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Abstract 

This article proposes a local search metaheuristic solution approach for the Vehicle 

Routing Problem with Simultaneous Pick-ups and Deliveries (VRPSPD), which models 

numerous practical transportation operations in the context of reverse logistics. The 

proposed algorithm is capable of exploring wide solution neighborhoods by statically 

encoding moves into special data structures. To avoid cycling and induce diversification, 

the overall search is coordinated by the use of the promises concept which is applied to 

solution arcs. In terms of the challenging capacity constraints imposed by the VRPSPD 

model, we present a constant-time feasibility checking procedure for the employed local 

search operators. The presented metaheuristic development was tested on eighteen large-

scale VRPSPD benchmark instances derived from the literature. It proved to be both 

robust and effective, improving most of the previously best-known solutions of the 

examined test problems. 

keywords: vehicle routing, simultaneous pick-ups and deliveries, metaheuristics, 

computational complexity 

 

1. Introduction 

In the present paper, we examine a practical Vehicle Routing Problem (VRP) variant 

which considers customers to simultaneously require both delivery and pick-up services. 

The examined transportation problem is referred to as the Vehicle Routing Problem with 

Simultaneous Pick-ups and Deliveries (VRPSPD), and has attracted research interest 

because it models a wide variety of business operations involving bi-directional flow of 

goods. 
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In graph theory terms, VRPSPD is defined on a complete graph G = (V, A), where V = 

{v0, v1, …, vn} is the vertex set, and A is the arc set. Vertex v0 corresponds to the depot 

which acts as the central station for a fleet of homogeneous vehicles. Each of these 

vehicles has a maximum carrying load equal to Q. Vertices of the set V - {v0} = {v1, v2, 

…, vn} represent the customer population. With each customer vertex are associated two 

fixed, product demands: the pick-up demand pi, and the delivery demand di, whereas with 

each arc (vi, vj)∈A is associated a non-negative cost cij reflecting the time, the distance or 

the actual monetary cost required for traveling from vi to vj. The VRPSPD aims at 

generating the minimum cost set of Hamiltonian circuits (routes) so that customer 

delivery and pick-up demand is totally satisfied. The produced set of routes must respect 

the following requirements: (a) each route originates from, and terminates to the central 

depot v0, (b) each customer vi (i = 1,…, n) is visited once by exactly one route, (c) at no 

point of any route, the transported quantity of goods exceeds the maximum carrying load 

Q of the vehicles. 

The VRPSPD model has been in the focus of research interest mainly because of its 

commercial importance, and theoretical challenge. In terms of the operational 

importance, VRPSPD finds applicability in numerous reverse logistics systems: retailers 

are able to negotiate the return excess unsold products back to the manufacturers with 

beneficial effects for both parts. Furthermore, extended responsibilities have been 

assigned to producers regarding the entire life-cycle of their products. Used products like 

industrial equipment, hardware devices etc. are also sent back to the manufacturer 

facilities to be disassembled into valuable components. Another example of reverse 

product flows is due to recent pro-environmental legislation which forces companies to 

collect various used products such as lubricants, batteries, tires, fluorescent lights, etc. in 

order to be appropriately processed. From the theoretical perspective, VRPSPD 

generalizes the standard Capacitated VRP (CVRP) version. In specific, any CVRP 

instance can be interpreted as a VRPSPD instance for which either all delivery, or all 

pick-up demands, respectively, are equal to zero. As a CVRP generalization, VRPSPD is 

a NP-hard combinatorial optimization problem. Thus, to efficiently deal with large-scale 

VRPSPD instances which arise in practical operations, one’s interest has to be focused in 



 3

heuristic and metaheuristic approaches, which can produce high quality solutions within 

limited computational times. 

The purpose of this paper is to propose a new metaheuristic methodology for the 

VRPSPD model. The proposed method is a local-search based approach which examines 

rich solution neighborhoods. To examine these rich neighborhood structures efficiently, 

we make use of the Static Move Descriptor entities which statically encode tentative local 

search moves (Zachariadis and Kiranoudis, 2009a). To effectively explore the solution 

space, the search is controlled by using the promise concept initially introduced for the 

VRP with Backhauls (Zachariadis and Kiranoudis, 2009b). In the present study, instead 

of complete routes, we consider arcs to be the solution attributes examined by the 

promises strategy. Moreover, we present an efficient scheme for examining the feasibility 

of the applied local search operators in terms of the challenging VRPSPD capacity 

constraints. The proposed metaheuristic was tested on well-known VRPSPD benchmark 

instances derived from the literature. It produced satisfactory results and managed to 

improve several best-known solutions. 

The remainder of the present paper is organized as follows: Section 2 provides a literature 

review on the VRPSPD, followed by Section 3 which presents the proposed solution 

approach. In Section 4, the computational results are provided, followed by some 

concluding remarks in Section 5. 

 

2. Literature Review 

Reverse logistics are increasingly important, as numerous practical distribution 

operations require that goods are bi-directionally transported. In this context, several 

routing problem variants which consider customers to require both delivery and pick-up 

services have been examined. Three of these widely-studied routing models (Toth and 

Vigo 2002; Berbeglia et al. 2007) are the VRP with Backhauls (VRPB), the VRP with 

mixed pick-ups and deliveries (VRPMPD), and the VRP with simultaneous pick-ups and 

deliveries (VRPSPD). 

The VRPB divides customers into two groups, namely the linehauls and backhauls. 

Vehicles are assumed to originate from the depot to satisfy the delivery demand of 

linehauls. After the last linehaul of each route is serviced, vehicles proceed to visit the 
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backhaul customers to collect their pick-up demand, before terminating their trips at the 

central depot. Under the VRPB model, the vehicle load monotonically decreases in the 

linehaul phase (until it is exhausted after the last linehaul is serviced), and then 

monotonically increases, as goods are collected from backhaul locations. This precedence 

constraint which forces linehauls before backhauls was imposed in the VRPB model 

because, as Goetschalckx and Jacobs-Blecha (1989) state, “the vehicles are rear-loaded 

and rearrangement of the loads on the trucks at the delivery points is not deemed 

feasible”. 

On the contrary, VRPMPD drops the aforementioned precedence constraint by letting 

linehauls and backhauls occur in any order during the vehicle trips. This causes the 

vehicle load to fluctuate along its trip, so that capacity constraints are harder to tackle. 

