
 1

A Strategy for Reducing the Computational
Complexity of Local Search-Based Methods, and
its Application to the Vehicle Routing Problem

Emmanouil E. Zachariadis, Chris T. Kiranoudis

Department of Process Analysis and Plant Design, National Technical University of Athens,
Athens, Greece, {ezach@mail.ntua.gr, kyr@chemeng.ntua.gr}

This article focuses on the mechanism of evaluating solution neighborhoods, an algorithmic

aspect which plays a crucial role on the efficiency of local-search based approaches. In specific, it

presents a strategy for reducing the computational complexity required for applying local search

to tackle various combinatorial optimization problems. The value of this contribution is twofold.

It helps practitioners design efficient local search implementations, and it facilitates the

application of robust commercial local search-based algorithms to practical instances of very

large size. The central rationale underlying the proposed complexity reduction strategy is

straightforward: when a local search operator is applied to a given solution, only a limited part of

this solution is modified. Thus, to exhaustively examine the neighborhood of the new solution,

only the tentative moves that refer to the modified solution part have to be evaluated. To reduce

the complexity of neighborhood evaluation, the Static Move Descriptor (SMD) data structures are

introduced, which encode local search moves in a systematic and solution independent manner.

The proposed strategy is applied to the Vehicle Routing Problem (VRP) which is of high

importance both from the practical and theoretical viewpoints. The use of the SMD concept, for

encoding three commonly applied quadratic local search operators, results into a VRP local

search method which exhibits an almost linearithmic complexity in respect to the instance size.

Furthermore, exploiting the SMD representation of tentative moves, a metaheuristic strategy is

proposed, which is aimed at diversifying the conducted search via a simple penalization policy.

The proposed metaheuristic was tested on various large and very large scale VRP benchmark

instances. It produced fine results, and managed to improve several best known solutions. The

method was also executed on real-world instances of 3,000 customers, the data of which reflects

the actual geographic distribution of customers within four major cities.

Key words: Combinatorial Optimization, Local Search, Computational Complexity, Vehicle

Routing

 2

1. Introduction
Business operations involve a wide variety of highly complex optimization problems, practical

medium and large scale instances of which cannot be solved to optimality within manageable

computational times. To deal with such real-life problem instances, the decision maker should be

focused on approximate optimization methods, which are capable of producing satisfactory

solutions at the expense of reasonable computational effort. Numerous effective approximate

optimization methods are based on the local search strategy [1]. Pure local search methods were

introduced in the 1960s for improving solutions obtained by simple constructive heuristics, while

during the last two decades local search is incorporated as the basic optimization component of

general purpose algorithmic strategies called metaheuristics. These strategies aim at intelligently

guiding the local search process towards diverse trajectories of the solution space in order to

escape from premature local optima and obtain high quality solutions. Some of the most effective

and commercially used paradigms of local search metaheuristic strategies are Tabu Search [2],

Guided Local Search [3] and Variable Neighborhood Search [4], which are briefly described

later.

The generic local search scheme starts from a candidate solution and then iteratively

transits to a new solution which belongs to the neighborhood of the current one. To implement

these transitions, a systematic relation must be determined to link every solution with its

neighboring ones. The neighborhood of a given solution consists of every solution generated from

it, by performing (usually simple) modifications. The simplicity of these modifications is an

objective mainly for computational reasons: a) the population of generated solutions

(neighborhood cardinality) should be limited within manageable levels, and b) the evaluation of

the neighboring solution quality should require constant time (independent of the instance size).

In the general case, to pass from one solution to the subsequent one, the neighborhood involved is

exhaustively examined, and the method implements the move towards the highest quality

neighboring solution, if it improves the current one. The computational time required per iteration

is mainly determined by the neighborhood cardinality and is bounded by a polynomial function of

the instance size. Local search methods terminate when no neighboring solutions improve the

quality of the current one, or in other words, the current solution is locally optimal in respect to

the neighborhood structure under consideration.

The local search scheme described above is a myopic method doomed to be trapped to

the first local optimum encountered. To overcome this limitation, metaheuristic local search

strategies make use of additional mechanisms aimed at driving the local search process out of

local optima and towards higher-quality solutions. One of the most known local search

 3

metaheuristic strategy is Tabu Search (TS), which makes use of memory components to avoid

getting trapped in local optima. As earlier mentioned, the generic local search implements the

move towards the best quality neighbor. This deterministic criterion causes cycling phenomena to

occur (looping between the same solutions) when the local optimum is reached. To eliminate

cycling, attributes of recently performed moves are declared tabu, so that during neighborhood

investigation, moves with tabu attributes are discarded. Guided Local Search (GLS) is another

effective metaheuristic approach which works by controlling the objective function of the

problem examined, so that local optima are overcome. In specific, the basic principle of GLS is to

use penalization terms for local optimum solution characteristics which are not likely to belong to

high quality solutions. Another effective local search metaheuristic method is the Variable

Neighborhood Search (VNS). The central idea of the VNS strategy is to systematically change

the neighborhood structure examined when a local optimum is reached, because a local optimum

with respect to one neighborhood structure is not necessary so for another.

The computational complexity of every local search based method is defined by the

number of calculations required for exhaustively evaluating the neighborhood of a candidate

solution. Although this algorithmic aspect plays a crucial role in the overall efficiency of local

search approaches, researchers do not usually focus on the way in which solution neighborhoods

are explored. This lack of detailed information on neighborhood evaluation does not help

practitioners to design efficient local search algorithms. At this very point lies the purpose of this

paper, which presents a strategy for reducing the computational complexity to perform local

search to various practical combinatorial optimization problems such as routing, ordering, and

scheduling variants. The central idea for achieving this complexity reduction is straightforward:

when moving from one solution to another, only a limited part of the solution characteristics is

modified. Thus, to examine the next solution neighborhood, only the tentative moves that are

related to these previously modified solution elements have to be evaluated from the beginning.

On the contrary, moves that refer to unaffected solution characteristics have already been

evaluated during previous neighborhood explorations, and therefore, if appropriately recorded,

their recalculation is unnecessary. To implement this idea, we introduce the static move

descriptors, which as their name suggests, are static (solution independent) entities that describe

every possible move towards new solutions. These move descriptors are stored into special

priority queue structures which provide constant time minimum-retrieval and insertion, and

logarithmic time update capabilities.

To improve clarity of exposition, we present the local search complexity reduction

strategy by applying it to the Vehicle Routing Problem (VRP), which is a highly complex

 4

combinatorial problem with significant commercial importance. More specifically, we tackle the

aforementioned problem by employing a blend of some commonly used quadratic complexity

(O(n2), where n is the instance size) local search operators. The application of the proposed

complexity reduction scheme leads to a VRP local search method with almost linearithmic

complexity in respect to the instance size. Reducing the complexity of such local search operators

is of great importance, as it allows them to be incorporated within robust commercial local search

metaheuristics for effectively dealing with very large scale practical instances. Furthermore, we

propose a simple penalization mechanism specially designed for the VRP, which takes advantage

of the static move descriptor entities, and is aimed at diversifying the search process. The overall

algorithmic development is tested on large and very large-scale test instances with very promising

results both in terms of the solution quality, and computational speed. Apart from the VRP

benchmark instances, we also executed the proposed methodology on four real-world instances

involving 3,000 customers. These instances, introduced in the present paper, were provided by a

logistics company and contain the actual coordinates of customer locations within four major

Greek cities

The remainder of the present article is organized as follows: Section 2 presents the VRP

model. It also provides information on VRP local search operators, and surveys some of the most

effective VRP local search based metaheuristics. In Section 3, the proposed static move

descriptor concept is introduced, followed by the detailed presentation of the proposed

complexity reduction strategy and its application to the VRP. Section 4 describes a VRP

metaheuristic algorithm based on the static move descriptor concept, whereas the computational

results obtained by the proposed metaheuristic are provided in Section 5. Finally, Section 6

concludes the paper and offers some further research directions.

2. The Vehicle Routing Problem
The standard version of the Vehicle Routing Problem (VRP) is a central problem in the area of

operations management, as it models a wide variety of practical distribution systems, which, in

turn, play a key role in the global business environment. Nearly every activity in the field of

logistics can be interpreted as a generalization of the standard VRP version, which, as Li et al.

mention [5], is easy to state and difficult to solve.

Let G = (V, E) be a complete graph where V = {v0, v1, …, vn} is the vertex set and E =

{(vi, vj): vi, vj∈V, i≠ j} is the arc set. Vertex v0 represents the central depot where a fleet of

vehicles is located. The remaining n vertices of V \ {v0} represent the customer set. With each arc

(vi, vj) ∈E is associated a travel cost cij which may express the distance, the required time or the

 5

actual monetary cost for traveling along an arc (vi, vj). The goal of the VRP model is to design the

minimum cost set of circuits (routes) with respect to the following constraints: each route begins

and terminates at the central station v0, and every customer is visited once by exactly one route.

Usually, additional requirements are incorporated in the standard VRP version, to model practical

routing applications. In specific, the Capacitated VRP (CVRP) considers each customer vi (i = 1,

2,… , n) to raise a deterministic product demand qi, whereas vehicles are assumed to have a

maximum carrying load equal to Q. The CVRP model imposes the capacity constraint which

guarantees that the total demand of customers assigned to a single route does not exceed vehicle

capacity Q. Another commonly considered constraint sets an upper bound D to the total cost of a

route. The resulting model is referred to as the Distance Constrained VRP (DVRP). As with most

of the solution approaches proposed for the VRP, this paper deals with the Euclidean CVRP, the

cost matrix of which is obtained by computing the Euclidean distance between vertex locations.

As a result, the cost matrix is both symmetric, and satisfies the triangular inequality.

2.1. Local Search Operators for the VRP

The most common local search methods designed for the VRP consider neighborhood structures

defined by simple arc exchange moves [6]. In the general case, a k-exchange move involves the

deletion of (up to) k arcs of the current solution and the generation of k new ones to produce the

subsequent solution. The complexity of exhaustively examining the k-exchange neighborhood of

a solution is O(nk), so that in practical local search methods the value of k rarely exceeds 3 or 4,

because this would lead to excessive computational times [7].

 Three common paradigms of simple and effective VRP local search operators, also used

in the proposed methodology, are: (a) the 1-0 exchange (customer relocation), (b) the 1-1

exchange (customer exchange), and (c) the 2-opt move (route crossover) illustrated in Fig.1. The

1-0 exchange move (Fig. 1(a)) relocates a customer from its current position to another, by

replacing three solution arcs. The 1-1 exchange (Fig. 1(b)) swaps the positions of a customer pair

by removing four arcs and creating four new ones. Last, the 2-opt move involves the deletion and

creation of an arc pair. The aforementioned local search operators can be characterized as 2-

exchange methods, although they involve the deletion and generation of more than two arcs

(three for the 1-0 exchange, and four for the 1-1 exchange). This is because only two arcs have to

be determined to fully describe a given move [7]. In specific, the 1-0 exchange of Fig.1 (a) can be

fully described by the deleted arcs AB and DE, while arc BC is implicitly defined by the move

mechanism. Analogously, the 1-1 exchange of Fig.1 (b) can be determined by the deleted arc pair

AB and DE. The other two deleted arcs (EF and BC) are implicitly defined by the rationale of the

 6

move. As a result, the cardinality of these neighborhoods is O(n2), and taking into account that

their evaluation requires constant time [8], it can be easily seen that exhaustively examining one

of these neighborhoods requires O(n2) computational effort.

