme based on the concept of granular 

neighborhoods. These neighborhoods do not contain moves leading to features not likely to 

belong to high quality solutions, and are dynamically adjusted by exploiting information collected 

during the search process. In the same context, Nagata and Bräysy [11] have proposed some local 

search limitation strategies for vehicle routing problems. The key idea is to restrict the 

neighborhood structures by considering only the tentative moves that lead to the creation of edges 

which are stored in a list. This list is dynamically updated through the search process using 

several policies proposed by the authors.  

Regarding the mechanism of neighborhood exploration, sequential search has been 

independently proposed by Lin and Kernighan [12], and Christofides and Eilon [13] for the TSP. 

The basic rationale of the sequential search concept is to prune the search as early as possible, so 

that a small subset of the tentative moves is evaluated. This pruning is achieved by calculating 

bounds to filter out the evaluation of cost-increasing tentative moves. More recent works aimed at 

accelerating local search methods for routing problems include the studies of Irnich et al. [14], 

and Irnich [15]. The former work provides sequential search implementations of several routing 

neighborhoods structures, and compares the efficiency of these implementations against classical 

lexicographic search approaches. The latter work proposes a unified modeling framework for 

routing problem variants with various complex side constraints. In methodological terms, the 

sequential search approach, presented in [14], is adapted to these complex-constrained routing 

problems. Pre-processing methods are also proposed to avoid increasing the computational 

complexity required for investigating feasibility.  

Apart from the simple arc exchange local search moves described above, researchers 

have also developed more complex neighborhood structures for the VRP. Ejection chain 
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approaches, originally proposed for the Traveling Salesman Problem by Glover [16], generate 

compound neighborhood structures, which encompass successions of interdependent moves, 

instead of simple moves or sequences of independent moves. Their application has proven to be 

effective also for the VRP model [17, 18]. Another compound move has been proposed by 

Osman [19]. It involves the combination of vertex insertions and exchanges between routes based 

on the 2-opt process. Gendreau et al. [20] propose a complex VRP move which consists of a 

simple vertex insertion, followed by a 3-opt or 4-opt exchange. As a last example of VRP 

complex neighborhoods, we mention the work of Xu and Kelly [21], which presents an original 

local search approach based on a network flow model that is used to simultaneously evaluate 

several customer ejection and insertion moves. 

 

B
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2-opt
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Figure 1 Simple Local Search Operators for the VRP 

 

 

2.2. Local Search Metaheuristic Approaches for the VRP 

Several of the most effective VRP metaheuristic approaches make use of simple local search 

operators like those presented in 2.1. Rochat and Taillard [22] have proposed an adaptive memory 

framework for dealing with the VRP. Their approach makes use of a pool of routes which belong 

to a set of elite solutions. Routes are extracted from the pool to form new complete or partial 

solutions which are improved by means of a TS method that employs 1-1 and 1-0 vertex 
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exchanges. The obtained solutions are then used to update the route pool. Tarantilis and 

Kiranoudis [23], and Tarantilis [24] have also proposed a similar scheme for solving the CVRP. 

The key difference between their methods and the one of Rochat and Taillard [22] is that new 

partial solutions are built by combining promising vertex sequences (bones) present in the 

adaptive memory. These solutions are then improved by a TS procedure which makes use of the 

1-0, 1-1 exchanges and 2-opt neighborhood structures. Li et al. [5] propose a record-to-record 

algorithm [25] for solving large scale routing problems. Their method investigates the 

neighborhoods of 1-0, 1-1 exchanges and 2-opt moves reduced by using the aforementioned 

variable-length neighbor list policy. Another effective local search based metaheuristic has been 

proposed by Toth and Vigo [7]. As mentioned above, they propose a TS method that explores 

drastically restricted neighborhoods. This is accomplished by ignoring moves that result into 

characteristics not likely to be part of a high-quality solution. The blend of local search operators 

used in their approach consists of four neighborhood structures: 1-1 exchange, 1-0 exchange, 2-

opt, and 2-point Or exchange which relocates two consecutive customers [26]. Reimann et al. 

[27] present an Ant System for solving the VRP. In specific, their approach decomposes the 

global VRP problem into TSP subproblems by clustering customer vertices into disjoint sets. 

Then, each subproblem TSP solution is optimized by the Savings Based Ant System which makes 

use of the 1-1 exchange and 2-opt moves. The total VRP solution is obtained by recombining the 

TSP solutions. Mester and Bräysy [28] present a metaheuristic development which combines the 

strengths of GLS and evolution strategies into an iterative framework. Their highly effective 

algorithm makes use of a composite local search method which consists of vertex exchanges, 

reinsertions and 2-opt moves, both for intra- and inter-route improvements. Finally, the work of 

Tarantilis et al. [29] is an example of how the 1-0, 1-1 exchange and 2-opt operators can be 

effectively modified for dealing with a routing variant which considers intermediate 

replenishment stops. These modified local search operators are integrated into a hybrid 

metaheuristic framework producing a highly effective algorithm. 

 

 

3. The Proposed Local Search Methodology 
The proposed local search framework makes use of the static move descriptors which were 

briefly discussed in the introductory section. Here, we provide an analytic description of them, 

together with a thorough discussion on their behavior. 
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3.1. Local Search Static Move Descriptors 

As earlier mentioned, most local search operators designed for the VRP consider simple arc 

exchange moves for transiting from one solution to the other. To define such a move instance, 

one has to determine the move rule and the move point. The move rule corresponds to the move 

mechanism and is common for all move instances of the same neighborhood structure, while the 

move point expresses a constant set of problem features, where the move instance is applied to. 

Both the move rule and move point information is static, or in other words, independent of the 

current solution. A Static Move Descriptor (SMD) is an entity containing this information, and 

each instance of it can be interpreted as a particular move from one solution to another. An SMD 

instance does also contain the cost required to be applied. This cost is the only dynamic (or in 

other words, solution dependent) information, stored in an SMD instance. 

 To more clearly introduce the SMD concept, we are going to present it for the particular 

local search operators used in our methodology, namely the 1-0 exchange, the 1-1 exchange, and 

the 2-opt move, illustrated in Fig.1. 
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Figure 2 The mechanism of the move descriptors for the 1-0 exchange move 
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1-0 Exchange Static Move Descriptor The 1-0 exchange move (customer relocation), removes a 

customer vertex from its current position and reinserts it into a new one, as seen in Fig.1 (a). The 

move point of the SMD objects designed for the 1-0 exchange (denoted by 1-0_SMD) is a pair of 

two distinct vertices n1 and n2, while the move rule is: “Remove n2 from its current position and 

reinsert it after n1”. The 1-0_SMD applied in the case of Fig. 1(a) is the one corresponding to n1 = 

D and n2 = B. To exhaustively describe the 1-0 exchange neighborhood of a given solution, the 

creation of one 1-0_SMD instance for every possible move is required. It is easily seen that in 

total n · (n + K - 1) 1-0_SMD instances are necessary, where K is the number of vehicles present 

in the solution and represents the occurrences of the depot vertex in the solution vector. Figure 2 

illustrates the move descriptor instances for a VRP of 5 customers and 2 vehicles. It also 

demonstrates the results of implementing three example 1-0_SMD instances to an arbitrary 

solution. 
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Figure 3 The mechanism of the move descriptors for the 1-1 exchange move 
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1-1 Exchange Static Move Descriptor The 1-1 Exchange operator exchanges the positions of 

two customer vertices as seen in Fig 1(b). This operator has a symmetric nature because the 

solution effect of exchanging the positions of customers vi and vj is the same with that of 

exchanging the vj and vi positions. To exploit this symmetry, the move point of the descriptors 

generated for the 1-1 exchange (denoted by 1-1_SMD) consists of a pair of distinct customer 

vertices n1 and n2. The move rule is straightforward: “Exchange the positions of n1 and n2”. The 

