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Abstract 

We introduce and solve the Vehicle Routing Problem with Simultaneous Pick-ups and Deliveries and Two-

Dimensional Loading Constraints (2L-SPD). The 2L-SPD model covers cases where customers raise delivery 

and pick-up requests for transporting non-stackable rectangular items. 2L-SPD belongs to the class of 

composite routing-packing optimization problems. However, it is the first such problem to consider bi-

directional material flows dictated in practice by reverse logistics policies. The aspect of simultaneously 

satisfying deliveries and pick-ups has a major impact on the underlying loading constraints: feasible loading 

patterns must be identified for every arc traveled in the routing plan. This implies that 2L-SPD generalizes 

previous routing problem variants with two-dimensional loading constraints which call for one feasible 

loading per route. From a managerial perspective, the simultaneous service of deliveries and pick-ups may 

bring substantial cost-savings, but the generalized loading constraints are very hard to tackle in reasonable 

computational times. To this end, we propose an optimization framework which employs memorization 

techniques designed for the 2L-SPD model, to accelerate the solution methodology. To assess the 

performance of our routing and packing algorithmic components, we have solved the Vehicle Routing 

Problem with Simultaneous Pick-Up and Deliveries (VRPSPD) and the Vehicle routing Problem with Two-

Dimensional Constraints (2L-CVRP). Computational results are also reported on newly constructed 2L-SPD 

benchmark problems. Apart from the basic 2L-SPD version, we introduce the 2L-SPD with LIFO constraints 

which prohibit item rearrangements along the routes. Computational experiments are conducted to 

understand the impact of the LIFO constraints on the routing plans obtained. 

Keywords: Logistics; Vehicle Routing; Loading Constraints; Simultaneous pick-ups and deliveries; Heuristics. 

 

1. Introduction 

In the last years, advances both in optimization methodologies and computer systems allow researchers and 

practitioners to examine practical optimization problems which in the past were thought to be too complex to 

handle. One such research stream that has emerged in the logistics optimization literature is devoted to the 

analysis of problems which are aimed at effectively dispatching a fleet of vehicles and at the same time, ensuring 

that the transported items can be feasibly loaded into these vehicles. The problem introduced in the present 

study belongs to this class of integrated vehicle routing and loading problems. Briefly, the presented model, 

referred to as the Vehicle Routing Problem with Simultaneous Pick-Ups and Deliveries and Two Dimensional 

Loading Constraints (2L-SPD) calls for the generation of the optimal routes to fully satisfy the demand raised by a 
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set of customers. The demand of each customer consists of two transportation requests: the first one is 

associated with a set of items that must be transported from the warehouse to the customer location, whereas 

the second request is associated with a set of items that must be transported from the customer location to the 

central warehouse. The items that are transported from and to the warehouse are considered rectangular and 

not stackable. Thus, 2L-SPD is aimed at generating feasible, two-dimensional, orthogonal loading patterns for 

the transported items carried by the produced route set.  

The main innovative feature of the examined model, compared to previously introduced vehicle routing variants 

with loading constraints, lies in the fact that vehicles offer simultaneous pick-up and delivery service. This 

implies that the item sets carried along a route change drastically: delivery items are unloaded and additional 

pick-up items are loaded onto the vehicle. Thus, the loading feasibility must be examined for every arc traveled 

by the routes. On the contrary, previously introduced delivery models assume that the size of the item set 

carried by a vehicle monotonically decreases, so that the loading feasibility has to be tested, only when the 

corresponding vehicle leaves the warehouse fully loaded. As a result, previously examined delivery models with 

two-dimensional loading constraints can be regarded as a special case of 2L-SPD, when for all customers, the 

pick-up requests are set to an empty item set.  

Regarding the routing characteristics, 2L-SPD is a generalization of the vehicle routing problem with 

simultaneous pick-ups and deliveries (VRPSPD) which calls for the optimal routes that simultaneously offer pick-

up and delivery service, under one-dimensional loading constraints (Dell’Amico et al., 2006; Subramanian et al. 

2013a). Analogously, VRPSPD is a generalization of the basic version of the vehicle routing problem (VRP) which 

is aimed at producing the optimal delivery route set subject to one-dimensional capacity constraints.  

As already stated, 2L-SPD belongs to the integrated vehicle routing and multi-dimensional packing problems 

which jointly call for the optimal route planning and feasible packing structures for the transported goods. The 

first such problem has been introduced by Iori et al. (2007) who examine a vehicle routing extension with two-

dimensional loading constraints: vehicles are considered to deliver rectangular items (boxes, pallets) which are 

not stackable. This problem is referred to as the vehicle routing problem with two-dimensional loading 

constraints (2L-CVRP). Under 2L-CVRP, the minimum cost set of routes must be generated for the vehicle fleet. 

For each of these routes, a feasible orthogonal two-dimensional packing must be determined for the 

transported items. The authors present a branch-and-cut method for dealing with small-scale problems (up to 

25 customers and 91 boxes). To solve larger-scale instances, researchers have proposed various metaheuristic 

solution strategies: A tabu search methodology has been developed by Gendreau et al. (2008). Zachariadis et al. 

(2009) have proposed a tabu search and guided local search hybridization for the routing aspects and a bundle 

of packing heuristics for the loading requirements. Fuellerer et al. (2009) have developed an ant colony 

optimization approach. Another tabu search-guided local search hybrid has been proposed by Leung et al. 

(2011). Strodl et al. (2010) have proposed a 2L-CVRP solution method emphasizing on the development of 

efficient data structures for storing obtained loading feasibility information. More recently, Duhamel et al. 

(2011) have solved the 2L-CVRP by a greedy randomized adaptive search (GRASP) and evolutionary local search 

(ELS) solution approach, while Zachariadis et al. (2013) have proposed a simple-structured local search 

methodology. The most recent works on the 2L-CVRP are due to Dominguez et al. (2014) and Wei et al. (2015) 

who introduce a Variable Neighborhood Search method. An additional routing model with two-dimensional 

loading constraints has been introduced by Malapert et al. (2008). The authors present a pick-up and delivery 
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model which assumes that non-stackable rectangular items have to be transported between pairs of service 

locations. An additional class of integrated routing-packing models considers three-dimensional loading 

constraints. This model category is applicable for logistics applications where the transported boxes can be 

stacked one on top of the other. The first such study is due to Gendreau et al. (2006). Their work introduces the 

vehicle routing problem with three-dimensional loading constraints (3L-CVRP) which generalizes 2L-CVRP by 

calling for feasible, three-dimensional loading arrangements. Additional requirements met in practice are 

examined: fragility constraints, stability rules for the transported cargo and easy unloading operations. Several 

metaheuristic developments have been proposed for the 3L-CVRP (Tarantilis et al. 2009; Fuellerer et al., 2010; 

Ruan et al. 2011; Zhu et al. 2012; Bortfeldt, 2012). A relevant model is due to Männel and Bortfeldt (2013). The 

latter work introduces a pickup and delivery problem where three-dimensional and stackable items are 

transported between customer locations. For a detailed list of vehicle routing models which explicitly deal with 

loading constraints, the interested reader is referred to the reviews of Iori and Martello (2010), Iori et al. (2013) 

and Perboli et al. (2014). 

The purpose of the present paper is to formally introduce the 2L-SPD model. An efficient solution approach is 

developed and presented for the 2L-SPD. The proposed solution approach consists of two algorithmic 

components: one for the routing and one for the packing aspects. Both components are based on our algorithm 

presented for the 2L-CVRP (Zachariadis et al., 2013). However, they are extended to provide higher-quality 

solutions. In addition, we present a new original framework which combines the individual routing and packing 

components for efficiently dealing with the special requirements of the 2L-SPD model. We also present 

feasibility memory structures that have been specially designed for the 2L-SPD and drastically accelerate the 

search process. The overall 2L-SPD solution approach is a robust optimization methodology efficiently dealing 

with instances of hundreds of customers and items.  

In addition to the basic 2L-SPD model, we introduce the 2L-SPD with LIFO constraints. Under the LIFO variant, 

item rearrangement along the routes is not allowed, so that the loading requirements become much tighter 

leading to lower area utilization. To assess the effectiveness of both the routing and packing ingredients of our 

algorithm, computational results are reported on well studied VRPSPD and 2L-CVRP benchmark instances. Then, 

computational results are reported on newly constructed 2L-SPD test cases both for the basic 2L-SPD, as well as 

the LIFO constrained variant. 

The remainder of the present paper is as follows: Section 2 presents in detail the examined problem and 

discusses its applicability for practical logistics operations. Section 3 describes the proposed 2L-SPD local search 

solution approach. This master local search algorithm makes use of two loading feasibility examination 

components which are described in Sections 4 and 5. Then, Section 6 provides the necessary methodological 

modifications for tackling the LIFO version of the 2L-SPD model. In Section 7, extensive computational results are 

reported for the VRPSPD, 2L-CVRP and 2L-SPD models. In addition, comparisons are made between the obtained 

results and the ones of previously published methodologies. Finally, Section 8 concludes the paper. 
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2. The 2L-SPD Model 

In this Section, we present a formal description of the 2L-SPD model, followed by some 2L-SPD practical 

applications. Then, we introduce the 2L-SPD variant with LIFO constraints which prohibits rearrangement of 

items along the vehicle trips. 

2.1. Description of the basic 2L-SPD model 

Let G = (V, A) be a complete graph where V = {0, 1, .., n} is the vertex set and A is the set of arcs (i, j) connecting 

every pair of distinct vertices. Each arc (i, j) ∈ A is associated with a cost cij equal to the distance that must be 

traveled for moving from vertex i to vertex j. Vertex 0 represents the warehouse which acts as the base station 

of k homogeneous vehicles. Each vehicle has a maximum carrying weight equal to Q and a loading surface of 

length and width equal to L and W, respectively. Vertex set N = V \ {0} corresponds to the customer set. With 

each customer i ∈ N, there are two associated item sets, namely Di and Pi. Set Di corresponds to the items that 

must be delivered from the warehouse to the customer, whereas Pi contains the items that must be picked-up 

from customer i and transported to the warehouse. All transported items are considered non-stackable. The 

total weight of item sets Di and Pi are equal to di and pi, respectively. The length and width dimensions of an 

item j ∈ Di ⋃ Pi, (∀ i ∈ N) are denoted by lj and wj, respectively.  

The 2L-SPD model calls for the production of the route set that minimizes the total travel distance. The routes 

are subject to the following constraints: 

a. The size of the produced route set does not exceed k (at most one route assigned to each vehicle). 

b. Each route starts from the warehouse visits customers and returns back to the warehouse. 

c. Each customer is visited once by exactly one route. 

d. The delivery and pick-up requests of each customer are fully satisfied. 

e. The carrying weight of each vehicle does not exceed the maximum carrying weight Q at any point of the 

produced routes. 

f. For each of the traveled arcs, there exists a feasible packing pattern for the transported items. 

Constraint (e) corresponds to the classic one-dimensional constraint incorporated in most of the vehicle routing 

variants, whereas constraint (f) introduces the two-dimensional loading requirements of the 2L-SPD model. This 

constraint is aimed at developing feasible item arrangements under the following limitations: 

f.1 All items are placed within the loading surface (no item exceeds the loading surface). 

f.2 There is no pair of items that overlap each other. 

f.3 All items are packed orthogonally (their length and width edges are parallel to the length and width 

edges of the vehicle loading surface). 

At this point, we would like to distinguish between two distinct configurations of constraint f.3. The first 

configuration (Oriented) dictates that items must be loaded with fixed orientation, i.e. the length dimension of 

any item is parallel to the length dimension of the loading surface. The second configuration (Rotations) allows 

90° rotations of items. Using a similar typology to the one of Fuellerer (2009) for the 2L-CVRP, the Oriented 

version of 2L-SPD is denoted as 2|O|SPD, whereas the Rotations version is referred to as 2|R|SPD. 
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Figure 1. An example 2L-SPD solution 
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To better describe the model, we provide Figure 1, which illustrates an example solution for a 2L-SPD instance of 

one vehicle, three customers, five delivery and six pick-up items. Observe that one route has been designed for 

the single available vehicle. Along the route, the size of the transported item set does not monotonically 

decrease. Instead, some items are delivered to the customers visited and some items are picked-up to be 

transported back to the warehouse. Thus, feasible loading patterns must be identified for every arc traveled, to 

ensure that loading feasibility is guaranteed. This is the crucial difference of the 2L-SPD model compared to the 

2L-CVRP one: Under the 2L-CVRP, all pick-up items sets are empty. Thus, the feasibility of the k fully loaded 

depot-adjacent arcs must be examined. In the case of the instance presented in Figure 1 (k = 1), the only 

feasibility investigation would involve arc (0, 1). On the other hand, under the 2L-SPD model which considers 

non-empty pick-up item sets, feasible item loadings must be determined for each solution arc. This means that 

in the general case of n customers and k vehicle routes, n + k feasible two-dimensional packing arrangements 

must be determined for the transported items. For the example case (n = 3, k = 1), four loading patterns are 

identified, as depicted in Figure 1. 

The 2L-SPD model is applicable in transportation activities, where bi-directional product flows between the 

warehouse and customers must be made, as dictated by reverse logistics policies. It covers cases where 

shipments correspond to items of various sizes which are considered non-stackable. This transportation scenario 

arises in the context of haul-away service offered by furniture and household appliance stores. Under this 

practice, the store is responsible for dispatching vehicles to deliver the purchased items to customers. In 

addition, the vehicles must also collect the items which customers require to dispose of. Another 2L-SPD 

application emerges in grocery store and supermarket networks, where goods must be replenished, while at the 

same time outdated products, empty pallets and roll cages must be gathered and sent to the warehouse for 

further processing and reuse. The aforementioned cases do not necessarily involve items of identical sizes: 

supermarkets may use large pallets for light products, such as paper and plastics, while bottles and food 

products are packed into smaller pallets, or roll cages to be easily handled when unloaded. Stacks of plastic 

boxes may also be used for fruits and vegetables. Another case where a mix of different pallet sizes can be used 

arises when networks consisting of retailers with different storage room characteristics are visited. In this 

context, small stores located in urban areas may prefer small and easily maneuverable pallets, whereas bigger 

stores located outside the city centers can use the standard sized pallets. In addition, to increase vehicle space 

utilization, empty stackable roll cages are folded and grouped together into shapes of various sizes in order to be 

sent back to the warehouse. Additional examples of 2L-SPD applications may involve cases where a customer 

requires either delivery or pick-up service, just as in the case of the Vehicle Routing Problem with Mixed Pick-ups 

and Deliveries (VRPMPD) which incorporates one-dimensional capacity constraints (Berbeglia et al. 2007). For 

example, the distribution of products from a production site to a set of retailers and the concurrent collection of 

raw materials from suppliers located within the same geographic region to replenish the production site can be 

modeled by 2L-SPD. Depending on the type of the delivery and pick-up materials, the transported products may 

correspond to box stacks or pallets of various dimensions. In the same context, office and household furniture 

rental businesses need to dispatch their vehicles to jointly deliver and pick-up (or even replace) pieces of 

furniture to and from the service locations. 
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2.2. Incorporating LIFO constraints into the basic 2L-SPD model 

An important characteristic of the basic 2L-SPD model is that no LIFO constraint is considered. This implies that 

when the vehicle visits a service location, items must be repositioned inside the loading space, in order to 

complete the necessary loading and unloading operations. This is an analogous assumption with the one made 

by the Unrestricted version of the 2L-CVRP which allows items (pallets) repositioning when the vehicle visits 

service locations. The time required for handling such item repositioning is compensated by the simultaneous 

service of two transportation request types (distribution/collection) which increases the capacity utilization of 

vehicles and thus reduces unproductive “empty” mileage. The simultaneous delivery and pick-up service 

characteristic may involve drastic rearrangement of the transported items, thus service locations should offer 

sufficient resources (space for emptying the carrying load, forklifts or pallet jacks) to facilitate item 

repositioning. Finally, since radical rearrangements of the transported pallets take place, the 2L-SPD model is 

best suited for light and medium duty trucks typically used in city logistics operations. It is not practical, for 

example, to repeatedly unload and reload the 30 to 40 pallets carried by heavy duty trucks along their service 

trips. 

To tackle the transportation scenario where item repositioning is either prohibited (due to item sensitivity) or 

should be avoided (fast loading and unloading operations must take place), the basic 2L-SPD model can be 

extended to incorporate LIFO constraints. These constraints, also referred to as Sequence constraints (Iori et al., 

2007), ensure that the loading and unloading of every item is directly performed without being necessary to 

reposition any other item onboard. Under the LIFO version of the basic 2L-SPD model, in addition to the loading 

constraints f.1 - f.3, two extra constraints are taken into account: 

f.4 No item is positioned between any delivery item i and the loading door of the vehicle, when item i is 

unloaded from the vehicle (unloading without rearrangements). 

f.5 No item is positioned between any pick-up item i and the loading door of the vehicle, when item i is 

loaded into the vehicle (loading without rearrangements). 

Prohibiting item repositioning has the following impact on the underlying loading constraints: contrary to the 

basic 2L-SPD model, where a feasible loading structure must be determined for every route arc, when the LIFO 

constraints are taken into account, the decision maker has to determine one loading position for every 

transported item (delivery or pick-up). From another viewpoint, two feasible packing structures must be 

defined: the first one for all delivery items and the second one for all pick-up items. Obviously, these two loading 

structures must ensure that the LIFO requirements are satisfied. The loading structures for intermediate points 

in the route can be regarded as the union of these two loadings by subtracting all items which have been 

delivered and all items which have not yet been picked-up. We examine two configurations for the LIFO version 

of 2L-SPD: 2|O|SPD-L which considers fixed item orientation and 2|R|SPD-L which allows item rotations of 90°. 

 

3. The overall 2L-SPD solution approach 

The 2L-SPD model is a very challenging problem which can be regarded as the union of two NP-hard 

combinatorial optimization models: one for the routing aspects (Vehicle Routing Problem) (Laporte, 2009), and 
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one for the two-dimensional loading requirements (Two-Dimensional Bin Packing Problem) (Lodi et al., 2002). To 

solve the 2L-SPD in reasonable computational times, we make use of a master local search framework described 

in the present Section. The local search algorithm makes use of the route loading feasibility examination 

procedures which are thoroughly presented in Section 4. 

Our master 2L-SPD approach is a two-stage method. In the first stage, a fast constructive heuristic (§3.1) is 

employed for building an initial 2L-SPD solution. This solution is composed by feasible 2L-SPD routes, however it 

may be partial or complete, in the sense that it may not serve all customer requests. This initial solution is fed to 

the algorithm’s second stage which constitutes the core of the proposed optimization approach (§3.2).  

3.1. Constructive methodology for building an initial 2L-SPD solution 

A set of k empty routes is initialized and a randomly chosen radius originating from the warehouse is defined. 

Customers are sorted in increasing order of the angle formed by the random radius and the customer locations. 

Then, customers are iteratively selected to be inserted to the routes available. At each iteration, we examine all 

possible insertion positions. The customer is inserted into the solution point which is both feasible and 

minimizes the additional routing cost. Note that the loading feasibility of tentative routes is determined with the 

use of the route loading procedure presented in Section 4, which in turn calls the packing heuristic of Section 5. 

These calls to the packing heuristic have been designed to be as fast as possible: only one attempt (light packing 

mode) is applied for building a feasible packing arrangement (this will be clarified in Sections 4 and 5, where the 

loading feasibility examination is described). If for any customer, no feasible insertion position is identified, this 

customer remains unserved. The iterative procedure terminates when trial insertions have been examined for 

all customers. 

3.2. Local search algorithm for the 2L-SPD 

The proposed solution approach is based on our previous work on the 2L-CVRP (Zachariadis et al., 2013), 

extended to efficiently deal with the increased number of loading sub-problems that must be solved in order to 

decide on the feasibility of a vehicle route. It employs a blend of three local search operators for moving 

between solutions. To diversify the search, a simple-structured scheme based on the aspiration criteria of tabu-

search is employed.  

3.2.1. Local search operators 

A blend of three local search operators is applied, namely the 1-0 exchange, 1-1- exchange and 2-opt. 

1-0 Exchange (Customer Relocation): A move defined by the 1-0 exchange operator removes a customer from its 

current service position and reinserts a customer into any other solution position. In the general case, a 1-0 

exchange move replaces three solutions arcs of the candidate solution. This operator is employed both within a 

route and between any route pair. 