To accelerate local search algorithms, researchers have proposed several schemes for

reducing the solution neighborhood cardinality and the mechanism of exploring the solution

neighborhoods. In terms of the neighborhood cardinality, Glover and Laguna [9] introduce the

candidate list strategies, which generate only a small subset of all tentative local search moves.

Similarly, Coy et al. [10] propose a fixed length neighbor list for the Traveling Salesman Problem

(TSP). Their method associates every vertex to a fixed number of neighboring vertices. Moves

are evaluated, only if they lead to the creation of an arc connecting two neighboring vertices. Li et

al. [5] extend this idea by considering a variable length neighbor list for solving the VRP. Toth

and Vigo [7] propose another neighborhood reduction scheme based on the concept of granular

neighborhoods. These neighborhoods do not contain moves leading to features not likely to

belong to high quality solutions, and are dynamically adjusted by exploiting information collected

during the search process. In the same context, Nagata and Bräysy [11] have proposed some local

search limitation strategies for vehicle routing problems. The key idea is to restrict the

neighborhood structures by considering only the tentative moves that lead to the creation of edges

which are stored in a list. This list is dynamically updated through the search process using

several policies proposed by the authors.

Regarding the mechanism of neighborhood exploration, sequential search has been

independently proposed by Lin and Kernighan [12], and Christofides and Eilon [13] for the TSP.

The basic rationale of the sequential search concept is to prune the search as early as possible, so

that a small subset of the tentative moves is evaluated. This pruning is achieved by calculating

bounds to filter out the evaluation of cost-increasing tentative moves. More recent works aimed at

accelerating local search methods for routing problems include the studies of Irnich et al. [14],

and Irnich [15]. The former work provides sequential search implementations of several routing

neighborhoods structures, and compares the efficiency of these implementations against classical

lexicographic search approaches. The latter work proposes a unified modeling framework for

routing problem variants with various complex side constraints. In methodological terms, the

sequential search approach, presented in [14], is adapted to these complex-constrained routing

problems. Pre-processing methods are also proposed to avoid increasing the computational

complexity required for investigating feasibility.

Apart from the simple arc exchange local search moves described above, researchers

have also developed more complex neighborhood structures for the VRP. Ejection chain

 7

approaches, originally proposed for the Traveling Salesman Problem by Glover [16], generate

compound neighborhood structures, which encompass successions of interdependent moves,

instead of simple moves or sequences of independent moves. Their application has proven to be

effective also for the VRP model [17, 18]. Another compound move has been proposed by

Osman [19]. It involves the combination of vertex insertions and exchanges between routes based

on the 2-opt process. Gendreau et al. [20] propose a complex VRP move which consists of a

simple vertex insertion, followed by a 3-opt or 4-opt exchange. As a last example of VRP

complex neighborhoods, we mention the work of Xu and Kelly [21], which presents an original

local search approach based on a network flow model that is used to simultaneously evaluate

several customer ejection and insertion moves.

B

B

(a)
1-0 exchange

(b)
1-1 exchange

(c)
2-opt

A C A CE A B

D E D FB C D

A C A CE A B

D E D FB C D

Arcs DeletedArcs Created

Figure 1 Simple Local Search Operators for the VRP

2.2. Local Search Metaheuristic Approaches for the VRP

Several of the most effective VRP metaheuristic approaches make use of simple local search

operators like those presented in 2.1. Rochat and Taillard [22] have proposed an adaptive memory

framework for dealing with the VRP. Their approach makes use of a pool of routes which belong

to a set of elite solutions. Routes are extracted from the pool to form new complete or partial

solutions which are improved by means of a TS method that employs 1-1 and 1-0 vertex

 8

exchanges. The obtained solutions are then used to update the route pool. Tarantilis and

Kiranoudis [23], and Tarantilis [24] have also proposed a similar scheme for solving the CVRP.

The key difference between their methods and the one of Rochat and Taillard [22] is that new

partial solutions are built by combining promising vertex sequences (bones) present in the

adaptive memory. These solutions are then improved by a TS procedure which makes use of the

1-0, 1-1 exchanges and 2-opt neighborhood structures. Li et al. [5] propose a record-to-record

algorithm [25] for solving large scale routing problems. Their method investigates the

neighborhoods of 1-0, 1-1 exchanges and 2-opt moves reduced by using the aforementioned

variable-length neighbor list policy. Another effective local search based metaheuristic has been

proposed by Toth and Vigo [7]. As mentioned above, they propose a TS method that explores

drastically restricted neighborhoods. This is accomplished by ignoring moves that result into

characteristics not likely to be part of a high-quality solution. The blend of local search operators

used in their approach consists of four neighborhood structures: 1-1 exchange, 1-0 exchange, 2-

opt, and 2-point Or exchange which relocates two consecutive customers [26]. Reimann et al.

[27] present an Ant System for solving the VRP. In specific, their approach decomposes the

global VRP problem into TSP subproblems by clustering customer vertices into disjoint sets.

Then, each subproblem TSP solution is optimized by the Savings Based Ant System which makes

use of the 1-1 exchange and 2-opt moves. The total VRP solution is obtained by recombining the

TSP solutions. Mester and Bräysy [28] present a metaheuristic development which combines the

strengths of GLS and evolution strategies into an iterative framework. Their highly effective

algorithm makes use of a composite local search method which consists of vertex exchanges,

reinsertions and 2-opt moves, both for intra- and inter-route improvements. Finally, the work of

Tarantilis et al. [29] is an example of how the 1-0, 1-1 exchange and 2-opt operators can be

effectively modified for dealing with a routing variant which considers intermediate

replenishment stops. These modified local search operators are integrated into a hybrid

metaheuristic framework producing a highly effective algorithm.

3. The Proposed Local Search Methodology
The proposed local search framework makes use of the static move descriptors which were

briefly discussed in the introductory section. Here, we provide an analytic description of them,

together with a thorough discussion on their behavior.

 9

3.1. Local Search Static Move Descriptors

As earlier mentioned, most local search operators designed for the VRP consider simple arc

exchange moves for transiting from one solution to the other. To define such a move instance,

one has to determine the move rule and the move point. The move rule corresponds to the move

mechanism and is common for all move instances of the same neighborhood structure, while the

move point expresses a constant set of problem features, where the move instance is applied to.

Both the move rule and move point information is static, or in other words, independent of the

current solution. A Static Move Descriptor (SMD) is an entity containing this information, and

each instance of it can be interpreted as a particular move from one solution to another. An SMD

instance does also contain the cost required to be applied. This cost is the only dynamic (or in

other words, solution dependent) information, stored in an SMD instance.

 To more clearly introduce the SMD concept, we are going to present it for the particular

local search operators used in our methodology, namely the 1-0 exchange, the 1-1 exchange, and

the 2-opt move, illustrated in Fig.1.

n1 = 0
n2 = A

n1 = 0
n2 = B

n1 = 0
n2 = C

n1 = 0
n2 = D

n1 = 0
n2 = E

n1 = 00
n2 = A

n1 = 00
n2 = B

n1 = 00
n2 = C

n1 = 00
n2 = D

n1 = 00
n2 = E

n1 = B
n2 = A

n1 = A
n2 = B

n1 = A
n2 = C

n1 = A
n2 = D

n1 = A
n2 = E

n1 = C
n2 = A

n1 = C
n2 = B

n1 = B
n2 = C

n1 = B
n2 = D

n1 = B
n2 = E

n1 = D
n2 = A

n1 = D
n2 = B

n1 = D
n2 = C

n1 = C
n2 = D

n1 = C
n2 = E

n1 = E
n2 = A

n1 = E
n2 = B

n1 = E
n2 = C

n1 = E
n2 = D

n1 = D
n2 = E

0 C D A 0

00 B E 00

0 D A 0

1-0_SMD Instances

Solution S

Transformed
Solution S1

Transformed
Solution S3

00 C B E 00 00 E B 00

0 C D A 00 C A 0

00 B D E 00

Transformed
Solution S2

Figure 2 The mechanism of the move descriptors for the 1-0 exchange move

 10

1-0 Exchange Static Move Descriptor The 1-0 exchange move (customer relocation), removes a

customer vertex from its current position and reinserts it into a new one, as seen in Fig.1 (a). The

move point of the SMD objects designed for the 1-0 exchange (denoted by 1-0_SMD) is a pair of

two distinct vertices n1 and n2, while the move rule is: “Remove n2 from its current position and

reinsert it after n1”. The 1-0_SMD applied in the case of Fig. 1(a) is the one corresponding to n1 =

D and n2 = B. To exhaustively describe the 1-0 exchange neighborhood of a given solution, the

creation of one 1-0_SMD instance for every possible move is required. It is easily seen that in

total n · (n + K - 1) 1-0_SMD instances are necessary, where K is the number of vehicles present

in the solution and represents the occurrences of the depot vertex in the solution vector. Figure 2

illustrates the move descriptor instances for a VRP of 5 customers and 2 vehicles. It also

demonstrates the results of implementing three example 1-0_SMD instances to an arbitrary

solution.

n1 = A
n2 = B

n1 = A
n2 = C

n1 = B
n2 = C

n1 = A
n2 = D

n1 = B
n2 = D

n1 = C
n2 = D

n1 = A
n2 = E

n1 = B
n2 = E

n1 = C
n2 = E

n1 = D
n2 = E

0 C D A 0

00 B E 00

0 C E A 0

00 B D 00

1-1_SMD Instances

Solution S

Transformed
Solution S1

Transformed
Solution S2

0 A D C 0

00 B E 00

Figure 3 The mechanism of the move descriptors for the 1-1 exchange move

 11

1-1 Exchange Static Move Descriptor The 1-1 Exchange operator exchanges the positions of

two customer vertices as seen in Fig 1(b). This operator has a symmetric nature because the

solution effect of exchanging the positions of customers vi and vj is the same with that of

exchanging the vj and vi positions. To exploit this symmetry, the move point of the descriptors

generated for the 1-1 exchange (denoted by 1-1_SMD) consists of a pair of distinct customer

vertices n1 and n2. The move rule is straightforward: “Exchange the positions of n1 and n2”. The

1-1_SMD instance corresponding to the move of Fig. 1(b) is the one corresponding to n1 = B and

n2 = E. To exhaustively describe the 1-1 neighborhood of a given solution, one 1-1_SMD

instance per customer pair must be generated. Thus, the total population of 1-1_SMD instances

required is))!2(!2(! −nn . Figure 3 illustrates the 1-1 Exchange move descriptor instances for a