1-1_SMD instance corresponding to the move of Fig. 1(b) is the one corresponding to n1 = B and 

n2 = E. To exhaustively describe the 1-1 neighborhood of a given solution, one 1-1_SMD 

instance per customer pair must be generated. Thus, the total population of 1-1_SMD instances 

required is ))!2(!2(! −nn . Figure 3 illustrates the 1-1 Exchange move descriptor instances for a 

VRP of 5 customers and 2 vehicles. It also demonstrates the results of implementing two example 

1-1_SMD instances to an arbitrary solution. 
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Figure 4 The mechanism of the move descriptors for the 2-opt move 
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2-opt Static Move Descriptor Both the inter- and intra-route 2-opt moves delete two arcs present 

in the solution, and replace them with two new ones. They exhibit symmetric behavior, because 

each combination of two deleted arcs defines a single 2-opt move (repetitions of arc pairs define 

identical moves). To statically express this symmetric behavior, the SMD proposed for the 2-opt 

move (denoted by 2-opt_SMD) has been designed as follows: The move point of a 2-opt_SMD 

object consists of two non-identical vertices n1 and n2, while the move rule suggests: “If n1 and n2 

belong to different routes, connect vertices n1 and n2 to the paths beginning after vertex n2 and 

after vertex n1, respectively. Otherwise, if n1 and n2 belong to the same route and n2 precedes n1 in 

the route vector, swap the n1 and n2 values. Then, connect n1 to n2, by reversing the path lying 

between n1 and n2”. The 2-opt_SMD instance applied for the move of Fig.1(c) is the one 

corresponding to n1 = A and n2 = C (assuming that A and C belong to different routes). It can 

easily be seen that to exhaustively describe the 2-opt neighborhood of a given solution, in total 

))!2(!2()!( −++ KnKn 2-opt_SMD instances are necessary, where K is the number of routes 

present in the solution. Figure 4 illustrates the SMD mechanism of the 2-opt move for the 5-

customer, 2-route example VRP examined above. 

 

3.2. The Cost of the Static Move Descriptors 

Apart from describing a particular move, every SMD instance does also contain the cost of 

implementing this move to a given solution. When a move is performed, only a limited part of the 

solution structure is modified. For the VRP local search operators described above, this modified 

part consists of a small subset of the solution arcs. Therefore, to keep the SMD cost labels valid, 

each time a local search operator is applied, one must evaluate the costs of the SMD instances 

that refer to the affected solution part. In other words, for the VRP model, rather than every SMD 

cost label, only those that involve the cost of the affected solution arcs have to be updated.  

To better present the mechanism of keeping the costs of the SMD instances updated, we 

provide Fig. 5 which illustrates how does the application of an inter-route 2-opt move affect the 

cost labels of the SMD instances for the 1-1 exchanges. The VRP problem presented in Fig. 5 

involves 8 customers and 2 vehicles. The (inter-route) 2-opt_SMD applied in the case of Fig. 5 

has n1 = B and n2 = D. It removes arcs DC and BG, which are replaced by DG and BC. This 

particular move does not affect the cost of every 1-1_SMD instance. Instead, it modifies only 

those whose cost depends on the arcs deleted - and generated - by the 2-opt move (these arcs are 

written in bold characters in Fig. 5). In total, the costs of 22 1-1_SMD instances have to be re-

evaluated (indicated by the shadowed areas in Fig. 5). The remaining 6 instances remain 

unaffected and therefore their re-calculation is unnecessary. A more thorough look on the subset 
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of affected cost labels can provide the formal rule of cost update for the 1-1_SMD instances, 

when an inter-route 2-opt_SMD is applied to a given solution: “When an inter-route 2-opt_SMD 

instance with n1 = 2-opt_n1 and n2 = 2-opt_n2 is applied to a given solution S, the costs of the 1-

1_SMD instances with their n1 or n2 equal to 2-opt_n1, 2-opt_n2, succ(2-opt_n1) or succ(2-opt-

_n2), are modified and have to be updated, where succ(v) denotes the successor of v in solution S. 

In the example case of Fig. 5, we have 2-opt_n1 = B and 2-opt_n2 = D, with succ(B) = G and 

succ(D) = C. Therefore, the 1-1_SMD instances that must be re-evaluated have their n1 or n2 

value equal to B, D, G or C, as seen in Fig. 5. 

To apply the proposed methodology, one needs to deduce all formal rules of cost update 

for the local search operators applied. These rules can be interpreted as the way in which the 

neighborhood structures both affect themselves, and interact with each other. The rules for 

updating the SMD instances of the three local search operators used in our methodology are 

summarized in Table 1. Each row consists of the SMD instances that must be updated when a 

particular local search operator is applied. The first row, for instance, suggests that when a 1-

0_SMD instance with n1 = A and n2 = B is applied to a particular solution S, the following SMD 

instances must be updated:  

a) 1-0_SMD instances with n1 equal to A, pred(B), or B  

b) 1-0_SMD instances with n2 equal to A, succ(A), pred(B), B, succ(B) 

c) 1-1_SMD instances with n1 or n2 equal to A, succ(A), pred(B), B, or succ(B) 

d) 2-opt_SMD instances with n1 or n2 equal to A, pred(B), or B, 

where pred(v) and succ(v) denote the predecessor and successor of vertex v in solution S, 

respectively. 

From the update rules presented in Table 1, we see that when a 1-0 and 1-1 exchange 

move is performed, the total number of SMD cost labels that must be updated is linearly 

correlated to the instance size n, or to be more precise with n′ = n + K, where K represents the 

routes present in the current solution. When a 2-opt move is performed, the population of SMD 

instances to be updated depends on the state of the solution where the particular 2-opt move is 

applied to. However, loosely speaking, the affected SMD instances are confined to those that 

either their n1 or n2 vertex belongs to the routes (or route) involved in the 2-opt move applied. The 

value of this is obvious: within an iterative local search framework, encoding the tentative moves 

into SMD instances drastically reduces the - per iteration - calculations required to exhaustively 

evaluate the cost of solution neighborhoods. In the particular case of the 1-0 and 1-1 exchange 

quadratic O(n2) operators, applied in the proposed framework, the use of the SMD concept allows 

neighborhoods to be exhaustively evaluated at the expense of O(n) complexity. 
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Table 1 Rules for updating the SMD cost tags when a local search operator is applied 
  SMD Instances to be Updated 

SMD 
Instance 
Applied 

 1-0 Exchange  1-1 Exchange  2-opt 

1-0 
Exchange  

n1 = A 
n2 = B 

 
n1=A. 

n1=pred(B). 
n1=B. 

n2=A. 
n2=succ(A). 
n2=pred(B). 

n2=B. 
n2=succ(B). 

 

n1=A OR n2=A. 
n1=succ(A) OR n2=succ(A). 
n1=pred(B) OR n2=pred(B). 

n1=B OR n2=B. 
n1=succ(B) OR n2=succ(B). 

 
n1=A OR n2=A. 

n1=pred(B) OR n2=pred(B). 
n1=B OR n2=B. 

1-1 
Exchange 

n1 = A 
n2 = B 

 

n1=pred(A). 
n1=A. 

n1=pred(B). 
n1=B. 

n2=pred(A). 
n2=A. 

n2=succ(A). 
n2=pred(B). 

n2=B. 
n2=succ(B). 

 

n1=pred(A) OR n2=pred(A). 
n1=A OR n2=A. 

n1=succ(A) OR n2=succ(A). 
n1=pred(B) OR n2=pred(B). 

n1=B OR n2=B. 
n1=succ(B) OR n2=succ(B). 

 

n1=pred(A) OR n2=pred(A). 
n1=A OR n2=A. 

n1=pred(B) OR n2=pred(B). 
n1=B OR n2=B. 