The VRPSPD generalizes the VRPMPD model. It considers customers to simultaneously 

require both delivery and pick-up services, so that the customers are not divided into 

separate linehaul and backhaul groups. Every, VRPMPD instance can be seen as a 

VRPSPD one, for which either the delivery di or pick-up pi demand of every customer vi 

is equal to zero. In the following, we provide a detailed literature review on solution 

methodologies 

The first work which dealt with a practical VRPSPD application is due to Min (1989). It 

involved 22 customers and 2 vehicles. The solution was obtained by clustering customers 

into disjoint sets, and then for each set, solving the Traveling Salesman Problem (TSP). 

The capacity constraints are satisfied by penalizing infeasible solution arcs. Dethloff 

(2001) has proposed and compared a series of construction heuristics which employ 

several insertion criteria. The algorithm of Nagy and Salhi (2005) first solves the 

corresponding VRP by handling both linehauls and backhauls in an integrated manner. 

Then, to eliminate capacity infeasibilities, the authors apply some VRP heuristic routines 

which are modified to tackle the VRPSPD. More recently, several Tabu Search (TS) 

frameworks have been proposed for the VRPSPD: Crispim and Brandão (2005) have 

implemented a hybridization of TS and Variable Neighborhood Descent (VND), while 

the article of Chen and Wu (2006) propose a hybrid scheme incorporating the TS and the 

record-to-record travel strategies. A pure TS implementation was proposed by Tang-

Montanè and Galvão (2006). To induce diversification, the authors make use of an arc 
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frequency penalization scheme. Wassan et al. (2007) have designed a TS method which 

reacts to repetitions in order to guide the conducted search. Biancessi and Righini (2007) 

evaluate and compare the performance of several constructive heuristics, local search 

methods and TS implementations for the VRPSPD. Another TS-based algorithm has been 

proposed by Zachariadis et al. (2009a). In specific, the proposed approach explores the 

solution space by hybridizing the TS and Guided Local Search (GLS) strategies. The 

most recent VRPSPD metaheuristic methodologies have been published by Gajpal and 

Abad (2009), Ai and Kachitvichyanukul (2009), and Zachariadis et al. (2009b). The 

former article (Gajpal and Abad, 2009) presents an Ant Colony Optimization approach, 

whereas the second study (Ai and Kachitvichyanukul, 2009) proposes a Particle Swarm 

Optimization VRPSPD solution approach. Finally, the methodology of Zachariadis et al. 

(2009b) belongs to the Adaptive Memory Programming approaches. In specific, routes 

included in high-quality VRPSPD solutions are stored in the Adaptive Memory from 

which customer sequences are periodically extracted to form new initial solutions for 

guiding the search. The risk of an overall elitistic behavior is eliminated by the use of an 

additional memory component which drives the algorithm to exploit diverse routing 

information stored in the Adaptive Memory. 

 

3. The Proposed Metaheuristic 

The proposed VRPSPD metaheuristic is a local search algorithm which makes use of two 

algorithmic concepts, namely the Static Move Descriptor (SMD) strategy for efficiently 

exploring solution neighborhoods, and the promises concept for avoiding search cycling 

and inducing diversification. The selection of these algorithmic ingredients was 

motivated by their successful application to both the Open VRP (Zachariadis and 

Kiranoudis 2009a) and VRPB (Zachariadis and Kiranoudis 2009b) models. The SMD 

strategy, which reduces the computational complexity required for exploring solution 

neighborhoods, was used for both the OVRP and VRPB, whereas the promises concept 

was firstly introduced for the VRPB (Zachariadis and Kiranoudis, 2009b). As will be 

later explained, in this research we aimed at examining the behavior of promises for more 

basic solution attributes. In specific, instead of using complete routes as the solution 

attributes considered by the promises concept, we used simple solution arcs. The 
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aforementioned selection lead to a much effective VRPSPD solution approach, as it 

managed to produce high-quality solutions for several large-scale test problems.  

In the present Section, we firstly present the neighborhood structures examined and their 

SMD representation, followed by the description of the proposed promises 

implementation. The overall metaheuristic structure is then provided, together with the 

way in which feasibility investigation for the employed local search operators is 

performed in constant time. 

 

3.1. The Applied Local Search Operators 

As in the case of our previous studies for the OVRP and the VRPB models, we examine 

two solution neighborhood structures. The first one is defined by every tentative move 

exchanging the positions of customer sequences (thereafter to be referred to as bones) 

which may contain up to μ customers, and is denoted by Variable Length Bone Exchange 

operator (VLBE). The second neighborhood considered is the well known 2-opt operator 

defined by every possible replacement of two solution arcs. The aforementioned 

neighborhood structures (VLBE and 2-opt) and their SMD representation have been 

described in detail for the OVRP (Zachariadis and Kiranoudis 2009a). For the 

completeness of the present paper, we provide a brief presentation of the applied local 

search operators. 

 

3.1.1. The VLBE operator and its SMD representation 

The VLBE operator exchanges the positions of any pair of bones each of them containing 

from 0 to μ customers. Obviously, the cardinality of the VLBE neighborhood is O(μ2 n2), 

as in total there are O(n2) 2-combinations of vertices, and for each such combination, 

there are O(μ2) tentative moves, corresponding to the 2-combinations of the lengths of the 

exchanged bones. 

To encode the VLBE operator using the SMD strategy, we use the VLBE SMD instances 

each of them corresponding to a particular VLBE tentative move. With each VLBE SMD 

instance are associated two node values n1 and n2, and two bone lengths n1_len and 

n2_len. The move encoded by a VLBE SMD instance with n1 = A, n2= B, n1_len = a, 

and n2_len = b, involves exchanging the positions of the bones originating after nodes A 
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and B, and containing a and b customer vertices, respectively, as seen in Figure 1. To 

exhaustively map the VLBE neighborhood for a problem of n customers and K vehicles, 

((n+K)!/(2!(n+K−2)!))·((μ+1)2-1) VLBE SMD instances are required in total. The first 

term corresponds to the 2-combinations without repetition of the n customers and K depot 

vertex occurrences, while the second term corresponds to the 2-combinations with 

repetition of the two bone lengths which vary from 0 to μ (no SMD instance is generated 

for both bone lengths equal to 0). 