1-1 Exchange (Customer Swap): A move defined by the 1-1 exchange operator swaps the service positions of any 

pair of customers of the candidate solution. In the general case, four solution arcs are replaced. Moves defined 

by the 1-1 operator are employed both within a single route, as well as between any route pair. 
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2-opt: A move defined by the 2-opt operator replaces any pair of arcs that is included in the candidate solution. 

A different solution modification mechanism is followed according to whether the move is applied within a 

single route or between a route pair: If the 2-opt move is performed within a route, two route customers are 

selected and the path between these selected customers is reversed. If the 2-opt move is performed between a 

route pair, both routes are divided into an initial and a terminating segment. The starting segment of the first 

route is connected to the terminating segment of the second route and vice versa. Any combination of route 

division points is considered. This inter-route operator is commonly referred to as 2-opt*. 

3.2.2. The SMD representation of the local search moves 

As with most local search implementations, the required computational burden mainly depends on the 

evaluation of the neighborhood structures defined by the employed local search operators. To accelerate this 

decisive aspect of the proposed approach, we use the concept of Static Move Descriptors (SMD). The basic 

principle of the SMD strategy is that every tentative local search move defined by the employed operators is 

statically encoded into an SMD instance. This SMD instance encodes the structural modification of the 

corresponding local search move. In addition, it includes the objective function change that this move would 

cause, if applied to the candidate solution. Each time a move is applied to a candidate solution, a limited subset 

of the solution characteristics is modified. Thus, only the subset of the SMD instances which are related to this 

modified solution part needs to be re-evaluated according to the modified solution state. The remaining SMD 

instances stay valid, so their cost recalculation is redundant. Using the SMD concept, redundant local search cost 

recalculations are eliminated. For more details, the interested reader is referred to the article of Zachariadis and 

Kiranoudis (2010) where the SMD strategy was originally introduced. 

Except for the objective change information, the SMD instances have been designed to include the loading 

feasibility status of the encoded local search moves. This allows the algorithm to eliminate any redundant calls 

to the time consuming loading feasibility procedures of Sections 4 and 5. This aspect will be thoroughly 

described in Section 4 (Level 1), where the loading feasibility of local search moves is discussed. 

3.2.3. The adopted diversification component 

The proposed local search exhaustively explores the solution neighborhoods defined by the local search 

operators and implements the move which incurs the minimal objective function change. This move selection 

criterion entraps the algorithm in the first local optimum (in respect to the local search operators) encountered. 

To avoid this situation and induce additional diversification in the search process, we make use of a mechanism 

which effectively filters out cycling causing local search moves. The proposed scheme is inspired by the 

aspiration criteria used in tabu-search implementations. It associates a cost tag with each problem arc. Let pi 

denote the tag of arc i ∈ A. In addition, let Em and Cm denote the solution arcs to be eliminated and created, 

respectively, if local search move m is applied to the candidate solution. When move m is applied to a candidate 

solution S of cost z(S), the cost tag of each of the eliminated arcs is set equal to the objective function of solution 

S (pi = z(S), ∀ i ∈ Em). During later stages of the search, a move m is allowed to be applied to a solution S for 

generating S′, if and only if the objective of the tentative solution S′ improves the cost tags of all the arcs to be 

created (pi > z(S′), ∀ i ∈ Cm). To control the diversification effect caused, the cost tags of the solution arcs are 

initialized to +∞ every φ main algorithmic iterations (pi = +∞, ∀ i ∈ Α). After preliminary experiments, we have 
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set φ = ��/2�  for which a satisfactory performance was observed. The employed diversification component can 

be seen as a variation of the Attribute Based Hill Climber (ABHC) (Whitley & Smith, 2004) with the following two 

main differences: a) The threshold tag for each arc is the objective of the last solution using this arc, whereas 

under the ABHC, the arc threshold tag is set to the score of the best solution using this arc; b) a move is 

considered admissible, if all arc thresholds are satisfied, while ABHC allows a move to be performed, if only one 

arc threshold is met. 

3.3. The proposed local search algorithm 

The core of the optimization procedure is fed with the initial 2L-SPD solution S0 generated in §3.1, and the set of 

non-served customers U. Obviously, if the initial solution S0 is complete, set U = Ø. The candidate solution S is set 

to be equal to S0. Then, an iterative procedure is applied for performing structural modifications on the 

candidate solution. These modifications must satisfy the loading constraints of 2L-SPD. If the set of non-routed 

customers U is non-empty, each iteration tries to insert any not served customer into the candidate solution.  

More specifically, each algorithmic iteration involves the sequential execution of the following steps: 

1. The solution neighborhoods defined by the employed operators are exhaustively explored. For each 

operator, the move that respects the diversification scheme of §3.2.3, leads to the generation of feasible 

2L-SPD routes and minimizes the objective change is identified. This step is performed by examining the 

SMD instances which encode the local search moves. 

2. If any of the three moves improves the objective function of the candidate solution, the highest-quality 

of these moves is selected to be applied. If none of these moves is objective improving, one of them is 

selected randomly to be applied. Let m denote the selected local search move and S′ the solution to be 

obtained if m is applied. 

3. The cost tags of the eliminated solution arcs are appropriately set (pi = z(S), ∀ i ∈ Em). 

4. Move m is applied to the candidate solution. Thus, the candidate solution is set equal to S′. 

5. The costs of the affected SMD instances are recalculated according to the updated solution S. 

6. Any unserved customer contained in U is attempted to be feasibly inserted into any point of S. 

Recall that each time φ iterations are executed, the arc cost tags are re-initialized. The overall procedure 

terminates after the completion of 50,000 iterations by returning the best complete solution generated through 

the search process.  

At this point, we would like to mention that Step 1 is the most demanding regarding the required computational 

effort: The costs of tentative moves are efficiently retrieved from the corresponding SMD instances and the 

necessary checks regarding the adopted diversification scheme are straightforwardly performed in constant 

time. However, the loading feasibility investigation of tentative moves is a very complex task which must be 

appropriately designed, in order to be as fast as possible. A poor algorithmic design for this task practically 

makes the algorithm incapable of effectively tackling even small-scale 2L-SPD instances. The proposed 

procedure for examining the loading constraints for a local search move is analyzed in Section 4, which also 

presents the memory structures employed for recording obtained loading feasibility through the search process. 
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4. Loading feasibility examination of local search moves 

The evaluation of the loading feasibility of local search moves is the most time consuming task repeatedly 

executed through the 2L-SPD solution approach (Step 1 of §3.3). In the following, we provide an analytic 

description of the three employed examination levels for obtaining the loading feasibility status of a local search 

move. In addition, for each of these levels, the proposed memory components used for recording loading 

feasibility information and accelerating the search are presented.  

We start by introducing the employed data structures and relevant notation: 

• m: the local search move whose loading feasibility is investigated. 

• z(m): the objective function change that this move incurs if applied to the candidate solution. 

• SMDm: the SMD instance encoding local search move m. 

• Rm: the set of routes to be affected by move m. Note that |Rm| = 1, if m is an intra-route move, whereas 

|Rm| = 2 if m is an inter-route move. 

• RH: The hashtable used to record “strong” route loading feasibility examinations. 

• RHL: The hashtable used to record “light” route loading feasibility examinations. 

• AH: The hashtable used to record “strong” item packing feasibility examinations. 

• AHL: The hashtable used to record “light” item packing feasibility examinations. 

We note that the terms “strong” and “light” are used to characterize the mode of the employed feasibility 

examination. The strong mode increases the probability of declaring a local search move feasible. It is used for 

objective improving local search moves. On the other hand, the light mode is considerably faster and it is used 

for non-cost improving moves. The feature that distinguishes these two modes is related to the maximal packing 

attempts (parameter μ) used for the calls to the packing heuristic of Section 5. This issue is further discussed 

when the third feasibility examination level is provided. 

Level 1. Loading feasibility examination of local search moves 

The first level of evaluating the feasibility of a local search move was briefly discussed in §3.2.2 where the SMD 

representation is presented. Each SMD instance contains two pieces of information: a) a binary value 

representing if the encoded move was found to be feasible or not the last time it was checked, and b) an integer 

value equal to the master algorithmic iterator, when this last feasibility check was performed (iterative 

procedure of §3.3). Thus, when a move m has to be examined regarding the loading constraints, the following 

steps are applied: we examine if the routes involved in Rm have been modified since the last time that the 

loading feasibility of m was examined. Note that this is straightforwardly implemented by associating a counter 

with each route corresponding to the algorithmic iterator, when this route was last modified. If the routes of Rm 

have remained unmodified, then the feasibility status of the examined move is directly retrieved from the binary 

flag contained in SMDm. Otherwise, the steps of Level 2 are performed. 
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Level 2. Loading feasibility examination of complete routes 

The second feasibility examination level is associated with the loading feasibility check of complete routes. 

Before we provide the tasks performed for examining the route loading feasibility, we present hashtable 

structures RH and RHL.  

Each entry of the RH and RHL hashtables corresponds to the loading feasibility status of a route. The key of each 

entry corresponds to the string representation of a given route. To prepare this representation, the IDs of 

customers visited by these routes are concatenated and separated by a standard character (i.e. ‘*’). For 

example, the string representation of the route depicted in Figure 1 is “1*3*2”. It is important to note that the 

sequence of customers remains as is. No sorting takes place, as the loading feasibility is determined for a given 

customer permutation (not combination). This is because each customer permutation defines a unique set of 

arcs for which the packing feasibility must be examined. The value of each entry corresponds to a binary flag 

indicating if this route has been found to be feasible or not. RH is responsible for storing the feasibility obtained 

by employing “strong” loading checks, whereas RHL is used to store feasibility information obtained by “light” 

loading checks. 

Although the RH and RHL hashtables are designed to record feasibility information obtained by different modes 

of the loading examination procedures, their contents must conform to the following rules: 

1. If a route is found to be feasible by any examination mode (strong or light), the corresponding 

information is kept in both RH and RHL 

2. If a route is found to be infeasible by the strong examination mode, the corresponding information is 

kept in both RH and RHL. 

We point out that if a route is declared infeasible by a light examination, the corresponding entry is recorded in 

RHL. To be consistent with rule (1), if this route is re-examined via the strong examination mode and is found to 

be feasible, the corresponding entry is pushed in RH. The relevant entry stored in RHL is updated by changing 

the binary flag from false to true. 

The second level for examining the feasibility of move m starts off by generating the string representation of the 

routes contained in Rm. Then, two cases are distinguished according to z(m): 

If z(m) < 0 (objective improving move), for each Rm route, we check if the corresponding entry is contained in RH. 

If such entries exist, the loading status of the Rm routes is retrieved directly from the corresponding hashtable 

values. If any route is found to be infeasible, move m is declared infeasible, whereas if all Rm routes are found to 

be feasible, move m is declared feasible. If for any Rm route, no relevant entry is contained in RH, then for this 

route, we have to evaluate the loading feasibility by moving to Level 3 and using the strong mode of loading 

examination.  

If z(m) ≥ 0 (objective augmenting move), for each Rm route, we retrieve the corresponding feasibility values 

contained in RHL, exactly as described for the RH hashtable. If for any Rm route, no relevant entry is contained in 

RHL, then for this route, we have to evaluate the loading feasibility by moving to Level 3 and using the light 

loading examination mode. 
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Level 3. Loading feasibility examination of the arcs traveled by a route 

The third loading feasibility level is related to the feasibility of the individual arcs contained in a route. Before we 

provide the tasks performed for examining the loading feasibility of route arcs, we present the hashtable 

structures AH and AHL.  

Each entry of the AH and AHL hashtables corresponds to the loading feasibility status of a given set of items. The 

key of each entry is a string which indirectly defines an item set. Under the 2L-SPD model, transported item sets 

are the union of some customers’ delivery items and some customers’ pick-up items. Let’s take a closer look at 

this: whenever a vehicle traverses an arc (i, j), it carries the pick-up demands of customer i and all of its 

predecessors, and the delivery items of customer j and all of its successors. Thus, under the 2L-SPD model, any 

transported set of items may be fully described by two customer sets: one associated with the pick-up and one 

associated with the delivery service. This is the basic idea for preparing the string representation of a given item 

set: Both sets are individually sorted according the customer IDs. Then for each set a string representation is 

straightforwardly prepared by using a standard separator character (i.e. ‘*’). These two strings are then 

concatenated (the delivery string is placed first) and separated by another character (i.e. ‘-’). The resulting string 

fully describes the item set carried along an arc. Under the aforementioned rationale and for the example case 

of Figure 1, the string representations of the four item sets are as follows: Arc (0,1): “1*2*3-”, Arc (1,3): “2*1-3”, 

Arc (3,2): “1-2*3” and Arc (2,0): “-1*2*3”. Regarding the sorting according to the customer IDs, this is applied 

because we are interested in the item combinations, so that the relative positioning of customers within the 

strings is irrelevant. The value of each AH and AHL entry corresponds to a binary flag indicating if the 

corresponding item set has been found to be feasible or not. AH is responsible for storing the feasibility 

obtained by employing the “strong” packing mode, while AHL is used to store feasibility information obtained by 

“light” packing checks.  

Despite the fact that AH and AHL are designed to record loading feasibility obtained by different modes of the 

packing heuristic, their contents must conform to the following rules: 

1. If for an item set, any packing heuristic mode (strong or light) generates a feasible loading pattern, the 

corresponding information is kept in both AH and AHL. 

2. If for an item set, the strong mode of the packing heuristic cannot generate a feasible packing 

arrangement, the corresponding information is kept in both AH and AHL. 

At this point, we note that if an item set is found infeasible by the light mode of the packing heuristic, the 

corresponding entry is recorded in AHL. If the same item set is re-examined by the strong examination mode 

and is found feasible, the corresponding entry is inserted in AH, whereas the corresponding entry in AHL is 

updated to indicate that the item set is feasible (entry value is set to true), to be consistent with rule (1). 

Let r be the route that must be evaluated in terms of the 2L-SPD loading feasibility. In addition, let Ar be the set 

of arcs traveled by route r. For each arc i ∈ Ar, let Si denote the set of transported items. In addition let  

	
 =	∑ (�� ∙ ��)	�∈��
 denote the total area of the item set Si.  

The procedure for evaluating the feasibility of a route r begins by sorting Ar in decreasing order of the total area 

of the corresponding item sets (ai). In addition, an empty set H is initialized. Then, arcs are selected one by one 
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and the following sequence of tasks is performed: Let i denote the selected arc. The string representation of the 

item set Si is generated. If the “weak” examination mode is performed, the procedure checks if the packing 

feasibility of Si is recorded in AHL. If this is the case, the packing feasibility is directly retrieved from AHL. If item 

set is found to be infeasible, the whole Level 3 procedure terminates by declaring route r infeasible. If no Si entry 

exists in AHL, arc i is pushed in the set H. Under the “strong” examination mode, the aforementioned steps are 

followed, but the loading feasibility information is retrieved from hashtable AH. 

If after this first arc pass, the H set is non-empty, this means that there are item sets whose loading feasibility 

could not been directly retrieved from the hashtable structures. For these arcs, the feasibility must be 

determined by the packing heuristic of Section 5. To do so, the H arcs are picked one-by-one in the order that 

they were pushed in H. Let i denote the selected arc. If the “weak” mode is used, then the heuristic of Section 5 

is employed for the item set Si using just a single packing attempt (μ = 1). On the contrary, if the “strong” mode 

is used, the heuristic is applied to the Si items by performing up to 1,000 packing attempts (μ = 1,000). Note that 

the aspect of the maximum number of packing attempts is clarified in Section 5, where the packing heuristic is 

described. Obviously, the obtained packing information is appropriately recorded in hashtables AHL and AH. In 

addition, if for any arc, no feasible packing arrangement is found, route r is declared infeasible and the loading 

examination is terminated. Otherwise, if for every H arc, feasible packing arrangements for the corresponding 

item sets are identified, route r is considered feasible. 

 

5. Examining the loading feasibility of an item set 

The core of the 2L-SPD loading feasibility investigation consists of constructing feasible two dimensional 

orthogonal packings for given item sets. As already stated, a feasible packing structure must be identified for 

every solution arc, thus the task of identifying feasible arrangements for given item sets is repeatedly executed 

within the overall 2L-SPD solution approach. For this reason, the proposed two-dimensional packing procedure 

(hereafter called packing heuristic) was mainly designed for computational speed. The basic characteristic of our 

two-dimensional packing heuristic is that a series of attempts for feasibly packing every item is performed. Each 

attempt successively inserts items in the vehicle loading space. The proposed two-dimensional packing heuristic 

is based on the procedure employed for the 2L-CVRP (Zachariadis et al., 2013) extended to consider additional 

loading positions, as will be thoroughly described. 

5.1. Availability of loading positions 

Each item can be inserted into a set of candidate loading positions. To designate these positions, we use a 

Cartesian coordinate system (w, l) defined by the edges of the loading surfaces. Let the origin of the axes (0, 0) 

corresponds to the backmost and leftmost position of the loading surface, whereas the vehicle loading door is 

defined by the linear segment originating at (0, L) and terminating at (W, L).  

The loading position set is updated according to the item insertions that take place, similarly to the extreme 

point procedure of Crainic et al. (2008). Specifically, when a packing attempt begins, the vehicle space is empty 

and the only loading position available is at position (0, 0). Each time an item is loaded into the surface, the 

corresponding insertion position is removed from the available position set. It is substituted by two loading 
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positions which are generated in the left-front and right-back corners of the inserted item. Some additional 

positions are generated by employing the four mechanisms depicted in Figure 2. The first three mechanisms 

were incorporated in our 2L-CVRP approach (Zachariadis et al., 2013), whereas the fourth mechanism extends 

this former method by offering additional placement positions. Briefly, the first mechanism applies the following 

rationale: when an item E is placed in a position, its right side is projected and a new position is created at the 

intersection of this projection with the nearest item placed behind E (position p3). Similarly, item’s E front edge 

is projected and a new position (p1) is created at the intersection of this projection with the nearest item placed 

on the left side of E. Regarding the second mechanism, when an item C is inserted, we look for already placed 

items lying on the front side of C whose right side projections intercept the front side of C (item E). New 

placement positions are created on the intersection of these projections with the front side of C. Similarly, under 

the third mechanism, we look for already placed items lying on the right side of the inserted item D whose front 

side projections intercept the right side of D (item E). New placement positions are created on the intersection 

of these projections with the right side of E. Regarding the fourth mechanism, it is based on the envelope 

approach (2D-CORNERS) introduced by Martello et al. (2000). It is used to define additional loading positions 

where the envelope of inserted items changes from vertical to horizontal. For the case depicted in Figure 2, the 

new position is located at the intersection of the right edge projection of item D and the front edge projection of 

item B. This position would be missed by the first three mechanisms. Loading positions generated according to 

the envelope-based mechanism can be of major importance, especially when few items of significant size 

(relatively to the L and W dimensions) must be packed into the loading surface. Note that the four mechanisms 

of creating loading positions may lead to duplicate insertions positions. These duplicate positions are avoided by 

appropriate checks. In addition, loading positions contained in the areas occupied by inserted items are 

removed from the set of available insertion positions, as they cannot accommodate subsequent items.  

5.2. Memory components for diversifying the packing arrangements 

As previously mentioned, the methodology for determining the loading feasibility of an item set performs a 

series of attempts to successively pack all items into the loading space. In general, these attempts should be 

aimed at building diverse packing arrangements to maximize the overall probability of obtaining a feasible 

complete loading pattern. To systematically promote the development of diverse patterns, we employ a 

memory mechanism for recording the frequency of encountered partial loadings. This memory component is 

implemented as a hashtable. The key of each hashtable entry encodes a specific packing arrangement, while the 

entry value gives the number of times that this arrangement has been developed through the packing heuristic. 