 

Inter-
route 
2-opt 
n1 = A 
n2 = B 

 n1=A. 
n1=B. 

n2=A. 
n2=succ(A). 

n2=B. 
n2=succ(B). 

 

n2=A OR n2=A. 
n2=succ(A) OR n2=succ(A). 

n2=B OR n2=B. 
n2=succ(B) OR n2=succ(B). 

 

n1=A OR n2=A. 
n1=B OR n2=B.  

( n1∈ fst(A), n2∈sec(A) OR 
n2∈ fst(A), n1∈sec(A) ). 

( n1∈ fst(A), n2∈sec(B) OR 
n2∈ fst(A), n1∈sec(B) ). 

( n1∈ fst(B), n2∈sec(A) OR 
n2∈ fst(B), n1∈sec(A) ). 

( n1∈ fst(B), n2∈sec(B) OR 
n2∈ fst(B), n1∈sec(B) ). 

Intra-
Route 
2-opt 
n1 = A 
n2 = B 

 n1∈rev(A,B). 
n1=A. 

n2=A. 
n2=succ(A). 

n2=B. 
n2=succ(B). 

 

n2=A OR n2=A. 
n2=succ(A) OR n2=succ(A). 

n2=B OR n2=B. 
n2=succ(B) OR n2=succ(B). 

 
n1=A OR n2=A. 

n1∈rev(A,B) OR 
n2∈rev(A,B). 

pred(v): the predecessor of vertex v before the move application,  
succ(v): the successor of vertex v before the move application. 
fst(v): the route segment originating from the depot and terminating at the predecessor of vertex v, before the move application,  
sec(v): the route segment originating from the successor of vertex v and terminating at the depot, before the move application. 
For the application of Intra-Route 2-opt SMD, assume that A precedes B in the route vector, before the move is implemented 
rev(A,B): the reversed route path between vertices A and B (beginning from the successor of A and ending at B, see Fig. 4) 
The ‘,’ character can be interpreted as the logic operator AND, The ‘.’ character separates each cost update rule. 
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0B+BD+ 
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(0A+AD+ 
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Figure 5 The effect of a 2-opt move on the 1-1 exchange SMD instances 



 16

3.3. Keeping the SMD Instances Sorted 

To perform local search using the best admissible move strategy, apart from evaluating the costs 

required for implementing every tentative move, one must identify the particular move 

minimizing the cost involved. Accordingly, when using the SMD instances for encoding tentative 

moves, the particular SMD instance with the minimum cost label must be identified and applied. 

A straightforward way to do so would be to go through every SMD instance in order to locate the 

minimum cost one. However, this would require O(n2) complexity because the total population of 

SMD instances is O(n2), as earlier presented. To avoid this complexity increase, we use a priority 

queue data structure, called Fibonacci Heap introduced by Fredman and Tarjan [30]. This 

structure is used for keeping the SMD instances sorted according to their cost labels and provides 

the following key capabilities: a) it returns the lowest cost SMD at constant time, b) allows SMD 

instance deletions in O(log m), where m = n2 (corresponding to the total number of SMD 

instances), and c) allows SMD instance insertions at constant time. The role of the first capability 

is obvious, as it is directly related to the selection of the best tentative move. The second and third 

characteristics of the Fibonacci Heap are important for the process of updating the cost labels of 

the affected SMD instances, when a local search operator is applied. In particular, the process of 

updating the cost of a single SMD instance involves three steps: delete the SMD instance from 

the data structure, modify its cost label, and finally insert it back into the data structure. Since the 

cost modification (for the considered VRP local search operators), and insertion steps are 

executed in O(1), the overall complexity of a single update process is bounded by the deletion 

step which requires logarithmic complexity (O(log n2) = O(2 log n)). The application of a 1-0 and 

1-1 exchange operator updates the cost of O(n) SMD instances. Thus, for these particular move 

types, the required computational complexity -per iteration- for keeping all SMD instances 

updated and sorted is O(n log n). For the 2-opt move, the space complexity of the modified SMD 

instances cannot be explicitly defined. However, assuming that l denotes the affected SMD 

instances (where in the general case l < n2, and l << n2, for problems with low n / K ratios), the -

per iteration- computational complexity required for keeping the SMD instances updated and 

sorted is O(l log n). 

 

3.4. The Overall Local Search Framework 

The classical local search method with the use of the SMD concept for mapping tentative moves 

is presented in Fig. 6. For clarity of presentation, consider that the neighborhood structure 

examined in the method of Fig. 6 is one of the two 1-0 and 1-1 exchange quadratic VRP 

neighborhoods, presented above.  
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Steps 1-6 are necessary for initializing the method and the Fibonacci Heap which will 

store the SMD instances. These steps are executed once, and for the examined quadratic operators 

require O(n2) computing time.  The core of the local search method lies in lines 7-16 which are 

executed iteratively. Lines 9-11 perform an iterative procedure that corresponds to the 

identification of the best possible move towards a new solution. In particular, the minimum cost 

SMD instances are iteratively popped out of the Fibonacci Heap until the first one which does not 

lead to any constraint violation is identified. A single iteration of steps 9-11 is executed in 

constant time, but their total number depends on various factors such as the tightness of the 

constraints, the neighborhood examined and the state of the current solution. Regarding the 

CVRP model and the benchmark instances examined in the present paper, experiments indicated 

that the average number of required iterations exhibits less than linear growth with the instance 

size and that these iterations do not significantly contribute to the computational effort of the 

overall method. The aforementioned experiments, together with some additional comments on 

feasibility issues are provided in the following subsection 3.5. Line 12 restores the Fibonacci 

Heap to its initial state before the move to be applied is identified, while line 13 sets the method’s 

termination condition when the local optimum is reached. Line 14 corresponds to the move 

application towards the subsequent solution, whereas 15 corresponds to the application of the 

SMD update process which was analytically described in 3.3 and requires O(n log n) time. 

 

Local Search (Solution S)
  1 Fibonacci Heap FH 
  2 generate the SMD of the examined neighborhood structure for solution S 
  3 calculate the cost labels of the generated instances
  4 for each generated SMD instance smd
  5 insert smd into FH
  6 end for 
  7 do
  8 SMD toBeApplied
  9 do
10 toBeApplied  = pop the minimum cost SMD instance from FH
11 while (toBeApplied is infeasible)
12 reinsert extracted SMD instances back to the FH
13 if (cost label (toBeApplied) > 0) go to 17  
14 apply the move represented by toBeApplied to Solution S 
15 update the cost labels of the SMD instances affected by toBeApplied
16 end do
17 return S

 
Figure 6 The Local Search method  
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3.5. Feasibility Issues 

To empirically determine the number of SMD instances that need to be extracted from their 

Fibonacci Heap until the first feasible one is obtained, and compare this number against the 

problem scale, we performed the following experiment: for 32 problems in total (described in 

detail in subsection 5.1), we executed a local search method like the one presented in Fig. 6, using 

all three presented local search operators. In specific, each iteration of lines 7-16 involved a 

randomly selected neighborhood structure, with each structure having the same probability of 

being selected. To cover a wider region of the solution space, so that more representative results 

are obtained, we also applied a tabu strategy which forbids the application of SMD instances 

corresponding to performed move reversals. The tabu horizon considered was 10 iterations per 

move type. The termination condition was set to the completion of 50,000 iterations. For each 

neighborhood structure, we measured the -per iteration- average number of SMD instances that 

had to be extracted from the corresponding Fibonacci Heap, before the first admissible SMD 

instance was obtained, or in other words the required iterations of the loop of lines 9-11 in Fig. 6. 