 

Depot A Depot

Depot B Depot

a vertices

b vertices

Depot A Depot

Depot B Depot

b vertices

a vertices

... ...

... ...

... ...

... ...

Arcs Deleted Arcs Created

Application of
VLBE SMD

n1 = A  n1_len = a
n2 = B  n2_len = b

Route RTA

Route RTB

Route RTA’

Route RTB’

 
 

Fig 1. The VLBE local search operator 

 

3.2.2. The 2-opt operator and its SMD representation 

The 2-opt operator removes two solution arcs and replaces them with a new arc pair. 

When the deleted arc pair belongs to the same route, the 2-opt move implements the 

following solution modification: the deleted arc pair is replaced by a new one, and the 

path lying between these new arcs is reversed. For an inter-route 2-opt move, the routes 

involved are divided into their initial and terminating segments, respectively. The initial 
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segment of the first route is connected to the terminating segment of the second one. 

Analogously, the initial segment of the second route is connected to the terminating 

segment of the first one. The cardinality of the 2-opt neighborhood is O(n2), as one 

particular move is defined per vertex pair. 

To encode the 2-opt moves instances into SMD instances, we generate one 2-opt SMD 

instance per vertex pair, so that in total ((n + K)!/(2!(n + K − 2)!)) 2-opt SMD instances 

are required. Each of these instances contains two node values n1 and n2. The move 

represented by a 2-opt SMD instance with n1 = A and n2= B depends on whether A and B 

belong to the same route. If A and B belong to the same route (and without loss of 

generality A precedes B in the route vector), the path originating after A and terminating 

at B is reversed, and two new arcs are introduced to form the modified route (Fig. 2). If A 

and B belong to different routes, the route segment initiating from the depot and 

terminating at A is connected to the route segment originating after B and terminating at 

the depot. Similarly, the route path beginning at v0 and terminating at B is linked to the 

route segment initiating after A and terminating at the depot, so that the modified route 

pair is generated (Fig. 3). 

 

Depot A Depot

Arcs Deleted Arcs Created

Application of
2-opt SMD

n1 = A  
n2 = B

K L M N B P

Depot A DepotB N M L K P
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Route RTA’

 
 

Fig 2. Intra-Route 2-opt local search operator 
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Fig 3. Inter-Route 2-opt local search operator 

 

3.2. The cost of the local search moves 

Apart from encoding a particular tentative move, both the VLBE and 2-opt SMD 

instances introduced in 3.1 contain a cost tag which is equal to the actual cost required for 

implementing that move to the candidate solution. When a move is applied to the 

solution, only a subset of the solution attributes is modified, so that the cost tags of only 

the SMD instances associated to this modified subset have to be updated according to the 

new solution structure. In this section, we briefly provide the SMD update cost rules for 

the application of VLBE and 2-opt moves, respectively. Note that these rules are reported 

in more detail in our previous work (Zachariadis and Kiranoudis 2009a) for the OVRP. 

To improve clarity of exposition, for every VRPSPD solution, the following notation is 

introduced: 

 

pred(v): denotes the bone which contains up to μ vertices and terminates before vertex v. 

bone(v, a): represents the bone that contains a vertices and originates after vertex v. 

succ(v, a): denotes the last vertex contained in bone(v, a). 

part(v, y): denotes the bone originating from the successor of v and ending at vertex y. 
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init(v): denotes the set of predecessor vertices of v in its route. 

fin(v): denotes the set of successor vertices of v in its route. 

z(v): denotes the total number of customers assigned to the route that contains vertex v. 

z(v, y): denotes the total number of vertices contained in the bone originating at the 

successor of v and ending at vertex y. 

 

3.2.1. Applying a VLBE move 

When a VLBE SMD instance with n1 = A, n2 = B, n1_len = a, and n2_len = b is applied 

to a candidate solution the cost tags of the following SMD instances have to be updated: 

• VLBE SMD instances with either node value (n1 or n2) included in {{A},{B}, 

{succ(A, a)},{succ(B, b)}}, corresponding to O(μ2 n) necessary updates. 

• VLBE SMD instances with either node value in {pred(A), pred(B)} and relevant 

bone length pointing into the exchanged bones, corresponding to O(μ3 n) updates. 

• VLBE SMD instances with either node value in {bone(A, a-1), bone (B, b-1)} and 

relevant bone length reaching after the bones exchanged, corresponding to O(μ3 n) 

updates. 

• 2-opt SMD instances with either node value in {{A},{B},{succ(A, a)},{succ(B, b)}}, 

corresponding to O(n) necessary updates. 

• 2-opt SMD instances with their one node in {bone(A, a-1), bone (B, b-1)} and their 

other node contained in {init(A), init(B), fin(succ(A, a)), fin(succ(B, b))}, 

corresponding to O(μ (z(A) + z(B))) updates. 

 

3.2.2. Applying a 2-opt move 

When a 2-opt SMD instance with n1 = A and n2 = B is applied to a candidate solution, the 

necessary cost tag updates depend on whether the encoded move is applied within a 

single route, or it is an inter-route move. 

If the 2-opt SMD encodes an intra-route move (and assuming that A precedes B in the 

route vector), the cost tags of the following SMD instances must be updated: 

• VLBE SMD instances with either node value contained in {{A}, part(A,B)}, 

corresponding to O(μ2 z(A, B)) necessary updates. 
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• VLBE SMD instances with either node value in {pred(A)} and relevant bone length 

that refer into the reversed route segment, corresponding to O(μ3 n) updates. 

• 2-opt SMD instances with either node value in {{A}, part(A, B)}, corresponding to 

O(n z(A, B)) updates. 

If the 2-opt SMD encodes an inter-route move the following cost tag re-evaluations must 

be performed: 

• VLBE SMD instances with either node value contained in {{A},{B}}, corresponding 

to O(μ2 n) necessary updates. 

• VLBE SMD instances with either node value in {pred(A), pred(B)} and relevant 

bone lengths that refer to the route segments lying after nodes A and B, 

corresponding to O(μ3 n) updates. 

• 2-opt instances with either node value in {{A}, {B}}, corresponding to O(n) updates. 