In terms of the hashtable keys, a straightforward procedure for mapping packing structures to strings has been 

followed. It extends the one presented in Zachariadis et al. (2013) by considering a binary flag to indicate if an 

item is rotated. Each string uses two standard separator characters: character ‘*’ separates individual item 

packing information, while character ‘-’ separates two distinct items. The general format of a string that encodes 

a packing of q items is (ID1*pw1*pl1*r1- … - IDq*pwq*plq*rq), where IDi (1 ≤ i ≤ q) denotes the unique identifier of 

the i-th inserted object, pwi and pli denote its placement coordinates (back left corner) and binary ri indicates if 

this item is rotated. The mapping between loadings and their string representation is depicted in Figure 3. When 

character ‘R’ is reported next to the item ID, this implies that the item is rotated. Note that Figure 3 illustrates 

the first packing attempt. This is why all hashtable values are set to 1. In subsequent packing attempts, if any of 

these partial packing patterns is re-encountered, the corresponding value will be augmented accordingly.  
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Figure 2. The mechanisms employed for updating the available loading positions 
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Figure 3. Hashtable Structures for recording the frequency of partial loading structures 

 

5.3. The procedure for examining an item set loading feasibility 

When the loading feasibility of an item set T has to be evaluated, the adopted packing heuristic performs a 

series of attempts for feasibly loading all items into the loading surface (Zachariadis et al., 2013). Each attempt is 

initiated by setting the set of available loading positions to {(0, 0)}. Then, an iterative procedure begins for 

successively inserting items into the loading surface. Each of these iterations consists of the four following steps: 

• Step 1 - Identification of the optimal item insertion 

• Step 2 - Insertion of the item in the selected position 

• Step 3 - Update the set of available loading positions 

• Step 4 - Update of the memory components used for recording the frequency of partial loadings 

In the following, we provide a brief description of each of these steps. This description makes use of the 

following notation: U denotes the non-loaded items, whereas P denotes the set of available loading positions. 

Set R corresponds to the set of rotation indices {0, 1}.  

Step 1 - Identification of the optimal item insertion 
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u(i, j, k) = TP(i, j, k) - λ ⋅ Μ ⋅  t(i, j, k) (1) 

 

where t(i, j, k) denotes the number of times that the partial loading to be generated, if item i is placed according 

to the rotation index j in position k, has been encountered through all attempts of the packing heuristic. This 

value is retrieved from the hashtable structure presented in §5.2.  In addition, λ is a binary parameter which 

controls the diversification of the packing arrangements, as will be discussed in the following and M is a large 

positive value. TP(i, j, k) denotes the total touching perimeter of item i with either already placed items or 

surface boundaries, if it is inserted in position k according to the rotation index j.  

The insertion triplet item i – rotation index j – position k which maximizes the utility function (1) is selected to be 

applied. The proposed utility function extends the one presented in our previous study (Zachariadis et al., 2013) 

by allowing item rotations. It is made up by two terms: The first term is directly associated with the Maximum 

Perimeter heuristic (Lodi et al., 1999). The second term is used to diversify the obtained loading arrangements at 

each loading attempt. Binary parameter λ is used to control this diversification effect. At each iteration, if λ = 0 

(probability d), the item-position pair is decided solely on the touching perimeter criterion. On the other hand, if 

λ = 1 (probability 1 - d), the item-position-rotation index triplet is decided according to the frequency of partial 

item arrangements. More specifically, the least frequent packing arrangements are promoted. Ties are broken 

with the use of the touching perimeter metric. Parameter d was fixed at 0.25, as preliminary experiments 

indicated that the packing heuristic has better chances of generating feasible loadings when diverse packing 

arrangements are explored. 

Step 2 - Insertion of the item in the selected position 

The selected item is removed from the set of non-loaded items U and inserted into the selected insertion 

position according to the selected rotation index. 

Step 3 - Managing the set of available loading positions 

Depending on the insertion implemented in the previous step, the set of available loading positions is modified 

according to the mechanisms presented in §5.1. 

Step 4 - Update of the memory components used for recording the frequency of partial loadings 

The hashtable structure presented in §5.2 is updated according to the partial loading pattern obtained after the 

item has been appropriately placed into the selected loading position. 

If during Step 1, for any item no feasible position is identified, this implies that the current packing attempt 

cannot produce a feasible loading arrangement. Thus, the present packing attempt is aborted, the loading 

surface is emptied and the next packing attempt is employed from the beginning. Of course, the hashtable 

structure remains unmodified, as all packing attempts are interconnected by the information stored in the 

hashtable.  

The overall packing heuristic is terminated in two distinct cases: If a complete feasible loading structure is 

identified, the examined item set T is declared feasible. Otherwise, if a maximum number of μ unproductive 
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loading attempts are performed, the heuristic terminates by declaring the examined item set Τ infeasible. As 

already stated in Section 4, the light mode of the packing heuristic employs just a single packing attempt (μ = 1), 

while under the strong heuristic mode, up to 1,000 packing attempts are performed (μ = 1,000). 

 

6. Methodological Modifications for the 2L-SPD with LIFO constraints 

To tackle the 2L-SPD model with LIFO constraints, we apply the master algorithmic framework presented in 

Section 3. Obviously, the altered loading constraints require some relevant modifications on the procedures for 

examining the feasibility of tentative moves and packing constraints for a given item set, which are presented in 

Sections 4 and 5, respectively. The basic rationale of the heuristic procedure designed to deal with the LIFO 

version of the 2L-SPD is that the vehicle space is divided in two separate corridors (compartments): one for the 

delivery and one for the pick-up items. Within each of these compartments feasible loading structures must be 

determined taking into account the LIFO requirements of the problem. 

6.1. Loading feasibility examination of local search moves for the LIFO version 

The first two levels of feasibility investigation are performed exactly as described for the basic 2L-SPD version. 

The third level is completely modified as a result of the different loading constraints. More specifically, for a 

given route rt, we need to determine one feasible loading arrangement for the delivery items and one for the 

pick-up items of this route. Let Crt denote the set of customers contained in route rt. In addition, let Drt = 

⋃ �

∈���
 and Prt = ⋃ �

∈���

 denote the delivery, and pick-up items carried along this route respectively. In 

addition, let D''rt be the subset of Drt items that are delivered before the first pick-up item is loaded onto the 

vehicle. Then, D'rt = Drt \ D''rt corresponds to the set of delivery items which will be onboard together with some 

pick-up items of the route. Analogously, let P''rt denote the pick-up items to be collected from the service points 

after the last delivery item of the route has been unloaded.  P'rt = Prt \ P''rt is the set of pick-up items that co-

travel with some of the delivery items of D'rt. 

As already stated, the proposed procedure for investigating the loading feasibility for the LIFO 2L-SPD version is 

aimed at loading the delivery and pick-up items in two distinct corridors of the vehicle loading surface. These 

corridors are formed by means of a separating line parallel to the L dimension of the loading surface. Precisely, 

the delivery corridor is defined as the rectangular area embraced by boundary points (0, 0), (WD, 0), (WD, L) and 

(0, L). Consequently the pick-up corridor corresponds to the remaining loading surface area, defined by points 

(WD, 0), (W, 0), (W, L) and (WD, L). To calculate WD, or in other words the width of the corridor dedicated for the 

delivery items, we use the following steps. Firstly, we calculate λD = ∑ (�� ∙ ��)	/	�∈���
∑ (�� ∙ ��)�∈���∪���

.  In 

addition, we compute  ��
�
� =  	!�∈���

" {��} and ��
�
� =  	!�∈���

" {��}. These dimensions correspond to the 

absolute minimal width required for accommodating the delivery and pick-up items, respectively. Note that if 

rotations are allowed, these dimensions are obtained as  ��
�
� =  	!�∈���

" { %�	(��, ��)}  and��
�
� =

 	!�∈���
" { %�	(��, ��)}, respectively. Four cases may arise: if 	��
�

� +��
�
� > ) , the examined route is 

declared infeasible. If *�) ≥ ��
�
�  and (1 − *�)) ≥ ��
�

� , then )� ← *�) . If *�) < ��
�
� , then 

)� ← ��
�
� . Otherwise (if (1 − *�)) < ��
�

� ), )� ← ) −��
�
� . After the delivery and pick-up corridors have 

been defined, the method tries to feasibly load all delivery and pick-up items in the vehicle. More specifically, for 
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the delivery items, the proposed feasibility procedure employs the following tests: The loading feasibility of 

packing the Drt items in the delivery corridor is examined with the use of the packing heuristic method presented 

in Section 5. If the Drt items cannot be feasibly placed in the delivery corridor, the method tries to accommodate 

the D'rt items in the delivery corridor and the D''rt items in the pick-up corridor via the packing heuristic. If no 

feasible loading arrangement is identified, route rt is declared feasible. If all delivery items are feasibly loaded 

onto the vehicle, then the method precedes by examining the loading feasibility of the pick-up items. More 

specifically, the packing heuristic is applied to feasibly load all Prt items onto the pick-up corridor. If no feasible 

loading structure can be obtained, the method tries to load the items of P'rt onto the pick-up corridor of the 

loading surface and the items of P''rt onto the delivery corridor. If both items sets are feasibly packed, then route 

rt is deemed feasible. Otherwise, route rt is considered infeasible. Note that under the LIFO version of 2L-SPD, 

the employed packing heuristic corresponds to the one presented in Section 5, modified for tackling the LIFO 

requirements. These methodological modifications are discussed in the next paragraph. 

6.2. Examining the loading feasibility of an item set under the LIFO version of 2L-SPD 

The packing heuristic used for examining the loading feasibility for a given item set employs the same rationale, 

as presented in Section 5. However, it is slightly modified, in terms of Step 1. More specifically, the heuristic is 

tuned to ensure that the LIFO constraints are effectively tackled. This means that when the set of delivery items 

are packed, the items that are unloaded first should be placed near the unloading door, whereas the pick-up 

items that are collected early on the route should be pushed back onto the loading space. To do so, the utility 

function (1) employed for selecting the box - placement position – rotation index triplet is modified as follows: 

u(i, j, k) = TP(i, j, k) - λ ⋅ Μ1 ⋅ t(i, j, k) + Μ2⋅  vi . (2) 

 

Note that (2) augments (1) by the term Μ2 ⋅ vi, where Μ2 is a large positive value for which Μ1 >> Μ2 and vi is the 

visit order of item i. If delivery items are packed, vi corresponds to the position of the customer associated with 

item i in the route involved. On the contrary, if the packing heuristic is applied for pick-up items, vi is set equal to 

the opposite customer position in the route. This is because, for the delivery items, items unloaded late on the 

route should be placed first (pushed back in the loading surface). The same applies for pick-up items collected 

early on the route. Obviously, a combination of placement position and rotation status is considered feasible for 

an item, only if the LIFO constraints f.4 and f.5 introduced in §2.2 are satisfied. 

 

7. Computational Results 

The proposed solution approach was tested on new 2L-SPD instances which were derived from the well-known 

2L-CVRP benchmark problems. Due to the fact that this is the first time that an algorithmic solution is applied to 

2L-SPD, we have also performed additional experiments on the 2L-CVRP and VRPSPD models. These 

experiments are aimed at building confidence on the reliability and effectiveness of our revised routing and 

packing components. 
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All experiments were executed on a computer system equipped with an Intel Xeon E5-2650 v2 (2.6 GHz) 

processor and 16 GB of RAM. The 2L-SPD methodology, hereafter referred to as LS-2LSPD, was implemented in 

C# and ran as a single core process. All 2L-SPD test instances and relevant analytic solutions are available at 

http://users.ntua.gr/ezach/. 

7.1. 2L-SPD benchmark instances 

The new 2L-SPD instances were derived from the 2L-CVRP test cases introduced by Gendreau et al. (2008). They 

involve 36 graphs consisting from 15 up to 255 customers. For each of these graphs, four classes (Classes 2-5) of 

item characteristics are considered. The higher the class index, the more and smaller items are involved in the 

benchmark instance.  

To derive the new 2L-SPD instances the following rationale was used: Each item of the original 2L-CVRP instance 

was randomly designated as a delivery or a pick-up item. To promote the generation of challenging 2L-SPD 

instances, we used a 50/50 probability. This implies that comparable pick-up and delivery quantities are 

transported, so that the utilization of the vehicle space stays high along the vehicle routes which in turn makes 

more difficult to examine the 2L-SPD solution feasibility. In terms of the one-dimensional delivery and pick-up 

weight attribute, we used the following rule: let qi denote the original delivery weight attribute for each 

customer i ∈ N in the original instances. In addition, let 	0
 = ∑ (�� ∙ ��)�∈��
 and 	
 = ∑ (�� ∙ ��)�∈��∪��

 denote 

the total area of the delivery items and the total area of both the pick-up and delivery items of customer i ∈ N, 

respectively. The original weight attribute qi was translated to a couple of attributes  0
 = ‖(	0
 	
)⁄ ∙ 3
‖	 and 

	4
 = 3
 − 0
, representing the total weight of the delivery and pick-up items of customer i ∈ N, respectively. 

Table A.1 provides a summary of the new 2L-SPD instances. 

7.2. 2L-SPD benchmark instances for the LIFO version  

An additional class of new test problems were constructed and solved for the LIFO version of the 2L-SPD model. 

They are derived from the 2L-SPD instances of Classes 4-5 with up to 100 customers. Some necessary changes 

were made on the item sets, the one-dimensional delivery and pick-up order levels, as well as the characteristics 

of the available vehicle fleets, to ensure that the resulting test cases are both feasible and not trivial. The 

complete characteristics of these instances are reported in Table A.2.  

7.3. Computational Results on the 2L-CVRP model 

As already mentioned, the 2L-CVRP model was solved to gain insight on the effectiveness of our revised routing 

and packing components. More specifically, we examined: The Oriented configuration (2|UO|L), which 

considers that items must be placed with their l- and w- dimensions parallel to the L- and W- dimensions of the 

loading space, the Rotations configuration (2|UR|L), which considers that items may be rotated by 90°.  

7.3.1. Results on the 2|UO|L configuration of 2L-CVRP  

Each of the 144 instances was solved 10 times. The obtained results for each instance are summarized in Table 

A.3. More specifically, for each instance, we report the average and best solution score over the ten runs, the 

average computational time for obtaining the final solutions of the ten runs and the percent gap between our 

best and average solution scores. The proposed method exhibits a rather robust performance: the average 
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percent gaps between our best and average scores over the ten runs are limited to 0.45%, 0.36%, 0.34% and 

0.27% for Classes 2, 3, 4 and 5, respectively. In general, the larger the scale of the instances, the higher the 

percent gaps observed. More specifically, the highest gaps for Classes 2, 3, 4 and 5 were observed for instances 

33 (1.48%), 29 (2.16%), 28 (1.42%) and 29 (0.92%), respectively. Concerning the average CPU time required for 

obtaining the final solution of each of the ten runs, they averaged from 316.7 sec for Class 2 up to 409.8 for 

Class 5. This is because the higher the Class index, the greater the number of items involved in the test problems 

and thus the more computational time is spent for running the packing heuristic procedure. The computational 

times required by the proposed solution approach are deemed acceptable, jointly taking into account the 

complexity of the examined model, the large scale of the test instances and the high-quality solutions produced. 

Table A.4 provides the best known solution score (BKS) and the percent gap between our best and the BKS 

value. We note that the BKS scores are taken by the works of Duhamel et al. (2011), Leung et al. (2011), 

Zachariadis et al. (2013), Dominguez (2014) and Wei et al. (2015). Our method produced solutions of fine 

quality. In total, 12 new best solutions were generated (four for Class 2, six for Class 3, two for Class 4). In 

addition, our method matched the best solution scores for 56 test cases (16 for Class 2, 14 for Class 3, 13 for 

Class 4 and 13 for Class 5). Note that some minor reported discrepancies (±0.01) on the reported solution scores 

may be caused by different rounding schemes. On average, our solution scores are just 0.21% higher than the 

BKS scores (0.08% for Class 2, 0.12% for Class 3, 0.30% for Class 4 and 0.36% for Class 5). 

Table 1. Comparison of the best performing algorithms for the 2|UO|L version of 2L-CVRP 

  GRASP  PRMP  VNS  LS-2LSPD  AVG  BST 

Instance  bst avg  bst avg  bst avg  bst avg  gPRMP gVNS  gGRASP gPRMP gVNS 
1   282.66 -  281.23 281.23  281.23 281.23  281.23 281.23  0.00 0.00  -0.50 0.00 0.00 
2   339.26 -  339.26 339.35  339.26 339.26  339.26 339.26  -0.03 0.00  0.00 0.00 0.00 
3   376.32 -  376.32 376.32  376.32 376.32  376.32 376.32  0.00 0.00  0.00 0.00 0.00 
4   435.00 -  435.00 435.12  435.01 435.01  435.00 435.00  -0.03 0.00  0.00 0.00 0.00 
5   379.03 -  379.03 379.03  379.03 379.03  379.03 379.03  0.00 0.00  0.00 0.00 0.00 
6   497.05 -  497.05 497.13  497.05 497.05  497.05 497.05  -0.02 0.00  0.00 0.00 0.00 
7   691.11 -  690.68 690.68  690.68 690.68  690.68 690.68  0.00 0.00  -0.06 0.00 0.00 
8   678.84 -  678.84 679.74  678.84 679.26  678.84 678.84  -0.13 -0.06  0.00 0.00 0.00 
9   612.01 -  612.01 612.84  612.01 612.01  612.01 612.01  -0.14 0.00  0.00 0.00 0.00 
10   675.79 -  676.75 676.75  674.92 675.38  676.73 676.73  0.00 0.20  0.14 0.00 0.27 
11   705.95 -  703.22 703.22  702.47 704.94  703.22 705.46  0.32 0.07  -0.39 0.00 0.11 
12   611.26 -  611.26 611.26  611.20 611.21  611.26 611.26  0.00 0.01  0.00 0.00 0.01 
13   2490.63 -  2491.18 2491.18  2484.16 2491.31  2491.18 2491.23  0.00 0.00  0.02 0.00 0.28 
14   984.42 -  975.88 979.29  975.07 976.33  974.76 975.54  -0.38 -0.08  -0.98 -0.11 -0.03 
15   1144.69 -  1132.91 1134.95  1128.60 1131.02  1130.36 1133.93  -0.09 0.26  -1.25 -0.22 0.16 
16   699.80 -  699.80 699.80  699.80 699.80  699.80 699.80  0.00 0.00  0.00 0.00 0.00 
17   864.06 -  864.06 864.62  864.06 864.06  864.06 864.21  -0.05 0.02  0.00 0.00 0.00 
18   1029.72 -  1031.95 1031.95  1027.98 1029.32  1030.98 1033.31  0.13 0.39  0.12 -0.09 0.29 
19   739.19 -  741.79 743.66  737.74 741.03  740.66 741.46  -0.30 0.06  0.20 -0.15 0.40 
20   522.69 -  515.44 517.53  515.92 517.02  512.84 514.75  -0.54 -0.44  -1.88 -0.50 -0.60 
21   994.58 -  992.78 998.75  991.63 993.74  992.33 997.55  -0.12 0.38  -0.23 -0.05 0.07 
22   1021.45 -  1023.02 1027.92  1019.03 1021.01  1018.08 1022.44  -0.53 0.14  -0.33 -0.48 -0.09 
23   1038.16 -  1032.36 1036.62  1030.40 1031.99  1031.44 1034.86  -0.17 0.28  -0.65 -0.09 0.10 
24   1107.94 -  1104.64 1109.00  1102.53 1103.23  1103.10 1107.81  -0.11 0.41  -0.44 -0.14 0.05 
25   1345.08 -  1341.26 1347.62  1333.76 1337.18  1334.33 1341.15  -0.48 0.30  -0.80 -0.52 0.04 
26   1317.41 -  1311.79 1320.11  1306.60 1309.85  1312.31 1315.06  -0.38 0.40  -0.39 0.04 0.44 
27   1323.54 -  1318.04 1322.34  1311.27 1314.47  1314.83 1320.61  -0.13 0.47  -0.66 -0.24 0.27 
28   2560.06 -  2530.46 2545.93  2519.35 2538.87  2518.14 2548.74  0.11 0.39  -1.64 -0.49 -0.05 
29   2191.46 -  2173.02 2194.69  2166.14 2170.47  2170.09 2198.76  0.19 1.30  -0.98 -0.13 0.18 
30   1775.45 -  1760.59 1766.02  1746.82 1753.78  1751.78 1765.16  -0.05 0.65  -1.33 -0.50 0.28 
31   2282.28 -  2244.13 2254.72  2227.79 2240.73  2232.15 2253.74  -0.04 0.58  -2.20 -0.53 0.20 
32   2233.27 -  2196.85 2208.16  2177.66 2190.15  2180.85 2204.18  -0.18 0.64  -2.35 -0.73 0.15 
33   2284.82 -  2261.68 2276.19  2239.91 2252.03  2247.51 2271.08  -0.22 0.85  -1.63 -0.63 0.34 
34   1191.13 -  1157.22 1161.62  1147.67 1153.78  1152.91 1162.09  0.04 0.72  -3.21 -0.37 0.46 
35   1435.23 -  1401.17 1409.01  1388.55 1396.35  1391.35 1400.58  -0.60 0.30  -3.06 -0.70 0.20 
36   1729.79 -  1669.44 1682.89  1656.00 1665.01  1651.34 1662.71  -1.20 -0.14  -4.54 -1.08 -0.28 

avg              -0.14 0.22  -0.81 -0.21 0.09 

time 
(min)  

24.2   14.2   14.5   6.2  
       

bst: best solution score over ten runs, avg: average solution score over ten runs. The bst and avg values are averages over Classes 2 – 5.  