Note that for the presented experimental procedure, an admissible SMD instance apart from the 

feasibility requirement must also be non-tabu. 
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From the experimental results illustrated in Fig. 7, we can see that the extracted SMD 

instances for the 1-0 and 1-1 move types are significantly fewer than the 2-opt ones. This is 

because the inter-route 2-opt operator swaps route segments that contain large customer sets 

causing a significant effect in terms of the solution feasibility status. The number of extracted 1-0 

and 2-opt SMD instances illustrates a slight positive correlation with the instance size, however 

the growth rate does not exhibit any quadratic behavior. For the 1-1 exchange, the number of 

extracted SMD instances depended on the instance characteristics exclusively, without 

demonstrating any correlation to the instance size. Finally, for all three local search operators and 

for both problem versions (CVRP and DCVRP) the number of extracted SMD instances is 

insignificant compared to the total SMD instance populations. In specific, let rextr denote the ratio 

between the average extracted SMD instances, and the total number of SMD instances of a given 

move type. For the CVRP model, the rextr ratio ranged within [0.131%, 0.386%], [0.020%, 

0.100%], and [0.897%, 2.253%], for the 1-0 exchange, 1-1 exchange and 2-opt moves, 

respectively. For the DCVRP model, the aforementioned rextr ratios ranged within [0.000%, 

0.006%], [0.001%, 0.037%], and [0.035%, 0.359%], respectively. The ranges of the rextr value 

indicate that the procedure of extracting SMD instances from their Fibonacci Heaps, to obtain the 

first admissible one, does not significantly contribute to the computational effort required by the 

overall local search framework. 

  At this point, we should note that as the SMD instances (tentative moves) are sorted 

according to their cost labels, the proposed scheme checks the feasibility of only the high quality 

moves which are the actual candidates for being applied. This characteristic can drastically reduce 

the computational time dedicated for feasibility evaluations of problem models with complex 

constraints, because unproductive feasibility checks are avoided. Regarding the feasibility issues, 

if tunneling through infeasible solution space is allowed, or constraints are very tight so that 

feasibility evaluation determines the total computational effort, the SMD design could also 

incorporate feasibility information. This could be achieved, for instance, with the use of excess 

penalties (for infeasible tunneling), or even dummy penalty cost labels for the infeasible SMD 

instances. In this case however, the SMD cost update rules for the application of a move must be 

appropriately designed to reflect the changes that this specific move has caused in terms of the 

dynamic feasibility status of the SMD instances. 

 

3.6. The Acceleration Role of the Static Move Descriptors 

To present the acceleration role of the proposed SMD representation, the following experiment 

was performed: we executed the local search method described in 3.4 using the new SMD 
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representation of tentative moves, and with the classic move representation. The local search 

operator employed was the quadratic 1-0 exchange. The termination condition used was the 

completion of 50,000 iterations. To avoid being trapped in local optima, deteriorating moves were 

allowed, and move reversals were eliminated using the tabu strategy. In terms of the cost of the 

final solutions, both methods produced identical results, as the exact same search rules were 

applied. The two compared methods did only differ on the representation used for evaluating 

solution neighborhoods, and therefore on the total CPU effort required. 
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Figure 8 The acceleration role of the SMD representation 
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Figure 9 The linearithmic behavior of the search process using the SMD concept 
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The comparative results obtained by the aforementioned experimental procedure are 

summarized in Fig. 8. As seen from Fig. 8, the computational times required by both 

representations are comparable for problem scales of up to 350-400 customers. This is because 

the acceleration effect of the SMD concept is counterbalanced by the extra computations 

performed internally to the Fibonacci Heap structure. However, as the problem scale becomes 

larger, the CPU time required by the classic representation exhibits quadratic growth. On the 

contrary, the CPU time required by the search process with the use of the SMD representation 

presents a linearithmic growth rate, as more clearly illustrated in Fig. 9. Note that for the problem 

instance of 1,200 customers, the complexity reduction achieved by the use of the SMD 

representation reduces the total time of the search process by a remarkable 87.96% (classic 

representation: 2,485.89 sec, SMD representation: 299.36 sec).  

 

4. A VRP Tabu Search Based on the SMD Concept 
In this Section, we propose a VRP metaheuristic which exploits the SMD representation of 

solution neighborhoods analytically described in Section 3. Let PSMDA (Penalized Static Move 

Descriptors Algorithm) denote the proposed solution approach. The central rationale of PSMDA 

is to penalize the cost labels of the SMD instances to diversify the search process. In terms of the 

speed of the algorithm, except for the acceleration role of the SMD strategy, we also apply a 

neighborhood reduction policy similar to the granularity concept introduced by Toth and Vigo 

(2003). Note that as the PSMDA makes use of the SMD local search engine, the CPU time 

demanded -per iteration- by the proposed algorithm exhibits almost linearithmic growth with the 

instance size. The PSMDA metaheuristic is presented in detail in the following subsections. 

 

4.1. Initializing the PSMDA Metaheuristic Methodology 

To obtain an initial VRP solution, we apply the weighted savings heuristic originally proposed by 

Paessens (1988). The savings function used is: 

s(vi, vj) = ci0 + c0j – g · cij + f · | ci0 - c0j |,  (1)

where the f and g parameter values are uniformly distributed within [0, 1] and (0, 3], respectively, 

as proposed by Paessens [31]. 

The PSMDA framework makes use of the 1-0, 1-1 exchange and 2-opt local search 

operators (denoted by NS1, NS2 and NS3, respectively) described in Section 3, thus it is initiated 

by generating the SMD instances for these three neighbourhood structures. To reduce the total 

amount of generated SMD instances, and therefore the calculations needed for keeping their cost 

labels updated, we followed a strategy similar to the granularity concept of Toth and Vigo [7]. 
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The main idea of this neighbourhood reduction scheme is to create SMD instances for encoding 

only those moves that are likely to produce high-quality solutions. To do so, we calculate a 

threshold cost θ as: 

0

0 )(
Kn

Sz
+

⋅= βθ ,  (2)

where z(S0), and K0 denote the cost and the number of routes of the initial solution S0, 

respectively, and β is the sparsification parameter set to 2.5, as proposed by Toth and Vigo [7]. 

Then, for all three local search operators, an SMD instance with n1 = i and n2 = j is generated, if at 

least one of the following holds: cij ≤  θ, i = 0, j = 0. The application of the aforementioned move 

filtering criterion excludes poor quality moves from the search process and drastically accelerates 

the overall algorithm. By the term poor quality moves, we mean those moves that are highly 

unlikely to produce a good-quality solution, for instance, swapping the positions of a distant 

customer pair (1-1 exchange), or generating an arc connecting two remote customers (1-0 

exchange).  

 With each SMD instance smd, are associated two cost labels, namely smdCost, and 

smdPenCost. As their name suggests, smdCost represents the actual cost of the tentative move 

encoded in smd, while smdPenCost corresponds to this actual cost augmented via a penalization 

policy which is explained in the following. Then, for each neighbourhood structure NSi (i = 1, 2, 

3) two Fibonacci Heaps FHi and PenFHi are created. The former heap (FHi) is responsible for 

keeping the SMD instances of NSi sorted according to their smdCost label, while the latter 

(PenFHi) keeps these instances sorted according to their penalized cost label smdPenCost. Every 

SMD cost label is evaluated (in terms of the initial solution S0), and every SMD instance is 

inserted into the appropriate Fibonacci Heap. Note that in the beginning smdPenCost = smdCost, for 

every instance smd. After the SMD encoding has been prepared, the core of the PSMDA 

approach is ready to be executed.  

 

4.2. The Central Rationale of the PSMDA Metaheuristic 

The central idea of PSMDA is to perform diverse local search moves, so that the search is driven 

to various regions of the solution space. To do so, we exploit the design of SMD instances for 

mapping local search moves. As mentioned in Section 3, every SMD instance contains a move 

point. This point represents a set of problem features where the encoded move is applied to. In the 

case of the examined neighbourhood structures, the move point consists of a vertex pair n1 and n2. 