• 2-opt instances with their one node in {init(A), init(B)} and their other node in 

{fin(A), fin(B)}, corresponding to O(z(A) z(B)) updates. 

 

3.3 Examining the SMD instance feasibility 

As earlier stated, the VRPSPD model considers that the load of vehicles fluctuates along 

their routes. This problem characteristic makes feasibility investigation of tentative 

moves much more challenging compared to the standard CVRP version, for which 

feasibility investigation can be straightforwardly performed in constant time. 

To examine the feasibility status of the SMD instances according to the capacity 

requirements of the VRPSPD in O(1), we introduce several load metrics which were also 

used in the work of Zachariadis et al. (2009b) for examining feasibility of simple 1-0 and 

1-1 exchanges and 2-opt moves. 

Assume x to be the position of the vector of route RT which visits zRT customer locations. 

Apparently, x varies from 0 to zRT. The depot vertex is located at x = 0, whereas, at x = 

zRT, lies the last customer visited by route RT. In addition, let pRT(x) and dRT(x) denote the 

pi and di demand, respectively, of vertex vi which is located at position x of the RT route 

vector. With every VRPSPD route RT, the following demand metrics are associated: 

• SPBRT (x) = Σ(q = 0, 1,.., x-1) pRT (q), x = 0, 1,…, zRT 

(sum of the pick-up demand of route RT vertices lying before position x). 
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• SDART (x) = Σ(q = x+1, x+2,.., ZRT) dRT (q), x = 0, 1,…, zRT 

(sum of the delivery demand of route RT vertices lying after position x). 

• LRT (x)= SPBRT (x) + pRT (x) + SDART (x), x = 0, 1,…, zRT 

(load of the vehicle, when travelling along the arc linking RT route positions x and x + 1). 

• MAX_LBRT (x) = max(q = 0, 1,.., x) {LRT (q)}, x = 0, 1,…, zRT  

(peak load of the RT path which originates from the depot, and terminates at position x + 

1 when x < ZRT, or at the depot when x = ZRT). 

• MAX_LART (x) = max (q = x, x+1,.., ZRT ) {LRT (q)}, x = 0, 1,…, zRT 

(peak load of the RT path which originates at position x and terminates at the depot). 

• MAXIM_LART (x, y) = max (q = x, x+1,.., x+y) {LRT (q)}, x = 0, 1,…, zRT, y = 0, 1,…, zRT - x 

(peak load of the RT path which originates at position x and terminates at position x + y + 

1 when x + y < zRT, or at the depot when x + y = zRT). 

• MINIM_LART (x, y) = min(q = x, x+1,.., x+y) {LRT (q)}, x = 0, 1,…, zRT,   y = 0, 1,…, zRT - x 

(lowest load of the RT path which originates at position x and terminates at point x + y + 

1 when x + y < zRT, or at the depot when x + y = zRT). 

The aforementioned demand metrics of any route RT, are updated whenever a local 

search move affects RT. The computational complexity required for their evaluation is 

O(zRT
2), where zRT denotes the number of customers visited by RT after the local search 

move has been implemented. 

In the following, let pst(v) denote the position of vertex v in its route vector. Obviously, if 

v is serviced by route RT, pst(v) varies from 0 to zRT. 

 

3.3.1. Feasibility Investigation for the VLBE SMD instances 

To examine the feasibility status of a VLBE SMD instance with n1 = A, n2 = B, n1_len = 

a, and n2_len = b, the following checks are performed in constant time.  

 

3.3.1.1. Intra-Route VLBE SMD instance feasibility 

If both A and B belong to the same route RT the following preconditions must hold: 

pst(A) + a ≤ zRT, pst(B) + b ≤ zRT. To examine the feasibility, the following two cases 

must be considered. 
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Case A. Both bone lengths are greater than zero (a ≠ 0 and b ≠ 0): 

Without loss of generality, assume that A precedes B in the RT route vector. To test the 

feasibility of the VLBE SMD instance, the following precondition must be satisfied: 

pst(B) ≥ pst(A) + a. The VLBE SMD instance is infeasible if one of the following holds: 

• MAXIM_LART(pst(A)+a, pst(B)-pst(A)-a) + [SDART(pst(A))-SDART(pst(A)+a)] - 

[SPBRT(pst(A)+a)+pRT(pst(A)+a)-SPBRT(pst(A)+1)] - [SDART(pst(B))-SDART(pst(B)+b)] + 

[SPBRT(pst(B)+b)+pRT(pst(B)+b)-SPBRT(pst(B)+1)] > Q. 

• MAXIM_LART(pst(A)+1, a-2) - [SDART(pst(B))-SDART(pst(B)+b)] - [SDART(pst(A)+a)-

SDART(pst(B))] + [SPBRT(pst(B)+b)+pRT(pst(B)+b)-SPBRT(pst(B)+1)] + [SPBRT(pst(B)+1)-

SPBRT(pst(A)+a+1)] > Q (applicable when a  ≥ 2). 

• MAXIM_LART(pst(B)+1, b-2) - [SPBRT(pst(A)+a)+pRT(pst(A)+a)-SPBRT(pst(A)+1)] - 

[SPBRT(pst(B)+1)-SPBRT(pst(A)+a+1)] + [SDART(pst(A))-SDART(pst(A)+a)] + 

[SDART(pst(A)+a)-SDART(pst(B))] > Q (applicable when b  ≥ 2). 

 

Case B. Only one bone length is equal to zero (either a = 0 or b ≠ 0): 

If a = 0, set IP = A, N = B and len = b. Otherwise, if b = 0, set IP = B, N = A and len = a. 

Two subcases may arise depending on whether the relocated bone moves forward or 

backward in the route involved: 

Subcase B1. The relocated bone moves forward (pst(N) < pst(IP)) 

To test the feasibility of the VLBE SMD instance, the following precondition must be 

satisfied: pst(IP) > pst(N) + len. The VLBE SMD instance is infeasible if one of the 

following holds: 

• MAXIM_LART(pst(N)+len+1, pst(IP)-len-pst(N)-1) + [SDART(pst(N))-

SDART(pst(N)+len)] - [SPBRT(pst(N)+len)+pRT(pst(N)+len)-SPBRT(pst(N)+1)] > Q. 