VRP of 5 customers and 2 vehicles. It also demonstrates the results of implementing two example

1-1_SMD instances to an arbitrary solution.

n1 = A
n2 = B

n1 = A
n2 = C

n1 = B
n2 = C

n1 = A
n2 = D

n1 = B
n2 = D

n1 = C
n2 = D

n1 = A
n2 = E

n1 = B
n2 = E

n1 = C
n2 = E

n1 = D
n2 = E

n1 = A
n2 = 0

n1 = B
n2 = 0

n1 = C
n2 = 0

n1 = D
n2 = 0

n1 = E
n2 = 0

n1 = A
n2 = 00

n1 = B
n2 = 00

n1 = C
n2 = 00

n1 = D
n2 = 00

n1 = E
n2 = 00

0 C D A 0

00 B E 00

2-opt_SMD Instances

Solution S

Transformed
Solution S1

Transformed
Solution S2

n1 = 0
n2 = 00

00 B D A 0

0 C E 00

00 D A

0 C B

0

E 00

00 B E

0 A D

Reversed Path

00

C 0

Transformed
Solution S3

Figure 4 The mechanism of the move descriptors for the 2-opt move

 12

2-opt Static Move Descriptor Both the inter- and intra-route 2-opt moves delete two arcs present

in the solution, and replace them with two new ones. They exhibit symmetric behavior, because

each combination of two deleted arcs defines a single 2-opt move (repetitions of arc pairs define

identical moves). To statically express this symmetric behavior, the SMD proposed for the 2-opt

move (denoted by 2-opt_SMD) has been designed as follows: The move point of a 2-opt_SMD

object consists of two non-identical vertices n1 and n2, while the move rule suggests: “If n1 and n2

belong to different routes, connect vertices n1 and n2 to the paths beginning after vertex n2 and

after vertex n1, respectively. Otherwise, if n1 and n2 belong to the same route and n2 precedes n1 in

the route vector, swap the n1 and n2 values. Then, connect n1 to n2, by reversing the path lying

between n1 and n2”. The 2-opt_SMD instance applied for the move of Fig.1(c) is the one

corresponding to n1 = A and n2 = C (assuming that A and C belong to different routes). It can

easily be seen that to exhaustively describe the 2-opt neighborhood of a given solution, in total

))!2(!2()!(−++ KnKn 2-opt_SMD instances are necessary, where K is the number of routes

present in the solution. Figure 4 illustrates the SMD mechanism of the 2-opt move for the 5-

customer, 2-route example VRP examined above.

3.2. The Cost of the Static Move Descriptors

Apart from describing a particular move, every SMD instance does also contain the cost of

implementing this move to a given solution. When a move is performed, only a limited part of the

solution structure is modified. For the VRP local search operators described above, this modified

part consists of a small subset of the solution arcs. Therefore, to keep the SMD cost labels valid,

each time a local search operator is applied, one must evaluate the costs of the SMD instances

that refer to the affected solution part. In other words, for the VRP model, rather than every SMD

cost label, only those that involve the cost of the affected solution arcs have to be updated.

To better present the mechanism of keeping the costs of the SMD instances updated, we

provide Fig. 5 which illustrates how does the application of an inter-route 2-opt move affect the

cost labels of the SMD instances for the 1-1 exchanges. The VRP problem presented in Fig. 5

involves 8 customers and 2 vehicles. The (inter-route) 2-opt_SMD applied in the case of Fig. 5

has n1 = B and n2 = D. It removes arcs DC and BG, which are replaced by DG and BC. This

particular move does not affect the cost of every 1-1_SMD instance. Instead, it modifies only

those whose cost depends on the arcs deleted - and generated - by the 2-opt move (these arcs are

written in bold characters in Fig. 5). In total, the costs of 22 1-1_SMD instances have to be re-

evaluated (indicated by the shadowed areas in Fig. 5). The remaining 6 instances remain

unaffected and therefore their re-calculation is unnecessary. A more thorough look on the subset

 13

of affected cost labels can provide the formal rule of cost update for the 1-1_SMD instances,

when an inter-route 2-opt_SMD is applied to a given solution: “When an inter-route 2-opt_SMD

instance with n1 = 2-opt_n1 and n2 = 2-opt_n2 is applied to a given solution S, the costs of the 1-

1_SMD instances with their n1 or n2 equal to 2-opt_n1, 2-opt_n2, succ(2-opt_n1) or succ(2-opt-

_n2), are modified and have to be updated, where succ(v) denotes the successor of v in solution S.

In the example case of Fig. 5, we have 2-opt_n1 = B and 2-opt_n2 = D, with succ(B) = G and

succ(D) = C. Therefore, the 1-1_SMD instances that must be re-evaluated have their n1 or n2

value equal to B, D, G or C, as seen in Fig. 5.

To apply the proposed methodology, one needs to deduce all formal rules of cost update

for the local search operators applied. These rules can be interpreted as the way in which the

neighborhood structures both affect themselves, and interact with each other. The rules for

updating the SMD instances of the three local search operators used in our methodology are

summarized in Table 1. Each row consists of the SMD instances that must be updated when a

particular local search operator is applied. The first row, for instance, suggests that when a 1-

0_SMD instance with n1 = A and n2 = B is applied to a particular solution S, the following SMD

instances must be updated:

a) 1-0_SMD instances with n1 equal to A, pred(B), or B

b) 1-0_SMD instances with n2 equal to A, succ(A), pred(B), B, succ(B)

c) 1-1_SMD instances with n1 or n2 equal to A, succ(A), pred(B), B, or succ(B)

d) 2-opt_SMD instances with n1 or n2 equal to A, pred(B), or B,

where pred(v) and succ(v) denote the predecessor and successor of vertex v in solution S,

respectively.

From the update rules presented in Table 1, we see that when a 1-0 and 1-1 exchange

move is performed, the total number of SMD cost labels that must be updated is linearly

correlated to the instance size n, or to be more precise with n′ = n + K, where K represents the

routes present in the current solution. When a 2-opt move is performed, the population of SMD

instances to be updated depends on the state of the solution where the particular 2-opt move is

applied to. However, loosely speaking, the affected SMD instances are confined to those that

either their n1 or n2 vertex belongs to the routes (or route) involved in the 2-opt move applied. The

value of this is obvious: within an iterative local search framework, encoding the tentative moves

into SMD instances drastically reduces the - per iteration - calculations required to exhaustively

evaluate the cost of solution neighborhoods. In the particular case of the 1-0 and 1-1 exchange

quadratic O(n2) operators, applied in the proposed framework, the use of the SMD concept allows

neighborhoods to be exhaustively evaluated at the expense of O(n) complexity.

 14

Table 1 Rules for updating the SMD cost tags when a local search operator is applied
 SMD Instances to be Updated

SMD
Instance
Applied

 1-0 Exchange 1-1 Exchange 2-opt

1-0
Exchange

n1 = A
n2 = B

n1=A.

n1=pred(B).
n1=B.

n2=A.
n2=succ(A).
n2=pred(B).

n2=B.
n2=succ(B).

n1=A OR n2=A.
n1=succ(A) OR n2=succ(A).
n1=pred(B) OR n2=pred(B).

n1=B OR n2=B.
n1=succ(B) OR n2=succ(B).

n1=A OR n2=A.

n1=pred(B) OR n2=pred(B).
n1=B OR n2=B.

1-1
Exchange

n1 = A
n2 = B

n1=pred(A).
n1=A.

n1=pred(B).
n1=B.

n2=pred(A).
n2=A.

n2=succ(A).
n2=pred(B).

n2=B.
n2=succ(B).

n1=pred(A) OR n2=pred(A).
n1=A OR n2=A.

n1=succ(A) OR n2=succ(A).
n1=pred(B) OR n2=pred(B).

n1=B OR n2=B.
n1=succ(B) OR n2=succ(B).

n1=pred(A) OR n2=pred(A).
n1=A OR n2=A.

n1=pred(B) OR n2=pred(B).
n1=B OR n2=B.

Inter-
route
2-opt
n1 = A
n2 = B

 n1=A.
n1=B.

n2=A.
n2=succ(A).

n2=B.
n2=succ(B).

n2=A OR n2=A.
n2=succ(A) OR n2=succ(A).

n2=B OR n2=B.
n2=succ(B) OR n2=succ(B).

n1=A OR n2=A.
n1=B OR n2=B.

(n1∈ fst(A), n2∈sec(A) OR
n2∈ fst(A), n1∈sec(A)).

(n1∈ fst(A), n2∈sec(B) OR
n2∈ fst(A), n1∈sec(B)).

(n1∈ fst(B), n2∈sec(A) OR
n2∈ fst(B), n1∈sec(A)).

(n1∈ fst(B), n2∈sec(B) OR
n2∈ fst(B), n1∈sec(B)).

Intra-
Route
2-opt
n1 = A
n2 = B

 n1∈rev(A,B).
n1=A.

n2=A.
n2=succ(A).

n2=B.
n2=succ(B).

n2=A OR n2=A.
n2=succ(A) OR n2=succ(A).

n2=B OR n2=B.
n2=succ(B) OR n2=succ(B).

n1=A OR n2=A.

n1∈rev(A,B) OR
n2∈rev(A,B).

pred(v): the predecessor of vertex v before the move application,
succ(v): the successor of vertex v before the move application.
fst(v): the route segment originating from the depot and terminating at the predecessor of vertex v, before the move application,
sec(v): the route segment originating from the successor of vertex v and terminating at the depot, before the move application.
For the application of Intra-Route 2-opt SMD, assume that A precedes B in the route vector, before the move is implemented
rev(A,B): the reversed route path between vertices A and B (beginning from the successor of A and ending at B, see Fig. 4)
The ‘,’ character can be interpreted as the logic operator AND, The ‘.’ character separates each cost update rule.