When an SMD instance with n1 = A and n2 = B is applied, the method performs structural 

modifications at the proximity of vertices A and B. To quantify this information, for every vertex 
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ni, we introduce a counter counti. This counter is responsible for keeping track of the number of 

times that an SMD instance with either its n1 or n2 value equal to ni has been implemented, and 

can be interpreted as the frequency with which the search has been conducted into the proximity 

of ni. The penalized cost label smdPenCost of an SMD instance with n1 = A and n2 = B is augmented 

by a penalty term proportionate to the (countA + countB) frequency metric. In this way, if one 

selects the SMD instances to be applied according to their penalized cost labels, the interest of the 

overall search is spread across every vertex of the problem, and is not confined into the proximity 

of small vertex subsets. 

 

4.3. The Core of the PSMDA Solution Approach 

The PSMDA approach is a local search metaheuristic which begins the conducted search from the 

solution produced by the Paessens construction heuristic described in 4.1. 

At each iteration, the method performs the move represented by the SMD instance 

selected to be applied and denoted by app_smd. To determine the app_smd instance, the 

following procedure is used: From all three FHi (i = 1, 2, 3) (containing the SMD instances sorted 

according to their non-penalized cost labels), the lowest cost SMD instance np_smd is identified. 

If np_smd represents a move which improves the best solution found so far, the method applies 

this move (app_smd = np_smd). Otherwise, one of the examined neighbourhood structures (NS1, 

NS2, and NS3) is randomly selected. As seen in Table 1, the computations necessary for updating 

the costs of the SMD instances are linearly correlated to the instance size, when the 1-0 and 1-1 

exchange moves are applied, whereas the implementation of a 2-opt move requires a greater 

number of SMD cost label updates. Therefore, to achieve an overall fast algorithmic behavior 

(keep the complexity as close to O(n log n) as possible), without significant loss of effectiveness, 

we limited the probability of 2-opt selection to 10%. The 1-0 and 1-1 exchange neighbourhood 

structures equally share the rest 90% probability of being selected. Let NSi denote the selected 

structure. Then, a uniformly distributed random variable fromPen is generated within the range 

[0, 1]. If fromPen < freqPen, the best SMD instance stored in PenFHi (containing the SMD 

instances of NSi sorted according to their penalized cost labels) and denoted by p_smd is selected 

to be applied (app_smd = p_smd). Otherwise, if fromPen ≥ freqPen, the move encoded by 

np_smd is performed (app_smd = np_smd). Note that apart from the diversification role of the 

penalization policy, we also use a tabu list which forbids move reversals, for a horizon of tabuTen 

iterations. Furthermore, our approach does not allow tunneling through infeasible regions. 

Therefore, the best SMD instances p_smd and np_smd extracted from the corresponding 
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Fibonacci Heaps, must both be non-tabu (unless the encoded move improves the best solution 

found), and satisfy the feasibility constraints. 

 

Solution PSMDA (Solution S)
Neighborhood Structure NSi
double z, z*
Solution S*
SMD app_smd, np_smd, p_smd
Fibonacci Heap FHi, PenFHi

--Initialization
generate the SMD instances for the neighborhood structures examined 
calculate the cost tags of the SMD instances for S
insert the generated instances into the appropriate Fibonacci Heap

--Improvement Phase
while (termination condition = false)

--Move Selection
np_smd = best feasible non-tabu SMD instance extracted from all three FHi (i = 1, 2, 3)
if (z + np_smdCost < z*)

app_smd = np_smd
else

Select NSi from (NS1, NS2, NS3)
randomly generate fromPen in [0, 1]
if (fromPen < freqPen)

p_smd = best feasible non-tabu SMD instance extracted from PenFHi
app_smd = p_smd

else
app_smd = np_smd

end if
end if

--Move Application
apply app_smd to S
z = z + app_smdCost
declare the SMD reversals of app_smd tabu for tabuTen iterations
let app_n1 and app_n2 denote the n1 and n2 vertices of app_smd
countapp_n1 = count app_n1 + 1, countapp_n2 = count app_n2 + 1
for every affected SMD smd (following the update rules of Table 1)

remove smd from its Fibonacci Heaps 
smdCost = calculate the cost of smd according to the new solution S
let smd_n1 and smd_n2 denote n1 and n2 vertices of smd
smdPenCost = smdCost + (countsmd_n1 + countsmd_n2)  pen
reinsert smd to the Fibonacci Heaps

end for
if (z < z*)

S* = S
z* = z

end if
end while
return S*  

Figure 10 Pseudocode of the PSMDA metaheuristic 
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After the SMD instance app_smd is identified, the search implements the corresponding 

move to obtain the subsequent solution. Let A and B denote the vertex pair of app_smd. The 

counters countA and countB are both augmented by 1, and the method applies the SMD cost 

update rules summarized in Table 1, for keeping every SMD cost tag updated according to the 

status of the new solution. The penalized cost tag of an SMD instance smd with n1 = A and n2 = B 

is evaluated as: 

smdPenCost = smdCost + (countA + countB) · pen, (3)

where pen is a penalization parameter. From the update rules of Table 1, note that independently 

of the local search operator applied, every SMD instance with either its n1 or n2 value equal to A 

and B, is updated. Thus, all penalized cost tags are appropriately modified using the augmented 

countA and countB frequency values. The PSMDA method is executed until a certain termination 

condition is reached by returning the best solution obtained through the progress of the search. 

Fig. 10 provides the pseudocode of the PSMDA solution approach, using the same notation as in 

the verbal description of the method.  

 

5. Computational Results of the PSMDA Metaheuristic 
To assess the performance and determine the parameter setting of the PSMDA strategy, we tested 

it on 32 large and very large scale VRP benchmark instances. Here, we provide some details on 

these benchmark instances, followed by a discussion on the PSMDA standard parameter setting. 

Finally, we provide the solution values obtained by the PSMDA together with the computational 

times involved. Apart from the 32 VRP benchmark instances, we also solved four real-world test 

problems each involving 3,000 customers. All instances and best solutions obtained are available 

at http://users.ntua.gr/ezach/. 

 

5.1 Benchmark Instances 

Since the central aim of the present article is to propose a strategy for reducing the complexity of 

neighbourhood evaluations, PSMDA was tested on large scale VRP benchmark instances. In 

specific, we used the set of 20 large scale instances (200-483 customers) proposed by Golden et 

al. [25], and the set of 12 very large scale instances (560-1200 customers) introduced by Li et al. 

[5]. Note that we maintain the same problem ordering (problem 1 to 32), as given in the 

aforementioned works. The cost matrices for all 32 examined test problems are obtained by 

calculating the Euclidean distances between vertex locations. Problems 9-20 are pure CVRP 

instances, while problems 1-8 and 21-32 impose route length restrictions. Table 2 summarizes the 

details of all 32 test problems. 
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Table 2 Benchmark instances used for testing the proposed strategy 
Large CVRP  Very Large CVRP 

Pr. n td Q D  Pr. n td Q D 
1 240 4,800 550 650  21 560 11,200 1,200 1,800 
2 320 6,400 700 900  22 600 12,000 900 1,000 
3 400 8,000 900 1,200  23 640 12,800 1,400 2,200 
4 480 9,600 1000 1,600  24 720 14,400 1,500 2,400 
5 200 4,000 900 1,800  25 760 15,200 900 900 
6 280 5,600 900 1,500  26 800 16,000 1,700 2,500 
7 360 7,200 900 1,300  27 840 16,800 900 900 
8 440 8,800 900 1,200  28 880 17,600 1,800 2,800 
9 255 13,429 1,000 -  29 960 19,200 2,000 3,000 
10 323 15,195 1,000 -  30 1,040 20,800 2,100 3,200 
11 399 16,980 1,000 -  31 1,120 22,400 2,300 3,500 
12 483 18,701 1,000 -  32 1,200 24,000 2,500 3,600 
13 252 25,136 1,000 -       
14 320 28,672 1,000 -       
15 396 32,244 1,000 -       
16 480 35,772 1,000 -       
17 240 4,320 200 -       
18 300 5,400 200 -       
19 360 6,480 200 -       
20 420 7,560 200 -       
n: number of customers, td: total demand of customers, Q: vehicle capacity, D: maximum route cost 
 