AVG and BST column groups refer to percent gaps relatively to the avg and bst values, respectively. 

gGRASP = 100 (LS-2LSPD - GRASP)/GRASP, gPRMP = 100 (LS-2LSPD – PRMP)/PRMP, gVNS = 100 (LS-2LSPD – VNS)/VNS  
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Our algorithm scores (both best and average solution values) are compared to previously published 

methodologies in Table 1, where averaged values over Classes 2-5 are reported. The algorithms considered are: 

(1) the GRASP approach of Duhamel et al. (2011) – AMD Opteron (2.1 GHz), (2) the PRMP metaheuristic of 

Zachariadis et al. (2013) - Intel Core 2 Duo E6600 (2.4 GHz), and (3) the VNS method of Wei et al. (2015) - Intel 

Xeon E5430 (2.66 GHz). Note that the results of Dominguez et al. (2014) are not provided, because the authors 

have only solved a limited subset of the benchmark instances for the 2|UO|L configuration. We observe that our 

solution method exhibits a very competitive and robust performance. In terms of the average solution scores 

over ten runs, LS-2LSPD improves our previous metaheuristic (PRMP) by 0.14%, whereas the VNS methodology 

produces solution values which are on average 0.22% better than the LS-2L-SPD ones. Regarding the best 

solution values obtained over the ten algorithmic runs, LS-2LSPD improves both the GRASP and PRMP scores by 

0.81% and 0.21%, respectively. The VNS methodology produces slightly better best solutions (by 0.09% on 

average). Concerning the computational times, it is not our intention to perform a detailed comparison because 

the presented algorithms have been executed on very different conditions (processors, OS, RAM, programming 

languages etc.). Briefly and regarding the two most effective algorithms, LS-2LSPD and VNS appear to require 

comparable computational effort. The LS-2LSPD method generated the final solutions in shorter computational 

periods than the VNS method (LS-2LSPD: 6.2 min, VNS: 14.5 min). However, the LS-2LSPD runs were performed 

on a faster processor (LS-2LSPD: Intel Xeon E5-2650 v2 – 2.6 GHz, VNS: Intel Xeon E5430 - 2.66 GHz). 

 

7.3.2. Results on the 2|UR|L configuration of 2L-CVRP 

Each of the 144 instances was solved 10 times under the 2|UR|L configuration. The results are summarized in 

Table A.5. Our algorithm exhibits a rather stable performance, as the average gap between the best and average 

solution scores over the ten runs is limited to 0.33%, 0.39%, 0.38% and 0.34% for Classes 2, 3, 4 and 5, 

respectively. The computational times required for obtaining the final solution of each run are slightly increased 

compared to the configuration that does not accept item rotations. On average, the CPU time elapsed when the 

final solution of each run was generated is equal to 347.0 sec, 364.2 sec, 469.5 and 473.7 sec for Classes 2, 3, 4 

and 5, respectively. 

The best LS-2LSPD scores are compared against the best known solution values in Table A.6. We observe that LS-

2LSPD managed to match or improve the majority of the previously best known 2|UR|L solution scores. More 

specifically, our method improves 79 and matches 58 BKS scores, respectively. Note that some minor reported 

discrepancies (±0.01) may be caused by different rounding schemes. The average BKS improvement is equal to 

0.75% (Class 2: 0.42%, Class 3: 0.72%, Class 4: 1.11%, Class 5: 0.75%), ranging up to a significant 4.67% for test 

problem 28 of Class 4. 

In addition, to compare our algorithm with previously published methods for cases where item rotations are 

allowed, we provide Table 2. Our method is compared against the Ant Colony Optimization (ACO) algorithm of 

Fuellerer et al. (2009) and the multi-start biased-randomized (MS-BR) method of Dominguez et al. (2014). The 

ACO values are available at http://prolog.univie.ac.at/research/VRPandBPP/. They were obtained by the 3-hr 

ACO run which was executed on an Intel Pentium IV, 3.2 GHz. The MS-BR algorithm was executed on an Intel 

Core 2 (2.4 GHz) processor. The scores are reported in the article Dominguez et al. (2014). Regarding the 

average solution values over the ten runs, we see that the proposed method improves the ACO and MS-BR ones 
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by 1.42% and 0.77%, respectively. The same applies for the best solution values obtained after ten algorithmic 

runs: our methodology produces solutions which improve the ones generated by ACO and MS-BR by 1.39% and 

0.80% on average, respectively. As far as the computational times are concerned, no secure comparisons among 

the methods can be conducted, due to the completely different execution conditions. Briefly, the MS-BR 

appears to be the fastest method. Although MS-BR was executed on a slower processor than the one used for 

the LS-2LPD algorithm, the average time elapsed for obtaining the final solutions is almost half the time required 

by LS-2LPD (MS-BR: 3.6 min, LS-2LPD: 6.9 min). Regarding the ACO method, it was executed on a much slower 

processor, however on average it appears to require almost ten times the time required by the MS-BR method 

(MS-BR: 3.6 min, ACO: 37.0 min). 

 

Table 2. Comparison of the best performing algorithms for the 2|UR|L version of 2L-CVRP 

  ACO  MS-BR  LS-2LSPD  BST  AVG 
Instance  bst avg  bst avg  bst avg  gACO gMS-BR  gACO gMS-BR 

1   281.16 281.26  280.84 281.14  281.13 281.13  -0.01 0.10  -0.05 -0.01 
2   341.02 341.02  339.26 339.26  339.26 339.26  -0.52 0.00  -0.52 0.00 
3   372.93 374.35  370.62 371.59  372.86 372.86  -0.02 0.60  -0.40 0.34 
4   435.00 435.01  435.00 435.00  435.01 435.00  0.00 0.00  0.00 0.00 
5   378.60 378.60  378.59 378.59  378.60 378.59  0.00 0.00  0.00 0.00 
6   497.05 497.10  497.05 497.05  497.05 497.05  0.00 0.00  -0.01 0.00 
7   688.50 688.50  681.00 681.00  681.00 681.00  -1.09 0.00  -1.09 0.00 
8   678.75 679.09  675.46 676.51  675.46 676.49  -0.49 0.00  -0.38 0.00 
9   612.02 612.19  612.01 612.01  612.01 612.01  0.00 0.00  -0.03 0.00 
10   671.00 673.20  667.65 668.68  660.22 660.62  -1.61 -1.11  -1.87 -1.21 
11   698.25 702.46  690.56 693.19  690.98 690.98  -1.04 0.06  -1.63 -0.32 
12   611.12 613.11  611.06 611.54  610.06 611.06  -0.17 -0.16  -0.33 -0.08 
13   2468.19 2468.49  2437.15 2446.34  2428.87 2428.87  -1.59 -0.34  -1.61 -0.71 
14   974.81 980.78  968.55 975.90  964.39 965.56  -1.07 -0.43  -1.55 -1.06 
15   1132.49 1143.07  1112.00 1123.13  1110.60 1111.79  -1.93 -0.13  -2.74 -1.01 
16   699.80 699.79  699.80 699.80  699.80 699.80  0.00 0.00  0.00 0.00 
17   862.37 862.69  861.79 861.85  861.79 861.80  -0.07 0.00  -0.10 -0.01 
18   1012.20 1013.32  999.22 1004.90  1002.63 1002.92  -0.94 0.34  -1.03 -0.20 
19   726.96 730.17  722.17 724.38  715.79 719.09  -1.54 -0.88  -1.52 -0.73 
20   508.69 509.93  501.90 504.80  500.95 501.11  -1.52 -0.19  -1.73 -0.73 
21   989.24 994.16  977.03 983.31  969.82 973.51  -1.96 -0.74  -2.08 -1.00 
22   1008.52 1011.82  1001.75 1004.02  998.67 1000.99  -0.98 -0.31  -1.07 -0.30 
23   1024.25 1030.88  1011.19 1014.45  1002.79 1005.70  -2.10 -0.83  -2.44 -0.86 
24   1098.60 1103.07  1092.90 1095.09  1083.72 1089.03  -1.35 -0.84  -1.27 -0.55 
25   1323.84 1331.31  1320.27 1325.79  1299.68 1306.44  -1.82 -1.56  -1.87 -1.46 
26   1314.34 1320.57  1302.52 1310.99  1289.84 1299.77  -1.86 -0.97  -1.58 -0.86 
27   1309.76 1316.31  1304.14 1307.82  1281.28 1292.31  -2.17 -1.75  -1.82 -1.19 
28   2526.81 2561.56  2518.51 2525.12  2457.50 2480.36  -2.74 -2.42  -3.17 -1.77 
29   2175.33 2188.84  2161.43 2166.34  2128.75 2159.21  -2.14 -1.51  -1.35 -0.33 
30   1742.15 1756.13  1742.01 1747.21  1707.66 1719.76  -1.98 -1.97  -2.07 -1.57 
31   2227.74 2240.44  2204.44 2221.54  2164.38 2180.97  -2.84 -1.82  -2.65 -1.83 
32   2180.18 2193.73  2167.61 2179.89  2127.70 2147.19  -2.41 -1.84  -2.12 -1.50 
33   2239.04 2251.86  2222.42 2232.53  2185.14 2206.30  -2.41 -1.68  -2.02 -1.17 
34   1149.87 1157.32  1142.25 1149.95  1117.18 1127.24  -2.84 -2.19  -2.60 -1.97 
35   1387.45 1393.37  1392.05 1399.92  1349.66 1360.29  -2.72 -3.05  -2.37 -2.83 
36   1670.67 1682.00  1653.05 1662.05  1599.28 1612.53  -4.27 -3.25  -4.13 -2.98 

avg           -1.39 -0.80  -1.42 -0.77 

time 
(min) 

 37.0   3.6   6.9        

bst: best solution score over ten runs, avg: average solution score over ten runs. The bst and avg values are averages over Classes 2 – 5.  

AVG and BST column groups refer to percent gaps relatively to the avg and bst values, respectively. 

gACO: 100 (LS-2LSPD - ACO)/ACO, gMS-BR: 100 (LS-LD – MS-BR)/MS-BR 

 

7.4. Computational Results on the VRPSPD model 

To further examine the effectiveness of the employed local-search operators, we have applied LS-2LSPD on the 

well-studied VRPSPD instances of Tang-Montanè & Galvão (2006). These instances can be regarded a special 

case of 2L-SPD instances for which the loading constraints are always satisfied. Specifically, we have solved the 

instance set involving up to 200 customers. The average and best results after ten executions of our algorithm 

are reported in Table 3. Moreover, Table 3 compares our best scores against the best known solutions published 
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for these instances. Our algorithm exhibited a very stable behavior: the percent gaps between the average and 

best solution scores for each instance ranged up to 0.78%. In addition, it managed to match five out of the 12 

best known solution scores (taken from Subramanian et al. (2013b)). The average gap between our best and the 

best known solution scores was limited to 0.18%. Bearing in mind that our routing component was mainly 

designed for speed, in order to efficiently integrate the computationally expensive loading feasibility 

procedures, the performance of the LS-2LSPD method on the VRPSPD instances is satisfactory. 

Table 3. Computational Results on the VRPSPD model 

Instance n avg bst %avg  BKS %bst 

r101 100 1009.95 1009.95 0.00   1009.95 0.00 

r201 100 666.20 666.20 0.00   666.20 0.00 

c101 100 1220.99 1220.99 0.00   1220.18 0.07 

c201 100 662.07 662.07 0.00   662.07 0.00 

rc101 100 1059.32 1059.32 0.00   1059.32 0.00 

rc201 100 672.92 672.92 0.00   672.92 0.00 

R1_2_1 200 3399.93 3376.30 0.70   3353.80 0.67 

R2_2_1 200 1671.25 1666.09 0.31   1665.58 0.03 

C1_2_1 200 3657.14 3652.76 0.12   3628.51 0.67 

C2_2_1 200 1729.55 1728.34 0.07   1726.59 0.10 

RC1_2_1 200 3349.55 3323.56 0.78   3303.70 0.60 

RC2_2_1 200 1568.72 1560.51 0.53   1560.00 0.03 

average      0.21     0.18 

n: number of customers, avg: average objective score over ten runs, bst: best solution score obtained over ten runs, %avg: the percent gap between the bst and avg scores 

(=100(avg-bst)/bst), BKS: the best known solution score, %bst: the percent gap between the bst and BKS scores (=100(bst-BKS)/BKS). 

 

7.5. Computational Results on the 2L-SPD model 

We deal with two versions of the 2L-SPD model: the first one does not allow item rotations (2|O|SPD), whereas 

the second one considers that items may be rotated by 90° (2|R|SPD). 

7.5.1. Results on the 2|O|SPD version of the 2L-SPD model 

Each of the 144 2L-SPD benchmark instances reported in Table A.1 was solved 10 times. Items were assumed to 

be loaded with fixed orientation as dictated by the 2|O|SPD model version. The results obtained are 

summarized in Table 4. From the results obtained, we see that the proposed methodology was rather stable in 

terms of the quality of the solutions generated in each run. The percent gaps between the average and highest 

quality solution were limited to 1.39%, 1.17%, 1.14% and 1.04%, for Classes 2, 3, 4 and 5 respectively. Regarding 

the computational effort required, LS-2LSPD managed to obtain the final solution of each run in reasonable run 

times, taking into account both the challenging loading constraints of 2L-SPD and the rather large scale of the 

examined test cases. For Classes 2, 3 4 and 5 the average computational times ranged up to 101.9, 221.8, 196.5 

and 259.0 CPU minutes, respectively. As an overall comment, the computational effort strongly depends on the 

scale of the instance and on the total number of items per travelling arc. Moreover, it depends on the relation 

between the weight (1-d) and loading (2-d) constraints: the tighter the 1-d constraints (which are examined in 

constant time), the more routes declared weight infeasible, and thus the fewer routes to be examined by the 

time consuming loading feasibility procedures. Another factor which has a strong impact on the required 

computational effort is associated with the tightness of the loading constraints: the tighter the loading 

constraints, the more unproductive packing attempts are performed by the proposed heuristic (§5.3). 
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Table 4. Summary of the results obtained for the 2|O|SPD version of 2L-SPD  

Inst  Class 2  Class 3  Class 4  Class 5 

  bst avg t %g  bst avg t %g  bst avg t %g  bst avg t %g 

1  238.67 238.67 0.0 0.00  238.67 238.67 0.0 0.00  252.15 252.15 4.1 0.00  244.10 244.10 1.8 0.00 
2  266.80 266.80 0.0 0.00  270.97 270.97 0.0 0.00  240.78 240.78 9.7 0.00  238.64 238.64 4.5 0.00 
3  325.29 325.29 0.2 0.00  323.22 323.22 4.1 0.00  299.65 299.65 58.3 0.00  283.91 283.91 8.3 0.00 
4  353.21 353.21 0.2 0.00  312.91 312.91 5.6 0.00  358.69 358.69 8.4 0.00  290.91 290.91 7.2 0.00 
5  319.13 319.13 4.0 0.00  289.88 289.88 9.7 0.00  340.72 340.72 2.1 0.00  301.38 301.38 56.1 0.00 
6  340.64 340.64 3.1 0.00  339.71 339.71 42.0 0.00  374.84 374.84 0.8 0.00  289.88 289.88 33.6 0.00 
7  593.59 593.59 2.5 0.00  531.39 531.39 134.4 0.00  590.33 590.33 2.7 0.00  595.43 595.43 50.2 0.00 
8  621.55 621.55 4.8 0.00  614.34 614.34 2.6 0.00  588.74 588.74 6.0 0.00  554.14 554.14 190.6 0.00 
9  519.85 529.77 23.8 1.91  380.31 384.62 207.7 1.13  392.69 395.01 129.6 0.59  364.57 364.57 130.0 0.00 
10  545.44 545.44 143.5 0.00  534.30 534.30 8.0 0.00  537.47 537.49 263.3 0.01  543.90 543.90 97.4 0.00 
11  564.83 564.83 31.1 0.00  557.21 557.21 23.5 0.00  553.90 553.90 48.1 0.00  461.15 461.15 38.6 0.00 
12  441.82 441.82 18.3 0.00  365.71 365.71 144.1 0.00  433.15 433.15 71.2 0.00  370.39 370.39 241.6 0.00 
13  2090.57 2090.57 6.0 0.00  2000.80 2000.80 66.3 0.00  2113.89 2120.95 648.2 0.33  1968.93 1985.38 885.9 0.84 
14  695.88 695.88 974.4 0.00  688.65 688.65 435.2 0.00  682.20 682.20 13.1 0.00  680.69 680.69 20.0 0.00 
15  693.00 693.00 941.3 0.00  708.28 721.76 883.1 1.90  811.76 824.21 125.6 1.53  818.96 818.96 542.4 0.00 
16  518.41 518.41 35.9 0.00  424.95 424.95 76.7 0.00  442.75 445.58 423.4 0.64  414.02 414.02 123.5 0.00 
17  465.67 465.67 79.0 0.00  438.22 438.99 587.7 0.18  469.97 470.01 485.7 0.01  414.33 416.56 684.6 0.54 
18  790.78 802.58 5630.8 1.49  796.70 797.15 379.3 0.06  881.94 886.97 1619.7 0.57  749.49 750.40 871.7 0.12 
19  572.61 585.84 2413.6 2.31  570.90 572.63 274.9 0.30  574.72 577.00 2159.7 0.40  500.39 501.64 6090.6 0.25 
20  363.01 365.02 863.7 0.55  350.87 352.13 1163.8 0.36  374.09 374.83 1070.4 0.20  326.34 328.22 3640.6 0.58 
21  748.99 750.08 928.3 0.15  802.08 805.13 533.7 0.38  732.68 745.26 550.7 1.72  674.92 684.79 5089.0 1.46 
22  776.03 793.13 2801.1 2.20  768.71 784.93 2493.5 2.11  775.10 782.55 1762.5 0.96  697.32 701.54 3375.6 0.60 
23  776.75 794.49 1334.5 2.28  776.69 789.39 1242.8 1.64  768.40 785.48 1900.4 2.22  705.21 708.30 4833.5 0.44 
24  863.22 874.01 969.4 1.25  793.29 814.08 1374.0 2.62  809.93 818.49 1531.9 1.06  768.26 773.48 680.8 0.68 
25  997.39 1009.23 4040.1 1.19  962.60 980.83 2034.3 1.89  978.61 992.83 3700.4 1.45  932.30 943.16 1710.4 1.17 
26  923.44 942.22 2144.4 2.03  894.47 912.64 1197.5 2.03  961.67 970.19 1150.3 0.89  820.32 827.44 2985.3 0.87 
27  950.19 984.68 2399.4 3.63  972.03 995.79 2446.5 2.44  959.36 1000.70 7621.4 4.31  880.34 903.01 8650.9 2.57 
28  1734.38 1801.79 5603.4 3.89  1732.61 1812.25 2586.1 4.60  1611.32 1681.64 9936.8 4.36  1445.43 1522.87 9924.5 5.36 
29  1442.45 1528.46 5893.6 5.96  1425.99 1507.76 13308.1 5.73  1457.94 1535.83 11789.9 5.34  1460.64 1542.87 15539.9 5.63 
30  1252.24 1297.60 3712.9 3.62  1265.23 1292.04 3032.2 2.12  1240.26 1260.72 2798.0 1.65  1049.86 1081.51 5725.0 3.02 
31  1524.08 1596.65 3930.7 4.76  1518.89 1560.41 3043.3 2.73  1575.42 1624.96 3393.6 3.14  1365.49 1388.53 6816.5 1.69 
32  1527.37 1580.13 3629.2 3.45  1492.44 1525.01 3207.0 2.18  1506.75 1553.23 4167.5 3.08  1322.59 1370.44 7399.8 3.62 
33  1512.39 1570.78 2093.8 3.86  1539.63 1591.89 3266.7 3.39  1529.56 1581.49 3070.0 3.40  1378.72 1430.10 7958.2 3.73 
34  769.19 783.33 4921.7 1.84  793.21 811.60 4327.3 2.32  784.74 792.41 5172.9 0.98  691.84 697.69 8004.3 0.85 
35  901.41 915.08 3065.0 1.52  923.19 936.82 5472.1 1.48  960.54 975.52 7975.5 1.56  811.36 831.40 10124.4 2.47 
36  1028.41 1050.37 6114.0 2.14  1053.96 1058.46 11151.3 0.43  994.88 1002.94 8361.2 0.81  906.68 915.11 14647.6 0.93 
avg    1798.8 1.39    1810.1 1.17    2278.7 1.14    3532.9 1.04 

bst: the best solution score obtained over the ten runs, avg: the average solution score over the ten runs, t: the average computational time elapsed for obtaining the final solution over the ten 
runs (in CPU sec), %g: the percent deviation between our best and average scores (= 100(avg-bst)/bst) 

 

Table A.7 provides further details on the best solution obtained for each instance. More specifically, it reports 

the average and maximum loading area utilization of the solution arcs. In addition, another important metric is 

reported illustrating the tightness of the loading constraints: This is the ratio of the feasible routes to the total 

number of routes which were examined in terms of the loading constraints. This metric, denoted as T_RHL, has 

been obtained as the total number of true values contained in the hashtable RHL divided by the total RHL 

entries (of the run that yielded the best solution score). We see that the average loading area utilization over 

the solution arcs stays on significant levels: Class 2: 59.1%, Class 3: 66.9%, Class 4: 67.1%, and Class 5: 71.0%, 

whereas the maximum loading space utilization goes up to 89.8%, 93.4%, 93.8% and 96.0%, for Classes 2, 3, 4 

and 5, respectively. These high utilization levels indicate that our loading examination method is much effective 

and that the loading constraints of the 2L-SPD test-beds are challenging which in turn implies that they were 

appropriately designed to act as a performance comparison basis for 2L-SPD algorithms. Finally, the T_RHL ratios 

are widely distributed within [0, 100]. The T-RHL values ranged between [3.4%, 83.5%], [2.4%, 85.1%], [3.0%, 

86.1%] and [4.2%, 87.6%] for Classes 2, 3, 4 and 5, respectively. 

