
 1

A Local Search Metaheuristic Algorithm for the Vehicle Routing

Problem with Simultaneous Pick-ups and Deliveries

Emmanouil E. Zachariadis, Chris T. Kiranoudis

Department of Process Analysis and Plant Design, National Technical University of Athens,

Athens, Greece, {ezach@mail.ntua.gr, kyr@chemeng.ntua.gr}

Abstract

This article proposes a local search metaheuristic solution approach for the Vehicle

Routing Problem with Simultaneous Pick-ups and Deliveries (VRPSPD), which models

numerous practical transportation operations in the context of reverse logistics. The

proposed algorithm is capable of exploring wide solution neighborhoods by statically

encoding moves into special data structures. To avoid cycling and induce diversification,

the overall search is coordinated by the use of the promises concept which is applied to

solution arcs. In terms of the challenging capacity constraints imposed by the VRPSPD

model, we present a constant-time feasibility checking procedure for the employed local

search operators. The presented metaheuristic development was tested on eighteen large-

scale VRPSPD benchmark instances derived from the literature. It proved to be both

robust and effective, improving most of the previously best-known solutions of the

examined test problems.

keywords: vehicle routing, simultaneous pick-ups and deliveries, metaheuristics,

computational complexity

1. Introduction

In the present paper, we examine a practical Vehicle Routing Problem (VRP) variant

which considers customers to simultaneously require both delivery and pick-up services.

The examined transportation problem is referred to as the Vehicle Routing Problem with

Simultaneous Pick-ups and Deliveries (VRPSPD), and has attracted research interest

because it models a wide variety of business operations involving bi-directional flow of

goods.

 2

In graph theory terms, VRPSPD is defined on a complete graph G = (V, A), where V =

{v0, v1, …, vn} is the vertex set, and A is the arc set. Vertex v0 corresponds to the depot

which acts as the central station for a fleet of homogeneous vehicles. Each of these

vehicles has a maximum carrying load equal to Q. Vertices of the set V - {v0} = {v1, v2,

…, vn} represent the customer population. With each customer vertex are associated two

fixed, product demands: the pick-up demand pi, and the delivery demand di, whereas with

each arc (vi, vj)∈A is associated a non-negative cost cij reflecting the time, the distance or

the actual monetary cost required for traveling from vi to vj. The VRPSPD aims at

generating the minimum cost set of Hamiltonian circuits (routes) so that customer

delivery and pick-up demand is totally satisfied. The produced set of routes must respect

the following requirements: (a) each route originates from, and terminates to the central

depot v0, (b) each customer vi (i = 1,…, n) is visited once by exactly one route, (c) at no

point of any route, the transported quantity of goods exceeds the maximum carrying load

Q of the vehicles.

The VRPSPD model has been in the focus of research interest mainly because of its

commercial importance, and theoretical challenge. In terms of the operational

importance, VRPSPD finds applicability in numerous reverse logistics systems: retailers

are able to negotiate the return excess unsold products back to the manufacturers with

beneficial effects for both parts. Furthermore, extended responsibilities have been

assigned to producers regarding the entire life-cycle of their products. Used products like

industrial equipment, hardware devices etc. are also sent back to the manufacturer

facilities to be disassembled into valuable components. Another example of reverse

product flows is due to recent pro-environmental legislation which forces companies to

collect various used products such as lubricants, batteries, tires, fluorescent lights, etc. in

order to be appropriately processed. From the theoretical perspective, VRPSPD

generalizes the standard Capacitated VRP (CVRP) version. In specific, any CVRP

instance can be interpreted as a VRPSPD instance for which either all delivery, or all

pick-up demands, respectively, are equal to zero. As a CVRP generalization, VRPSPD is

a NP-hard combinatorial optimization problem. Thus, to efficiently deal with large-scale

VRPSPD instances which arise in practical operations, one’s interest has to be focused in

 3

heuristic and metaheuristic approaches, which can produce high quality solutions within

limited computational times.

The purpose of this paper is to propose a new metaheuristic methodology for the

VRPSPD model. The proposed method is a local-search based approach which examines

rich solution neighborhoods. To examine these rich neighborhood structures efficiently,

we make use of the Static Move Descriptor entities which statically encode tentative local

search moves (Zachariadis and Kiranoudis, 2009a). To effectively explore the solution

space, the search is controlled by using the promise concept initially introduced for the

VRP with Backhauls (Zachariadis and Kiranoudis, 2009b). In the present study, instead

of complete routes, we consider arcs to be the solution attributes examined by the

promises strategy. Moreover, we present an efficient scheme for examining the feasibility

of the applied local search operators in terms of the challenging VRPSPD capacity

constraints. The proposed metaheuristic was tested on well-known VRPSPD benchmark

instances derived from the literature. It produced satisfactory results and managed to

improve several best-known solutions.

The remainder of the present paper is organized as follows: Section 2 provides a literature

review on the VRPSPD, followed by Section 3 which presents the proposed solution

approach. In Section 4, the computational results are provided, followed by some

concluding remarks in Section 5.

2. Literature Review

Reverse logistics are increasingly important, as numerous practical distribution

operations require that goods are bi-directionally transported. In this context, several

routing problem variants which consider customers to require both delivery and pick-up

services have been examined. Three of these widely-studied routing models (Toth and

Vigo 2002; Berbeglia et al. 2007) are the VRP with Backhauls (VRPB), the VRP with

mixed pick-ups and deliveries (VRPMPD), and the VRP with simultaneous pick-ups and

deliveries (VRPSPD).

The VRPB divides customers into two groups, namely the linehauls and backhauls.

Vehicles are assumed to originate from the depot to satisfy the delivery demand of

linehauls. After the last linehaul of each route is serviced, vehicles proceed to visit the

 4

backhaul customers to collect their pick-up demand, before terminating their trips at the

central depot. Under the VRPB model, the vehicle load monotonically decreases in the

linehaul phase (until it is exhausted after the last linehaul is serviced), and then

monotonically increases, as goods are collected from backhaul locations. This precedence

constraint which forces linehauls before backhauls was imposed in the VRPB model

because, as Goetschalckx and Jacobs-Blecha (1989) state, “the vehicles are rear-loaded

and rearrangement of the loads on the trucks at the delivery points is not deemed

feasible”.

On the contrary, VRPMPD drops the aforementioned precedence constraint by letting

linehauls and backhauls occur in any order during the vehicle trips. This causes the

vehicle load to fluctuate along its trip, so that capacity constraints are harder to tackle.