• MAXIM_LART(pst(N)+1, len-2) + [SPBRT(pst(IP)) + pRT(pst(IP)) - SPBRT(pst(N)+len+1)] 

- [SDART(pst(N)+len)-SDART(pst(IP))] > Q (applicable when len  ≥ 2). 

Subcase B2. The relocated bone moves backward (pst(N) > pst(IP)) 

The VLBE SMD instance violates the capacity constraints if one of the following holds: 

• MAXIM_LART(pst(IP), pst(N)-1-pst(IP)) + [SPBRT(pst(N)+len)+pRT(pst(N)+len)-

SPBRT(pst(N)+1)] - [SDART(pst(N))-SDART(pst(N)+len)] > Q. 

• MAXIM_LART(pst(N)+1, len-2) + [SDART(pst(IP))-SDART(pst(N))] - 

[SPBRT(pst(N))+pRT(pst(N))-SPBRT(pst(IP)+1)] > Q (applicable when len  ≥ 2). 
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3.3.1.2. Inter-Route VLBE SMD instance feasibility 

If vertices A and B belong to two different routes RTA and RTB, respectively, the 

following preconditions must hold: pst(A) + a ≤ zRTA, pst(B) + b ≤ zRTB. Regarding the 

capacity constraints, the following two cases must be considered. 

 

Case A. Both bone lengths are greater than zero (a ≠ 0 and b ≠ 0): 

The VLBE SMD instance violates the capacity constraints, if one of the following holds: 

• MAX_LBRTA(pst(A)) - [SDARTA(pst(A))-SDARTA(pst(A)+a)] + [SDARTB(pst(B)) - 

SDARTB(pst(B)+b)] > Q. 

• MAXIM_LARTB(pst(B)+1, b-2) - SPBRTB(pst(B)+1) +  SPBRTA(pst(A)+1) - 

SDARTB(pst(B)+b) + SDARTA(pst(A)+a) > Q (applicable when b  ≥ 2). 

• MAX_LARTA(pst(A)+a) - [SPBRTA(pst(A)+a)+pRTA(pst(A)+a)-SPBRTA(pst(A)+1)] + 

[SPBRTB(pst(B)+b)+pRTB(pst(B)+b)-SPBRTB(pst(B)+1)] > Q. 

• MAX_LBRTB(pst(B)) - [SDARTB(pst(B))-SDARTB(pst(B)+b)] + [SDARTA(pst(A))-

SDARTA(pst(A)+a)] > Q. 

• MAXIM_LARTA(pst(A)+1,a-2) - SPBRTA(pst(A)+1) + SPBRTB(pst(B)+1) - 

SDARTA(pst(A)+a) + SDARTB(pst(B)+b) > Q (applicable when a  ≥ 2). 

• MAX_LARTB(pst(B)+b) - [SPBRTB(pst(B)+b)+pRTB(pst(B)+b)-SPBRTB(pst(B)+1)] + 

[SPBRTA(pst(A)+a)+pRTA(pst(A)+a)-SPBRTA(pst(A)+1)] > Q. 

 

Case B. Only one bone length is equal to zero (either a = 0 or b = 0): 

If a = 0, set IP = A, N = B, len = b, FROM = RTB, and TO = RTA. Otherwise, if b = 0, set 

IP = B, N = A, len = a, FROM = RTA, and TO = RTB. 

The encoded move is infeasible, if one of the following holds: 

• MAX_LBTO(pst(IP)) + [SDAFROM(pst(N)) - SDAFROM(pst(N)+len)]  > Q. 

• MAXIM_LAFROM(pst(N)+1, len-2) - SPBFROM(pst(N)+1) + SPBTO(pst(IP)) + pTO(pst(IP)) 

- SDAFROM(pst(N)+len) + SDATO(pst(IP)) > Q (applicable when len  ≥ 2). 

• MAX_LATO(pst(IP)) + SPBFROM(pst(N)+len) + pFROM(pst(N)+len) - SPBFROM(pst(N)+1) > 

Q. 

3.3.2. Feasibility Investigation for the 2-opt SMD instances 

The necessary checks for examining the feasibility status of a 2-opt SMD instance with n1 

= A, and n2 = B, depend on the route pair servicing vertices A and B. 
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3.3.2.1. Intra-Route 2-opt SMD instance feasibility 

If both A and B belong to the same route RT, and assuming that A precedes B in the RT 

route vector, the 2-opt SMD instance must satisfy the following preconditions: pst(A) ≤ 

zRT - 2, and pst(B) ≥  pst(A) + 2. The capacity constraints are violated if: 

• LRT(pst(A)) + LRT(pst(B)) - MINIM_LART(pst(A), pst(B)-pst(A)-1)  > Q. 

 

3.3.2.2. Inter-Route 2-opt SMD instance feasibility 

If vertices A and B belong to two different routes RTA and RTB, respectively, the 2-opt 

SMD instance must satisfy the following preconditions: pst(A) ≤ zRTA, and pst(B) ≤ zRTB. 

The examined 2-opt SMD instance is infeasible, if one of the following holds: 

• MAX_LBRTA(pst(A)) - SDARTA(pst(A)) + SDARTB(pst(B)) > Q. 

• MAX_LARTB(pst(B)+1) - [SPBRTB(pst(B)) + pRTB(pst(B))] +  [SPBRTA(pst(A)) + 

pRTA(pst(A))] > Q (applicable when pst(B) < zRTB). 

• MAX_LBRTB(pst(B)) - SDARTB(pst(B)) + SDARTA(pst(A)) > Q. 

• MAX_LARTA(pst(A)+1) - [SPBRTA(pst(A)) + pRTA(pst(A))] +  [SPBRTB(pst(B)) + 

pRTB(pst(B))] > Q (applicable when pst(A) < zRTA). 

 

3.4. The proposed implementation of the promises concept 

The concept of promises, initially introduced for the VRPB, is an algorithmic mechanism 

for avoiding cycling and inducing diversification within any local-search procedure. 

Briefly, the main idea of the promise concept is the following: when a local search move 

is applied to a solution S of cost cst(S), some solution attributes are eliminated and 

replaced by some new solution attributes, so that solution S′ is formed. The eliminated 

solution attributes are associated with a promise tag equal to the solution cost cst(S) 

(before the move application). Tentative local search moves are considered to be 

admissible (promise-keeping), only if they lead to the generation of solution attributes at 

a solution cost lower than the promise tags of these attributes. 