 15

c(A,B) =
0B+BD+
EA+AG-
(0A+AD+
EB+BG)

c(A,C) =
0C+CD+
DA+AH-
(0A+AD+
DC+CH)
c(B,C) =
EC+CG+
DB+BH-

(EB+BG+
DC+CH)

c(A,D) =
0D+DA+

AC-
(0A+AD+

DC)
c(B,D) =
ED+DG+
AB+BC-

(EB+BG+
AD+DC)
c(C,D) =
AC+CD+

DH-
(AD+DC+

CH)

c(A,E) =
0E+ED+
00A+AB-
(0A+AD+
00E+EB)
c(B,E) =

00B+BE+
EG-

(00E+EB+
BG)

c(C,E) =
DE+EH+
00C+CB-
(DC+CH+
00E+EB)
c(D,E) =
AE+EC+
00D+DB-
(AD+DC+
00E+EB)

0 A D C H 0

00 E B G F 00

c(A,F) =
0F+FD+
GA+A00-
(0A+AD+
GF+F00)
c(B,F) =
EF+FG+
GB+B00-
(EB+BG+
GF+F00)
c(C,F) =
DF+FH+
GC+C00-
(DC+CH+
GF+F00)
c(D,F) =
AF+FC+
GD+D00-
(AD+DC+
GF+F00)

c(A,G) =
0G+GD+
BA+AF-

(0A+AD+
BG+GF)
c(B,G) =
EG+GB+

BF-
(EB+BG+

GF)
c(C,G) =
DG+GH+
BC+CH-

(DC+CH+
BG+GF)
c(D,G) =
AG+GC+
BD+DF-

(AD+DC+
BG+GF)

c(A,H) =
0H+HD+
CA+A0-

(0A+AD+
CH+H0)
c(B,H) =
EH+HG+
CB+B0-

(EB+BG+
CH+H0)
c(C,H) =
DH+HC+

C0-
(DC+CH+

H0)
c(D,H) =
AH+HC+
CD+D0-

(AD+DC+
CH+H0)

c(E,F) =
00F+FB+
GE+E00-
(00E+EB+
GF+F00)

c(E,G) =
00G+GB+
BE+EF-

(00E+EB+
BG+GF)
c(F,G) =
BF+FG+

G00-
(BG+GF+

F00)

c(E,H) =
00H+HB+
CE+E0-

(00E+EB+
CH+H0)
c(F,H) =

GH+H00+
CF+F0-

(GF+F00+
CH+H0)
c(G,H) =
BH+HF+
CG+G0-

(BG+GF+
CH+H0)

n1=A

n1=B

n1=C

n1=D

n1=E

n1=F

n1=G

n2=B n2=C n2=D n2=E n2=F n2=G n2=H

2-opt_SMD
n1 = B, n2 = D

c(B,D)=
DG + BC-
(DC - BG)

Apply

0 A D

00 E B

c(A,B) =
0B+BD+
EA+AC-
(0A+AD+
EB+BC)

c(A,C) =
0C+CD+
BA+AH-
(0A+AD+
BC+CH)
c(B,C) =
EC+CB+

BH-
(EB+BC+

CH)

c(A,D) =
0D+DA+

AG-
(0A+AD+

DG)
c(B,D) =
ED+DC+
AB+BG-

(EB+BC+
AD+DG)
c(C,D) =
BD+DH+
AC+CG-

(BC+CH+
AD+DG)

c(A,E) =
0E+ED+
00A+AB-
(0A+AD+
00E+EB)
c(B,E) =

00B+BE+
EC-

(00E+EB+
BC)

c(C,E) =
BE+EH+
00C+CB-
(BC+CH+
00E+EB)
c(D,E) =
AE+EG+
00D+DB-
(AD+DG+
00E+EB)

c(A,F) =
0F+FD+
GA+A00-
(0A+AD+
GF+F00)
c(B,F) =
EF+FC+
GB+B00-
(EB+BC+
GF+F00)
c(C,F) =
BF+FH+
GC+C00-
(BC+CH+
GF+F00)
c(D,F) =
AF+FG+
GD+D00-
(AD+DG+
GF+F00)

c(A,G) =
0G+GD+
DA+AF-
(0A+AD+
DG+GF)
c(B,G) =
EG+GC+
DB+BF-

(EB+BC+
DG+GF)
c(C,G) =
BG+GH+
DC+CF-

(BC+CH+
DG+GF)
c(D,G) =
AG+GD+

DF-
(AD+DG+

GF)

c(A,H) =
0H+HD+
CA+A0-

(0A+AD+
CH+H0)
c(B,H) =
EH+HC+
CB+B0-

(EB+BC+
CH+H0)
c(C,H) =
BH+HC+

C0-
(BC+CH+

H0)
c(D,H) =
AH+HG+
CD+D0-

(AD+DG+
CH+H0)

c(E,F) =
00F+FB+
GE+E00-
(00E+EB+
GF+F00)

c(E,G) =
00G+GB+
DE+EF-

(00E+EB+
DG+GF)
c(F,G) =
DF+FG+

G00-
(DG+GF+

F00)

c(E,H) =
00H+HB+
CE+E0-

(00E+EB+
CH+H0)
c(F,H) =

GH+H00+
CF+F0-

(GF+F00+
CH+H0)
c(G,H) =
DH+HF+
CG+G0-

(DG+GF+
CH+H0)

n1=A

n1=B

n1=C

n1=D

n1=E

n1=F

n1=G

n2=B n2=C n2=D n2=E n2=F n2=G n2=H

C H 0

G F 00

Affected Part of
the Solution

Affected Part of
the Solution

1-1 Exchange SMD
(Before applying 2-opt Move)

1-1 Exchange SMD
(After applying 2-opt Move)

Delete Arcs:
DC BG

Create Arcs:
DG BC

Figure 5 The effect of a 2-opt move on the 1-1 exchange SMD instances

 16

3.3. Keeping the SMD Instances Sorted

To perform local search using the best admissible move strategy, apart from evaluating the costs

required for implementing every tentative move, one must identify the particular move

minimizing the cost involved. Accordingly, when using the SMD instances for encoding tentative

moves, the particular SMD instance with the minimum cost label must be identified and applied.

A straightforward way to do so would be to go through every SMD instance in order to locate the

minimum cost one. However, this would require O(n2) complexity because the total population of

SMD instances is O(n2), as earlier presented. To avoid this complexity increase, we use a priority

queue data structure, called Fibonacci Heap introduced by Fredman and Tarjan [30]. This

structure is used for keeping the SMD instances sorted according to their cost labels and provides

the following key capabilities: a) it returns the lowest cost SMD at constant time, b) allows SMD

instance deletions in O(log m), where m = n2 (corresponding to the total number of SMD

instances), and c) allows SMD instance insertions at constant time. The role of the first capability

is obvious, as it is directly related to the selection of the best tentative move. The second and third

characteristics of the Fibonacci Heap are important for the process of updating the cost labels of

the affected SMD instances, when a local search operator is applied. In particular, the process of

updating the cost of a single SMD instance involves three steps: delete the SMD instance from

the data structure, modify its cost label, and finally insert it back into the data structure. Since the

cost modification (for the considered VRP local search operators), and insertion steps are

executed in O(1), the overall complexity of a single update process is bounded by the deletion

step which requires logarithmic complexity (O(log n2) = O(2 log n)). The application of a 1-0 and

1-1 exchange operator updates the cost of O(n) SMD instances. Thus, for these particular move

types, the required computational complexity -per iteration- for keeping all SMD instances

updated and sorted is O(n log n). For the 2-opt move, the space complexity of the modified SMD

instances cannot be explicitly defined. However, assuming that l denotes the affected SMD

instances (where in the general case l < n2, and l << n2, for problems with low n / K ratios), the -

per iteration- computational complexity required for keeping the SMD instances updated and

sorted is O(l log n).

3.4. The Overall Local Search Framework

The classical local search method with the use of the SMD concept for mapping tentative moves

is presented in Fig. 6. For clarity of presentation, consider that the neighborhood structure

examined in the method of Fig. 6 is one of the two 1-0 and 1-1 exchange quadratic VRP

neighborhoods, presented above.

 17

Steps 1-6 are necessary for initializing the method and the Fibonacci Heap which will

store the SMD instances. These steps are executed once, and for the examined quadratic operators

require O(n2) computing time. The core of the local search method lies in lines 7-16 which are

executed iteratively. Lines 9-11 perform an iterative procedure that corresponds to the

identification of the best possible move towards a new solution. In particular, the minimum cost

SMD instances are iteratively popped out of the Fibonacci Heap until the first one which does not

lead to any constraint violation is identified. A single iteration of steps 9-11 is executed in

constant time, but their total number depends on various factors such as the tightness of the

constraints, the neighborhood examined and the state of the current solution. Regarding the

CVRP model and the benchmark instances examined in the present paper, experiments indicated

that the average number of required iterations exhibits less than linear growth with the instance

size and that these iterations do not significantly contribute to the computational effort of the

overall method. The aforementioned experiments, together with some additional comments on

feasibility issues are provided in the following subsection 3.5. Line 12 restores the Fibonacci

Heap to its initial state before the move to be applied is identified, while line 13 sets the method’s

termination condition when the local optimum is reached. Line 14 corresponds to the move

application towards the subsequent solution, whereas 15 corresponds to the application of the

SMD update process which was analytically described in 3.3 and requires O(n log n) time.

Local Search (Solution S)
 1 Fibonacci Heap FH
 2 generate the SMD of the examined neighborhood structure for solution S
 3 calculate the cost labels of the generated instances
 4 for each generated SMD instance smd
 5 insert smd into FH
 6 end for
 7 do
 8 SMD toBeApplied
 9 do
10 toBeApplied = pop the minimum cost SMD instance from FH
11 while (toBeApplied is infeasible)
12 reinsert extracted SMD instances back to the FH
13 if (cost label (toBeApplied) > 0) go to 17
14 apply the move represented by toBeApplied to Solution S
15 update the cost labels of the SMD instances affected by toBeApplied
16 end do
17 return S

Figure 6 The Local Search method

 18

3.5. Feasibility Issues

To empirically determine the number of SMD instances that need to be extracted from their

Fibonacci Heap until the first feasible one is obtained, and compare this number against the

problem scale, we performed the following experiment: for 32 problems in total (described in

detail in subsection 5.1), we executed a local search method like the one presented in Fig. 6, using

all three presented local search operators. In specific, each iteration of lines 7-16 involved a

randomly selected neighborhood structure, with each structure having the same probability of

being selected. To cover a wider region of the solution space, so that more representative results

are obtained, we also applied a tabu strategy which forbids the application of SMD instances

corresponding to performed move reversals. The tabu horizon considered was 10 iterations per

move type. The termination condition was set to the completion of 50,000 iterations. For each

neighborhood structure, we measured the -per iteration- average number of SMD instances that

had to be extracted from the corresponding Fibonacci Heap, before the first admissible SMD

instance was obtained, or in other words the required iterations of the loop of lines 9-11 in Fig. 6.

Note that for the presented experimental procedure, an admissible SMD instance apart from the

feasibility requirement must also be non-tabu.