The VRPSPD generalizes the VRPMPD model. It considers customers to simultaneously

require both delivery and pick-up services, so that the customers are not divided into

separate linehaul and backhaul groups. Every, VRPMPD instance can be seen as a

VRPSPD one, for which either the delivery di or pick-up pi demand of every customer vi

is equal to zero. In the following, we provide a detailed literature review on solution

methodologies

The first work which dealt with a practical VRPSPD application is due to Min (1989). It

involved 22 customers and 2 vehicles. The solution was obtained by clustering customers

into disjoint sets, and then for each set, solving the Traveling Salesman Problem (TSP).

The capacity constraints are satisfied by penalizing infeasible solution arcs. Dethloff

(2001) has proposed and compared a series of construction heuristics which employ

several insertion criteria. The algorithm of Nagy and Salhi (2005) first solves the

corresponding VRP by handling both linehauls and backhauls in an integrated manner.

Then, to eliminate capacity infeasibilities, the authors apply some VRP heuristic routines

which are modified to tackle the VRPSPD. More recently, several Tabu Search (TS)

frameworks have been proposed for the VRPSPD: Crispim and Brandão (2005) have

implemented a hybridization of TS and Variable Neighborhood Descent (VND), while

the article of Chen and Wu (2006) propose a hybrid scheme incorporating the TS and the

record-to-record travel strategies. A pure TS implementation was proposed by Tang-

Montanè and Galvão (2006). To induce diversification, the authors make use of an arc

 5

frequency penalization scheme. Wassan et al. (2007) have designed a TS method which

reacts to repetitions in order to guide the conducted search. Biancessi and Righini (2007)

evaluate and compare the performance of several constructive heuristics, local search

methods and TS implementations for the VRPSPD. Another TS-based algorithm has been

proposed by Zachariadis et al. (2009a). In specific, the proposed approach explores the

solution space by hybridizing the TS and Guided Local Search (GLS) strategies. The

most recent VRPSPD metaheuristic methodologies have been published by Gajpal and

Abad (2009), Ai and Kachitvichyanukul (2009), and Zachariadis et al. (2009b). The

former article (Gajpal and Abad, 2009) presents an Ant Colony Optimization approach,

whereas the second study (Ai and Kachitvichyanukul, 2009) proposes a Particle Swarm

Optimization VRPSPD solution approach. Finally, the methodology of Zachariadis et al.

(2009b) belongs to the Adaptive Memory Programming approaches. In specific, routes

included in high-quality VRPSPD solutions are stored in the Adaptive Memory from

which customer sequences are periodically extracted to form new initial solutions for

guiding the search. The risk of an overall elitistic behavior is eliminated by the use of an

additional memory component which drives the algorithm to exploit diverse routing

information stored in the Adaptive Memory.

3. The Proposed Metaheuristic

The proposed VRPSPD metaheuristic is a local search algorithm which makes use of two

algorithmic concepts, namely the Static Move Descriptor (SMD) strategy for efficiently

exploring solution neighborhoods, and the promises concept for avoiding search cycling

and inducing diversification. The selection of these algorithmic ingredients was

motivated by their successful application to both the Open VRP (Zachariadis and

Kiranoudis 2009a) and VRPB (Zachariadis and Kiranoudis 2009b) models. The SMD

strategy, which reduces the computational complexity required for exploring solution

neighborhoods, was used for both the OVRP and VRPB, whereas the promises concept

was firstly introduced for the VRPB (Zachariadis and Kiranoudis, 2009b). As will be

later explained, in this research we aimed at examining the behavior of promises for more

basic solution attributes. In specific, instead of using complete routes as the solution

attributes considered by the promises concept, we used simple solution arcs. The

 6

aforementioned selection lead to a much effective VRPSPD solution approach, as it

managed to produce high-quality solutions for several large-scale test problems.

In the present Section, we firstly present the neighborhood structures examined and their

SMD representation, followed by the description of the proposed promises

implementation. The overall metaheuristic structure is then provided, together with the

way in which feasibility investigation for the employed local search operators is

performed in constant time.

3.1. The Applied Local Search Operators

As in the case of our previous studies for the OVRP and the VRPB models, we examine

two solution neighborhood structures. The first one is defined by every tentative move

exchanging the positions of customer sequences (thereafter to be referred to as bones)

which may contain up to μ customers, and is denoted by Variable Length Bone Exchange

operator (VLBE). The second neighborhood considered is the well known 2-opt operator

defined by every possible replacement of two solution arcs. The aforementioned

neighborhood structures (VLBE and 2-opt) and their SMD representation have been

described in detail for the OVRP (Zachariadis and Kiranoudis 2009a). For the

completeness of the present paper, we provide a brief presentation of the applied local

search operators.

3.1.1. The VLBE operator and its SMD representation

The VLBE operator exchanges the positions of any pair of bones each of them containing

from 0 to μ customers. Obviously, the cardinality of the VLBE neighborhood is O(μ2 n2),

as in total there are O(n2) 2-combinations of vertices, and for each such combination,

there are O(μ2) tentative moves, corresponding to the 2-combinations of the lengths of the

exchanged bones.

To encode the VLBE operator using the SMD strategy, we use the VLBE SMD instances

each of them corresponding to a particular VLBE tentative move. With each VLBE SMD

instance are associated two node values n1 and n2, and two bone lengths n1_len and

n2_len. The move encoded by a VLBE SMD instance with n1 = A, n2= B, n1_len = a,

and n2_len = b, involves exchanging the positions of the bones originating after nodes A

 7

and B, and containing a and b customer vertices, respectively, as seen in Figure 1. To

exhaustively map the VLBE neighborhood for a problem of n customers and K vehicles,

((n+K)!/(2!(n+K−2)!))·((μ+1)2-1) VLBE SMD instances are required in total. The first

term corresponds to the 2-combinations without repetition of the n customers and K depot

vertex occurrences, while the second term corresponds to the 2-combinations with

repetition of the two bone lengths which vary from 0 to μ (no SMD instance is generated

for both bone lengths equal to 0).

Depot A Depot

Depot B Depot

a vertices

b vertices

Depot A Depot

Depot B Depot

b vertices

a vertices

... ...

... ...

... ...

... ...

Arcs Deleted Arcs Created

Application of
VLBE SMD

n1 = A n1_len = a
n2 = B n2_len = b

Route RTA

Route RTB

Route RTA’

Route RTB’

Fig 1. The VLBE local search operator

3.2.2. The 2-opt operator and its SMD representation

The 2-opt operator removes two solution arcs and replaces them with a new arc pair.

When the deleted arc pair belongs to the same route, the 2-opt move implements the

following solution modification: the deleted arc pair is replaced by a new one, and the

path lying between these new arcs is reversed. For an inter-route 2-opt move, the routes

involved are divided into their initial and terminating segments, respectively. The initial

 8

segment of the first route is connected to the terminating segment of the second one.