For our previous promise study, complete routes were the solution attributes under 

consideration. On the contrary, the present work examines the behaviour of the promise 

mechanism for more basic solution attributes. In specific, the proposed method considers 

arcs to be the solution attributes exploited by the promises concept. 
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To check whether tentative moves are promise-keeping, with every VLBE and 2-opt 

SMD instance smd is associated a list of arcs LAsmd. The LAsmd list contains every arc 

(and its inverse) which is going to be introduced into the candidate solution by applying 

the local search move encoded by smd. Thus, for any SMD instance smd to be 

admissible, the cost tag of smd augmented by the current solution score must be lower 

than the promise tag of every arc contained in LAsmd. 

Obviously, the above-presented arc lists are dynamic, as they depend on the structure of 

the current solution. To keep the arc list of every SMD instance updated according to the 

status of the candidate solution, when the cost update rules of Section 3.2 are executed, 

the arc lists of the affected SMD instances are appropriately modified.  

 

3.5. The overall structure of the proposed methodology 

The proposed solution approach starts off by applying a simple construction heuristic. In 

specific, to obtain an initial VRPSPD solution, we use the savings heuristic proposed by 

Paessens (1988) for the CVRP. The savings of customer insertions are evaluated as s(i, j) 

= ci0 + cj0 - g cij + f |ci0 - c0j|, where f and g are uniformly distributed within [0, 1] and (0, 

3], respectively. Note that insertion positions are considered only if they respect the 

capacity requirements of the examined problem. Furthermore, the examined VRPSPD 

model does not impose any restriction on the total number of routes of the solution. Thus, 

whenever a customer is assigned to an empty (of customers) route, a new empty route 

becomes available for subsequent customer insertions. 

After the initial feasible VRPSPD solution has been produced, the improvement method, 

called Arc Promise Algorithm (APA), is initiated by preparing the SMD representation of 

the employed local search operators: the SMD instances for both the VLBE and 2-opt 

neighbourhoods are generated. To restrict the total SMD instance population, and thus 

reduce the computational effort of the overall method, we use a filtering approach aimed 

at excluding the generation of SMD instances which are highly unlikely to encode 

quality-improving local search moves. This approach is similar to the granularity strategy 

used for the VRPSPD in the work of Zachariadis et al. (2009a). In specific, we solve the 

examined instance by a VRPSPD-adapted Clarke and Wright heuristic (1964). Let 

cstC&W, and KC&W denote the objective function and the total number of routes of the 
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solution produced. Then, a threshold value thr is evaluated as thr = (β cstC&W)/(n + 

KC&W). An SMD instance (either a VLBE or a 2-opt one) with n1 = vi and n2 = vj, is 

generated only if cij ≤ thr, or i = 0, or j = 0. The cost tags of the generated SMD instances 

are calculated according to the status of the initial VRPSPD solution. Then, the SMD 

instances are inserted into a special priority queue structure called Fibonacci Heap 

(Fredman and Tarjan, 1987) which offers the following capabilities: constant time 

insertions, and minimum-retrievals, and logarithmic time deletions. The initialization step 

of the APA metaheuristic is completed by setting the promise tag of every arc of A equal 

to +∞ . 

The iterative core of the APA improvement method is then applied. Every APA iteration 

involves the execution of three main steps: The first step involves the identification of the 

minimum-cost, feasible, and promise-keeping SMD instance to be applied to the current 

solution, denoted by app. To locate app, an inner loop must be executed: the minimum 

cost SMD is extracted from the Fibonacci Heap. Then, the feasibility and the promise-

keeping checks are performed. The inner loop is executed in O(1), as all of its operations 

require constant time. Regarding the total number of iterations of the inner-loop, it 

depends both on the hardness of the constraints, and the status of the arc promises. 

Experimental runs indicated that the first APA step of determining app does not 

significantly contribute in the overall computational effort required by the proposed 

algorithm. After the SMD instance (and thus the local search that it encodes) has been 

identified, the second main algorithmic step is executed. This second step involves the 

implementation of the app SMD instance to the current solution. The VRPSPD solution 

is modified and the demand metrics presented in 3.3 are updated for the modified routes. 

In addition, the appropriate promise tag is assigned to the eliminated arcs. Finally, the 

third and most time-demanding APA step of updating the cost labels of the affected SMD 

instances is executed. An analytic discussion on the total number of the necessary SMD 

cost tag updates has been provided in 3.2. Note that each update is composed of three 

operations: deletion of the SMD from the Fibonacci Heap (O(log m), where m denotes 

the total number of SMD instances stored in the heap), calculation of the new SMD cost 

label according to the modified solution status (O(1)), and finally reinsertion of the SMD 

instance in the Fibonacci Heap (O(1)). To let the search intensify into promising solution 
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space regions, when a move improves the best solution found (so far), the promise tags of 

all arcs in A are reset to +∞ .The APA algorithm terminates when a certain time bound 

has been reached, by returning the overall best VRPSPD solution encountered through 

the search.  

Preliminary executions of the above-presented APA scheme indicated the following 

problematic behaviour: In the initial stages of the search significant solution 

improvement takes place, and the diversification effect of the promises concept exhibits a 

satisfactory behavior. However, as the search evolves, the algorithm reaches to a point 

where the solution cost begins to monotonically increase, without being able to re-apply 

cost improving local search moves. This behaviour is due to the fact that the algorithm 

makes promises which are very hard to be fulfilled, causing the search to be excessively 

diversified: the cardinality of solution arcs is significantly lower than the cardinality of 

complete routes examined in our previous successful promise implementation 

(Zachariadis and Kiranoudis, 2009b). Thus, the algorithm gives away over-optimistic 

promises to the rather limited population of good-quality arcs. Subsequently, these arcs 

become inadmissible, and the method is forced to generate more expensive arcs which 

cause solution cost to increase. This cost increase makes the fulfilment of previously 

made promises even harder, so that the search cannot return to lower cost levels. 

To eliminate this behaviour, the promise tags of arcs are periodically re-initialized. In 

specific, each time freq main APA iterations have been completed, the promise tags of all 

arcs contained in A are reset to +∞ . As will be presented in Section 4, this 

straightforward algorithmic addition lead to a satisfactory interplay between the 

intensification and diversification of the search, and subsequently helped the APA 

method to obtain high-quality solutions.  