5.2 Parameter Setting 

The PSMDA framework contains three parameters, namely freqPen, pen and tabuTen, the setting 

of which has to be determined before it is executed. The freqPen and pen parameters play a 

central role on the behavior of the algorithm, because they control the interplay between the 

intensification and diversification of the conducted search. In specific, freqPen defines the 

frequency with which moves are selected according to their penalized SMD cost, and pen 

controls the penalization terms (3) used to augment the cost of the SMD instances. Obviously, 

these two parameters jointly affect the search behavior. To avoid complex tuning experiments, we 

conducted preliminary algorithmic executions on all benchmark instances, using various rational 

pen values, and we observed that the best algorithmic performance was observed for freqPen 

values within the range [0.7, 0.9]. Therefore, the freqPen was fixed at 0.8, which injected 

satisfactory diversification into the search, and also let the algorithm intensify into promising 

solution regions. Having set freqPen to 0.8, we then experimented with the pen parameter. The 

setting of pen depends on both the cost matrix and the solution characteristics of the instance 

examined. To capture this correlation, pen was expressed according to the following relation: pen 

= μ · θ, where θ is the granular threshold introduced in (2). Then, we solved all benchmark 

instances with values of μ taken from [0.001, 0.01]. The best algorithmic behavior was 
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consistently observed for μ values between 0.004 and 0.008. Following this, pen was set to 

0.006·θ.  

Regarding the number of iterations for which move reversals are declared tabu, we used 

tabuTen = 30, as suggested in the work of Tarantilis [24], for instances involving up to 500 

customers. For the very large scale problems, with the customer population varying from 560 to 

1,200, we used tabuTen = 60, which proved to be adequately high to eliminate cycling 

phenomena. 

 

5.3 Results on CVRP Benchmark Instances 

To assess the performance of PSMDA, we solved all 32 benchmark instances 10 times with the 

standard parameter setting specified in 5.2. Each of the 10 algorithmic executions involved 

different initial solutions, because of the stochastic setting of f and g parameters (1). The 

termination condition used was reaching 30 CPU minutes for instances of up to 299 customers, 

45 minutes for instances of up to 500 customers, and 90 minutes for the very large scale instances 

involving from 560 to 1,200 customers. Table 3 summarizes the results obtained, while Table 4 

compares the best solution scores obtained by PSMDA to those achieved by some of the most 

effective published VRP metaheuristic approaches, and the best known solution for the examined 

instances. 

 As seen in Table 3, the PSMDA has shown adequate stability, as for all 32 benchmark 

instances the average solution scores achieved over the 10 runs were very close the best ones. In 

specific, the average percent deviation between the best solution cost and the average one was 

limited to a satisfactory 0.19%. In terms of the CPU effort, PSMDA proved to be consistent, as 

the run time for obtaining the highest quality solution scores were close to the average run time 

for reaching the best solution, for all 10 algorithmic executions. Note also that the CPU time 

required by PSMDA does not exhibit quadratic growth with the instance size. 

Table 4 compares the best solution scores obtained by PSMDA with those reached by 

some of the most effective VRP algorithms ever proposed. It also presents a comparison between 

PSMDA solutions and the best known solutions (BKS column) for each benchmark instance. 

Note that some BKS values have not been obtained by any algorithmic approach. Instead, they 

have been visually estimated by exploiting their symmetric structure. PSMDA managed to 

improve 6 out of the 32 best-known solutions, and matched the best-known solutions for 5 test 

problems. The average percent gap of the PSMDA method and the previously best-known 

solutions is limited to a satisfactory 0.041% (0.061% for the large scale, and 0.008% for the very 

large scale instances). The greatest solution improvement was observed for the 760-customer 
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instance 25 (-0.474%), whereas the worst performance was recorded for the 1200-customer 

problem 32 (0.714%). In terms of PSMDA relative performance against the four presented highly 

effective solution approaches, we see that the average percent deviation between the PSMDA and 

the best algorithmic scores is restricted to 0.028% (0.042% for the large scale, and 0.004% for the 

very large scale instances). It also proved to be fairly robust, as the worst gap between a PSMDA 

and a previously reported algorithmic solution value was 0.688% (Instance 32).  

 

Table 3 PSMDA results on the benchmark instances 
LS Cavg Cbest  K  %gap  CPUavg CPUbest CPUtot 
1 (240) 5,637.99 5,626.81  9  0.20  907.7 938.7 1,800 
2 (320) 8,457.92 8,447.92  10  0.12  1,249.4 1,858.2 2,700 
3 (400) 11,036.22 11,036.22  10  0.00  1,164.0 1,184.7 2,700 
4 (480) 13,632.59 13,624.53  10  0.06  1,019.0 1,798.2 2,700 
5 (200) 6,460.98 6,460.98  5  0.00  989.6 810.4 1,800 
6 (280) 8,412.90 8,412.90  7  0.00  1,091.6 1,112.8 1,800 
7 (360) 10,192.47 10,169.26  9  0.23  1,885.5 1,860.2 2,700 
8 (440) 11,674.43 11,651.67  10  0.20  1,657.4 1,732.5 2,700 
9 (255) 584.66 581.28  14  0.58  854.0 929.4 1,800 
10 (323) 739.86 738.57  16  0.18  1,635.3 1,271.4 2,700 
11 (399) 919.52 916.99  18  0.28  1,418.8 1,392.2 2,700 
12 (483) 1,110.65 1,105.93  19  0.43  1,197.5 1,282.3 2,700 
13 (252) 860.44 858.45  26  0.23  1,214.6 1,189.3 1,800 
14 (320) 1,083.55 1,081.05  30  0.23  1,198.2 1,187.4 2,700 
15 (396) 1,344.41 1,341.46  33  0.22  1,676.2 1,658.8 2,700 
16 (480) 1,623.42 1,617.48  37  0.37  1,327.0 1,848.5 2,700 
17 (240) 708.94 707.76  22  0.17  1,119.8 962.3 1,800 
18 (300) 997.74 996.55  27  0.12  1,364.3 1,718.6 2,700 
19 (360) 1,370.77 1,366.75  33  0.29  2,278.8 1,824.2 2,700 
20 (420) 1,829.57 1,824.46  38  0.28  1,424.9 1,199.3 2,700 

avg      0.21  1,333.7 1,388.0   
VLS           
21 (560)  16,230.83  16,212.83  10  0.11  2,670.3 3,047.7 5,400 
22 (600)  14,607.81  14,587.12  15  0.14  2,335.6 2,851.5 5,400 
23 (640)  18,824.94  18,801.13  10  0.13  3,880.2 2,701.5 5,400 
24 (720)  21,422.36  21,389.43  10  0.15  2,096.3 2,543.1 5,400 
25 (760)  16,840.05  16,822.09  19  0.11  2,576.0 3,228.2 5,400 
26 (800)  24,012.13  23,977.73  10  0.14  3,128.0 2,596.6 5,400 
27 (840)  17,495.68  17,471.33  20  0.14  2,583.8 3,872.0 5,400 
28 (880)  26,614.71  26,566.04  10  0.18  3,233.7 3,697.4 5,400 
29 (960)  29,195.72  29,154.34  10  0.14  3,038.1 3,074.0 5,400 
30 (1040)  31,808.08  31,742.64  10  0.21  3,968.9 2,749.5 5,400 
31 (1120)  34,375.96  34,330.94  10  0.13  3,429.8 3,664.6 5,400 
32 (1200)  37,248.39  37,182.88  11  0.18  3,095.9 3,283.6 5,400 