Analogously, the initial segment of the second route is connected to the terminating

segment of the first one. The cardinality of the 2-opt neighborhood is O(n2), as one

particular move is defined per vertex pair.

To encode the 2-opt moves instances into SMD instances, we generate one 2-opt SMD

instance per vertex pair, so that in total ((n + K)!/(2!(n + K − 2)!)) 2-opt SMD instances

are required. Each of these instances contains two node values n1 and n2. The move

represented by a 2-opt SMD instance with n1 = A and n2= B depends on whether A and B

belong to the same route. If A and B belong to the same route (and without loss of

generality A precedes B in the route vector), the path originating after A and terminating

at B is reversed, and two new arcs are introduced to form the modified route (Fig. 2). If A

and B belong to different routes, the route segment initiating from the depot and

terminating at A is connected to the route segment originating after B and terminating at

the depot. Similarly, the route path beginning at v0 and terminating at B is linked to the

route segment initiating after A and terminating at the depot, so that the modified route

pair is generated (Fig. 3).

Depot A Depot

Arcs Deleted Arcs Created

Application of
2-opt SMD

n1 = A
n2 = B

K L M N B P

Depot A DepotB N M L K P

Arcs Deleted Arcs Created

Path Reversed

Route RTA

Route RTA’

Fig 2. Intra-Route 2-opt local search operator

 9

Depot DepotA

Depot DepotB

Depot DepotA

Depot DepotB

Arcs Deleted Arcs Created

Application of
2-opt SMD

n1 = A
n2 = B

Route RTA

Route RTB

Route RTA’

Route RTB’

Fig 3. Inter-Route 2-opt local search operator

3.2. The cost of the local search moves

Apart from encoding a particular tentative move, both the VLBE and 2-opt SMD

instances introduced in 3.1 contain a cost tag which is equal to the actual cost required for

implementing that move to the candidate solution. When a move is applied to the

solution, only a subset of the solution attributes is modified, so that the cost tags of only

the SMD instances associated to this modified subset have to be updated according to the

new solution structure. In this section, we briefly provide the SMD update cost rules for

the application of VLBE and 2-opt moves, respectively. Note that these rules are reported

in more detail in our previous work (Zachariadis and Kiranoudis 2009a) for the OVRP.

To improve clarity of exposition, for every VRPSPD solution, the following notation is

introduced:

pred(v): denotes the bone which contains up to μ vertices and terminates before vertex v.

bone(v, a): represents the bone that contains a vertices and originates after vertex v.

succ(v, a): denotes the last vertex contained in bone(v, a).

part(v, y): denotes the bone originating from the successor of v and ending at vertex y.

 10

init(v): denotes the set of predecessor vertices of v in its route.

fin(v): denotes the set of successor vertices of v in its route.

z(v): denotes the total number of customers assigned to the route that contains vertex v.

z(v, y): denotes the total number of vertices contained in the bone originating at the

successor of v and ending at vertex y.

3.2.1. Applying a VLBE move

When a VLBE SMD instance with n1 = A, n2 = B, n1_len = a, and n2_len = b is applied

to a candidate solution the cost tags of the following SMD instances have to be updated:

• VLBE SMD instances with either node value (n1 or n2) included in {{A},{B},

{succ(A, a)},{succ(B, b)}}, corresponding to O(μ2 n) necessary updates.

• VLBE SMD instances with either node value in {pred(A), pred(B)} and relevant

bone length pointing into the exchanged bones, corresponding to O(μ3 n) updates.

• VLBE SMD instances with either node value in {bone(A, a-1), bone (B, b-1)} and

relevant bone length reaching after the bones exchanged, corresponding to O(μ3 n)

updates.

• 2-opt SMD instances with either node value in {{A},{B},{succ(A, a)},{succ(B, b)}},

corresponding to O(n) necessary updates.

• 2-opt SMD instances with their one node in {bone(A, a-1), bone (B, b-1)} and their

other node contained in {init(A), init(B), fin(succ(A, a)), fin(succ(B, b))},

corresponding to O(μ (z(A) + z(B))) updates.

3.2.2. Applying a 2-opt move

When a 2-opt SMD instance with n1 = A and n2 = B is applied to a candidate solution, the

necessary cost tag updates depend on whether the encoded move is applied within a

single route, or it is an inter-route move.

If the 2-opt SMD encodes an intra-route move (and assuming that A precedes B in the

route vector), the cost tags of the following SMD instances must be updated:

• VLBE SMD instances with either node value contained in {{A}, part(A,B)},

corresponding to O(μ2 z(A, B)) necessary updates.

 11

• VLBE SMD instances with either node value in {pred(A)} and relevant bone length

that refer into the reversed route segment, corresponding to O(μ3 n) updates.

• 2-opt SMD instances with either node value in {{A}, part(A, B)}, corresponding to

O(n z(A, B)) updates.

If the 2-opt SMD encodes an inter-route move the following cost tag re-evaluations must

be performed:

• VLBE SMD instances with either node value contained in {{A},{B}}, corresponding

to O(μ2 n) necessary updates.

• VLBE SMD instances with either node value in {pred(A), pred(B)} and relevant

bone lengths that refer to the route segments lying after nodes A and B,

corresponding to O(μ3 n) updates.

• 2-opt instances with either node value in {{A}, {B}}, corresponding to O(n) updates.

• 2-opt instances with their one node in {init(A), init(B)} and their other node in

{fin(A), fin(B)}, corresponding to O(z(A) z(B)) updates.

3.3 Examining the SMD instance feasibility

As earlier stated, the VRPSPD model considers that the load of vehicles fluctuates along

their routes. This problem characteristic makes feasibility investigation of tentative

moves much more challenging compared to the standard CVRP version, for which

feasibility investigation can be straightforwardly performed in constant time.

To examine the feasibility status of the SMD instances according to the capacity

requirements of the VRPSPD in O(1), we introduce several load metrics which were also

used in the work of Zachariadis et al. (2009b) for examining feasibility of simple 1-0 and

1-1 exchanges and 2-opt moves.

Assume x to be the position of the vector of route RT which visits zRT customer locations.

Apparently, x varies from 0 to zRT. The depot vertex is located at x = 0, whereas, at x =

zRT, lies the last customer visited by route RT. In addition, let pRT(x) and dRT(x) denote the

pi and di demand, respectively, of vertex vi which is located at position x of the RT route

vector. With every VRPSPD route RT, the following demand metrics are associated:

• SPBRT (x) = Σ(q = 0, 1,.., x-1) pRT (q), x = 0, 1,…, zRT

(sum of the pick-up demand of route RT vertices lying before position x).

 12

• SDART (x) = Σ(q = x+1, x+2,.., ZRT) dRT (q), x = 0, 1,…, zRT

(sum of the delivery demand of route RT vertices lying after position x).