To visualize the effect of this promise tag re-initialization, we give Fig. 4, which 

illustrates the candidate solution cost curves through the search, with (freq = 2 n, black 

line) and without (freq = +∞ , grey line) the periodic re-initialization of the promise tags, 

for two benchmark instances of 100 and 200 customers, respectively (see 4.1). As seen 

from the provided cost curves, in the initial phase of the runs both algorithmic 

configurations exhibit comparable performance. However, as the search evolves, we can 

see that the application of the promise tag periodic initialization leads to a balanced 
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algorithmic behavior, while on the contrary, when freq = +∞ , we observe an excessive 

diversification effect which drives the algorithm towards extremely poor-quality solution 

space regions. 
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4. Computational Results 

The proposed metaheuristic algorithm has been coded in Visual C#, and executed on a 

single core of a T5500 processor (1.66GHz). All VRPSPD benchmark instances and the 

best solutions obtained can be found at http://users.ntua.gr/ezach/.  

 

4.1 VRPSPD Benchmark Instances 

To assess the performance of the APA metaheuristic, we solved the 18 large-scale 

VRPSPD instances introduced by Tang-Montanè and Galvão (2006). These problems 

involve from 100 up to 400 customers, and were originally proposed for the CVRP. 

Tang-Montanè and Galvão (2006) modified these 18 problems for the VRPSPD, by 

randomly generating the delivery and pick-up demands within the intervals used for the 

generation of the delivery demands of the original CVRP instances (Solomon, 1987; 

Gehring and Homberger, 1999). The arc costs are obtained by calculating the Euclidean 

distances between vertex positions, so that the generated cost matrix is both symmetric 



 20

and satisfies the triangular inequality. Table 1 summarizes the characteristics of the 18 

Tang-Montanè and Galvão (2006) VRPSPD instances. 

 

Table 1. Benchmark Instance Characteristics 
Instance n Q D P 
r101 100 200 1458 2339 
r201 100 1000 1458 2262 
c101 100 200 1810 3070 
c201 100 700 1810 2910 
rc101 100 200 1724 1912 
rc201 100 1000 1724 2076 
R1_2_1 200 200 3513 4406 
R2_2_1 200 1000 3513 4358 
C1_2_1 200 200 3530 5370 
C2_2_1 200 700 3770 6010 
RC1_2_1 200 200 3558 4473 
RC2_2_1 200 1000 3558 4299 
R1_4_1 400 200 7109 10433 
R2_4_1 400 1000 7109 9571 
C1_4_1 400 200 7190 12470 
C2_4_1 400 700 7560 10050 
RC1_4_1 400 200 7127 10065 
RC2_4_1 400 1000 7127 10100 
n: number of customers, Q: Vehicle Capacity, D: total delivery demand of all customers, P: total pick-up 
demand of all customers. 
 

4.2 Parameter Setting 

To apply the APA method, we have to set the value of two algorithmic parameters: μ 

which determines the maximum length of the bones considered by the VLBE operator, 

and freq which, as explained in detail in 3.5, controls the APA-iteration period for re-

initializing the promise tags of arcs. 

In terms of the bone length μ, we experimentally executed the APA methodology taking 

the maximum number of customers in the bones exchanged from {4, 6, 8}. Although 

values 6 and 8 produced solutions of slightly higher quality, we fixed μ at 4, because we 

opted to keep the computational effort at minimum levels. As far as the freq parameter is 

concerned, our intention was to avoid complex tuning experiments, so that a simple 

tuning rule is derived. After performing preliminary experiments for solving the 18 

VRPSPD benchmark instances, we observed that setting freq = 2 n resulted into a rather 

stable and effective performance. Following this, the APA method was executed for 
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solving all of the 18 VRPSPD test problems of 4.1 with the freq period fixed at 2 n 

iterations. 

 

4.3 Computational Results on the Benchmark Instances 

The APA methodology was applied to all 18 VRPSPD benchmark instances. The 

termination condition used was the completion of 60, 180, and 480 CPU seconds, for the 

100-, 200- and 400-customer instances, respectively. The proposed improvement 

metaheuristic was applied 10 times for solving each test problem. Each of these 10 runs 

involved a different initial VRPSDPD solution, due to the stochastic setting of the f and g 

parameters used in the construction heuristic. 

Table 2 summarizes the results obtained through the 10 runs. The APA methodology 

exhibited a rather stable performance, as the percent deviations between the best and the 

average solution scores over the 10 runs varied from 0.00% to 1.77%, averaging at 

0.50%. In particular, for three 100-customer instances and two 200-customer instances, 

all 10 APA executions managed to obtain the same final solution value. Regarding the 

average CPU time required for obtaining the final solutions, it was limited to 18.5 

seconds for problem c101, up to 421.5 seconds for the 400-customer problem R1_4_1.  

Table 3 compares the scores of the best solutions obtained by the APA method, against 

the solution scores obtained by the tabu search of Tang-Montanè and Galvão (2006) 

(TG), the hybrid GLS - TS approach of Zachariadis et al. (2009a), and the evolutionary 

VLBR method of Zachariadis et al. (2009b). To our knowledge, the aforementioned 

approaches are the only previously published methodologies applied to the examined set 

of large-scale VRPSPD instances. From the comparative results, we can see that APA 

improved ten previous best-known solution scores, matched the best solution scores for 

seven test problems, while for problem C2_2_1, it produced a slightly worse solution 

value. The average best solution improvement is 0.16%, while the greatest solution 

improvement was observed for problem RC1_4_1 (1.30%) which involves 400 customers 

and approximately eight customers per route. In general, the APA methodology proved to 

be very effective for problems with low n / K ratios. In our opinion, this behavior is 

attributed to the fact that the VLBE operator is able to make drastic and effective changes 

in the arrangement of customers into routes. This effect is strengthened by the rather 
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powerful diversification role of the promises mechanism when applied to solution arcs. 

Regarding the size of the fleet required by the presented methodologies, we see that the 

APA solutions require one less vehicle for instances R1_4_1, and RC1_4_1, while for the 

other sixteen problems, it requires the same fleet size. In terms of the APA computational 

times for obtaining the best solutions, they appear to be slightly higher than the ones 

required by the VLBR methodology. However, we believe that the solution quality 

improvement compensates for the extra time required by the APA approach. 