S
M

D
 in

st
an

ce
s

ex
tra

ct
ed

 u
nt

il
th

e
fir

st

ad
m

is
si

bl
e

S
M

D
 w

as
 o

bt
ai

ne
d

CVRP

DCVRP

1-0 Exchange 1-1 Exchange 2-opt

0

200

400

600

200 300 400 500
0

10

20

30

40

50

200 300 400 500
0

500

1000

1500

2000

200 300 400 500

0

4

8

12

16

20

150 450 750 1050
0
2
4
6
8

10
12
14

150 450 750 1050
0

200

400

600

800

1000

150 450 750 1050

n: Problem Size

Figure 7 Number of SMD instances extracted until the first admissible is obtained against

problem size

 19

From the experimental results illustrated in Fig. 7, we can see that the extracted SMD

instances for the 1-0 and 1-1 move types are significantly fewer than the 2-opt ones. This is

because the inter-route 2-opt operator swaps route segments that contain large customer sets

causing a significant effect in terms of the solution feasibility status. The number of extracted 1-0

and 2-opt SMD instances illustrates a slight positive correlation with the instance size, however

the growth rate does not exhibit any quadratic behavior. For the 1-1 exchange, the number of

extracted SMD instances depended on the instance characteristics exclusively, without

demonstrating any correlation to the instance size. Finally, for all three local search operators and

for both problem versions (CVRP and DCVRP) the number of extracted SMD instances is

insignificant compared to the total SMD instance populations. In specific, let rextr denote the ratio

between the average extracted SMD instances, and the total number of SMD instances of a given

move type. For the CVRP model, the rextr ratio ranged within [0.131%, 0.386%], [0.020%,

0.100%], and [0.897%, 2.253%], for the 1-0 exchange, 1-1 exchange and 2-opt moves,

respectively. For the DCVRP model, the aforementioned rextr ratios ranged within [0.000%,

0.006%], [0.001%, 0.037%], and [0.035%, 0.359%], respectively. The ranges of the rextr value

indicate that the procedure of extracting SMD instances from their Fibonacci Heaps, to obtain the

first admissible one, does not significantly contribute to the computational effort required by the

overall local search framework.

 At this point, we should note that as the SMD instances (tentative moves) are sorted

according to their cost labels, the proposed scheme checks the feasibility of only the high quality

moves which are the actual candidates for being applied. This characteristic can drastically reduce

the computational time dedicated for feasibility evaluations of problem models with complex

constraints, because unproductive feasibility checks are avoided. Regarding the feasibility issues,

if tunneling through infeasible solution space is allowed, or constraints are very tight so that

feasibility evaluation determines the total computational effort, the SMD design could also

incorporate feasibility information. This could be achieved, for instance, with the use of excess

penalties (for infeasible tunneling), or even dummy penalty cost labels for the infeasible SMD

instances. In this case however, the SMD cost update rules for the application of a move must be

appropriately designed to reflect the changes that this specific move has caused in terms of the

dynamic feasibility status of the SMD instances.

3.6. The Acceleration Role of the Static Move Descriptors

To present the acceleration role of the proposed SMD representation, the following experiment

was performed: we executed the local search method described in 3.4 using the new SMD

 20

representation of tentative moves, and with the classic move representation. The local search

operator employed was the quadratic 1-0 exchange. The termination condition used was the

completion of 50,000 iterations. To avoid being trapped in local optima, deteriorating moves were

allowed, and move reversals were eliminated using the tabu strategy. In terms of the cost of the

final solutions, both methods produced identical results, as the exact same search rules were

applied. The two compared methods did only differ on the representation used for evaluating

solution neighborhoods, and therefore on the total CPU effort required.

0

500

1000

1500

2000

2500

200 400 600 800 1000 1200
n: Problem Size

C
P

U
 T

im
e

fo
r 5

00
00

 it
er

at
io

ns
 (s

ec
)

Classic
Representation

SMD
reprentation

Figure 8 The acceleration role of the SMD representation

0

50

100

150

200

250

300

350

0 500 1000 1500 2000 2500 3000 3500 4000

n log(n)
 n: Problem Size

C
PU

 ti
m

e
fo

r 5
00

00
 it

er
at

io
ns

 (s
ec

)

Figure 9 The linearithmic behavior of the search process using the SMD concept

 21

The comparative results obtained by the aforementioned experimental procedure are

summarized in Fig. 8. As seen from Fig. 8, the computational times required by both

representations are comparable for problem scales of up to 350-400 customers. This is because

the acceleration effect of the SMD concept is counterbalanced by the extra computations

performed internally to the Fibonacci Heap structure. However, as the problem scale becomes

larger, the CPU time required by the classic representation exhibits quadratic growth. On the

contrary, the CPU time required by the search process with the use of the SMD representation

presents a linearithmic growth rate, as more clearly illustrated in Fig. 9. Note that for the problem

instance of 1,200 customers, the complexity reduction achieved by the use of the SMD

representation reduces the total time of the search process by a remarkable 87.96% (classic

representation: 2,485.89 sec, SMD representation: 299.36 sec).

4. A VRP Tabu Search Based on the SMD Concept
In this Section, we propose a VRP metaheuristic which exploits the SMD representation of

solution neighborhoods analytically described in Section 3. Let PSMDA (Penalized Static Move

Descriptors Algorithm) denote the proposed solution approach. The central rationale of PSMDA

is to penalize the cost labels of the SMD instances to diversify the search process. In terms of the

speed of the algorithm, except for the acceleration role of the SMD strategy, we also apply a

neighborhood reduction policy similar to the granularity concept introduced by Toth and Vigo

(2003). Note that as the PSMDA makes use of the SMD local search engine, the CPU time

demanded -per iteration- by the proposed algorithm exhibits almost linearithmic growth with the

instance size. The PSMDA metaheuristic is presented in detail in the following subsections.

4.1. Initializing the PSMDA Metaheuristic Methodology

To obtain an initial VRP solution, we apply the weighted savings heuristic originally proposed by

Paessens (1988). The savings function used is:

s(vi, vj) = ci0 + c0j – g · cij + f · | ci0 - c0j |, (1)

where the f and g parameter values are uniformly distributed within [0, 1] and (0, 3], respectively,

as proposed by Paessens [31].

The PSMDA framework makes use of the 1-0, 1-1 exchange and 2-opt local search

operators (denoted by NS1, NS2 and NS3, respectively) described in Section 3, thus it is initiated

by generating the SMD instances for these three neighbourhood structures. To reduce the total

amount of generated SMD instances, and therefore the calculations needed for keeping their cost

labels updated, we followed a strategy similar to the granularity concept of Toth and Vigo [7].

 22

The main idea of this neighbourhood reduction scheme is to create SMD instances for encoding

only those moves that are likely to produce high-quality solutions. To do so, we calculate a

threshold cost θ as:

0

0)(
Kn

Sz
+

⋅= βθ , (2)

where z(S0), and K0 denote the cost and the number of routes of the initial solution S0,

respectively, and β is the sparsification parameter set to 2.5, as proposed by Toth and Vigo [7].

Then, for all three local search operators, an SMD instance with n1 = i and n2 = j is generated, if at

least one of the following holds: cij ≤ θ, i = 0, j = 0. The application of the aforementioned move

filtering criterion excludes poor quality moves from the search process and drastically accelerates

the overall algorithm. By the term poor quality moves, we mean those moves that are highly

unlikely to produce a good-quality solution, for instance, swapping the positions of a distant

customer pair (1-1 exchange), or generating an arc connecting two remote customers (1-0

exchange).

 With each SMD instance smd, are associated two cost labels, namely smdCost, and

smdPenCost. As their name suggests, smdCost represents the actual cost of the tentative move

encoded in smd, while smdPenCost corresponds to this actual cost augmented via a penalization

policy which is explained in the following. Then, for each neighbourhood structure NSi (i = 1, 2,

3) two Fibonacci Heaps FHi and PenFHi are created. The former heap (FHi) is responsible for

keeping the SMD instances of NSi sorted according to their smdCost label, while the latter

(PenFHi) keeps these instances sorted according to their penalized cost label smdPenCost. Every

SMD cost label is evaluated (in terms of the initial solution S0), and every SMD instance is

inserted into the appropriate Fibonacci Heap. Note that in the beginning smdPenCost = smdCost, for

every instance smd. After the SMD encoding has been prepared, the core of the PSMDA

approach is ready to be executed.

4.2. The Central Rationale of the PSMDA Metaheuristic

The central idea of PSMDA is to perform diverse local search moves, so that the search is driven

to various regions of the solution space. To do so, we exploit the design of SMD instances for

mapping local search moves. As mentioned in Section 3, every SMD instance contains a move

point. This point represents a set of problem features where the encoded move is applied to. In the

case of the examined neighbourhood structures, the move point consists of a vertex pair n1 and n2.

When an SMD instance with n1 = A and n2 = B is applied, the method performs structural

modifications at the proximity of vertices A and B. To quantify this information, for every vertex

 23

ni, we introduce a counter counti. This counter is responsible for keeping track of the number of

times that an SMD instance with either its n1 or n2 value equal to ni has been implemented, and

can be interpreted as the frequency with which the search has been conducted into the proximity

of ni. The penalized cost label smdPenCost of an SMD instance with n1 = A and n2 = B is augmented

by a penalty term proportionate to the (countA + countB) frequency metric. In this way, if one

selects the SMD instances to be applied according to their penalized cost labels, the interest of the

overall search is spread across every vertex of the problem, and is not confined into the proximity

of small vertex subsets.

4.3. The Core of the PSMDA Solution Approach

The PSMDA approach is a local search metaheuristic which begins the conducted search from the

solution produced by the Paessens construction heuristic described in 4.1.

At each iteration, the method performs the move represented by the SMD instance

selected to be applied and denoted by app_smd. To determine the app_smd instance, the

following procedure is used: From all three FHi (i = 1, 2, 3) (containing the SMD instances sorted

according to their non-penalized cost labels), the lowest cost SMD instance np_smd is identified.

If np_smd represents a move which improves the best solution found so far, the method applies

this move (app_smd = np_smd). Otherwise, one of the examined neighbourhood structures (NS1,

NS2, and NS3) is randomly selected. As seen in Table 1, the computations necessary for updating

the costs of the SMD instances are linearly correlated to the instance size, when the 1-0 and 1-1

exchange moves are applied, whereas the implementation of a 2-opt move requires a greater

number of SMD cost label updates. Therefore, to achieve an overall fast algorithmic behavior

(keep the complexity as close to O(n log n) as possible), without significant loss of effectiveness,

we limited the probability of 2-opt selection to 10%. The 1-0 and 1-1 exchange neighbourhood

structures equally share the rest 90% probability of being selected. Let NSi denote the selected

structure. Then, a uniformly distributed random variable fromPen is generated within the range

[0, 1]. If fromPen < freqPen, the best SMD instance stored in PenFHi (containing the SMD

instances of NSi sorted according to their penalized cost labels) and denoted by p_smd is selected

to be applied (app_smd = p_smd). Otherwise, if fromPen ≥ freqPen, the move encoded by

np_smd is performed (app_smd = np_smd). Note that apart from the diversification role of the

penalization policy, we also use a tabu list which forbids move reversals, for a horizon of tabuTen

iterations. Furthermore, our approach does not allow tunneling through infeasible regions.

Therefore, the best SMD instances p_smd and np_smd extracted from the corresponding

 24

Fibonacci Heaps, must both be non-tabu (unless the encoded move improves the best solution

found), and satisfy the feasibility constraints.