• LRT (x)= SPBRT (x) + pRT (x) + SDART (x), x = 0, 1,…, zRT

(load of the vehicle, when travelling along the arc linking RT route positions x and x + 1).

• MAX_LBRT (x) = max(q = 0, 1,.., x) {LRT (q)}, x = 0, 1,…, zRT

(peak load of the RT path which originates from the depot, and terminates at position x +

1 when x < ZRT, or at the depot when x = ZRT).

• MAX_LART (x) = max (q = x, x+1,.., ZRT) {LRT (q)}, x = 0, 1,…, zRT

(peak load of the RT path which originates at position x and terminates at the depot).

• MAXIM_LART (x, y) = max (q = x, x+1,.., x+y) {LRT (q)}, x = 0, 1,…, zRT, y = 0, 1,…, zRT - x

(peak load of the RT path which originates at position x and terminates at position x + y +

1 when x + y < zRT, or at the depot when x + y = zRT).

• MINIM_LART (x, y) = min(q = x, x+1,.., x+y) {LRT (q)}, x = 0, 1,…, zRT, y = 0, 1,…, zRT - x

(lowest load of the RT path which originates at position x and terminates at point x + y +

1 when x + y < zRT, or at the depot when x + y = zRT).

The aforementioned demand metrics of any route RT, are updated whenever a local

search move affects RT. The computational complexity required for their evaluation is

O(zRT
2), where zRT denotes the number of customers visited by RT after the local search

move has been implemented.

In the following, let pst(v) denote the position of vertex v in its route vector. Obviously, if

v is serviced by route RT, pst(v) varies from 0 to zRT.

3.3.1. Feasibility Investigation for the VLBE SMD instances

To examine the feasibility status of a VLBE SMD instance with n1 = A, n2 = B, n1_len =

a, and n2_len = b, the following checks are performed in constant time.

3.3.1.1. Intra-Route VLBE SMD instance feasibility

If both A and B belong to the same route RT the following preconditions must hold:

pst(A) + a ≤ zRT, pst(B) + b ≤ zRT. To examine the feasibility, the following two cases

must be considered.

 13

Case A. Both bone lengths are greater than zero (a ≠ 0 and b ≠ 0):

Without loss of generality, assume that A precedes B in the RT route vector. To test the

feasibility of the VLBE SMD instance, the following precondition must be satisfied:

pst(B) ≥ pst(A) + a. The VLBE SMD instance is infeasible if one of the following holds:

• MAXIM_LART(pst(A)+a, pst(B)-pst(A)-a) + [SDART(pst(A))-SDART(pst(A)+a)] -

[SPBRT(pst(A)+a)+pRT(pst(A)+a)-SPBRT(pst(A)+1)] - [SDART(pst(B))-SDART(pst(B)+b)] +

[SPBRT(pst(B)+b)+pRT(pst(B)+b)-SPBRT(pst(B)+1)] > Q.

• MAXIM_LART(pst(A)+1, a-2) - [SDART(pst(B))-SDART(pst(B)+b)] - [SDART(pst(A)+a)-

SDART(pst(B))] + [SPBRT(pst(B)+b)+pRT(pst(B)+b)-SPBRT(pst(B)+1)] + [SPBRT(pst(B)+1)-

SPBRT(pst(A)+a+1)] > Q (applicable when a ≥ 2).

• MAXIM_LART(pst(B)+1, b-2) - [SPBRT(pst(A)+a)+pRT(pst(A)+a)-SPBRT(pst(A)+1)] -

[SPBRT(pst(B)+1)-SPBRT(pst(A)+a+1)] + [SDART(pst(A))-SDART(pst(A)+a)] +

[SDART(pst(A)+a)-SDART(pst(B))] > Q (applicable when b ≥ 2).

Case B. Only one bone length is equal to zero (either a = 0 or b ≠ 0):

If a = 0, set IP = A, N = B and len = b. Otherwise, if b = 0, set IP = B, N = A and len = a.

Two subcases may arise depending on whether the relocated bone moves forward or

backward in the route involved:

Subcase B1. The relocated bone moves forward (pst(N) < pst(IP))

To test the feasibility of the VLBE SMD instance, the following precondition must be

satisfied: pst(IP) > pst(N) + len. The VLBE SMD instance is infeasible if one of the

following holds:

• MAXIM_LART(pst(N)+len+1, pst(IP)-len-pst(N)-1) + [SDART(pst(N))-

SDART(pst(N)+len)] - [SPBRT(pst(N)+len)+pRT(pst(N)+len)-SPBRT(pst(N)+1)] > Q.

• MAXIM_LART(pst(N)+1, len-2) + [SPBRT(pst(IP)) + pRT(pst(IP)) - SPBRT(pst(N)+len+1)]

- [SDART(pst(N)+len)-SDART(pst(IP))] > Q (applicable when len ≥ 2).

Subcase B2. The relocated bone moves backward (pst(N) > pst(IP))

The VLBE SMD instance violates the capacity constraints if one of the following holds:

• MAXIM_LART(pst(IP), pst(N)-1-pst(IP)) + [SPBRT(pst(N)+len)+pRT(pst(N)+len)-

SPBRT(pst(N)+1)] - [SDART(pst(N))-SDART(pst(N)+len)] > Q.

• MAXIM_LART(pst(N)+1, len-2) + [SDART(pst(IP))-SDART(pst(N))] -

[SPBRT(pst(N))+pRT(pst(N))-SPBRT(pst(IP)+1)] > Q (applicable when len ≥ 2).

 14

3.3.1.2. Inter-Route VLBE SMD instance feasibility

If vertices A and B belong to two different routes RTA and RTB, respectively, the

following preconditions must hold: pst(A) + a ≤ zRTA, pst(B) + b ≤ zRTB. Regarding the

capacity constraints, the following two cases must be considered.

Case A. Both bone lengths are greater than zero (a ≠ 0 and b ≠ 0):

The VLBE SMD instance violates the capacity constraints, if one of the following holds:

• MAX_LBRTA(pst(A)) - [SDARTA(pst(A))-SDARTA(pst(A)+a)] + [SDARTB(pst(B)) -

SDARTB(pst(B)+b)] > Q.

• MAXIM_LARTB(pst(B)+1, b-2) - SPBRTB(pst(B)+1) + SPBRTA(pst(A)+1) -

SDARTB(pst(B)+b) + SDARTA(pst(A)+a) > Q (applicable when b ≥ 2).

• MAX_LARTA(pst(A)+a) - [SPBRTA(pst(A)+a)+pRTA(pst(A)+a)-SPBRTA(pst(A)+1)] +

[SPBRTB(pst(B)+b)+pRTB(pst(B)+b)-SPBRTB(pst(B)+1)] > Q.