 

7.5.2. Results on the 2|R|SPD version of the 2L-SPD model 

Each of the 144 2L-SPD benchmark problems was solved 10 times under the 2|R|SPD version. The results 

obtained are summarized in Table 5. The proposed algorithm was again rather stable: the percent gaps between 
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the average and best solution score achieved for each instance averaged at 1.07%, 0.94%, 0.88% and 0.99% for 

Classes 2, 3, 4 and 5, respectively. These gaps are slightly lower than the ones observed for the fixed orientation 

version (Class 2: 1.39%, 1.17%, 1.14%, Class 5: 1.04%). This can be attributed to the fact that the relaxed loading 

constraints form a smoother solution space. The average computational time for obtaining the final solution of 

each run ranged up to 105.5, 133.2, 226.5 and 362.8 CPU minutes, for Classes 2, 3, 4 and 5, respectively. On 

average, the computational times for the 2|R|SPD version were lower than those recorded for the 2|O|SPD 

problem version. This can be attributed to the fact that the relaxation of the loading constraints reduced the 

number of unproductive calls to the packing heuristic method (see the increased values of the T-RHL column in 

Table A.8). 

Table 5. Summary of the results obtained for the 2|R|SPD version of 2L-SPD  

Inst  Class 2  Class 3  Class 4  Class 5 
  bst avg t %g  bst avg t %g  bst avg t %g  bst avg t %g 

1  238.67 238.67 1.7 0.00  238.67 238.67 2.1 0.00  251.32 251.32 4.5 0.00  244.10 244.10 4.2 0.00 
2  266.80 266.80 0.3 0.00  269.77 269.77 5.7 0.00  240.78 240.78 4.1 0.00  238.64 238.64 3.2 0.00 
3  305.47 305.47 2.8 0.00  312.61 312.61 10.7 0.00  299.65 299.65 22.8 0.00  283.91 283.91 22.5 0.00 
4  353.21 353.21 2.0 0.00  309.77 309.77 1.4 0.00  358.01 358.01 11.2 0.00  290.91 290.91 94.6 0.00 
5  317.94 317.94 6.5 0.00  289.88 289.88 8.6 0.00  340.72 340.72 12.4 0.00  289.88 289.88 30.1 0.00 
6  325.54 325.54 8.3 0.00  326.68 326.68 5.8 0.00  374.84 374.84 13.1 0.00  289.88 289.88 12.6 0.00 
7  588.74 588.74 6.7 0.00  503.34 503.34 4.8 0.00  588.88 588.88 59.4 0.00  595.43 595.43 19.1 0.00 
8  595.11 595.11 22.9 0.00  609.96 609.96 11.7 0.00  588.74 588.74 17.4 0.00  546.91 549.62 76.3 0.50 
9  510.27 523.56 6.6 2.60  375.38 375.38 171.4 0.00  380.73 380.73 219.6 0.00  364.57 364.57 20.4 0.00 
10  542.13 542.13 73.0 0.00  479.12 483.99 13.0 1.02  533.04 537.49 99.6 0.84  543.90 543.90 41.2 0.00 
11  558.02 558.02 43.5 0.00  556.46 556.46 48.7 0.00  552.23 552.37 77.1 0.03  461.15 461.15 19.5 0.00 
12  437.53 437.53 1.6 0.00  363.56 363.56 435.0 0.00  433.15 435.22 48.6 0.48  368.98 369.31 588.6 0.09 
13  2068.81 2078.12 142.4 0.45  1971.92 1971.92 72.2 0.00  2050.08 2065.67 377.0 0.76  1968.93 1968.93 614.1 0.00 
14  686.88 686.88 16.8 0.00  686.69 686.87 725.2 0.03  682.20 682.20 19.0 0.00  655.07 659.03 1080.3 0.60 
15  686.53 686.53 183.9 0.00  692.51 694.24 94.7 0.25  789.21 789.48 636.1 0.03  817.86 817.86 196.9 0.00 
16  518.41 520.53 22.0 0.41  419.55 420.06 115.5 0.12  442.75 443.14 239.3 0.09  414.02 414.02 437.5 0.00 
17  455.84 456.52 135.5 0.15  435.44 435.53 239.8 0.02  461.92 462.77 450.1 0.19  413.27 413.66 239.7 0.10 
18  782.35 782.79 934.2 0.06  776.84 778.63 282.6 0.23  864.79 871.15 1436.0 0.74  732.84 744.31 210.7 1.56 
19  544.60 547.07 928.7 0.45  562.95 563.85 381.6 0.16  565.54 565.56 1328.4 0.00  495.10 497.30 3292.2 0.45 
20  348.78 350.44 969.9 0.48  348.13 349.82 1066.9 0.48  365.06 365.43 1333.0 0.10  316.76 326.12 2328.6 2.95 
21  723.48 727.04 736.0 0.49  770.07 775.90 1211.3 0.76  719.54 726.70 764.3 0.99  668.91 678.28 2715.8 1.40 
22  737.58 739.04 1007.0 0.20  750.04 755.04 1442.1 0.67  772.20 776.36 1318.9 0.54  692.53 694.34 3631.1 0.26 
23  727.18 741.41 575.6 1.96  755.10 764.95 1409.1 1.31  757.06 760.95 2713.8 0.51  702.13 702.23 3610.7 0.01 
24  826.85 839.85 682.0 1.57  773.96 804.31 999.5 3.92  807.05 811.84 1486.8 0.59  767.39 771.44 962.6 0.53 
25  946.82 962.60 1573.2 1.67  936.84 962.11 3008.9 2.70  958.21 971.98 3829.2 1.44  932.30 942.18 958.7 1.06 
26  860.75 877.75 879.7 1.98  887.17 889.46 1487.2 0.26  919.26 924.01 2169.1 0.52  813.10 823.53 1880.5 1.28 
27  915.87 941.86 1307.8 2.84  955.16 966.12 2671.1 1.15  937.74 956.38 5743.1 1.99  876.90 890.88 4960.7 1.59 
28  1636.11 1715.23 3191.6 4.84  1646.17 1714.83 3475.4 4.17  1574.10 1653.99 5897.1 5.07  1410.59 1489.10 6689.0 5.57 
29  1376.34 1435.80 5689.6 4.32  1400.30 1469.30 6729.5 4.93  1444.90 1506.19 10154.2 4.24  1421.87 1502.47 14108.9 5.67 
30  1190.07 1211.45 2816.2 1.80  1219.56 1244.26 3096.1 2.03  1209.14 1227.25 5773.8 1.50  1035.35 1058.82 3947.3 2.27 
31  1475.13 1508.05 3077.7 2.23  1479.90 1511.82 2672.6 2.16  1531.47 1579.08 5466.4 3.11  1343.37 1364.13 5928.1 1.55 
32  1444.64 1495.24 2510.4 3.50  1438.81 1476.43 2700.3 2.61  1465.22 1499.76 6304.7 2.36  1311.35 1337.64 5828.1 2.00 
33  1443.18 1481.65 3112.0 2.67  1499.28 1532.34 2921.1 2.20  1498.63 1534.78 4886.7 2.41  1345.28 1373.10 6045.7 2.07 
34  735.76 743.06 3959.1 0.99  773.89 781.16 2485.2 0.94  765.13 773.50 5088.7 1.09  684.73 691.74 6573.5 1.02 
35  857.47 870.22 3795.9 1.49  893.43 905.31 3766.5 1.33  924.73 935.98 8185.5 1.22  798.29 814.12 8028.4 1.98 
36  977.71 991.64 6329.6 1.42  1012.00 1017.51 7993.8 0.54  969.51 979.48 13592.2 1.03  897.14 906.99 21768.9 1.10 
avg    1243.1 1.07    1438.0 0.94    2494.0 0.88    2971.4 0.99 

The notation of Table 4 is used 

 

To gain more insight on the solution structures obtained for the 2|R|SPD version of 2L-SPD, we provide Table 

A.8. It contains the average and maximal loading area utilization in the best solution of every test problem. We 

can see that the average loading area utilization for Classes 2, 3, 4 and 5 went up to 63.1%, 68.8%, 69.6% and 

71.6% respectively (for the 2|O|SPD version, the average utilization is: 59.1%, 66.9%, 67.1%, 71.0%, for Classes 

2, 3, 4 and 5, respectively). The same picture is seen for the maximal loading area utilization: for the 2|R|SPD 

version, it is equal to 93.2%, 96.9%, 96.5% and 97.7% for Classes 2,3, 4 and 5, respectively, while the 

corresponding values for the 2|O|SPD version are 89.8%, 93.4%, 93.8% and 96%.0. We can see that the 

relaxation of the loading constraint (rotations allowed) has a stronger impact for Class 2 which involves fewer 

and larger transported items. A final comment is related to the ratio of the routes found to be loading feasible 

compared to the total routes examined regarding the loading feasibility, denoted as T_RHL: we observe that for 



28 

 

the 2|R|SPD model version and for Classes 2, 3, 4 and 5 the T-RHL values go up to 34.5%, 32.2%, 31.3% and 

37.2%, respectively. For the 2|O|SPD version, the corresponding T_RHL averages are 28.5%, 27.4%, 28.2% and 

35.7%. Again, we conclude that allowing item rotation plays a more significant role for the test problems of 

Classes 2 and 3 which involve fewer and larger transported items. 

Table 6. Summary of the results obtained for the instances introduced for the LIFO version of 2L-SPD 

  Fixed Item Orientation  Item Rotations 

Instance  2|O|SPD-L  2|O|SPD    2|R|SPD-L  2|R|SPD   

  z k  z k  %g  z k  z k  %g 

L01-4  284.42 3  258.11 3  10.19  281.66 3  258.11 3  9.12 

L02-4  285.57 3  263.91 3  8.21  285.57 3  260.22 3  9.74 

L03-4  350.98 4  332.28 3  5.63  350.98 4  328.30 3  6.91 

L04-4  360.13 4  319.56 3  12.70  358.20 4  311.90 3  14.84 

L05-4  383.86 4  339.44 4  13.09  378.23 4  339.44 4  11.43 

L06-4  391.83 4  354.43 4  10.55  380.95 4  354.43 4  7.48 

L07-4  601.83 3  527.64 2  14.06  601.83 3  527.64 2  14.06 

L08-4  618.40 3  583.94 3  5.90  616.89 3  583.94 3  5.64 

L09-4  437.24 5  400.62 4  9.14  427.86 4  400.62 4  6.80 

L10-4  599.61 4  524.49 4  14.32  597.14 4  524.49 4  13.85 

L11-4  677.46 5  629.69 4  7.59  675.16 5  629.69 4  7.22 

L12-4  394.15 4  356.78 3  10.47  392.06 4  356.78 3  9.89 

L13-4  2311.91 4  2005.51 3  15.28  2246.00 4  2005.51 3  11.99 

L14-4  699.56 3  678.47 3  3.11  693.34 3  678.47 3  2.19 

L15-4  917.42 4  838.51 4  9.41  889.04 4  838.51 4  6.03 

L16-4  440.79 4  403.90 3  9.13  433.45 4  397.51 3  9.04 

L17-4  473.57 5  410.27 4  15.43  458.04 5  410.27 4  11.64 

L18-4  981.21 6  860.64 6  14.01  942.45 6  857.94 6  9.85 

L19-4  624.63 7  551.93 6  13.17  619.71 7  549.83 6  12.71 

L20-4  462.16 10  382.72 8  20.76  438.09 9  378.34 8  15.79 

L21-4  824.20 8  716.40 7  15.05  804.06 8  714.54 7  12.53 

L22-4  860.65 10  754.27 8  14.10  853.20 10  750.14 8  13.74 

L23-4  858.69 10  705.20 7  21.77  820.55 9  698.93 7  17.40 

L24-4  821.03 10  710.84 7  15.50  799.38 10  709.66 7  12.64 

L25-4  1073.55 13  900.47 9  19.22  1043.15 12  893.81 9  16.71 

L26-4  1077.06 13  824.22 10  30.68  1028.96 12  818.63 9  25.69 

L01-5  273.61 3  245.39 2  11.50  272.03 3  245.39 2  10.86 

L02-5  269.77 3  257.86 3  4.62  264.96 2  257.86 3  2.75 

L03-5  356.54 3  305.44 3  16.73  335.19 3  305.44 3  9.74 

L04-5  365.46 4  336.28 4  8.68  364.29 4  321.16 4  13.43 

L05-5  365.19 3  319.13 3  14.43  362.12 3  319.13 3  13.47 

L06-5  397.74 4  351.30 3  13.22  388.31 4  351.30 3  10.54 

L07-5  613.67 3  563.25 3  8.95  607.70 3  563.25 3  7.89 

L08-5  634.86 3  530.96 2  19.57  617.22 3  530.96 2  16.25 

L09-5  462.53 4  413.03 4  11.98  436.32 4  413.03 4  5.64 

L10-5  561.70 4  504.79 3  11.27  558.44 4  503.17 3  10.98 

L11-5  546.36 4  497.53 3  9.81  519.06 4  497.53 3  4.33 

L12-5  399.25 4  360.92 3  10.62  396.22 4  360.92 3  9.78 

L13-5  2301.19 5  2111.04 4  9.01  2285.59 4  2111.04 4  8.27 

L14-5  775.26 3  683.98 3  13.35  750.11 3  683.98 3  9.67 

L15-5  904.09 4  840.39 4  7.58  894.47 4  840.39 4  6.44 

L16-5  455.51 5  422.23 4  7.88  455.51 5  422.04 4  7.93 

L17-5  520.39 5  446.51 4  16.55  505.94 5  443.84 4  13.99 

L18-5  861.81 5  792.60 5  8.73  859.93 5  786.42 5  9.35 

L19-5  584.11 6  524.27 5  11.41  578.20 6  524.27 5  10.29 

L20-5  389.85 9  360.59 8  8.11  386.18 9  359.14 8  7.53 

L21-5  752.77 8  655.97 6  14.76  748.35 8  655.97 6  14.08 

L22-5  810.75 9  685.02 6  18.35  799.98 8  680.04 6  17.64 

L23-5  781.51 8  686.04 7  13.92  768.16 8  685.58 7  12.05 

L24-5  780.63 8  692.38 7  12.75  777.19 8  691.99 6  12.31 

L25-5  979.99 11  844.53 8  16.04  971.98 11  844.53 8  15.09 

L26-5  952.87 11  789.18 8  20.74  928.57 11  782.35 8  18.69 

avg   5.62   4.62  12.67   5.46   4.58  11.04 

CPU time 

(min) 

 
74.4   3.2     57.9   2.5    

z: best objective score obtained for each instance, k: number of vehicles used in the best solution, %g: the percent gap between the best scores obtained with and without the 

LIFO constraints (= 100 (LIFO – noLIFO) / LIFO) 
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7.6. Computational Results on the 2L-SPD model with LIFO constraints 

As already stated, we examine two LIFO 2L-SPD model configurations, depending on whether item rotations are 

allowed: 2|O|SPD-L (fixed orientation) and 2|R|SPD-L (rotations allowed). The benchmark instances introduced 

in §7.2 were solved under both the LIFO version of 2L-SPD and the basic 2L-SPD model, in order to gain insight 

on the impact of the LIFO constraints on the routing objective and the vehicle usage. Our algorithm was applied 

ten times on each instance. The analytic solutions for these runs are reported in Tables A.9 and A.10 for the 2L-

SPD with and without LIFO constraints, respectively. In Table 6, the best solution scores for each model are 

provided. We observe that the consideration of LIFO constraints significantly increases the routing costs and the 

number of vehicles used: on average, the routing objective is augmented by 12.67% when items are inserted 

with fixed orientation. This average gap is 11.04% when item rotations are allowed. In terms of the vehicle 

usage, the 2|O|SPD-L solutions require on average 5.62 routes, while under the 2|O|SPD configuration the 

average number of routes goes down to 4.62. For the 2|R|SPD-L and 2|R|SPD models, the average vehicle 

utilization is 5.46 and 4.58, respectively. The obtained results indicate that dropping the LIFO constraints from 

the basic 2L-SPD model can greatly reduce the routing costs involved. This can compensate for the extra effort 

required for the necessary item rearrangements. 

From Table 6, we observe that the best 2L-SPD solutions were generated in shorter computational times 

compared to the ones required for obtaining the best solutions for the LIFO version of the model. This 

observation is contrary to what one would expect: the basic 2L-SPD model requires the determination of 

feasible item packings for all travelled arcs, whereas under the 2L-SPD with LIFO constraints, only two packings 

have to be determined for each vehicle route (one for the pick-up and one for the delivery items). Obviously, the 

computational time required for the two model configurations depend on various parameters, such as the 

tightness of the constraints (which in turn have an effect on the unproductive packing attempts), the number of 

customers per route, the cardinality of the routes explored etc. However, to shed light on this unexpected 

finding, we have performed an experimental procedure to measure some of the crucial aspects that define the 

computational burden of our methodology. In specific and under both models, we have applied our algorithm 

for both models and item rotation configurations. The following metrics were recorded:  

(a) the number of times that the loading feasibility of a move had to be evaluated in terms of the loading 

constraints Fm,  

(b) the number of times that the loading feasibility of these moves was retrieved from the SMD instances 

Fsmd, 

(c) the number of loading feasibility examinations for complete routes Fr,  

(d) the number of times that the loading feasibility of complete routes was retrieved from the route 

hashtable structures Frh,  

(e) the number of loading feasibility examinations for individual arcs Fa,  

(f) the number of times that the loading feasibility of individual arcs were retrieved from the arc 

hashtables Fah, 

(g) the number of times that the packing heuristic was invoked Fp, 

(h) the number of times that the packing heuristic was successful on finding a feasible packing Fps. 
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Note that for the LIFO version 2L-SPD, when a route is checked in terms of the loading constraints up to two arcs 

have to be examined (the first route arc for the delivery items and the last route arc for the pick-up items), 

whereas for each arc up to three packing heuristic calls may be used (see §6.1). In addition, the arc hashtables 

are inapplicable. 