avg      0.15  3,003.1 3,109.2   
AVG      0.19  1,959.7 2,033.4  
LS: Large Scale instances, VLS: Very Large Scale instances, Cavg: average solution score obtained over 10 PSMDA 
runs, Cbest: best solution score obtained, K: number of routes of the best solution obtained, %gap: percentage gap 
between the Cavg and the Cbest values (=(100·(AVG-BEST)/AVG)), CPUavg: average time elapsed when the best 
solutions of all 10 PSMDA executions were found, CPUbest: time elapsed when the best solution was found, CPUtot: 
time bound for a single PSMDA run, avg: Separate average values for the LS and the VLS groups of instances , AVG: 
average values for all 32 instances. PSMDA was implemented in C# and executed on a single core of a T5500 
processor (1.66 GHz). All times reported in seconds. 
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Table 4 Comparative Results of the PSMDA best solution scores 
 Best Algorithmic Solution Scores BAS %gapBAS  BKS %gapBKS 
 PSMDA P&R M&B MA LNRD      
LS           

1 5,626.81 5,650.91 5,627.54 - - 5,627.54 -0.013   5,627.54 -0.013 
2 8,447.92 8,469.32 8,447.92 - - 8,447.92 0.000   8,447.92 0.000 
3 11,036.22 11,047.01 11,036.22 - - 11,036.22 0.000   11,036.22 0.000 
4 13,624.53 13,635.31 13,624.52 - - 13,624.52 0.000   13,624.52 0.000 
5 6,460.98 6,466.68 6,460.98 - - 6,460.98 0.000   6,460.98 0.000 
6 8,412.90 8,416.13 8,412.88 - - 8,412.88 0.000   8,412.80 0.001 
7 10,169.26 10,181.75 10,195.56 - - 10,181.75 -0.123   10,181.75 -0.123 
8 11,651.67 11,713.62 11,663.55 - - 11,663.55 -0.102   11,663.55 -0.102 
9 581.28 585.14 583.39 580.60 580.48 580.48 0.138   580.02 0.217 

10 738.57 748.89 741.56 738.92 738.73 738.73 -0.022   738.44 0.018 
11 916.99 922.70 918.45 917.17 914.75 914.75 0.245   914.03 0.324 
12 1,105.93 1,119.06 1,107.19 1108.48 1106.33 1,106.33 -0.036   1104.84 0.099 
13 858.45 864.68 859.11 857.19 857.19 857.19 0.147   857.19 0.147 
14 1,081.05 1,095.40 1,081.31 1080.55 1080.55 1,080.55 0.046   1080.55 0.046 
15 1,341.46 1,359.94 1,345.23 1340.24 1341.23 1,340.24 0.091   1340.24 0.091 
16 1,617.48 1,639.11 1,622.69 1619.93 1616.33 1,616.33 0.071   1616.33 0.071 
17 707.76 708.90 707.79 707.76 707.76 707.76 0.000   707.76 0.000 
18 996.55 1,002.42 998.73 995.39 995.39 995.39 0.117   995.13 0.143 
19 1,366.75 1,374.24 1,366.86 1366.14 1366.18 1,366.14 0.045   1365.99 0.056 
20 1,824.46 1,830.80 1,820.09 1820.54 1819.99 1,819.99 0.246   1819.99 0.246 

avg             0.042     0.061 
CPU 
min. 23.13 10.8 24.4 41.4* 7.4* 

        
  

VLS           

21 16,212.83 16,224.81 16,212.74 - - 16,212.74 0.001   16,212.74 0.001 
22 14,587.12 14,631.08 14,597.18 - - 14,597.18 -0.069   14,597.18 -0.069 
23 18,801.13 18,837.49 18,801.12 - - 18,801.12 0.000   18,801.12 0.000 
24 21,389.43 21,522.48 21,389.33 - - 21,389.33 0.000   21,389.33 0.000 
25 16,822.09 16,902.16 17,095.27 - - 16,902.16 -0.474   16,902.16 -0.474 
26 23,977.73 24,014.09 23,971.74 - - 23,971.74 0.025   23,971.74 0.025 
27 17,471.33 17,613.22 17,488.74 - - 17,488.74 -0.100   17,488.74 -0.100 
28 26,566.04 26,791.72 26,565.92 - - 26,565.92 0.000   26,565.92 0.000 
29 29,154.34 29,405.60 29,160.33 - - 29,160.33 -0.021   29,154.34 0.000 
30 31,742.64 31,968.33 31,742.51 - - 31,742.51 0.000   31,742.51 0.000 
31 34,330.94 34,770.34 34,330.84 - - 34,330.84 0.000   34,330.84 0.000 
32 37,182.88 37,377.35 36,928.70 - - 36,928.70 0.688   36,919.24 0.714 

avg             0.004     0.008 
CPU 
min. 51.8 49.8 104.3 

              

AVG             0.028     0.041 
LS: Large Scale instances, VLS: Very Large Scale instances, PSMDA: The proposed solution approach (T5500, 1.66 

GHz), P&R: Algorithm of Pisinger & Ropke [32] (Pentium IV 3GHz), M&B: Algorithm of Mester & Bräysy [28]  

(Pentium IV 2.8GHz), MA: Algorithm of Nagata [33] (Xeon 3.2 GHz), LNRD: Algorithm of Nagata & Bräysy [11] (Xeon 

3.2 GHz), BAS: Cost of the best algorithmic solution (among P&R,  M&B, MA and LNRD), %gapBAS: percentage gap 

between the PSMDA and BAS scores (=100·(PSMDA-BAS)/BAS). BKS: Score of the best known solution (Sources: 

Nagata & Bräysy (2008), Mester & Bräysy (2007)), %gapBKS: percentage gap between the PSMDA and the BKS scores 

(=100·(PSMDA-BKS)/BKS), avg: Separate average values for the LS and the VLS groups of instances, AVG: average 

values for all 32 instances. Bold characters represent higher quality solutions, Bold italic characters represent new best 

solutions obtained by PSMDA, values marked with * refer to the subset of LS instances without route length constraints 
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Regarding the CPU effort, the PSMDA best solutions were obtained within acceptable 

run times (on average 23.1 minutes were required for the LS, and 51.8 minutes were required for 

the VLS instances). It is not our intention to make a detailed comparison on the CPU time 

required by each algorithm, as this would require additional information on the experimental 

conditions used (implementation issues, compilers, memory frequency, total running processes 

etc.). However, we would like to comment on the beneficial role of the neighborhood reduction 

strategy proposed in the present paper and incorporated into PSMDA: the use of the complexity 

reduction scheme resulted in a very efficient behavior when tackling the very large scale test 

problems. In particular, the ratio between the average CPU time required by PSMDA for the 

VLS, and the LS instances, respectively is limited to 2.24 (VLS: 51.8 min, LS: 23.1 min), 

whereas this efficiency ratio is almost double in the case of the solution approaches of Pisinger 

and Ropke [32] (4.61, VLS: 49.8 min, LS: 10.8 min), and Mester & Bräysy [28] (4.27, VLS: 

104.3 min, LS: 24.4 min). 