• MAX_LBRTB(pst(B)) - [SDARTB(pst(B))-SDARTB(pst(B)+b)] + [SDARTA(pst(A))-

SDARTA(pst(A)+a)] > Q.

• MAXIM_LARTA(pst(A)+1,a-2) - SPBRTA(pst(A)+1) + SPBRTB(pst(B)+1) -

SDARTA(pst(A)+a) + SDARTB(pst(B)+b) > Q (applicable when a ≥ 2).

• MAX_LARTB(pst(B)+b) - [SPBRTB(pst(B)+b)+pRTB(pst(B)+b)-SPBRTB(pst(B)+1)] +

[SPBRTA(pst(A)+a)+pRTA(pst(A)+a)-SPBRTA(pst(A)+1)] > Q.

Case B. Only one bone length is equal to zero (either a = 0 or b = 0):

If a = 0, set IP = A, N = B, len = b, FROM = RTB, and TO = RTA. Otherwise, if b = 0, set

IP = B, N = A, len = a, FROM = RTA, and TO = RTB.

The encoded move is infeasible, if one of the following holds:

• MAX_LBTO(pst(IP)) + [SDAFROM(pst(N)) - SDAFROM(pst(N)+len)] > Q.

• MAXIM_LAFROM(pst(N)+1, len-2) - SPBFROM(pst(N)+1) + SPBTO(pst(IP)) + pTO(pst(IP))

- SDAFROM(pst(N)+len) + SDATO(pst(IP)) > Q (applicable when len ≥ 2).

• MAX_LATO(pst(IP)) + SPBFROM(pst(N)+len) + pFROM(pst(N)+len) - SPBFROM(pst(N)+1) >

Q.

3.3.2. Feasibility Investigation for the 2-opt SMD instances

The necessary checks for examining the feasibility status of a 2-opt SMD instance with n1

= A, and n2 = B, depend on the route pair servicing vertices A and B.

 15

3.3.2.1. Intra-Route 2-opt SMD instance feasibility

If both A and B belong to the same route RT, and assuming that A precedes B in the RT

route vector, the 2-opt SMD instance must satisfy the following preconditions: pst(A) ≤

zRT - 2, and pst(B) ≥ pst(A) + 2. The capacity constraints are violated if:

• LRT(pst(A)) + LRT(pst(B)) - MINIM_LART(pst(A), pst(B)-pst(A)-1) > Q.

3.3.2.2. Inter-Route 2-opt SMD instance feasibility

If vertices A and B belong to two different routes RTA and RTB, respectively, the 2-opt

SMD instance must satisfy the following preconditions: pst(A) ≤ zRTA, and pst(B) ≤ zRTB.

The examined 2-opt SMD instance is infeasible, if one of the following holds:

• MAX_LBRTA(pst(A)) - SDARTA(pst(A)) + SDARTB(pst(B)) > Q.

• MAX_LARTB(pst(B)+1) - [SPBRTB(pst(B)) + pRTB(pst(B))] + [SPBRTA(pst(A)) +

pRTA(pst(A))] > Q (applicable when pst(B) < zRTB).

• MAX_LBRTB(pst(B)) - SDARTB(pst(B)) + SDARTA(pst(A)) > Q.

• MAX_LARTA(pst(A)+1) - [SPBRTA(pst(A)) + pRTA(pst(A))] + [SPBRTB(pst(B)) +

pRTB(pst(B))] > Q (applicable when pst(A) < zRTA).

3.4. The proposed implementation of the promises concept

The concept of promises, initially introduced for the VRPB, is an algorithmic mechanism

for avoiding cycling and inducing diversification within any local-search procedure.

Briefly, the main idea of the promise concept is the following: when a local search move

is applied to a solution S of cost cst(S), some solution attributes are eliminated and

replaced by some new solution attributes, so that solution S′ is formed. The eliminated

solution attributes are associated with a promise tag equal to the solution cost cst(S)

(before the move application). Tentative local search moves are considered to be

admissible (promise-keeping), only if they lead to the generation of solution attributes at

a solution cost lower than the promise tags of these attributes.

For our previous promise study, complete routes were the solution attributes under

consideration. On the contrary, the present work examines the behaviour of the promise

mechanism for more basic solution attributes. In specific, the proposed method considers

arcs to be the solution attributes exploited by the promises concept.

 16

To check whether tentative moves are promise-keeping, with every VLBE and 2-opt

SMD instance smd is associated a list of arcs LAsmd. The LAsmd list contains every arc

(and its inverse) which is going to be introduced into the candidate solution by applying

the local search move encoded by smd. Thus, for any SMD instance smd to be

admissible, the cost tag of smd augmented by the current solution score must be lower

than the promise tag of every arc contained in LAsmd.

Obviously, the above-presented arc lists are dynamic, as they depend on the structure of

the current solution. To keep the arc list of every SMD instance updated according to the

status of the candidate solution, when the cost update rules of Section 3.2 are executed,

the arc lists of the affected SMD instances are appropriately modified.

3.5. The overall structure of the proposed methodology

The proposed solution approach starts off by applying a simple construction heuristic. In

specific, to obtain an initial VRPSPD solution, we use the savings heuristic proposed by

Paessens (1988) for the CVRP. The savings of customer insertions are evaluated as s(i, j)

= ci0 + cj0 - g cij + f |ci0 - c0j|, where f and g are uniformly distributed within [0, 1] and (0,

3], respectively. Note that insertion positions are considered only if they respect the

capacity requirements of the examined problem. Furthermore, the examined VRPSPD

model does not impose any restriction on the total number of routes of the solution. Thus,

whenever a customer is assigned to an empty (of customers) route, a new empty route

becomes available for subsequent customer insertions.

After the initial feasible VRPSPD solution has been produced, the improvement method,

called Arc Promise Algorithm (APA), is initiated by preparing the SMD representation of

the employed local search operators: the SMD instances for both the VLBE and 2-opt

neighbourhoods are generated. To restrict the total SMD instance population, and thus

reduce the computational effort of the overall method, we use a filtering approach aimed

at excluding the generation of SMD instances which are highly unlikely to encode

quality-improving local search moves. This approach is similar to the granularity strategy

used for the VRPSPD in the work of Zachariadis et al. (2009a). In specific, we solve the

examined instance by a VRPSPD-adapted Clarke and Wright heuristic (1964). Let

cstC&W, and KC&W denote the objective function and the total number of routes of the

 17

solution produced. Then, a threshold value thr is evaluated as thr = (β cstC&W)/(n +

KC&W). An SMD instance (either a VLBE or a 2-opt one) with n1 = vi and n2 = vj, is

generated only if cij ≤ thr, or i = 0, or j = 0. The cost tags of the generated SMD instances

are calculated according to the status of the initial VRPSPD solution. Then, the SMD

instances are inserted into a special priority queue structure called Fibonacci Heap

(Fredman and Tarjan, 1987) which offers the following capabilities: constant time

insertions, and minimum-retrievals, and logarithmic time deletions. The initialization step

of the APA metaheuristic is completed by setting the promise tag of every arc of A equal

to +∞ .