Solution PSMDA (Solution S)
Neighborhood Structure NSi
double z, z*
Solution S*
SMD app_smd, np_smd, p_smd
Fibonacci Heap FHi, PenFHi

--Initialization
generate the SMD instances for the neighborhood structures examined
calculate the cost tags of the SMD instances for S
insert the generated instances into the appropriate Fibonacci Heap

--Improvement Phase
while (termination condition = false)

--Move Selection
np_smd = best feasible non-tabu SMD instance extracted from all three FHi (i = 1, 2, 3)
if (z + np_smdCost < z*)

app_smd = np_smd
else

Select NSi from (NS1, NS2, NS3)
randomly generate fromPen in [0, 1]
if (fromPen < freqPen)

p_smd = best feasible non-tabu SMD instance extracted from PenFHi
app_smd = p_smd

else
app_smd = np_smd

end if
end if

--Move Application
apply app_smd to S
z = z + app_smdCost
declare the SMD reversals of app_smd tabu for tabuTen iterations
let app_n1 and app_n2 denote the n1 and n2 vertices of app_smd
countapp_n1 = count app_n1 + 1, countapp_n2 = count app_n2 + 1
for every affected SMD smd (following the update rules of Table 1)

remove smd from its Fibonacci Heaps
smdCost = calculate the cost of smd according to the new solution S
let smd_n1 and smd_n2 denote n1 and n2 vertices of smd
smdPenCost = smdCost + (countsmd_n1 + countsmd_n2) pen
reinsert smd to the Fibonacci Heaps

end for
if (z < z*)

S* = S
z* = z

end if
end while
return S*

Figure 10 Pseudocode of the PSMDA metaheuristic

 25

After the SMD instance app_smd is identified, the search implements the corresponding

move to obtain the subsequent solution. Let A and B denote the vertex pair of app_smd. The

counters countA and countB are both augmented by 1, and the method applies the SMD cost

update rules summarized in Table 1, for keeping every SMD cost tag updated according to the

status of the new solution. The penalized cost tag of an SMD instance smd with n1 = A and n2 = B

is evaluated as:

smdPenCost = smdCost + (countA + countB) · pen, (3)

where pen is a penalization parameter. From the update rules of Table 1, note that independently

of the local search operator applied, every SMD instance with either its n1 or n2 value equal to A

and B, is updated. Thus, all penalized cost tags are appropriately modified using the augmented

countA and countB frequency values. The PSMDA method is executed until a certain termination

condition is reached by returning the best solution obtained through the progress of the search.

Fig. 10 provides the pseudocode of the PSMDA solution approach, using the same notation as in

the verbal description of the method.

5. Computational Results of the PSMDA Metaheuristic
To assess the performance and determine the parameter setting of the PSMDA strategy, we tested

it on 32 large and very large scale VRP benchmark instances. Here, we provide some details on

these benchmark instances, followed by a discussion on the PSMDA standard parameter setting.

Finally, we provide the solution values obtained by the PSMDA together with the computational

times involved. Apart from the 32 VRP benchmark instances, we also solved four real-world test

problems each involving 3,000 customers. All instances and best solutions obtained are available

at http://users.ntua.gr/ezach/.

5.1 Benchmark Instances

Since the central aim of the present article is to propose a strategy for reducing the complexity of

neighbourhood evaluations, PSMDA was tested on large scale VRP benchmark instances. In

specific, we used the set of 20 large scale instances (200-483 customers) proposed by Golden et

al. [25], and the set of 12 very large scale instances (560-1200 customers) introduced by Li et al.

[5]. Note that we maintain the same problem ordering (problem 1 to 32), as given in the

aforementioned works. The cost matrices for all 32 examined test problems are obtained by

calculating the Euclidean distances between vertex locations. Problems 9-20 are pure CVRP

instances, while problems 1-8 and 21-32 impose route length restrictions. Table 2 summarizes the

details of all 32 test problems.

 26

Table 2 Benchmark instances used for testing the proposed strategy
Large CVRP Very Large CVRP

Pr. n td Q D Pr. n td Q D
1 240 4,800 550 650 21 560 11,200 1,200 1,800
2 320 6,400 700 900 22 600 12,000 900 1,000
3 400 8,000 900 1,200 23 640 12,800 1,400 2,200
4 480 9,600 1000 1,600 24 720 14,400 1,500 2,400
5 200 4,000 900 1,800 25 760 15,200 900 900
6 280 5,600 900 1,500 26 800 16,000 1,700 2,500
7 360 7,200 900 1,300 27 840 16,800 900 900
8 440 8,800 900 1,200 28 880 17,600 1,800 2,800
9 255 13,429 1,000 - 29 960 19,200 2,000 3,000
10 323 15,195 1,000 - 30 1,040 20,800 2,100 3,200
11 399 16,980 1,000 - 31 1,120 22,400 2,300 3,500
12 483 18,701 1,000 - 32 1,200 24,000 2,500 3,600
13 252 25,136 1,000 -
14 320 28,672 1,000 -
15 396 32,244 1,000 -
16 480 35,772 1,000 -
17 240 4,320 200 -
18 300 5,400 200 -
19 360 6,480 200 -
20 420 7,560 200 -
n: number of customers, td: total demand of customers, Q: vehicle capacity, D: maximum route cost

5.2 Parameter Setting

The PSMDA framework contains three parameters, namely freqPen, pen and tabuTen, the setting

of which has to be determined before it is executed. The freqPen and pen parameters play a

central role on the behavior of the algorithm, because they control the interplay between the

intensification and diversification of the conducted search. In specific, freqPen defines the

frequency with which moves are selected according to their penalized SMD cost, and pen

controls the penalization terms (3) used to augment the cost of the SMD instances. Obviously,

these two parameters jointly affect the search behavior. To avoid complex tuning experiments, we

conducted preliminary algorithmic executions on all benchmark instances, using various rational

pen values, and we observed that the best algorithmic performance was observed for freqPen

values within the range [0.7, 0.9]. Therefore, the freqPen was fixed at 0.8, which injected

satisfactory diversification into the search, and also let the algorithm intensify into promising

solution regions. Having set freqPen to 0.8, we then experimented with the pen parameter. The

setting of pen depends on both the cost matrix and the solution characteristics of the instance

examined. To capture this correlation, pen was expressed according to the following relation: pen

= μ · θ, where θ is the granular threshold introduced in (2). Then, we solved all benchmark

instances with values of μ taken from [0.001, 0.01]. The best algorithmic behavior was

 27

consistently observed for μ values between 0.004 and 0.008. Following this, pen was set to

0.006·θ.

Regarding the number of iterations for which move reversals are declared tabu, we used

tabuTen = 30, as suggested in the work of Tarantilis [24], for instances involving up to 500

customers. For the very large scale problems, with the customer population varying from 560 to

1,200, we used tabuTen = 60, which proved to be adequately high to eliminate cycling

phenomena.

5.3 Results on CVRP Benchmark Instances

To assess the performance of PSMDA, we solved all 32 benchmark instances 10 times with the

standard parameter setting specified in 5.2. Each of the 10 algorithmic executions involved

different initial solutions, because of the stochastic setting of f and g parameters (1). The

termination condition used was reaching 30 CPU minutes for instances of up to 299 customers,

45 minutes for instances of up to 500 customers, and 90 minutes for the very large scale instances

involving from 560 to 1,200 customers. Table 3 summarizes the results obtained, while Table 4

compares the best solution scores obtained by PSMDA to those achieved by some of the most

effective published VRP metaheuristic approaches, and the best known solution for the examined

instances.

 As seen in Table 3, the PSMDA has shown adequate stability, as for all 32 benchmark

instances the average solution scores achieved over the 10 runs were very close the best ones. In

specific, the average percent deviation between the best solution cost and the average one was

limited to a satisfactory 0.19%. In terms of the CPU effort, PSMDA proved to be consistent, as

the run time for obtaining the highest quality solution scores were close to the average run time

for reaching the best solution, for all 10 algorithmic executions. Note also that the CPU time

required by PSMDA does not exhibit quadratic growth with the instance size.

Table 4 compares the best solution scores obtained by PSMDA with those reached by

some of the most effective VRP algorithms ever proposed. It also presents a comparison between

PSMDA solutions and the best known solutions (BKS column) for each benchmark instance.

Note that some BKS values have not been obtained by any algorithmic approach. Instead, they

have been visually estimated by exploiting their symmetric structure. PSMDA managed to

improve 6 out of the 32 best-known solutions, and matched the best-known solutions for 5 test

problems. The average percent gap of the PSMDA method and the previously best-known

solutions is limited to a satisfactory 0.041% (0.061% for the large scale, and 0.008% for the very

large scale instances). The greatest solution improvement was observed for the 760-customer

 28

instance 25 (-0.474%), whereas the worst performance was recorded for the 1200-customer

problem 32 (0.714%). In terms of PSMDA relative performance against the four presented highly

effective solution approaches, we see that the average percent deviation between the PSMDA and

the best algorithmic scores is restricted to 0.028% (0.042% for the large scale, and 0.004% for the

very large scale instances). It also proved to be fairly robust, as the worst gap between a PSMDA

and a previously reported algorithmic solution value was 0.688% (Instance 32).

Table 3 PSMDA results on the benchmark instances
LS Cavg Cbest K %gap CPUavg CPUbest CPUtot
1 (240) 5,637.99 5,626.81 9 0.20 907.7 938.7 1,800
2 (320) 8,457.92 8,447.92 10 0.12 1,249.4 1,858.2 2,700
3 (400) 11,036.22 11,036.22 10 0.00 1,164.0 1,184.7 2,700
4 (480) 13,632.59 13,624.53 10 0.06 1,019.0 1,798.2 2,700
5 (200) 6,460.98 6,460.98 5 0.00 989.6 810.4 1,800
6 (280) 8,412.90 8,412.90 7 0.00 1,091.6 1,112.8 1,800
7 (360) 10,192.47 10,169.26 9 0.23 1,885.5 1,860.2 2,700
8 (440) 11,674.43 11,651.67 10 0.20 1,657.4 1,732.5 2,700
9 (255) 584.66 581.28 14 0.58 854.0 929.4 1,800
10 (323) 739.86 738.57 16 0.18 1,635.3 1,271.4 2,700
11 (399) 919.52 916.99 18 0.28 1,418.8 1,392.2 2,700
12 (483) 1,110.65 1,105.93 19 0.43 1,197.5 1,282.3 2,700
13 (252) 860.44 858.45 26 0.23 1,214.6 1,189.3 1,800
14 (320) 1,083.55 1,081.05 30 0.23 1,198.2 1,187.4 2,700
15 (396) 1,344.41 1,341.46 33 0.22 1,676.2 1,658.8 2,700
16 (480) 1,623.42 1,617.48 37 0.37 1,327.0 1,848.5 2,700
17 (240) 708.94 707.76 22 0.17 1,119.8 962.3 1,800
18 (300) 997.74 996.55 27 0.12 1,364.3 1,718.6 2,700
19 (360) 1,370.77 1,366.75 33 0.29 2,278.8 1,824.2 2,700
20 (420) 1,829.57 1,824.46 38 0.28 1,424.9 1,199.3 2,700