The contents of Tables A.11 and A.12 reveal that the basic 2L-SPD model was solved more efficiently compared 

to the LIFO variant because the LIFO variant has considerably tighter constraints. This fact causes the following: 

since our local search applies the best feasible move, more tentative moves have to be evaluated regarding the 

loading aspects (Zachariadis and Kiranoudis, 2010). On average, the 2L-SPD model with LIFO constraints requires 

the evaluation of 11.3 times more moves compared to the basic 2L-SPD model, for the fixed item orientation. 

When item rotations are allowed, 9.9 times more moves are investigated. This implies that more routes have to 

be examined under the LIFO version of 2L-SPD. On average, under 2|O|SPD-L, 6.3 times more routes have to be 

examined compared to the 2|O|SPD case. When item rotations are allowed, the consideration of LIFO 

constraints requires the examination of 5.5 times more routes. This picture changes in terms of the necessary 

checks for the individual arcs: the LIFO version requires 1.1 and 0.9 times the number of checks required for the 

fixed and non-fixed item orientation version of 2L-SPD, respectively. This is because the LIFO version requires at 

most two arc checks per route, whereas the basic 2L-SPD model requires that all route arcs are examined. 

However, the filtering effect of the arc hashtables (strengthened by the fact that no LIFO constraints are 

imposed which causes each customer pick-up and delivery combination to be associated with only one feasibility 

status) has a major impact, as 79.6% (80.4%) of the arc feasibility checks are completed by accessing the 

corresponding arc hashtables for the fixed orientation (for the rotations configuration). As a result, the calls to 

the packing heuristic are considerably greater in number under the LIFO version: 9.8 times greater for 2|O|SPD-

L and 7.6 times greater for 2|R|SPD-L. Furthermore, due to the tighter nature of the LIFO constraints, the 

packing heuristic method exhibits a rather low percentage of successful applications. On average, 54.2% and 

57.5% packing heuristic runs are successful for the 2|O|SPD-L and 2|R|SPD-L versions, respectively. These 

success rates are almost doubled for the non-LIFO model (2|O|SPD: 94.2%, 2|R|SPD: 96.2%). This implies that 

for the tighter LIFO version, the overall method applies more packing attempts for identifying feasible loading 

structures which in practice determines the total computational time required. 

 

8. Conclusions 

The present paper introduces the Vehicle Routing Problem with Simultaneous Pick-Ups and Deliveries and Two-

Dimensional Loading Constraints (2L-SPD). The main characteristic of the examined problem is that customers 

require both delivery and pick-up transportation service. The transported products/materials correspond to 

rectangular items which cannot be stacked in the vehicle loading spaces. The 2L-SPD model belongs to the 

integrated vehicle routing and packing problems which jointly call for the minimization of the routing costs and 

the determination of feasible loading patterns for the transported products. The characteristic of simultaneous 

pick-up and delivery service makes the loading feasibility investigation a very challenging task: along their trips, 

vehicles carry different item sets, so that feasible loading patterns must be identified for each of these item sets, 

or in other words, for each of the arcs traversed. Thus, the 2L-SPD model generalizes the Vehicle Routing 

Problem with Two Dimensional Loading Constraints (2L-CVRP) (Gendreau et al., 2008) which calls for the 
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determination of feasible loading patterns only for the fully loaded depot-leaving arcs. Except for the basic 2L-

SPD version, we introduce the 2L-SPD with LIFO constraints. Contrary to the basic 2L-SPD model, under the LIFO 

variant, item re-arrangements along the vehicle trips are not allowed. 

To solve both versions of the examined model, we have designed a new 2L-SPD solution approach. The basic 

algorithmic ingredients are a local search method for optimizing the routing aspects and a two-dimensional 

packing heuristic for generating feasible loading structures for the transported items. Both algorithmic 

components are extensions of our previous work on the 2L-CVRP model (Zachariadis et al., 2013). They have 

been integrated into a 2L-SPD solution framework which makes use of loading feasibility memory strategies 

specifically designed for the 2L-SPD, in order to drastically reduce the required computational effort.  

To test the effectiveness of our solution approach, we have conducted a series of runs on the 2L-CVRP and 

VRPSPD models. Fine quality results are obtained, improving and matching several best known solution scores. 

In addition, our algorithm was applied to a series of newly constructed 2L-SPD benchmark instances. The 

obtained results indicate that our method is stable and capable of achieving very high utilization of the vehicle 

loading spaces. Moreover, the computational times required by our algorithm can be deemed reasonable, 

taking into account both the great complexity of the examined problem and the large scale of the benchmark 

problems used in our experiments. 

In terms of further work in the area of composite routing and packing problems, we point out two interesting 

research directions. The first one is the introduction and examination of routing problems integrated with 

loading constraints that apart from minimizing the routing costs, will call for the maximization of the transported 

items. In other words, the loading requirements will not be regarded as a hard constraint of the underlying 

model, but rather as a soft constraint aimed at maximizing the items loaded onto the vehicle spaces, just like in 

the case of knapsack problems. Another interesting research direction is the detailed examination of the cargo 

handling (loading/unloading/rearrangement) activities that must take place at each service location. Models 

which will associate the packing arrangements of items with the required time for such activities should be 

developed. Then, a maximum time for handling purposes could be integrated into the underlying model. In 

addition, this aspect could be incorporated into the objective function which could jointly call for the 

minimization of the total travel time and the required cargo handling time.  
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Appendix A 

Table A.1. The 2L-SPD benchmark instances 

   Class 2  Class 3  Class 4  Class 5 

Inst n  d p k %d %p  d p k %d %p  d p k %d %p  d p k %d %p 

1 15  13 11 2 58 60  19 12 2 78 44  19 18 2 78 62  18 27 2 45 76 

2 15  11 14 3 38 49  14 17 3 44 54  23 17 2 74 59  31 17 2 59 39 

3 20  13 16 3 56 57  25 21 3 73 55  20 24 2 75 80  29 20 2 82 53 

4 20  20 12 4 56 30  26 17 3 67 49  25 25 4 46 49  29 33 2 67 73 

5 21  10 21 3 32 65  18 19 2 68 83  30 11 3 79 22  25 32 2 53 79 

6 21  12 21 3 42 66  19 21 3 58 68  26 31 4 46 62  27 29 2 60 79 

7 22  18 14 3 69 49  20 21 2 80 86  28 23 3 62 50  36 19 3 66 31 

8 22  21 8 3 78 27  24 18 3 64 54  21 27 3 55 59  24 28 2 56 57 

9 25  23 17 4 67 47  34 27 3 89 74  35 28 4 69 51  46 45 3 76 66 

10 29  22 21 3 72 75  23 26 3 60 72  27 45 4 48 79  36 50 3 62 85 

11 29  27 16 4 78 37  34 28 4 70 60  28 46 4 62 82  48 43 3 78 70 

12 30  26 24 5 56 56  27 29 3 78 76  37 45 5 55 63  55 46 4 71 60 

13 32  19 25 4 49 72  24 32 3 70 88  39 39 3 88 92  58 44 3 89 68 

14 32  25 22 3 81 71  32 25 3 82 71  24 41 3 63 79  46 41 3 69 62 

15 32  20 28 3 64 87  33 26 3 93 74  45 39 4 77 67  64 50 4 80 63 

16 35  27 29 6 43 59  37 37 5 64 61  46 47 5 67 73  53 61 4 58 76 

17 40  35 25 5 76 53  36 37 4 71 75  51 45 5 75 69  64 63 4 71 69 

18 44  29 37 4 71 90  39 48 5 65 85  47 65 5 67 88  52 70 4 61 85 

19 50  41 41 5 86 84  52 51 6 77 74  73 61 6 88 70  82 75 4 91 91 

20 71  55 49 8 80 67  70 81 8 71 85  90 88 8 80 82  110 116 7 83 74 

21 75  50 64 8 66 81  86 78 9 79 75  82 86 8 68 81  96 106 6 83 88 

22 75  51 61 8 68 86  85 69 8 88 75  109 89 9 84 71  113 123 7 78 83 

23 75  49 63 8 71 79  74 81 8 79 86  95 84 8 90 77  110 115 7 78 86 

24 75  68 56 10 77 61  70 82 8 75 88  110 85 9 87 67  100 115 8 63 77 

25 100  77 80 11 78 80  101 111 11 80 82  132 122 11 84 81  163 148 10 75 69 

26 100  72 75 10 78 81  95 103 10 77 88  129 118 11 84 75  154 156 9 82 84 

27 100  73 79 10 77 83  108 103 11 85 79  112 133 10 79 92  156 164 9 82 92 

28 120  104 79 12 90 69  116 126 13 74 86  149 150 12 87 87  181 203 10 87 94 

29 134  100 97 13 79 78  143 119 14 83 70  157 185 14 78 93  193 229 12 78 96 

30 150  111 114 15 79 82  159 139 16 86 77  191 175 16 86 76  210 223 12 87 88 

31 199  170 137 20 88 72  192 210 21 76 86  251 262 21 82 90  316 286 17 91 81 

32 199  148 151 20 77 84  197 207 20 79 86  248 249 20 83 85  308 281 16 93 86 

33 199  155 146 20 83 75  194 213 21 79 85  250 249 21 86 83  305 272 17 94 78 

34 240  185 185 24 83 81  222 268 25 77 91  303 301 26 83 82  372 348 21 91 81 

35 252  174 193 24 75 85  248 259 25 84 86  311 323 25 88 91  395 367 20 94 91 

36 255  182 205 24 80 89  243 268 25 84 91  313 293 25 90 78  432 354 22 94 78 

n: number of customers, d: total delivery items, p: total pick-up items, k: number of available vehicles, %d: total area of delivery items divided by the total loading area of the 

vehicles, %p: total area of pick-up items divided by the total loading area of the vehicles 
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Table A.2. The 2L-SPD benchmark instances used for the LIFO version of the 2L-SPD model 

   Class 4  Class 5 

Inst n  d p k %d %p  d p k %d %p 

L1 15  13 17 3 0.41 0.45  15 23 3 0.39 0.53 

L 2 15  18 13 3 0.62 0.44  29 16 3 0.53 0.39 

L3 20  14 21 4 0.37 0.56  24 17 3 0.64 0.53 

L4 20  20 18 4 0.46 0.44  25 30 4 0.53 0.55 

L5 21  26 9 4 0.69 0.11  22 28 3 0.43 0.60 

L6 21  22 31 4 0.38 0.59  26 25 4 0.45 0.49 

L7 22  23 21 3 0.46 0.39  32 19 3 0.56 0.28 

L8 22  20 24 3 0.51 0.51  20 27 3 0.50 0.54 

L9 25  29 30 5 0.44 0.42  41 41 4 0.64 0.61 

L10 29  22 42 4 0.38 0.69  33 44 4 0.40 0.51 

L11 29  22 40 5 0.37 0.52  43 41 4 0.48 0.49 

L12 30  29 37 4 0.47 0.57  47 44 4 0.54 0.55 

L13 32  32 35 4 0.51 0.59  55 40 5 0.54 0.38 

L14 32  19 39 3 0.46 0.67  44 38 4 0.47 0.40 

L15 32  39 37 5 0.53 0.48  61 45 5 0.60 0.42 

L16 35  36 38 5 0.49 0.52  51 56 5 0.53 0.61 

L17 40  38 42 5 0.53 0.60  61 58 5 0.71 0.53 

L18 44  42 57 6 0.48 0.59  49 67 6 0.37 0.52 

L19 50  58 52 7 0.57 0.49  77 71 6 0.54 0.55 

L20 71  81 79 11 0.50 0.53  100 106 9 0.56 0.48 

L21 75  76 73 9 0.54 0.58  90 101 8 0.55 0.59 

L22 75  91 73 10 0.61 0.50  106 117 10 0.49 0.53 

L23 75  80 73 11 0.53 0.46  97 101 9 0.50 0.53 

L24 75  84 78 10 0.55 0.51  91 101 9 0.48 0.55 

L25 100  108 106 14 0.52 0.52  151 139 12 0.54 0.51 

L26 100  111 105 14 0.55 0.50  144 141 11 0.60 0.57 

n: number of customers, d: total delivery items, p: total pick-up items, k: number of available vehicles, %d: total area of delivery items divided by the total loading area of the 

vehicles, %p: total area of pick-up items divided by the total loading area of the vehicles 

 

  



37 

 

Table A.3. Summary of the results obtained for the 2|UO|L version of 2L-CVRP 

Inst  Class 2  Class 3  Class 4  Class 5 

  bst avg t %g  bst avg t %g  bst avg t %g  bst avg t %g 

1  278.73 278.73 2.5 0.00  284.52 284.52 2.4 0.00  282.95 282.95 1.7 0.00  278.73 278.73 1.4 0.00 

2  334.96 334.96 0.2 0.00  352.16 352.16 2.5 0.00  334.96 334.96 0.3 0.00  334.96 334.96 1.6 0.00 

3  387.70 387.70 1.2 0.00  394.72 394.72 0.1 0.00  364.45 364.45 1.1 0.00  358.40 358.40 1.8 0.00 

4  430.88 430.88 0.1 0.00  430.88 430.88 0.9 0.00  447.37 447.37 0.8 0.00  430.88 430.88 1.5 0.00 

5  375.28 375.28 0.3 0.00  381.69 381.69 0.7 0.00  383.87 383.87 0.2 0.00  375.28 375.28 2.6 0.00 

6  495.85 495.85 0.9 0.00  498.16 498.16 0.1 0.00  498.32 498.32 2.4 0.00  495.85 495.85 1.1 0.00 

7  725.46 725.46 2.0 0.00  678.75 678.75 0.1 0.00  700.72 700.72 2.0 0.00  657.77 657.77 1.9 0.00 

8  674.55 674.55 2.1 0.00  738.43 738.43 1.9 0.00  692.47 692.47 1.0 0.00  609.90 609.90 1.3 0.00 

9  607.65 607.65 1.6 0.00  607.65 607.65 0.9 0.00  625.10 625.10 0.4 0.00  607.65 607.65 1.2 0.00 

10  689.68 689.68 6.7 0.00  620.33 620.33 7.9 0.00  710.87 710.87 1.6 0.00  686.03 686.03 10.8 0.00 

11  694.47 703.43 10.3 1.29  706.73 706.73 9.8 0.00  786.85 786.85 1.9 0.00  624.82 624.82 15.4 0.00 

12  610.57 610.57 1.1 0.00  610.00 610.00 1.1 0.00  614.23 614.23 1.2 0.00  610.23 610.23 1.4 0.00 

13  2585.72 2585.93 13.8 0.01  2436.56 2436.56 17.2 0.00  2607.66 2607.66 21.6 0.00  2334.78 2334.78 20.6 0.00 

14  1038.20 1038.21 75.2 0.00  1003.52 1003.52 81.0 0.00  981.00 981.00 119.2 0.00  876.33 879.43 107.2 0.35 

15  1017.95 1018.13 9.0 0.02  1156.00 1163.44 10.3 0.64  1187.30 1193.95 11.1 0.56  1160.20 1160.20 13.7 0.00 

16  698.61 698.61 1.7 0.00  698.61 698.61 2.2 0.00  703.35 703.35 2.6 0.00  698.61 698.61 2.6 0.00 

17  870.86 871.47 4.9 0.07  861.79 861.79 5.5 0.00  861.79 861.79 7.4 0.00  861.79 861.80 8.1 0.00 

18  1004.99 1009.98 11.7 0.50  1081.44 1081.44 14.9 0.00  1119.55 1123.42 14.0 0.35  917.93 918.41 17.5 0.05 

19  759.30 760.01 21.7 0.09  771.66 772.61 29.1 0.12  779.72 781.24 31.1 0.19  651.97 651.99 33.4 0.00 

20  517.06 522.61 220.1 1.07  521.41 521.81 247.2 0.08  540.34 540.57 247.6 0.04  472.54 474.02 295.2 0.31 

21  997.63 999.40 64.8 0.18  1118.98 1123.84 68.4 0.43  974.08 982.65 76.3 0.88  878.63 884.29 85.4 0.64 

22  1035.81 1040.83 62.2 0.48  1050.42 1057.50 65.9 0.67  1052.48 1052.64 92.2 0.02  933.60 938.78 85.6 0.56 

23  1035.18 1040.93 79.6 0.56  1078.68 1080.53 80.7 0.17  1075.36 1078.35 82.1 0.28  936.53 939.61 91.2 0.33 

24  1178.07 1182.37 144.4 0.37  1080.88 1084.11 134.9 0.30  1108.87 1116.16 194.3 0.66  1044.56 1048.59 178.4 0.39 

25  1406.98 1410.19 285.7 0.23  1365.37 1377.39 322.2 0.88  1404.47 1411.15 370.6 0.48  1160.48 1165.85 453.6 0.46 

26  1279.48 1285.19 169.5 0.45  1344.08 1345.30 229.9 0.09  1400.38 1401.99 240.9 0.12  1225.29 1227.77 252.7 0.20 

27  1316.93 1326.44 556.9 0.72  1374.10 1378.32 668.9 0.31  1319.35 1323.58 615.4 0.32  1248.94 1254.11 704.0 0.41 

28  2552.53 2585.88 1198.4 1.31  2598.77 2638.26 1414.5 1.52  2604.59 2641.63 1452.3 1.42  2316.66 2329.18 1422.9 0.54 

29  2204.33 2235.10 771.6 1.40  2092.42 2137.68 873.0 2.16  2251.26 2270.21 936.6 0.84  2132.36 2152.03 968.5 0.92 

30  1806.38 1825.32 588.8 1.05  1834.64 1845.90 658.4 0.61  1830.77 1847.69 799.3 0.92  1535.32 1541.74 938.7 0.42 

31  2264.34 2290.07 828.3 1.14  2276.29 2300.17 928.6 1.05  2382.41 2404.81 915.8 0.94  2005.56 2019.89 1069.1 0.71 

32  2261.24 2291.50 1244.6 1.34  2237.73 2260.72 1340.1 1.03  2258.25 2284.36 1675.5 1.16  1966.18 1980.13 1530.1 0.71 

33  2253.45 2286.72 854.8 1.48  2360.92 2381.23 815.2 0.86  2386.72 2411.32 908.2 1.03  1988.95 2005.05 1009.9 0.81 

34  1178.40 1187.73 1565.6 0.79  1204.52 1213.23 1813.9 0.72  1206.03 1215.39 2475.6 0.78  1022.68 1032.02 2201.5 0.91 

35  1373.42 1383.47 1200.7 0.73  1445.42 1456.46 1250.4 0.76  1498.02 1508.50 1619.8 0.70  1248.55 1253.88 1489.7 0.43 

36  1695.37 1711.66 1398.6 0.96  1772.81 1784.95 1510.9 0.68  1652.99 1663.32 1722.3 0.63  1484.18 1490.91 1732.3 0.45 

avg    316.7 0.45    350.3 0.36    406.8 0.34    409.8 0.27 

bst: the best solution score obtained over the ten runs, avg: the average solution score over the ten runs, t: the average computational time elapsed for obtaining the final solution over the 

ten runs (in CPU sec), %g: the percent deviation between our best and average scores (= 100(avg-bst)/bst) 
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Table A.4. Comparison of the best known solution scores for the 2|UO|L version of 2L-CVRP 

Inst  Class 2  Class 3   Class 4  Class 5 

  bst BKS %g  bst BKS %g  bst BKS %g  bst BKS %g 

1   278.73 278.73 0.00  284.52 284.52* 0.00  282.95 282.95 0.00  278.73 278.73 0.00 

2   334.96 334.96 0.00  352.16 352.16 0.00  334.96 334.96 0.00  334.96 334.96 0.00 

3   387.70 387.70 0.00  394.72 394.72 0.00  364.45 364.45 0.00  358.40 358.40 0.00 

4   430.88 430.88 0.00  430.88 430.88 0.00  447.37 447.37 0.00  430.88 430.88 0.00 