The iterative core of the APA improvement method is then applied. Every APA iteration

involves the execution of three main steps: The first step involves the identification of the

minimum-cost, feasible, and promise-keeping SMD instance to be applied to the current

solution, denoted by app. To locate app, an inner loop must be executed: the minimum

cost SMD is extracted from the Fibonacci Heap. Then, the feasibility and the promise-

keeping checks are performed. The inner loop is executed in O(1), as all of its operations

require constant time. Regarding the total number of iterations of the inner-loop, it

depends both on the hardness of the constraints, and the status of the arc promises.

Experimental runs indicated that the first APA step of determining app does not

significantly contribute in the overall computational effort required by the proposed

algorithm. After the SMD instance (and thus the local search that it encodes) has been

identified, the second main algorithmic step is executed. This second step involves the

implementation of the app SMD instance to the current solution. The VRPSPD solution

is modified and the demand metrics presented in 3.3 are updated for the modified routes.

In addition, the appropriate promise tag is assigned to the eliminated arcs. Finally, the

third and most time-demanding APA step of updating the cost labels of the affected SMD

instances is executed. An analytic discussion on the total number of the necessary SMD

cost tag updates has been provided in 3.2. Note that each update is composed of three

operations: deletion of the SMD from the Fibonacci Heap (O(log m), where m denotes

the total number of SMD instances stored in the heap), calculation of the new SMD cost

label according to the modified solution status (O(1)), and finally reinsertion of the SMD

instance in the Fibonacci Heap (O(1)). To let the search intensify into promising solution

 18

space regions, when a move improves the best solution found (so far), the promise tags of

all arcs in A are reset to +∞ .The APA algorithm terminates when a certain time bound

has been reached, by returning the overall best VRPSPD solution encountered through

the search.

Preliminary executions of the above-presented APA scheme indicated the following

problematic behaviour: In the initial stages of the search significant solution

improvement takes place, and the diversification effect of the promises concept exhibits a

satisfactory behavior. However, as the search evolves, the algorithm reaches to a point

where the solution cost begins to monotonically increase, without being able to re-apply

cost improving local search moves. This behaviour is due to the fact that the algorithm

makes promises which are very hard to be fulfilled, causing the search to be excessively

diversified: the cardinality of solution arcs is significantly lower than the cardinality of

complete routes examined in our previous successful promise implementation

(Zachariadis and Kiranoudis, 2009b). Thus, the algorithm gives away over-optimistic

promises to the rather limited population of good-quality arcs. Subsequently, these arcs

become inadmissible, and the method is forced to generate more expensive arcs which

cause solution cost to increase. This cost increase makes the fulfilment of previously

made promises even harder, so that the search cannot return to lower cost levels.

To eliminate this behaviour, the promise tags of arcs are periodically re-initialized. In

specific, each time freq main APA iterations have been completed, the promise tags of all

arcs contained in A are reset to +∞ . As will be presented in Section 4, this

straightforward algorithmic addition lead to a satisfactory interplay between the

intensification and diversification of the search, and subsequently helped the APA

method to obtain high-quality solutions.

To visualize the effect of this promise tag re-initialization, we give Fig. 4, which

illustrates the candidate solution cost curves through the search, with (freq = 2 n, black

line) and without (freq = +∞ , grey line) the periodic re-initialization of the promise tags,

for two benchmark instances of 100 and 200 customers, respectively (see 4.1). As seen

from the provided cost curves, in the initial phase of the runs both algorithmic

configurations exhibit comparable performance. However, as the search evolves, we can

see that the application of the promise tag periodic initialization leads to a balanced

 19

algorithmic behavior, while on the contrary, when freq = +∞ , we observe an excessive

diversification effect which drives the algorithm towards extremely poor-quality solution

space regions.

freq = + inf freq = 2 n

Problem RC101

1000
1200
1400
1600
1800

2000
2200
2400
2600
2800

0 500 1000 1500 2000

iterations

co
st

Problem RC1_2_1

3000

3500

4000

4500

5000

5500

0 2000 4000 6000 8000 10000

iterations
co

st

4. Computational Results

The proposed metaheuristic algorithm has been coded in Visual C#, and executed on a

single core of a T5500 processor (1.66GHz). All VRPSPD benchmark instances and the

best solutions obtained can be found at http://users.ntua.gr/ezach/.

4.1 VRPSPD Benchmark Instances

To assess the performance of the APA metaheuristic, we solved the 18 large-scale

VRPSPD instances introduced by Tang-Montanè and Galvão (2006). These problems

involve from 100 up to 400 customers, and were originally proposed for the CVRP.

Tang-Montanè and Galvão (2006) modified these 18 problems for the VRPSPD, by

randomly generating the delivery and pick-up demands within the intervals used for the

generation of the delivery demands of the original CVRP instances (Solomon, 1987;

Gehring and Homberger, 1999). The arc costs are obtained by calculating the Euclidean

distances between vertex positions, so that the generated cost matrix is both symmetric

 20

and satisfies the triangular inequality. Table 1 summarizes the characteristics of the 18

Tang-Montanè and Galvão (2006) VRPSPD instances.

Table 1. Benchmark Instance Characteristics
Instance n Q D P
r101 100 200 1458 2339
r201 100 1000 1458 2262
c101 100 200 1810 3070
c201 100 700 1810 2910
rc101 100 200 1724 1912
rc201 100 1000 1724 2076
R1_2_1 200 200 3513 4406
R2_2_1 200 1000 3513 4358
C1_2_1 200 200 3530 5370
C2_2_1 200 700 3770 6010
RC1_2_1 200 200 3558 4473
RC2_2_1 200 1000 3558 4299
R1_4_1 400 200 7109 10433
R2_4_1 400 1000 7109 9571
C1_4_1 400 200 7190 12470
C2_4_1 400 700 7560 10050
RC1_4_1 400 200 7127 10065
RC2_4_1 400 1000 7127 10100
n: number of customers, Q: Vehicle Capacity, D: total delivery demand of all customers, P: total pick-up
demand of all customers.

4.2 Parameter Setting

To apply the APA method, we have to set the value of two algorithmic parameters: μ

which determines the maximum length of the bones considered by the VLBE operator,

and freq which, as explained in detail in 3.5, controls the APA-iteration period for re-

initializing the promise tags of arcs.