avg 0.21 1,333.7 1,388.0
VLS
21 (560) 16,230.83 16,212.83 10 0.11 2,670.3 3,047.7 5,400
22 (600) 14,607.81 14,587.12 15 0.14 2,335.6 2,851.5 5,400
23 (640) 18,824.94 18,801.13 10 0.13 3,880.2 2,701.5 5,400
24 (720) 21,422.36 21,389.43 10 0.15 2,096.3 2,543.1 5,400
25 (760) 16,840.05 16,822.09 19 0.11 2,576.0 3,228.2 5,400
26 (800) 24,012.13 23,977.73 10 0.14 3,128.0 2,596.6 5,400
27 (840) 17,495.68 17,471.33 20 0.14 2,583.8 3,872.0 5,400
28 (880) 26,614.71 26,566.04 10 0.18 3,233.7 3,697.4 5,400
29 (960) 29,195.72 29,154.34 10 0.14 3,038.1 3,074.0 5,400
30 (1040) 31,808.08 31,742.64 10 0.21 3,968.9 2,749.5 5,400
31 (1120) 34,375.96 34,330.94 10 0.13 3,429.8 3,664.6 5,400
32 (1200) 37,248.39 37,182.88 11 0.18 3,095.9 3,283.6 5,400

avg 0.15 3,003.1 3,109.2
AVG 0.19 1,959.7 2,033.4
LS: Large Scale instances, VLS: Very Large Scale instances, Cavg: average solution score obtained over 10 PSMDA
runs, Cbest: best solution score obtained, K: number of routes of the best solution obtained, %gap: percentage gap
between the Cavg and the Cbest values (=(100·(AVG-BEST)/AVG)), CPUavg: average time elapsed when the best
solutions of all 10 PSMDA executions were found, CPUbest: time elapsed when the best solution was found, CPUtot:
time bound for a single PSMDA run, avg: Separate average values for the LS and the VLS groups of instances , AVG:
average values for all 32 instances. PSMDA was implemented in C# and executed on a single core of a T5500
processor (1.66 GHz). All times reported in seconds.

 29

Table 4 Comparative Results of the PSMDA best solution scores
 Best Algorithmic Solution Scores BAS %gapBAS BKS %gapBKS
 PSMDA P&R M&B MA LNRD
LS

1 5,626.81 5,650.91 5,627.54 - - 5,627.54 -0.013 5,627.54 -0.013
2 8,447.92 8,469.32 8,447.92 - - 8,447.92 0.000 8,447.92 0.000
3 11,036.22 11,047.01 11,036.22 - - 11,036.22 0.000 11,036.22 0.000
4 13,624.53 13,635.31 13,624.52 - - 13,624.52 0.000 13,624.52 0.000
5 6,460.98 6,466.68 6,460.98 - - 6,460.98 0.000 6,460.98 0.000
6 8,412.90 8,416.13 8,412.88 - - 8,412.88 0.000 8,412.80 0.001
7 10,169.26 10,181.75 10,195.56 - - 10,181.75 -0.123 10,181.75 -0.123
8 11,651.67 11,713.62 11,663.55 - - 11,663.55 -0.102 11,663.55 -0.102
9 581.28 585.14 583.39 580.60 580.48 580.48 0.138 580.02 0.217

10 738.57 748.89 741.56 738.92 738.73 738.73 -0.022 738.44 0.018
11 916.99 922.70 918.45 917.17 914.75 914.75 0.245 914.03 0.324
12 1,105.93 1,119.06 1,107.19 1108.48 1106.33 1,106.33 -0.036 1104.84 0.099
13 858.45 864.68 859.11 857.19 857.19 857.19 0.147 857.19 0.147
14 1,081.05 1,095.40 1,081.31 1080.55 1080.55 1,080.55 0.046 1080.55 0.046
15 1,341.46 1,359.94 1,345.23 1340.24 1341.23 1,340.24 0.091 1340.24 0.091
16 1,617.48 1,639.11 1,622.69 1619.93 1616.33 1,616.33 0.071 1616.33 0.071
17 707.76 708.90 707.79 707.76 707.76 707.76 0.000 707.76 0.000
18 996.55 1,002.42 998.73 995.39 995.39 995.39 0.117 995.13 0.143
19 1,366.75 1,374.24 1,366.86 1366.14 1366.18 1,366.14 0.045 1365.99 0.056
20 1,824.46 1,830.80 1,820.09 1820.54 1819.99 1,819.99 0.246 1819.99 0.246

avg 0.042 0.061
CPU
min. 23.13 10.8 24.4 41.4* 7.4*

VLS

21 16,212.83 16,224.81 16,212.74 - - 16,212.74 0.001 16,212.74 0.001
22 14,587.12 14,631.08 14,597.18 - - 14,597.18 -0.069 14,597.18 -0.069
23 18,801.13 18,837.49 18,801.12 - - 18,801.12 0.000 18,801.12 0.000
24 21,389.43 21,522.48 21,389.33 - - 21,389.33 0.000 21,389.33 0.000
25 16,822.09 16,902.16 17,095.27 - - 16,902.16 -0.474 16,902.16 -0.474
26 23,977.73 24,014.09 23,971.74 - - 23,971.74 0.025 23,971.74 0.025
27 17,471.33 17,613.22 17,488.74 - - 17,488.74 -0.100 17,488.74 -0.100
28 26,566.04 26,791.72 26,565.92 - - 26,565.92 0.000 26,565.92 0.000
29 29,154.34 29,405.60 29,160.33 - - 29,160.33 -0.021 29,154.34 0.000
30 31,742.64 31,968.33 31,742.51 - - 31,742.51 0.000 31,742.51 0.000
31 34,330.94 34,770.34 34,330.84 - - 34,330.84 0.000 34,330.84 0.000
32 37,182.88 37,377.35 36,928.70 - - 36,928.70 0.688 36,919.24 0.714

avg 0.004 0.008
CPU
min. 51.8 49.8 104.3

AVG 0.028 0.041
LS: Large Scale instances, VLS: Very Large Scale instances, PSMDA: The proposed solution approach (T5500, 1.66

GHz), P&R: Algorithm of Pisinger & Ropke [32] (Pentium IV 3GHz), M&B: Algorithm of Mester & Bräysy [28]

(Pentium IV 2.8GHz), MA: Algorithm of Nagata [33] (Xeon 3.2 GHz), LNRD: Algorithm of Nagata & Bräysy [11] (Xeon

3.2 GHz), BAS: Cost of the best algorithmic solution (among P&R, M&B, MA and LNRD), %gapBAS: percentage gap

between the PSMDA and BAS scores (=100·(PSMDA-BAS)/BAS). BKS: Score of the best known solution (Sources:

Nagata & Bräysy (2008), Mester & Bräysy (2007)), %gapBKS: percentage gap between the PSMDA and the BKS scores

(=100·(PSMDA-BKS)/BKS), avg: Separate average values for the LS and the VLS groups of instances, AVG: average

values for all 32 instances. Bold characters represent higher quality solutions, Bold italic characters represent new best

solutions obtained by PSMDA, values marked with * refer to the subset of LS instances without route length constraints

 30

Regarding the CPU effort, the PSMDA best solutions were obtained within acceptable

run times (on average 23.1 minutes were required for the LS, and 51.8 minutes were required for

the VLS instances). It is not our intention to make a detailed comparison on the CPU time

required by each algorithm, as this would require additional information on the experimental

conditions used (implementation issues, compilers, memory frequency, total running processes

etc.). However, we would like to comment on the beneficial role of the neighborhood reduction

strategy proposed in the present paper and incorporated into PSMDA: the use of the complexity

reduction scheme resulted in a very efficient behavior when tackling the very large scale test

problems. In particular, the ratio between the average CPU time required by PSMDA for the

VLS, and the LS instances, respectively is limited to 2.24 (VLS: 51.8 min, LS: 23.1 min),

whereas this efficiency ratio is almost double in the case of the solution approaches of Pisinger

and Ropke [32] (4.61, VLS: 49.8 min, LS: 10.8 min), and Mester & Bräysy [28] (4.27, VLS:

104.3 min, LS: 24.4 min).

Table 5 PSMDA results on the real-world test problems

 Cavg Cbest K %gap CPUavg CPUbest CPUtot
zk1 (3,000) 13,794.86 13,666.36 153 0.94 11,743.6 10,238.0 14,400
zk2 (3,000) 3,583.10 3,536.25 154 1.32 8,529.0 9,523.9 14,400
zk3 (3,000) 1,188.51 1,170.33 152 1.55 12,217.8 12,952.7 14,400
zk4 (3,000) 1,154.09 1,139.08 153 1.32 11,803.3 13,237.2 14,400
AVG 1.28 11,073.4 11,488.0
The same notation as in Table 3 is used
All times reported in seconds
PSMDA was implemented in C# and executed on a single core of a T5500 processor (1.66 GHz)

5.4 Results on Real-World Test Problems

To measure the performance of PSMDA on real-world problems, we solved four test problems

(denoted by zk1 - zk4) each involving 3,000 customers. The data of these problems was provided

by a logistics company and represent the actual geographic distribution of customer locations

within four major Greek cities. The depot was randomly inserted within the rectangle defined by

the customer population. The demand of each customer is uniformly distributed in [1, 100],

whereas the vehicle capacity was set equal to 1,000, so that on average each route fulfills about

20 customer demands. No route-length limit was imposed. PSMDA was executed with the

standard parameter setting also used for the very large scale instances (Pr. 20 - 32). Ten

algorithmic executions were made in total, each starting from a different initial solution. The

termination condition used for each run was the completion of three CPU hours. The results

obtained are summarized in Table 5, whereas Fig. 11 contains the highest-quality solutions

obtained for each of these real-world instances. From Table 5, we see that PSMDA was robust, as

 31

the average gap between the average and best solutions obtained was limited to 1.28%. Regarding

the CPU time required, 11,073 seconds, on average were required for each PSMDA run, which is

satisfactory considering the scale of the examined instances. In terms of the solution quality, no

comparison can be made with any methodology, as these real-world instances are firstly

introduced in the present article. However, the obtained solution structures, illustrated in Fig. 11,

are visually appealing and indicate that a high degree of capacity utilization was achieved. In

specific, the vehicle capacity utilization satisfactorily ranged between 99.02 % and 99.66 %.

Figure 11 PSMDA solutions on the real-world test problems of 3,000 customers

5.5. Computational Issues

The proposed local search framework is aimed at reducing the computational complexity of

neighborhood evaluations. This objective is accomplished by the SMD approach which encodes

and records solution neighborhoods in a solution independent manner. Thus, the computational

complexity reduction managed by the SMD concept is achieved by -loosely speaking- paying

additional memory resources allocated for storing the SMD instances. The space complexity

required by the SMD instances the three quadratic operators considered is O(n2), which does not

 32

constitute a space complexity increase, as the space required for storing the cost matrix is in any

case O(n2). To give insight to the total memory usage, we performed the following experiment.