5   375.28 375.28 0.00  381.69 381.69 0.00  383.87 383.87 0.00  375.28 375.28 0.00 

6   495.85 495.85 0.00  498.16 497.17 0.20  498.32 498.32 0.00  495.85 495.75 0.02 

7   725.46 725.46 0.00  678.75 678.75 0.00  700.72 700.72 0.00  657.77 657.77 0.00 

8   674.55 674.55 0.00  738.43 738.43 0.00  692.47 692.47 0.00  609.90 609.90 0.00 

9   607.65 607.65 0.00  607.65 607.65 0.00  625.10 621.23 0.62  607.65 607.65 0.00 

10   689.68 689.68 0.00  620.33 615.68 0.76  710.87 710.87 0.00  686.03 678.66 1.09 

11   694.47 693.45 0.15  706.73 706.73 0.00  786.85 784.88 0.25  624.82 624.82 0.00 

12   610.57 610.57 0.00  610.00 610.00 0.00  614.23 614.23 0.00  610.23 610.00 0.04 

13   2585.72 2585.72 0.00  2436.56 2436.56 0.00  2607.66 2548.06 2.34  2334.78 2334.78 0.00 

14   1038.20 1038.09 0.01  1003.52 994.61 0.90  981.00 981.00 0.00  876.33 874.55 0.20 

15   1017.95 1013.29 0.46  1156.00 1154.66 0.12  1187.30 1181.30 0.51  1160.20 1159.94 0.02 

16   698.61 698.61 0.00  698.61 698.61 0.00  703.35 703.35 0.00  698.61 698.61 0.00 

17   870.86 863.66 0.83  861.79 861.79 0.00  861.79 861.79 0.00  861.79 861.79 0.00 

18   1004.99 1004.99 0.00  1081.44 1069.45 1.12  1119.55 1118.57 0.09  917.93 917.94 0.00 

19   759.30 754.53 0.63  771.66 771.74 -0.01  779.72 775.87 0.50  651.97 644.59 1.14 

20   517.06 525.75 -1.65  521.41 521.31 0.02  540.34 538.86 0.27  472.54 471.64 0.19 

21   997.63 992.83 0.48  1118.98 1118.11 0.08  974.08 970.90 0.33  878.63 877.75 0.10 

22   1035.81 1035.66 0.01  1050.42 1052.98 -0.24  1052.48 1045.91 0.63  933.60 932.11 0.16 

23   1035.18 1035.18 0.00  1078.68 1079.03 -0.03  1075.36 1071.30 0.38  936.53 935.33 0.13 

24   1178.07 1178.07 0.00  1080.88 1080.88 0.00  1108.87 1108.34 0.05  1044.56 1028.04 1.61 

25   1406.98 1409.24 -0.16  1365.37 1369.26 -0.28  1404.47 1404.73 -0.02  1160.48 1150.69 0.85 

26   1279.48 1272.87 0.52  1344.08 1344.10 0.00  1400.38 1394.19 0.44  1225.29 1213.88 0.94 

27   1316.93 1312.68 0.32  1374.10 1370.40 0.27  1319.35 1316.19 0.24  1248.94 1244.81 0.33 

28   2552.53 2551.18 0.05  2598.77 2601.73 -0.11  2604.59 2576.44 1.09  2316.66 2305.58 0.48 

29   2204.33 2199.79 0.21  2092.42 2085.70 0.32  2251.26 2242.74 0.38  2132.36 2128.37 0.19 

30   1806.38 1807.64 -0.07  1834.64 1829.72 0.27  1830.77 1826.10 0.26  1535.32 1520.54 0.97 

31   2264.34 2252.58 0.52  2276.29 2276.14 0.01  2382.41 2378.08 0.18  2005.56 1986.23 0.97 

32   2261.24 2253.79 0.33  2237.73 2235.57 0.10  2258.25 2259.83 -0.07  1966.18 1954.15 0.62 

33   2253.45 2259.29 -0.26  2360.92 2348.25 0.54  2386.72 2372.18 0.61  1988.95 1971.40 0.89 

34   1178.40 1176.03 0.20  1204.52 1201.42 0.26  1206.03 1191.43 1.23  1022.68 1016.88 0.57 

35   1373.42 1372.70 0.05  1445.42 1444.88 0.04  1498.02 1492.98 0.34  1248.55 1237.51 0.89 

36   1695.37 1693.83 0.09   1772.81 1771.73 0.06   1652.99 1650.01 0.18   1484.18 1475.24 0.61 

avg      0.08       0.12       0.30       0.36 

bst: our best solution score, BKS: the best known solution score, g%: the percent deviation between our best and the BKS scores (= 100(bst-BKS)/BKS).  

Sources for the BKS scores: Wei et al. (2015), Dominguez et al. (2014), Zachariadis et al. (2013), Leung et al. (2011) and Duhamel et al. (2011).  

Note that some BKS values have been obtained during the development of the VNS method (Wei et al, 2015) and were communicated to us directly by the authors. 

*Lower scores for these instances were mistakenly reported in Dominguez et al. (2014). This was clarified by contacting the authors of Dominguez et al. (2014). 
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Table A.5. Summary of the results obtained for the 2|UR|L version of 2L-CVRP 

Inst  Class 2  Class 3  Class 4  Class 5 

  bst avg t %g  bst avg t %g  bst avg t %g  bst avg t %g 

1  278.73 278.73 0.6 0.00  284.11 284.10 0.7 0.00  282.95 282.95 0.6 0.00  278.73 278.73 1.5 0.00 

2  334.96 334.96 0.2 0.00  352.16 352.16 1.7 0.00  334.96 334.96 0.4 0.00  334.96 334.96 0.4 0.00 

3  385.29 385.29 1.5 0.00  385.32 385.32 1.2 0.00  362.41 362.41 2.5 0.00  358.40 358.40 2.2 0.00 

4  430.89 430.88 1.1 0.00  430.89 430.88 0.8 0.00  447.37 447.37 0.5 0.00  430.89 430.88 0.3 0.00 

5  375.28 375.28 1.5 0.00  379.94 379.94 1.1 0.00  383.88 383.87 1.9 0.00  375.28 375.28 2.1 0.00 

6  495.85 495.85 0.7 0.00  498.16 498.16 0.8 0.00  498.32 498.32 2.9 0.00  495.85 495.85 0.8 0.00 

7  715.02 715.02 1.3 0.00  664.96 664.96 0.8 0.00  686.26 686.26 2.3 0.00  657.77 657.77 1.7 0.00 

8  665.17 665.17 1.5 0.00  738.43 738.43 1.8 0.00  688.32 692.47 1.0 0.60  609.90 609.90 2.0 0.00 

9  607.65 607.65 1.5 0.00  607.65 607.65 0.4 0.00  625.10 625.10 1.6 0.00  607.65 607.65 3.6 0.00 

10  667.42 667.42 0.8 0.00  591.16 591.16 0.2 0.00  703.64 703.64 2.2 0.00  678.66 680.26 10.7 0.24 

11  666.16 666.16 1.9 0.00  699.35 699.35 0.2 0.00  773.58 773.58 1.5 0.00  624.82 624.82 2.6 0.00 

12  610.00 610.00 4.4 0.00  610.00 610.00 4.7 0.00  610.23 614.23 2.3 0.66  610.00 610.00 6.3 0.00 

13  2502.65 2502.65 2.2 0.00  2377.39 2377.39 5.9 0.00  2500.85 2500.85 1.3 0.00  2334.59 2334.59 7.0 0.00 

14  1029.34 1029.34 16.6 0.00  988.80 988.79 36.3 0.00  968.21 972.89 110.8 0.48  871.22 871.22 388.8 0.00 

15  1001.51 1001.51 32.2 0.00  1116.07 1120.82 407.8 0.43  1164.63 1164.63 231.4 0.00  1160.20 1160.20 11.4 0.00 

16  698.61 698.61 1.0 0.00  698.61 698.61 0.6 0.00  703.35 703.35 1.5 0.00  698.61 698.61 0.6 0.00 

17  861.79 861.79 11.6 0.00  861.79 861.79 9.8 0.00  861.79 861.83 16.8 0.01  861.79 861.79 12.2 0.00 

18  982.44 982.63 64.2 0.02  1009.62 1009.62 19.6 0.00  1100.52 1100.52 14.1 0.00  917.94 918.90 70.1 0.11 

19  711.97 718.20 30.6 0.87  751.56 753.21 110.4 0.22  755.04 760.37 133.2 0.71  644.59 644.59 8.5 0.00 

20  488.69 488.73 139.2 0.01  511.46 511.50 119.0 0.01  535.03 535.03 87.5 0.00  468.60 469.19 210.8 0.13 

21  962.10 963.62 182.3 0.16  1087.79 1091.39 204.6 0.33  958.58 963.66 262.0 0.53  870.82 875.36 459.4 0.52 

22  993.50 996.75 454.1 0.33  1028.33 1031.86 312.9 0.34  1042.01 1042.61 233.6 0.06  930.83 932.73 288.1 0.20 

23  991.99 994.09 217.0 0.21  1044.06 1049.79 233.0 0.55  1048.43 1049.82 237.1 0.13  926.68 929.10 205.2 0.26 

24  1142.02 1147.73 102.9 0.50  1064.38 1069.64 121.8 0.49  1086.09 1093.28 166.7 0.66  1042.37 1045.45 76.0 0.30 

25  1348.66 1354.45 260.7 0.43  1325.24 1334.69 336.9 0.71  1374.79 1381.14 457.2 0.46  1150.04 1155.47 624.5 0.47 

26  1255.16 1260.87 132.2 0.45  1312.94 1326.65 159.2 1.04  1378.21 1395.66 255.2 1.27  1213.03 1215.88 181.0 0.23 

27  1266.89 1278.20 316.4 0.89  1332.15 1345.11 280.2 0.97  1289.02 1298.63 436.9 0.75  1237.05 1247.30 447.3 0.83 

28  2482.76 2498.04 616.0 0.62  2544.39 2571.22 570.0 1.05  2514.87 2542.76 835.9 1.11  2287.98 2309.40 705.2 0.94 

29  2128.53 2153.92 1280.3 1.19  2051.52 2083.08 1364.3 1.54  2209.58 2225.09 1404.6 0.70  2125.35 2174.76 1463.5 2.32 

30  1744.11 1759.50 1206.5 0.88  1772.71 1789.80 527.4 0.96  1795.94 1803.67 1074.9 0.43  1517.86 1526.08 852.2 0.54 

31  2154.33 2170.44 796.7 0.75  2196.40 2212.07 900.1 0.71  2326.63 2344.61 1177.6 0.77  1980.17 1996.76 1270.8 0.84 

32  2169.66 2190.96 692.9 0.98  2179.06 2201.05 879.2 1.01  2212.94 2230.18 1336.7 0.78  1949.14 1966.57 1213.3 0.89 

33  2161.03 2181.62 958.7 0.95  2284.46 2308.71 877.5 1.06  2326.73 2349.92 1548.4 1.00  1968.32 1984.93 1545.1 0.84 

34  1120.44 1130.99 1112.2 0.94  1163.05 1173.65 1043.1 0.91  1171.04 1182.12 1159.7 0.95  1014.20 1022.20 1322.2 0.79 

35  1312.88 1324.86 1355.2 0.91  1397.77 1407.12 1272.9 0.67  1460.85 1471.03 1729.2 0.70  1227.13 1238.13 1826.1 0.90 

36  1623.54 1635.84 2493.8 0.76  1706.70 1721.36 3303.0 0.86  1604.55 1620.20 3969.1 0.98  1462.33 1472.73 3831.7 0.71 

avg    347.0 0.33    364.2 0.39    469.5 0.38    473.7 0.34 

The notation of Table 3 is used 
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Table A.6. Comparison of the best known solution scores for the 2|UR|L version of 2L-CVRP 

Inst  Class 2  Class 3  Class 4  Class 5 

  bst BKS %g  bst BKS %g  bst BKS %g  bst BKS %g 

1   278.73 278.73 0.00  284.10 284.10* 0.41  282.95 282.95 0.00  278.73 278.73 0.00 

2   334.96 334.96 0.00  352.16 352.16 0.00  334.96 334.96 0.00  334.96 334.96 0.00 

3   385.29 380.35 1.30  385.32 385.32 0.00  362.41 358.40 1.12  358.40 358.40 0.00 

4   430.89 430.88 0.00  430.89 430.88 0.00  447.37 447.37 0.00  430.89 430.88 0.00 

5   375.28 375.28 0.00  379.94 379.94 0.00  383.88 383.87 0.00  375.28 375.28 0.00 

6   495.85 495.85 0.00  498.16 498.16 0.00  498.32 498.32 0.00  495.85 495.85 0.00 

7   715.02 715.02 0.00  664.96 664.96 0.00  686.26 686.26 0.00  657.77 657.77 0.00 

8   665.17 665.17 0.00  738.43 738.43 0.00  688.32 688.32 0.00  609.90 609.90 0.00 

9   607.65 607.65 0.00  607.65 607.65 0.00  625.10 625.10 0.00  607.65 607.65 0.00 

10   667.42 667.42 0.00  591.16 615.36 -3.93  703.64 703.63 0.00  678.66 680.26 -0.24 

11   666.16 664.48 0.25  699.35 699.35 0.00  773.58 773.58 0.00  624.82 624.82 0.00 

12   610.00 610.00 0.00  610.00 610.00 0.00  610.23 614.23 -0.65  610.00 610.00 0.00 

13   2502.65 2502.65 0.00  2377.39 2377.39 0.00  2500.85 2533.79 -1.30  2334.59 2334.78 -0.01 

14   1029.34 1029.34 0.00  988.80 988.79 0.00  968.21 981.00 -1.30  871.22 875.07 -0.44 

15   1001.51 1001.51 0.00  1116.07 1120.75 -0.42  1164.63 1164.77 -0.01  1160.20 1160.20 0.00 

16   698.61 698.61 0.00  698.61 698.61 0.00  703.35 703.35 0.00  698.61 698.61 0.00 

17   861.79 861.79 0.00  861.79 861.79 0.00  861.79 861.79 0.00  861.79 861.79 0.00 

18   982.44 988.61 -0.62  1009.62 986.30 2.36  1100.52 1100.66 -0.01  917.94 921.29 -0.36 

19   711.97 726.51 -2.00  751.56 752.06 -0.07  755.04 765.51 -1.37  644.59 644.59 0.00 

20   488.69 489.23 -0.11  511.46 511.46 0.00  535.03 534.14 0.17  468.60 472.77 -0.88 

21   962.10 964.49 -0.25  1087.79 1089.75 -0.18  958.58 967.85 -0.96  870.82 886.04 -1.72 

22   993.50 976.70 1.72  1028.33 1031.79 -0.34  1042.01 1052.60 -1.01  930.83 942.06 -1.19 

23   991.99 985.18 0.69  1044.06 1056.56 -1.18  1048.43 1064.76 -1.53  926.68 938.25 -1.23 

24   1142.02 1152.35 -0.90  1064.38 1073.01 -0.80  1086.09 1099.40 -1.21  1042.37 1046.84 -0.43 

25   1348.66 1356.24 -0.56  1325.24 1353.90 -2.12  1374.79 1402.08 -1.95  1150.04 1168.87 -1.61 

26   1255.16 1262.43 -0.58  1312.94 1335.80 -1.71  1378.21 1391.02 -0.92  1213.03 1220.83 -0.64 

27   1266.89 1283.66 -1.31  1332.15 1354.76 -1.67  1289.02 1318.45 -2.23  1237.05 1258.12 -1.67 

28   2482.76 2517.25 -1.37  2544.39 2587.25 -1.66  2514.87 2638.07 -4.67  2287.98 2322.37 -1.48 

29   2128.53 2151.68 -1.08  2051.52 2067.69 -0.78  2209.58 2267.37 -2.55  2125.35 2152.26 -1.25 

30   1744.11 1755.89 -0.67  1772.71 1811.22 -2.13  1795.94 1834.68 -2.11  1517.86 1542.14 -1.57 

31   2154.33 2171.60 -0.80  2196.40 2246.54 -2.23  2326.63 2385.63 -2.47  1980.17 2011.88 -1.58 

32   2169.66 2191.58 -1.00  2179.06 2219.26 -1.81  2212.94 2267.57 -2.41  1949.14 1983.34 -1.72 

33   2161.03 2175.85 -0.68  2284.46 2325.36 -1.76  2326.73 2387.22 -2.53  1968.32 2001.26 -1.65 

34   1120.44 1140.83 -1.79  1163.05 1176.71 -1.16  1171.04 1208.19 -3.07  1014.20 1036.16 -2.12 

35   1312.88 1340.41 -2.05  1397.77 1437.30 -2.75  1460.85 1503.42 -2.83  1227.13 1256.34 -2.33 

36   1623.54 1679.27 -3.32  1706.70 1739.36 -1.88  1604.55 1670.84 -3.97  1462.33 1505.54 -2.87 

avg      -0.42       -0.72       -1.11       -0.75 

bst: our best solution score, BKS: the best known solution score, g%: the percent deviation between our best and the BKS scores (= 100(bst-BKS)/BKS).  

Sources for the BKS scores: Dominguez et al. (2014) and Fuellerer et al. (2010). 

*Lower scores for these instances were mistakenly reported in Dominguez et al. (2014). This was clarified by contacting the authors of Dominguez et al. (2014). 
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Table A.7. Loading characteristics of the solutions obtained for the 2|O|SPD version of 2L-SPD 

Inst  Class 2  Class 3  Class 4  Class 5 

  avg2D max2D T_RHL  avg2D max2 T_RHL  avg2D max2 T_RHL  avg2D max2 T_RHL 

1  58.1 85.6 80.5   55.7 87.4 78.0   54.0 90.6 56.4   55.5 82.6 87.6 

2  39.8 70.1 81.2   46.1 77.5 80.3   65.5 82.9 85.0   56.0 86.6 46.7 

3  48.0 76.4 48.4   59.6 91.4 49.4   67.7 91.6 71.6   69.1 94.3 83.0 

4  42.9 77.4 82.0   53.4 83.9 85.1   51.6 82.0 84.3   63.3 94.3 84.0 

5  47.0 89.3 43.5   64.0 94.3 52.0   47.8 94.5 56.9   61.9 95.0 83.0 

6  51.3 81.1 60.1   64.5 91.4 53.9   53.0 81.3 72.5   70.1 96.8 43.2 

7  59.5 90.5 22.3   74.7 91.1 38.5   54.1 93.4 24.6   51.9 97.0 24.2 

8  48.0 85.3 15.4   57.7 90.4 21.0   53.9 86.1 24.2   63.7 85.3 63.2 

9  45.3 85.4 72.5   70.8 94.0 26.9   72.3 94.1 21.7   72.4 95.0 56.1 

10  67.2 89.5 23.7   56.3 89.4 29.5   67.3 96.5 37.7   72.3 93.5 41.0 

11  54.4 90.6 12.2   61.5 92.3 12.7   70.8 96.0 13.7   70.6 93.8 30.3 

12  45.6 75.5 81.0   65.4 90.8 53.2   51.9 84.1 86.1   80.3 97.4 46.0 

13  54.6 84.0 11.0   62.2 96.0 35.1   74.6 95.6 13.7   67.5 99.1 55.4 

14  64.3 90.0 44.8   69.2 94.1 38.6   66.8 94.1 64.4   62.9 94.3 62.3 

15  66.1 96.1 28.6   73.3 94.1 19.9   77.1 96.9 11.9   68.8 98.1 12.5 

16  38.5 75.8 83.5   72.3 92.5 44.0   69.5 92.1 37.8   64.2 96.6 27.0 

17  60.3 87.0 26.0   66.2 92.9 49.5   62.7 94.1 18.2   83.3 98.4 39.6 

18  66.8 93.8 13.8   66.8 92.9 8.7   66.1 92.6 11.3   62.1 98.6 14.3 

19  67.1 94.6 17.8   68.3 91.4 31.5   72.5 94.3 7.6   84.5 96.6 24.8 

20  59.6 93.9 5.0   71.3 92.9 5.1   67.9 95.4 6.2   73.3 97.8 5.9 

21  63.8 95.3 16.1   65.4 93.6 14.0   63.3 95.8 19.9   73.8 98.0 17.2 

22  65.4 93.1 8.1   71.5 94.6 10.6   69.6 97.1 30.3   75.6 97.9 18.9 

23  64.4 94.3 25.6   71.2 94.1 21.9   64.9 93.5 17.0   74.5 96.9 34.0 

24  60.4 91.0 24.8   69.1 94.5 40.9   67.2 95.4 33.5   63.4 91.4 82.6 

25  62.7 92.5 4.3   71.3 97.1 9.8   73.5 96.3 17.4   64.2 98.1 72.6 

26  65.1 90.8 7.6   71.1 95.5 7.4   69.4 93.6 5.0   73.1 97.9 12.5 

27  62.6 93.3 20.9   71.7 93.9 15.3   72.7 97.4 18.1   76.9 98.1 32.3 

28  63.2 96.4 12.1   69.6 97.4 8.1   72.6 97.9 7.1   79.2 97.8 18.0 

29  67.4 94.1 6.5   70.1 96.8 5.7   72.0 97.1 5.5   77.7 98.0 5.7 

30  67.5 93.3 3.6   68.8 97.3 10.7   76.7 97.3 3.0   76.3 98.9 7.6 

31  66.5 96.5 3.4   71.9 97.0 2.4   73.8 98.3 13.0   78.2 99.3 6.7 

32  67.6 98.5 3.7   70.6 97.0 3.2   72.9 96.6 11.0   80.4 98.9 8.4 

33  64.4 98.0 13.2   72.9 97.4 7.1   75.8 98.0 14.6   76.3 98.0 7.0 

34  68.5 97.9 5.7   67.3 98.4 5.6   73.2 97.9 4.1   77.3 99.0 8.6 

35  66.9 97.5 8.8   73.3 98.1 7.2   74.7 97.1 7.1   78.1 98.8 17.5 

36  66.8 97.4 8.2   73.3 98.3 4.7   75.3 99.0 4.1   77.8 98.6 4.2 

avg  59.1 89.8 28.5   66.9 93.4 27.4   67.1 93.8 28.2   71.0 96.0 35.7 

avg2D: the average loading area utilization over the solution arcs, max2D: the highest loading area utilization among the solution arcs, T_RHL: the number of routes found 

loading feasible over the total number of routes examined regarding their loading feasibility 
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Table A.8. Loading characteristics of the solutions obtained for the 2|R|SPD version of 2L-SPD 