Furthermore, some testing with problems of larger size (n > 400) indicated that APA was 

significantly faster than both the VLBR and GTS methods. This is because the per-

iteration complexity of the two former methods is O(n2), whereas the per-iteration 

complexity of the APA method (which is mainly determined by the execution of the 

update rules of 3.2, and obviously depends on the move type performed) exhibits 

linearithmic (O(n logn)) scalability with the instance size  (for fixed μ values). 

 

Table 2. Summary of the APA results on the benchmark instances 
   AVG    BST    
Instance  z k t  z k t  %gap 
r101  1009.95 12.0 28.7  1009.95 12 24.6  0.00 
r201  666.20 3.0 31.4  666.20 3 22.9  0.00 
c101  1222.43 16.0 18.5  1220.18 16 19.2  0.18 
c201  662.07 5.0 23.5  662.07 5 18.7  0.00 
rc101  1061.88 10.0 23.8  1059.32 10 25.2  0.24 
rc201  673.08 3.0 21.2  672.92 3 19.0  0.02 
R1_2_1  3378.52 23.0 84.6  3375.19 23 73.5  0.10 
R2_2_1  1665.58 5.0 72.7  1665.58 5 67.4  0.00 
C1_2_1  3652.20 28.0 57.0  3641.89 28 79.0  0.28 
C2_2_1  1731.91 9.0 67.3  1726.73 9 74.8  0.30 
RC1_2_1  3326.16 23.0 83.4  3316.94 23 75.7  0.28 
RC2_2_1  1560.00 5.0 74.4  1560.00 5 66.9  0.00 
R1_4_1  9813.42 53.4 421.5  9668.18 53 395.6  1.48 
R2_4_1  3603.54 10.0 352.0  3560.73 10 306.0  1.19 
C1_4_1  11325.78 63.0 384.6  11125.14 63 408.5  1.77 
C2_4_1  3582.92 15.0 341.1  3549.20 15 367.7  0.94 
RC1_4_1  9621.65 51.2 412.7  9520.06 51 377.0  1.06 
RC2_4_1  3453.24 11.0 264.7  3414.90 11 289.5  1.11 

average          0.50 
The AVG group of columns provides average values over all 10 APA runs. The BST group of columns 
provides the values associated with the run which obtained the highest quality solution. z: cost of the final 
VRPSPD solution. k: number of vehicles. t: time elapsed when the best solution was generated. %gap: 
percent gap between the AVG and the BST solution scores (= 100(zavg - zbst) / zavg). 
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Table 3. Comparison of the APA method against previous VRPSPD approaches 
  TG  GTS  VLBR  APA   
Instance  z k  z k  z k  z k  %gap 
r101  1042.62 12  1019.48 12  1009.95 12  1009.95 12  0.00 
r201  671.03 3  666.20 3  666.20 3  666.20 3  0.00 
c101  1259.79 17  1220.99 16  1220.99 16  1220.18 16  0.07 
c201  666.01 5  662.07 5  662.07 5  662.07 5  0.00 
rc101  1094.15 11  1059.32 10  1059.32 10  1059.32 10  0.00 
rc201  674.46 3  672.92 3  672.92 3  672.92 3  0.00 
R1_2_1  3447.20 23  3393.31 23  3376.30 23  3375.19 23  0.03 
R2_2_1  1690.67 5  1673.65 5  1665.58 5  1665.58 5  0.00 
C1_2_1  3792.62 29  3652.76 28  3643.82 28  3641.89 28  0.05 
C2_2_1  1767.58 9  1735.68 9  1726.59 9  1726.73 9  -0.01 
RC1_2_1  3427.19 24  3341.25 23  3323.56 23  3316.94 23  0.20 
RC2_2_1  1645.94 5  1562.34 5  1560.00 5  1560.00 5  0.00 
R1_4_1  10027.81 54  9758.77 54  9691.60 54  9668.18 53  0.24 
R2_4_1  3695.26 10  3606.72 10  3572.38 10  3560.73 10  0.33 
C1_4_1  11676.27 65  11207.37 63  11179.36 63  11125.14 63  0.48 
C2_4_1  3732.00 15  3630.72 15  3549.27 15  3549.20 15  0.00 
RC1_4_1  9883.31 52  9697.65 52  9645.27 52  9520.06 51  1.30 
RC2_4_1  3603.53 11  3498.30 11  3423.62 11  3414.90 11  0.25 

average              0.16 
average 
CPU time 

 2.13   1.95   1.60   2.51    
T&G: the algorithm of Tang-Montanè and Galvão (2006) – (Athlon 2.0 GHz, Pascal), GTS: the guided tabu search of 
Zachariadis et al. (2009a) – (Pentium IV 2.4 GHz, Visual C#), VLBR: the evolutionary algorithm of Zachariadis et al. 
(2009b)– (T5500 1.66 GHz, Visual C#), APA: the proposed metaheuristic algorithm– (T5500 1.66 GHz, Visual C#), z: 
the scores of the best solutions obtained, k: number of vehicles, %gap: the percent gap between the APA and the 
previous best solution scores (relatively to the previously best scores). Bold values represent higher quality solutions 
Bold and italic characters represent new best solutions.  
 

5. Conclusions 

In the present paper we have presented an effective metaheuristic algorithm for the 

Vehicle Routing Problem with Simultaneous Deliveries and Pick-ups (VRPSPD) which 

is an important routing problem variant with numerous applications in the context of 

reverse logistics. The proposed methodology is a local search approach which can 

efficiently examine rich solution neighborhoods by statically encoding tentative moves 

into special data structures. The solution space exploration is coordinated by the use of 

the promise concept which was originally introduced for the Vehicle Routing Problem 

with Backhauls (VRPB) and was designed to consider complete routes as the solution 

attributes under examination. Contrary to this aforementioned design, the promise 

mechanism, proposed in the present study, exploits more basic attributes, namely solution 

arcs. Our algorithmic design was tested on a set of 18 large-scale VRPSPD benchmark 

instances derived from the literature. It produced fine results, improving several 

previously best-known solutions. 
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