In terms of the bone length μ, we experimentally executed the APA methodology taking

the maximum number of customers in the bones exchanged from {4, 6, 8}. Although

values 6 and 8 produced solutions of slightly higher quality, we fixed μ at 4, because we

opted to keep the computational effort at minimum levels. As far as the freq parameter is

concerned, our intention was to avoid complex tuning experiments, so that a simple

tuning rule is derived. After performing preliminary experiments for solving the 18

VRPSPD benchmark instances, we observed that setting freq = 2 n resulted into a rather

stable and effective performance. Following this, the APA method was executed for

 21

solving all of the 18 VRPSPD test problems of 4.1 with the freq period fixed at 2 n

iterations.

4.3 Computational Results on the Benchmark Instances

The APA methodology was applied to all 18 VRPSPD benchmark instances. The

termination condition used was the completion of 60, 180, and 480 CPU seconds, for the

100-, 200- and 400-customer instances, respectively. The proposed improvement

metaheuristic was applied 10 times for solving each test problem. Each of these 10 runs

involved a different initial VRPSDPD solution, due to the stochastic setting of the f and g

parameters used in the construction heuristic.

Table 2 summarizes the results obtained through the 10 runs. The APA methodology

exhibited a rather stable performance, as the percent deviations between the best and the

average solution scores over the 10 runs varied from 0.00% to 1.77%, averaging at

0.50%. In particular, for three 100-customer instances and two 200-customer instances,

all 10 APA executions managed to obtain the same final solution value. Regarding the

average CPU time required for obtaining the final solutions, it was limited to 18.5

seconds for problem c101, up to 421.5 seconds for the 400-customer problem R1_4_1.

Table 3 compares the scores of the best solutions obtained by the APA method, against

the solution scores obtained by the tabu search of Tang-Montanè and Galvão (2006)

(TG), the hybrid GLS - TS approach of Zachariadis et al. (2009a), and the evolutionary

VLBR method of Zachariadis et al. (2009b). To our knowledge, the aforementioned

approaches are the only previously published methodologies applied to the examined set

of large-scale VRPSPD instances. From the comparative results, we can see that APA

improved ten previous best-known solution scores, matched the best solution scores for

seven test problems, while for problem C2_2_1, it produced a slightly worse solution

value. The average best solution improvement is 0.16%, while the greatest solution

improvement was observed for problem RC1_4_1 (1.30%) which involves 400 customers

and approximately eight customers per route. In general, the APA methodology proved to

be very effective for problems with low n / K ratios. In our opinion, this behavior is

attributed to the fact that the VLBE operator is able to make drastic and effective changes

in the arrangement of customers into routes. This effect is strengthened by the rather

 22

powerful diversification role of the promises mechanism when applied to solution arcs.

Regarding the size of the fleet required by the presented methodologies, we see that the

APA solutions require one less vehicle for instances R1_4_1, and RC1_4_1, while for the

other sixteen problems, it requires the same fleet size. In terms of the APA computational

times for obtaining the best solutions, they appear to be slightly higher than the ones

required by the VLBR methodology. However, we believe that the solution quality

improvement compensates for the extra time required by the APA approach.

Furthermore, some testing with problems of larger size (n > 400) indicated that APA was

significantly faster than both the VLBR and GTS methods. This is because the per-

iteration complexity of the two former methods is O(n2), whereas the per-iteration

complexity of the APA method (which is mainly determined by the execution of the

update rules of 3.2, and obviously depends on the move type performed) exhibits

linearithmic (O(n logn)) scalability with the instance size (for fixed μ values).

Table 2. Summary of the APA results on the benchmark instances
 AVG BST
Instance z k t z k t %gap
r101 1009.95 12.0 28.7 1009.95 12 24.6 0.00
r201 666.20 3.0 31.4 666.20 3 22.9 0.00
c101 1222.43 16.0 18.5 1220.18 16 19.2 0.18
c201 662.07 5.0 23.5 662.07 5 18.7 0.00
rc101 1061.88 10.0 23.8 1059.32 10 25.2 0.24
rc201 673.08 3.0 21.2 672.92 3 19.0 0.02
R1_2_1 3378.52 23.0 84.6 3375.19 23 73.5 0.10
R2_2_1 1665.58 5.0 72.7 1665.58 5 67.4 0.00
C1_2_1 3652.20 28.0 57.0 3641.89 28 79.0 0.28
C2_2_1 1731.91 9.0 67.3 1726.73 9 74.8 0.30
RC1_2_1 3326.16 23.0 83.4 3316.94 23 75.7 0.28
RC2_2_1 1560.00 5.0 74.4 1560.00 5 66.9 0.00
R1_4_1 9813.42 53.4 421.5 9668.18 53 395.6 1.48
R2_4_1 3603.54 10.0 352.0 3560.73 10 306.0 1.19
C1_4_1 11325.78 63.0 384.6 11125.14 63 408.5 1.77
C2_4_1 3582.92 15.0 341.1 3549.20 15 367.7 0.94
RC1_4_1 9621.65 51.2 412.7 9520.06 51 377.0 1.06
RC2_4_1 3453.24 11.0 264.7 3414.90 11 289.5 1.11

average 0.50
The AVG group of columns provides average values over all 10 APA runs. The BST group of columns
provides the values associated with the run which obtained the highest quality solution. z: cost of the final
VRPSPD solution. k: number of vehicles. t: time elapsed when the best solution was generated. %gap:
percent gap between the AVG and the BST solution scores (= 100(zavg - zbst) / zavg).

 23

Table 3. Comparison of the APA method against previous VRPSPD approaches
 TG GTS VLBR APA
Instance z k z k z k z k %gap
r101 1042.62 12 1019.48 12 1009.95 12 1009.95 12 0.00
r201 671.03 3 666.20 3 666.20 3 666.20 3 0.00
c101 1259.79 17 1220.99 16 1220.99 16 1220.18 16 0.07
c201 666.01 5 662.07 5 662.07 5 662.07 5 0.00
rc101 1094.15 11 1059.32 10 1059.32 10 1059.32 10 0.00
rc201 674.46 3 672.92 3 672.92 3 672.92 3 0.00
R1_2_1 3447.20 23 3393.31 23 3376.30 23 3375.19 23 0.03
R2_2_1 1690.67 5 1673.65 5 1665.58 5 1665.58 5 0.00
C1_2_1 3792.62 29 3652.76 28 3643.82 28 3641.89 28 0.05
C2_2_1 1767.58 9 1735.68 9 1726.59 9 1726.73 9 -0.01
RC1_2_1 3427.19 24 3341.25 23 3323.56 23 3316.94 23 0.20
RC2_2_1 1645.94 5 1562.34 5 1560.00 5 1560.00 5 0.00
R1_4_1 10027.81 54 9758.77 54 9691.60 54 9668.18 53 0.24
R2_4_1 3695.26 10 3606.72 10 3572.38 10 3560.73 10 0.33
C1_4_1 11676.27 65 11207.37 63 11179.36 63 11125.14 63 0.48
C2_4_1 3732.00 15 3630.72 15 3549.27 15 3549.20 15 0.00
RC1_4_1 9883.31 52 9697.65 52 9645.27 52 9520.06 51 1.30
RC2_4_1 3603.53 11 3498.30 11 3423.62 11 3414.90 11 0.25