 

Table 5 PSMDA results on the real-world test problems 

 Cavg Cbest  K  %gap  CPUavg CPUbest CPUtot 
zk1 (3,000) 13,794.86 13,666.36  153  0.94  11,743.6 10,238.0 14,400 
zk2 (3,000) 3,583.10 3,536.25  154  1.32  8,529.0 9,523.9 14,400 
zk3 (3,000) 1,188.51 1,170.33  152  1.55  12,217.8 12,952.7 14,400 
zk4 (3,000) 1,154.09 1,139.08  153  1.32  11,803.3 13,237.2 14,400 
AVG      1.28  11,073.4 11,488.0  
The same notation as in Table 3 is used 
All times reported in seconds 
PSMDA was implemented in C# and executed on a single core of a T5500 processor (1.66 GHz) 
 

5.4 Results on Real-World Test Problems 

To measure the performance of PSMDA on real-world problems, we solved four test problems 

(denoted by zk1 - zk4) each involving 3,000 customers. The data of these problems was provided 

by a logistics company and represent the actual geographic distribution of customer locations 

within four major Greek cities. The depot was randomly inserted within the rectangle defined by 

the customer population. The demand of each customer is uniformly distributed in [1, 100], 

whereas the vehicle capacity was set equal to 1,000, so that on average each route fulfills about 

20 customer demands. No route-length limit was imposed. PSMDA was executed with the 

standard parameter setting also used for the very large scale instances (Pr. 20 - 32). Ten 

algorithmic executions were made in total, each starting from a different initial solution. The 

termination condition used for each run was the completion of three CPU hours. The results 

obtained are summarized in Table 5, whereas Fig. 11 contains the highest-quality solutions 

obtained for each of these real-world instances. From Table 5, we see that PSMDA was robust, as 
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the average gap between the average and best solutions obtained was limited to 1.28%. Regarding 

the CPU time required, 11,073 seconds, on average were required for each PSMDA run, which is 

satisfactory considering the scale of the examined instances. In terms of the solution quality, no 

comparison can be made with any methodology, as these real-world instances are firstly 

introduced in the present article. However, the obtained solution structures, illustrated in Fig. 11, 

are visually appealing and indicate that a high degree of capacity utilization was achieved. In 

specific, the vehicle capacity utilization satisfactorily ranged between 99.02 % and 99.66 %. 

 

 
Figure 11 PSMDA solutions on the real-world test problems of 3,000 customers 

 

5.5. Computational Issues 

The proposed local search framework is aimed at reducing the computational complexity of 

neighborhood evaluations. This objective is accomplished by the SMD approach which encodes 

and records solution neighborhoods in a solution independent manner. Thus, the computational 

complexity reduction managed by the SMD concept is achieved by -loosely speaking- paying 

additional memory resources allocated for storing the SMD instances. The space complexity 

required by the SMD instances the three quadratic operators considered is O(n2), which does not 
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constitute a space complexity increase, as the space required for storing the cost matrix is in any 

case O(n2). To give insight to the total memory usage, we performed the following experiment. 

For each of the four 3,000-customer instances, we created six instances by randomly selecting 

500, 1,000, 1,500, 2,000, 2,500, and 3,000 customers. Then, we recorded the memory required for 

storing the cost matrices and the SMD instances for all 24 generated test problems. The results 

are provided in Fig. 12. As expected, the required memory grows quadratically with the instance 

size. However, the particular memory space demanded by the PSMDA depends on the special 

characteristics of each problem’s cost matrix, due to the granular filtering strategy (2). We 

observe that the maximum memory usage was recorded for the 3,000 customer problem zk1, 

which required 886 MB of physical memory. Further experiments illustrated that instances of up 

to 4,000 customers can be securely solved with the PSMDA metaheuristic without exceeding the 

2 GB -per process- limit set by the 32-bit Windows XP operating system used in our PSMDA 

executions. However, recent advances in computer hardware and operating systems, together with 

the transition to the 64-bit architecture provide a 128 GB physical memory limit for commercial 

Windows distributions, whereas modern Windows Server editions offer a 2 TB physical memory 

bound. (visit: http://msdn.microsoft.com/en-gb/library/aa366778.aspx). The growing availability 

of memory resources allows the SMD concept to be applied to much larger problem instances. In 

specific, with a 128 GB bound, we estimate that PSMDA could be confidently applied to VRP 

instances of about 30,000 - 35,000 customers. 
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Figure 12 Memory requirement of the PSMDA metaheuristic against the problem size 
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Virtually every modern computer system is equipped with multi-core processors which 

can reduce the total computational time of algorithms, if appropriately parallelized. The SMD 

concept of mapping solution neighborhoods offers great such parallelization possibilities. 

Consider for instance the execution of the SMD cost update process (Table 1), which is the most 

time consuming step of the overall methodology. The cost update process for each of the three 

neighborhood structures (a single column of Table 1) can be individually executed, because no 

shared memory resources are involved. Thus, distributing these three independent cost update 

processes across equal in number CPU cores would reduce the overall CPU time of the algorithm 

to approximately 1/3 of the time required for sequentially executing the cost updates on a single 

core. By generalizing this parallelization policy of spreading local search operators across 

separate processor cores, the method can examine as many neighborhood structures as cores 

available, without considerable increase on the total computational time required. In addition, the 

Fibonacci Heaps, which are responsible for keeping the SMD instances sorted, also offer 

parallelization possibilities [34] which can further reduce the total computational time, if 

numerous processor cores are available. 

 

6. Conclusions 
In this paper, we have concentrated on the mechanism of solution neighborhood evaluation, an 

aspect which although crucial to the efficiency of local search-based methods, it is rarely the 

central focus of research. In specific, we present a strategy which can be used to reduce the 

complexity of applying local search for solving combinatorial optimization problems. The central 

idea for reducing the complexity of evaluating neighborhoods is that when a local search operator 

is applied to the given solution, only a limited part of this solution is modified. Therefore, to 

exhaustively explore the neighborhood of the new solution, only the tentative moves that refer to 

this modified part have to be evaluated. On the contrary, tentative moves associated to the 

unaffected solution part remain unchanged, and if appropriately recorded their re-evaluation is 

unnecessary. To implement this strategy, we have introduced the Static Move Descriptor (SMD) 

data structures which encode local search moves in a systematic and solution independent 

manner. 

To clearly present the local search complexity reduction strategy, we have applied it to 

the Vehicle Routing Problem (VRP) which is one of the most practical and widely studied 

problems in the field of logistics management. In specific, we have used three quadratic local 

search operators for solving the VRP. The proposed complexity reduction strategy resulted in a 
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local search method whose computational complexity exhibits an almost linearithmic growth with 

the instance size. This contribution is of great importance, as it helps practitioners to design 

efficient local search methodologies, and enables commercial metaheuristic local search 

frameworks to be applied for solving real-life problems of very large scales without requiring 

excessive computational effort. 

Exploiting the SMD concept for mapping local search moves, we have designed a 

metaheuristic development for the VRP. The basic rationale of the proposed metaheuristic is to 

use penalization terms for augmenting the cost of the SMD instances, so that the conducted 

search is driven towards diverse regions of the solution space. To evaluate the performance of the 

proposed metaheuristic algorithm, we have applied it to 32 large and very large scale VRP test 

problems involving from 200 to 1,200 customers. It produced fine results improving several best-

known solutions. Furthermore, we introduce and solve four real-world test problems of 3,000 

customers. These problems were provided by a logistics company and their data contains the 

actual customer location distribution within four major Greek cities. 

Several aspects of the present paper can serve as useful starting points for future research. 

Firstly, regarding the SMD concept for reducing the complexity of neighborhood exploration, it 

can be transferred for solving a wide variety of practical large-scale combinatorial optimization 

problems. In terms of the VRP model, feasibility information could also be added in the SMD 

instances to allow tunneling through infeasible solution regions. Furthermore, numerous highly 

complex local search operators could be encoded into SMD instances, so that local search 

frameworks of manageable complexity can be designed. Finally, regarding the proposed 

metaheuristic approach for the VRP, various adaptive penalization strategies could be 

implemented, to drive the method towards promising solution regions more effectively. 
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