For each of the four 3,000-customer instances, we created six instances by randomly selecting

500, 1,000, 1,500, 2,000, 2,500, and 3,000 customers. Then, we recorded the memory required for

storing the cost matrices and the SMD instances for all 24 generated test problems. The results

are provided in Fig. 12. As expected, the required memory grows quadratically with the instance

size. However, the particular memory space demanded by the PSMDA depends on the special

characteristics of each problem’s cost matrix, due to the granular filtering strategy (2). We

observe that the maximum memory usage was recorded for the 3,000 customer problem zk1,

which required 886 MB of physical memory. Further experiments illustrated that instances of up

to 4,000 customers can be securely solved with the PSMDA metaheuristic without exceeding the

2 GB -per process- limit set by the 32-bit Windows XP operating system used in our PSMDA

executions. However, recent advances in computer hardware and operating systems, together with

the transition to the 64-bit architecture provide a 128 GB physical memory limit for commercial

Windows distributions, whereas modern Windows Server editions offer a 2 TB physical memory

bound. (visit: http://msdn.microsoft.com/en-gb/library/aa366778.aspx). The growing availability

of memory resources allows the SMD concept to be applied to much larger problem instances. In

specific, with a 128 GB bound, we estimate that PSMDA could be confidently applied to VRP

instances of about 30,000 - 35,000 customers.

0
100
200

300
400
500
600
700

800
900

1000

400 1200 2000 2800

Problem Size (n)

R
eq

ui
re

d
M

em
or

y
(M

B
)

zk1

zk2

zk3

zk4

Figure 12 Memory requirement of the PSMDA metaheuristic against the problem size

 33

Virtually every modern computer system is equipped with multi-core processors which

can reduce the total computational time of algorithms, if appropriately parallelized. The SMD

concept of mapping solution neighborhoods offers great such parallelization possibilities.

Consider for instance the execution of the SMD cost update process (Table 1), which is the most

time consuming step of the overall methodology. The cost update process for each of the three

neighborhood structures (a single column of Table 1) can be individually executed, because no

shared memory resources are involved. Thus, distributing these three independent cost update

processes across equal in number CPU cores would reduce the overall CPU time of the algorithm

to approximately 1/3 of the time required for sequentially executing the cost updates on a single

core. By generalizing this parallelization policy of spreading local search operators across

separate processor cores, the method can examine as many neighborhood structures as cores

available, without considerable increase on the total computational time required. In addition, the

Fibonacci Heaps, which are responsible for keeping the SMD instances sorted, also offer

parallelization possibilities [34] which can further reduce the total computational time, if

numerous processor cores are available.

6. Conclusions
In this paper, we have concentrated on the mechanism of solution neighborhood evaluation, an

aspect which although crucial to the efficiency of local search-based methods, it is rarely the

central focus of research. In specific, we present a strategy which can be used to reduce the

complexity of applying local search for solving combinatorial optimization problems. The central

idea for reducing the complexity of evaluating neighborhoods is that when a local search operator

is applied to the given solution, only a limited part of this solution is modified. Therefore, to

exhaustively explore the neighborhood of the new solution, only the tentative moves that refer to

this modified part have to be evaluated. On the contrary, tentative moves associated to the

unaffected solution part remain unchanged, and if appropriately recorded their re-evaluation is

unnecessary. To implement this strategy, we have introduced the Static Move Descriptor (SMD)

data structures which encode local search moves in a systematic and solution independent

manner.

To clearly present the local search complexity reduction strategy, we have applied it to

the Vehicle Routing Problem (VRP) which is one of the most practical and widely studied

problems in the field of logistics management. In specific, we have used three quadratic local

search operators for solving the VRP. The proposed complexity reduction strategy resulted in a

 34

local search method whose computational complexity exhibits an almost linearithmic growth with

the instance size. This contribution is of great importance, as it helps practitioners to design

efficient local search methodologies, and enables commercial metaheuristic local search

frameworks to be applied for solving real-life problems of very large scales without requiring

excessive computational effort.

Exploiting the SMD concept for mapping local search moves, we have designed a

metaheuristic development for the VRP. The basic rationale of the proposed metaheuristic is to

use penalization terms for augmenting the cost of the SMD instances, so that the conducted

search is driven towards diverse regions of the solution space. To evaluate the performance of the

proposed metaheuristic algorithm, we have applied it to 32 large and very large scale VRP test

problems involving from 200 to 1,200 customers. It produced fine results improving several best-

known solutions. Furthermore, we introduce and solve four real-world test problems of 3,000

customers. These problems were provided by a logistics company and their data contains the

actual customer location distribution within four major Greek cities.

Several aspects of the present paper can serve as useful starting points for future research.

Firstly, regarding the SMD concept for reducing the complexity of neighborhood exploration, it

can be transferred for solving a wide variety of practical large-scale combinatorial optimization

problems. In terms of the VRP model, feasibility information could also be added in the SMD

instances to allow tunneling through infeasible solution regions. Furthermore, numerous highly

complex local search operators could be encoded into SMD instances, so that local search

frameworks of manageable complexity can be designed. Finally, regarding the proposed

metaheuristic approach for the VRP, various adaptive penalization strategies could be

implemented, to drive the method towards promising solution regions more effectively.

References

[1] Aarts EH, Lenstra JK. Local Search in Combinatorial Optimization. Wiley, Chichester,

UK, 1997.

[2] Glover F. Tabu search - Part I. ORSA Journal on Computing 1989;1:190-206.

[3] Voudouris C, Tsang E. Guided local search. European Journal of Operational Research

1998;113:80-119.

[4] Hansen P, Mladenović N. Variable neighborhood search: Principles and applications.

European Journal of Operational Research 2001;130:449-67.

[5] Li F, Golden B, Wasil E. Very large-scale vehicle routing: new test problems, algorithms,

and results. Computers and Operations Research 1989;32:1165-79.

 35

[6] Kindervater GAP, Savelsbergh MWP. Vehicle routing: handling edge exchanges. In Aarts

EH, Lenstra JK (Eds.). Local Search in Combinatorial Optimization. Wiley, Chichester, UK,

1997. p. 337–60.

[7] Toth P, Vigo D. The granular tabu search (and its application to the vehicle routing

problem). INFORMS Journal on Computing 2003;15:333-48.

[8] Vigo D. A heuristic algorithm for the asymmetric capacitated vehicle routing problem.

European Journal of Operational Research 1996;89:108-26.

[9] Glover F, Laguna M. Tabu Search. Kluwer, Boston, MA, 1997.

[10] Coy S, Golden B, Runger G, Wasil E. See the forest before the trees: fine-tuned learning

and its application to the traveling salesman problem. IEEE Transactions on Systems Man and

Cybernetics 1998;28:454-64.

[11] Nagata Y, Bräysy O. Efficient Local Search Limitation Strategies for Vehicle Routing

Problems. In: Cotta C, J. van Hemert (Eds.). EvoCOP 2008, LNCS 4972. Springer-Verlag, Berlin

Heidelberg 2008. p. 48–60.

[12] Lin S, Kernighan B. An effective heuristic algorithm for the traveling-salesman problem.

Operations Research 1973;21:498–516.

[13] Christofides N, Eilon S.. Algorithms for large-scale travelling salesman problems.

Operational Research Quarterly 1972;23:511–8.

[14] Irnich S, Funke B, Grünert T. Sequential search and its application to vehicle-routing

problems. Computers and Operations Research 2006;33:2405-29.

[15] Irnich S. Unified Modeling and Solution Framework for Vehicle Routing and Local

Search-Based Metaheuristics. INFORMS Journal on Computing 2008;20:270-87.

[16] Glover F. Ejection chains, reference structures and alternating path methods for traveling

salesman problems. Discrete Applied Mathematics 1996;65:223-53.

[17] Rego C. A subpath ejection method for the vehicle routing problem. Management Science

1998;44:1447-59.

[18] Rego C. Node ejection chains for the vehicle routing problem: sequential and parallel

algorithms. Parallel Computing 2001;27:201-22.

[19] Osman I. Metastrategy simulated annealing and tabu search algorithms for the vehicle

routing problem. Annals of Operations Research 1993;41:421-51.

[20] Gendreau M, Hertz A, Laporte G. A tabu search heuristic for the vehicle routing problem.

Management Science 1994;40:1276-1290.

[21] Xu J, Kelly J. A network flow-based tabu search heuristic for the vehicle routing problem.

Transportation Science 1996;30:379–93.

 36

[22] Rochat, Y, Taillard ED. Probabilistic diversification and intensification in local search for

vehicle routing. Journal of Heuristics 1995;1:147–67.

[23] Tarantilis CD, Kiranoudis CT. BoneRoute: An effective memory-based method for

effective fleet management. Annals of Operations Research 2002;115:227-41.

[24] Tarantilis CD Solving the vehicle routing problem with adaptive memory programming

methodology. Computers and Operations Research 2005;32:2309-27.

[25] Golden B, Wasil E, Kelly J, Chao I. The impact of metaheuristics on solving the vehicle

routing problem: Algorithms, problem sets, and computational results. In Crainic T, Laporte G

(Eds.). Fleet Management and Logistics. Kluwer, Boston, MA, 1998. p. 33–56.

[26] Or I. Traveling salesman-type combinatorial optimization problems and their relation to the

logistics of regional blood banking. Ph.D. Thesis, Department of Industrial Engineering and

Management Sciences, Northwester University, Evanston, IL, USA, 1976.

[27] Reimann M, Doerner K, Hartl R. D-ants: savings based ants divide and conquer the vehicle

routing problem. Computers and Operations Research 2004;31:563–91.

[28] Mester D, Bräysy O. Active-guided evolution strategies for large-scale capacitated vehicle

routing problems. Computers and Operations Research 2007;34:2964–75.

[29] Tarantilis CD, Zachariadis EE, Kiranoudis CT. A Hybrid Guided Local Search for the

Vehicle-Routing Problem with Intermediate Replenishment Facilities. INFORMS Journal on

Computing 2008;20:154-68.

[30] Fredman M, Tarjan R. Fibonacci heaps and their uses in improved network optimization

algorithms. Journal of the ACM 1987;34:596-615.

[31] Paessens H. The savings algorithm for the vehicle routing problem. European Journal of

Operational Research 1988;34:336-44.

[32] Pisinger D, Röpke S. A general heuristic for vehicle routing problems. Computers and

Operations Research 2007;34:2403–35.

[33] Nagata, Y. 2007. Edge Assembly Crossover for the Capacitated Vehicle Routing Problem.

In: Cotta C, J. van Hemert (Eds.). EvoCOP 2007, LNCS 4446. Springer-Verlag, Berlin

Heidelberg 2007. p. 142–153.

[34] Driscoll JR, Gabow HN, Shrairman R, Tarjan RE. Relaxed heaps: an alternative to

Fibonacci heaps with applications to parallel computation. Communications of the ACM 1988;

31:1343-54.