average 0.16
average
CPU time

 2.13 1.95 1.60 2.51
T&G: the algorithm of Tang-Montanè and Galvão (2006) – (Athlon 2.0 GHz, Pascal), GTS: the guided tabu search of
Zachariadis et al. (2009a) – (Pentium IV 2.4 GHz, Visual C#), VLBR: the evolutionary algorithm of Zachariadis et al.
(2009b)– (T5500 1.66 GHz, Visual C#), APA: the proposed metaheuristic algorithm– (T5500 1.66 GHz, Visual C#), z:
the scores of the best solutions obtained, k: number of vehicles, %gap: the percent gap between the APA and the
previous best solution scores (relatively to the previously best scores). Bold values represent higher quality solutions
Bold and italic characters represent new best solutions.

5. Conclusions

In the present paper we have presented an effective metaheuristic algorithm for the

Vehicle Routing Problem with Simultaneous Deliveries and Pick-ups (VRPSPD) which

is an important routing problem variant with numerous applications in the context of

reverse logistics. The proposed methodology is a local search approach which can

efficiently examine rich solution neighborhoods by statically encoding tentative moves

into special data structures. The solution space exploration is coordinated by the use of

the promise concept which was originally introduced for the Vehicle Routing Problem

with Backhauls (VRPB) and was designed to consider complete routes as the solution

attributes under examination. Contrary to this aforementioned design, the promise

mechanism, proposed in the present study, exploits more basic attributes, namely solution

arcs. Our algorithmic design was tested on a set of 18 large-scale VRPSPD benchmark

instances derived from the literature. It produced fine results, improving several

previously best-known solutions.

 24

REFERENCES

Ai, T.J., & Kachitvichyanukul, V. (2009). A particle swarm optimization for the vehicle

routing problem with simultaneous pickup and delivery. Computers & Operations

Research 36, 1693–1702.

Berbeglia, G., Cordeau, J.-F., Gribkovskaia, I., & Laporte, G. (2007). Static pickup and

delivery problems: a classification scheme and survey. TOP, 15, 1–31.

Bianchessi, N., & Righini, G. (2007). Heuristic algorithms for the vehicle routing

problem with simultaneous pick-up and delivery. Computers & Operations Reasearch

34 (2), 578-594.

Chen, J. F., & Wu, T. H. (2006). Vehicle routing problem with simultaneous deliveries

and pickups. Journal of the Operational Research Society, 57, 579–587.

Clarke, G., & Wright, J.W. (1964). Scheduling of vehicles from a central depot to a

number of delivery points. Operations Research 12, 568–581.

Crispim, J., & Brandão, J. (2005). Metaheuristics applied to mixed and simultaneous

extensions of vehicle routing problems with backhauls. Journal of the Operational

Research Society, 56, 1296–1302.

Dethloff, J. (2001). Vehicle routing and reverse logistics: The vehicle routing problem

with simultaneous delivery and pick-up. OR Spektrum, 23, 79–96.

Fredman, M., & Tarjan, R. (1987). Fibonacci heaps and their uses in improved network

optimization algorithms. Journal of the ACM, 34, 596-615

Gajpal, Y., & Abad, P. (2009). An ant colony system (ACS) for vehicle routing problem

with simultaneous delivery and pickup. Computers & Operations Research,

doi:10.1016/j.cor.2009.02.017.

Gehring, H., & Homberger, J. (1999). A parallel hybrid evolutionary metaheuristic for

the vehicle routing problem with time windows. In K. Miettinen, M. Mäkelä, & J.

Toivanen (Eds.). Proceedings of EUROGEN99 (Vol. A2(S), pp. 57–64). Berlin:

Springer.

Goetschalckx, M., & Jacobs-Blecha, C. (1989). The vehicle routing problem with

Backhauls. European Journal of Operational Research, 42, 39-51.

Min, H. (1989). The multiple vehicle routing problem with simultaneousdelivery and

pick-up points. Transportation Research Part A, 5, 377–386.

 25

Nagy, G., & Salhi, S. (2005). Heuristic algorithms for single and multiple depot vehicle

routing problems with pickups and deliveries. European Journal of Operational

Research, 162(1), 126–141.

Paessens, H. (1988). The savings algorithm for the vehicle routing problem. European

Journal of Operational Research, 34(3), 336–344.

Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling problems

with time window constraints. Operations Research, 35, 254–265.

Tang Montanè , F. A., & Galvão, R. D. (2006). A tabu search algorithm for the vehicle

routing problem with simultaneous pick-up and delivery service. Computers and

Operations Research, 33(3), 595–619.

Toth, P., & Vigo, D. (2002). VRP with backhauls. In P. Toth & D. Vigo (Eds.), The

vehicle routing problem (pp. 195–224). Philadelphia: Society for Industrial and

Applied Mathematics.

Wassan, N.A., Wassan, A.H., & Nagy, G. (2007). A reactive tabu search algorithm for

the vehicle routing problem with simultaneous pickups and deliveries. Journal of

Combinatorial Optimization 15, 368-386.

Zachariadis, E.E., & Kiranoudis, C.T. (2009a). An Open Vehicle Routing Problem

metaheuristic for examining wide solution neighborhoods. Computers & Operations

Research, (to appear).

Zachariadis, E.E., & Kiranoudis, C.T. (2009b). An innovative metaheuristic solution

approach for the Vehicle Routing Problem with Backhauls. Technical Report.

National Technical University of Athens. (http://users.ntua.gr/ezach/).

Zachariadis, E.E., Tarantilis, C.D., & Kiranoudis, C.T. (2009a). A hybrid metaheuristic

algorithm for the vehicle routing problem with simultaneous delivery and pick- up

service. Expert Systems with Applications 36 (2), 1070–1081.

Zachariadis, E.E., Tarantilis, C.D., & Kiranoudis, C.T. (2009b). An adaptive memory

methodology for the vehicle routing problem with simultaneous pick-ups and

deliveries. European Journal of Operational Research, doi:

10.1016/j.ejor.2009.05.015.