Inst  Class 2  Class 3  Class 4  Class 5 

  avg2D max2D T_RHL  avg2D max2 T_RHL  avg2D max2 T_RHL  avg2D max2 T_RHL 

1  58.1 85.6 86.4   55.7 87.4 87.2   72.6 98.0 67.8   64.6 88.1 88.9 

2  39.8 70.1 98.5   51.1 93.3 92.2   66.7 87.0 93.5   40.8 86.6 47.1 

3  63.6 89.3 75.7   59.9 98.6 57.8   67.7 91.6 78.4   69.1 94.3 90.0 

4  42.9 77.4 94.6   58.0 95.1 92.9   48.9 98.4 92.5   63.3 94.3 90.4 

5  58.9 95.1 45.9   64.0 94.3 57.5   43.0 94.5 63.1   60.9 98.5 88.9 

6  61.3 95.1 73.9   64.1 97.6 58.7   53.0 81.3 83.0   70.1 96.8 45.7 

7  59.7 93.5 27.0   67.6 98.1 55.0   79.0 98.4 30.5   51.9 97.0 24.2 

8  48.6 91.3 19.6   59.9 94.5 24.9   55.9 86.1 28.5   66.9 99.6 63.9 

9  46.9 88.4 87.5   73.4 94.9 35.6   71.2 95.4 26.1   72.4 95.0 54.2 

10  67.4 89.3 27.1   61.5 96.8 31.7   69.9 98.3 37.1   70.1 93.5 42.3 

11  57.1 92.1 15.9   56.6 99.3 14.8   70.3 99.0 17.5   70.6 93.8 32.0 

12  46.3 81.6 97.8   63.3 94.0 62.4   51.9 84.1 91.5   76.3 99.4 55.1 

13  68.2 95.1 13.7   65.6 97.1 43.6   80.4 98.0 16.3   67.5 99.1 58.3 

14  68.0 93.3 56.4   70.5 97.5 46.5   66.8 94.1 68.1   77.8 99.8 64.9 

15  67.9 98.6 35.8   70.6 94.6 24.8   70.7 98.6 15.2   70.7 98.8 12.4 

16  38.5 75.8 94.4   76.0 95.0 56.3   69.5 92.1 35.3   61.9 96.6 29.1 

17  65.6 93.4 29.7   67.3 96.4 56.8   75.9 98.3 18.3   80.2 98.4 36.6 

18  65.6 93.9 18.6   72.3 97.9 9.0   66.6 97.6 12.1   64.2 99.9 15.1 

19  68.3 95.1 31.7   70.5 97.3 39.3   73.8 98.1 8.1   84.3 99.8 28.6 

20  66.8 94.3 7.3   74.0 96.8 4.6   68.3 99.0 6.4   78.4 99.8 5.8 

21  68.6 99.0 18.7   73.0 96.8 18.2   69.3 98.5 21.7   73.6 99.6 17.8 

22  71.2 96.0 9.0   73.3 96.5 10.7   71.5 98.6 33.8   77.3 99.1 17.8 

23  68.6 96.6 31.9   71.8 97.8 28.0   70.3 98.0 21.9   75.4 99.0 38.2 

24  68.6 97.1 32.6   69.3 97.0 53.7   66.9 99.0 41.3   59.9 97.6 84.5 

25  71.2 97.1 3.5   75.0 98.9 10.0   76.9 99.4 18.2   64.1 98.1 74.5 

26  69.9 98.3 6.9   71.2 97.9 7.2   73.6 99.0 5.5   77.2 98.8 12.6 

27  65.8 96.0 28.1   75.6 98.6 17.9   70.5 98.8 23.0   77.4 98.1 37.7 

28  62.4 98.0 11.9   71.8 99.0 11.5   76.5 98.9 6.0   78.5 99.8 18.4 

29  69.7 98.4 6.0   72.7 99.4 4.5   74.6 98.6 4.5   79.6 99.8 5.1 

30  71.5 99.4 3.5   74.1 98.8 10.8   77.7 99.0 3.5   83.2 99.6 6.9 

31  69.4 98.3 3.5   74.7 98.5 2.7   74.6 98.8 13.3   74.0 100.0 6.5 

32  71.2 98.5 3.9   74.5 99.1 3.9   74.3 99.9 11.2   79.0 99.8 7.6 

33  70.4 98.9 17.3   74.2 98.8 9.6   76.9 100.0 17.0   78.2 99.6 6.6 

34  73.6 98.4 6.1   72.0 98.8 5.0   75.7 99.3 4.2   79.6 99.1 7.1 

35  71.3 97.5 11.6   75.8 98.4 8.8   78.7 99.4 7.1   79.8 99.8 20.3 

36  70.2 98.9 8.7   76.5 98.9 4.8   76.1 99.8 4.2   79.4 100.0 4.7 

  63.1 93.2 34.5   68.8 96.9 32.2   69.6 96.5 31.3   71.6 97.7 37.2 

The notation of Table A.7 is used 
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Table A.9. Summary of the 2L-SPD LIFO runs 

  Fixed Item Orientation  Item Rotations 

  bst avg t %g  bst avg t %g 

L01-4  284.42 284.42 10.7 0.00  281.66 281.66 46.0 0.00 

L02-4  285.57 285.57 40.7 0.00  285.57 285.57 27.5 0.00 

L03-4  350.98 350.98 42.9 0.00  350.98 350.98 85.6 0.00 

L04-4  360.13 360.13 33.4 0.00  358.20 358.20 148.0 0.00 

L05-4  383.86 383.86 278.1 0.00  378.23 378.23 58.8 0.00 

L06-4  391.83 391.83 621.8 0.00  380.95 380.95 107.8 0.00 

L07-4  601.83 601.83 32.8 0.00  601.83 601.83 23.1 0.00 

L08-4  618.40 618.40 104.1 0.00  616.89 616.89 74.5 0.00 

L09-4  437.24 437.24 50.2 0.00  427.86 427.86 111.3 0.00 

L10-4  599.61 599.61 534.3 0.00  597.14 597.14 640.3 0.00 

L11-4  677.46 677.46 432.0 0.00  675.16 675.16 518.7 0.00 

L12-4  394.15 394.15 247.0 0.00  392.06 392.06 138.7 0.00 

L13-4  2311.91 2311.91 1261.4 0.00  2246.00 2257.74 7468.9 0.52 

L14-4  699.56 699.77 3746.3 0.03  693.34 693.34 378.7 0.00 

L15-4  917.42 922.22 6450.7 0.52  889.04 890.07 5557.2 0.12 

L16-4  440.79 440.79 1061.0 0.00  433.45 433.45 1710.3 0.00 

L17-4  473.57 478.34 6826.8 1.01  458.04 461.26 6264.0 0.70 

L18-4  981.21 992.53 11761.5 1.15  942.45 957.08 6230.6 1.55 

L19-4  624.63 628.79 8246.8 0.67  619.71 622.23 6100.3 0.41 

L20-4  462.16 467.11 6776.5 1.07  438.09 443.06 5861.8 1.13 

L21-4  824.20 829.95 8969.7 0.70  804.06 809.72 5690.2 0.70 

L22-4  860.65 868.22 9956.2 0.88  853.20 859.67 6422.8 0.76 

L23-4  858.69 868.30 8455.3 1.12  820.55 835.99 5404.0 1.88 

L24-4  821.03 829.93 6776.6 1.08  799.38 805.04 5064.5 0.71 

L25-4  1073.55 1083.97 9098.0 0.97  1043.15 1057.77 8867.4 1.40 

L26-4  1077.06 1091.49 6964.1 1.34  1028.96 1039.95 8909.8 1.07 

L01-5  273.61 273.61 70.3 0.00  272.03 272.03 35.2 0.00 

L02-5  269.77 269.77 85.3 0.00  264.96 264.96 129.3 0.00 

L03-5  356.54 356.54 230.2 0.00  335.19 335.19 882.3 0.00 

L04-5  365.46 365.46 139.3 0.00  364.29 364.29 121.4 0.00 

L05-5  365.19 365.19 353.3 0.00  362.12 362.12 954.8 0.00 

L06-5  397.74 397.74 75.5 0.00  388.31 388.31 191.1 0.00 

L07-5  613.67 613.67 115.7 0.00  607.70 607.70 2.8 0.00 

L08-5  634.86 634.86 130.6 0.00  617.22 617.22 121.5 0.00 

L09-5  462.53 464.99 1145.4 0.53  436.32 436.32 410.7 0.00 

L10-5  561.70 561.70 1641.1 0.00  558.44 558.44 466.3 0.00 

L11-5  546.36 546.36 136.5 0.00  519.06 519.06 2414.9 0.00 

L12-5  399.25 399.25 1596.1 0.00  396.22 396.22 577.8 0.00 

L13-5  2301.19 2301.19 206.3 0.00  2285.59 2286.01 1633.1 0.02 

L14-5  775.26 778.16 8127.9 0.37  750.11 750.11 523.0 0.00 

L15-5  904.09 931.92 5912.9 3.08  894.47 912.85 4657.5 2.06 

L16-5  455.51 455.51 734.5 0.00  455.51 455.51 461.7 0.00 

L17-5  520.39 523.46 10402.6 0.59  505.94 510.71 10083.2 0.94 

L18-5  861.81 866.12 7613.6 0.50  859.93 860.58 3574.2 0.08 

L19-5  584.11 584.47 13102.6 0.06  578.20 579.52 7398.0 0.23 

L20-5  389.85 393.46 5982.8 0.92  386.18 388.19 6961.1 0.52 

L21-5  752.77 759.94 16779.6 0.95  748.35 750.92 8356.6 0.34 

L22-5  810.75 812.56 11809.8 0.22  799.98 805.80 9466.3 0.73 

L23-5  781.51 790.24 8775.1 1.12  768.16 774.72 8858.7 0.85 

L24-5  780.63 786.73 11467.2 0.78  777.19 780.54 7679.6 0.43 

L25-5  979.99 991.87 12858.6 1.21  971.98 977.05 9827.1 0.52 

L26-5  952.87 965.08 13937.3 1.28  928.57 938.48 12914.9 1.07 

avg    4465.6 0.43    3473.3 0.36 

bst: the best solution score obtained over the ten runs, avg: the average solution score over the ten runs, t: the average computational time elapsed for obtaining the final 

solution over the ten runs (in CPU sec), %g: the percent deviation between our best and average scores (= 100(avg-bst)/bst) 
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Table A.10. Summary of the 2L-SPD runs for the LIFO instances 

  Fixed Item Orientation  Item Rotations 

  bst avg t %g  bst avg t %g 

L01-4  258.11 258.11 0.5 0.00  258.11 258.11 0.4 0.00 

L02-4  263.91 263.91 3.7 0.00  260.22 260.22 2.1 0.00 

L03-4  332.28 332.28 10.4 0.00  328.30 328.30 7.2 0.00 

L04-4  319.56 319.56 7.9 0.00  311.90 311.90 1.7 0.00 

L05-4  339.44 339.44 1.7 0.00  339.44 339.44 1.0 0.00 

L06-4  354.43 354.43 1.4 0.00  354.43 354.43 0.8 0.00 

L07-4  527.64 527.64 10.1 0.00  527.64 527.64 3.3 0.00 

L08-4  583.94 583.94 3.6 0.00  583.94 583.94 2.7 0.00 

L09-4  400.62 400.62 3.6 0.00  400.62 400.62 2.5 0.00 

L10-4  524.49 524.49 3.7 0.00  524.49 524.49 2.6 0.00 

L11-4  629.69 629.69 8.7 0.00  629.69 629.69 9.5 0.00 

L12-4  356.78 356.78 12.3 0.00  356.78 356.78 16.7 0.00 

L13-4  2005.51 2005.51 14.5 0.00  2005.51 2005.51 11.3 0.00 

L14-4  678.47 678.47 4.7 0.00  678.47 678.47 2.4 0.00 

L15-4  838.51 838.66 273.0 0.02  838.51 838.81 229.2 0.04 

L16-4  403.90 403.98 122.1 0.02  397.51 400.65 34.8 0.79 

L17-4  410.27 410.27 15.2 0.00  410.27 410.27 10.8 0.00 

L18-4  860.64 860.64 60.7 0.00  857.94 857.94 60.1 0.00 

L19-4  551.93 553.21 125.7 0.23  549.83 549.83 80.7 0.00 

L20-4  382.72 384.25 910.7 0.40  378.34 380.63 1072.7 0.61 

L21-4  716.40 716.40 162.9 0.00  714.54 714.54 128.8 0.00 

L22-4  754.27 760.21 243.2 0.79  750.14 757.77 265.3 1.02 

L23-4  705.20 705.82 535.3 0.09  698.93 699.39 377.8 0.07 

L24-4  710.84 711.22 267.4 0.05  709.66 711.34 329.1 0.24 

L25-4  900.47 911.79 626.2 1.26  893.81 902.35 482.6 0.96 

L26-4  824.22 825.47 314.0 0.15  818.63 822.03 625.9 0.42 

L01-5  245.39 245.39 1.0 0.00  245.39 245.39 1.5 0.00 

L02-5  257.86 257.86 0.5 0.00  257.86 257.86 0.2 0.00 

L03-5  305.44 305.44 3.9 0.00  305.44 305.44 2.0 0.00 

L04-5  336.28 336.28 1.2 0.00  321.16 321.16 0.6 0.00 

L05-5  319.13 319.13 1.4 0.00  319.13 319.13 0.6 0.00 

L06-5  351.30 351.30 32.6 0.00  351.30 351.30 18.7 0.00 

L07-5  563.25 563.25 0.2 0.00  563.25 563.25 1.3 0.00 

L08-5  530.96 530.96 5.4 0.00  530.96 530.96 3.3 0.00 

L09-5  413.03 413.03 3.9 0.00  413.03 413.03 4.5 0.00 

L10-5  504.79 505.40 11.1 0.12  503.17 503.17 12.9 0.00 

L11-5  497.53 497.53 5.0 0.00  497.53 497.53 4.4 0.00 

L12-5  360.92 360.92 13.8 0.00  360.92 360.92 16.5 0.00 

L13-5  2111.04 2111.04 21.0 0.00  2111.04 2111.04 9.4 0.00 

L14-5  683.98 684.04 5.8 0.01  683.98 683.98 9.9 0.00 

L15-5  840.39 840.39 13.3 0.00  840.39 840.39 7.7 0.00 

L16-5  422.23 422.23 17.6 0.00  422.04 422.04 30.0 0.00 

L17-5  446.51 446.51 203.1 0.00  443.84 444.05 176.2 0.05 

L18-5  792.60 792.60 236.2 0.00  786.42 787.66 50.5 0.16 

L19-5  524.27 524.27 48.2 0.00  524.27 524.27 43.0 0.00 

L20-5  360.59 362.36 599.3 0.49  359.14 359.37 322.1 0.07 

L21-5  655.97 656.29 1361.8 0.05  655.97 656.71 875.1 0.11 

L22-5  685.02 691.43 1312.5 0.94  680.04 682.57 802.7 0.37 

L23-5  686.04 690.96 308.4 0.72  685.58 690.29 310.3 0.69 

L24-5  692.38 699.91 361.0 1.09  691.99 700.31 344.0 1.20 

L25-5  844.53 846.97 732.7 0.29  844.53 848.03 562.2 0.41 

L26-5  789.18 791.59 877.7 0.31  782.35 786.83 547.1 0.57 

avg    190.8 0.13    152.3 0.15 

bst: the best solution score obtained over the ten runs, avg: the average solution score over the ten runs, t: the average computational time elapsed for obtaining the final 

solution over the ten runs (in CPU sec), %g: the percent deviation between our best and average scores (= 100(avg-bst)/bst) 
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Table A.11. Loading feasibility examinations for the LIFO and basic 2L-SPD model (Fixed Item Orientation) 

  2|O|SPD-L  2|O|SPD 

Instance  Fm Fsmd Fr Frh Fa Fp Fps  Fm Fsmd Fr Frh Fa Fah Fp Fps 

L01-4  1152.9 301.3 985.9 823.5 236.1 378.5 206.2  182.2 27.1 212.5 157.1 346.0 325.0 17.5 16.2 

L02-4  2853.4 836.4 2340.3 1916.3 510.9 526.8 287.9  483.6 84.5 515.2 367.8 404.4 348.4 33.1 27.6 

L03-4  1454.4 526.4 1102.5 922.7 256.3 322.1 193.6  522.6 121.9 502.8 355.8 526.0 452.2 43.7 37.7 

L04-4  1240.3 452.4 945.0 795.7 219.1 327.2 192.5  266.6 51.6 279.3 192.3 467.3 424.2 29.8 26.0 

L05-4  1891.1 689.0 1423.3 1101.4 384.7 412.4 243.4  581.2 186.3 483.9 328.5 474.9 448.8 19.2 17.8 

L06-4  2369.5 1018.8 1521.7 1208.1 453.2 667.1 373.4  207.3 43.3 220.2 163.6 328.0 292.3 28.8 26.5 

L07-4  671.9 187.4 583.7 463.8 166.8 223.8 127.1  288.3 29.1 323.3 162.7 1159.7 953.5 157.7 150.1 

L08-4  1641.7 529.8 1248.2 853.0 504.8 655.2 345.8  346.2 52.1 377.0 205.5 779.2 701.4 57.0 52.9 

L09-4  1376.5 586.6 940.5 789.8 205.0 301.8 154.9  180.8 38.6 199.2 140.9 391.4 318.1 60.9 58.0 

L10-4  3226.6 1706.1 1652.8 1099.8 780.1 1001.8 601.3  303.3 110.9 232.5 151.8 596.7 537.3 46.6 43.3 

L11-4  2204.6 1363.4 974.6 773.3 274.7 331.0 184.1  380.0 108.5 328.2 188.3 721.2 577.5 94.3 84.7 

L12-4  2091.5 852.6 1434.0 997.8 600.1 849.6 433.0  255.5 55.7 260.4 128.3 1067.5 868.2 153.7 145.2 

L13-4  4022.5 1712.6 2542.8 1388.0 1499.3 1950.5 966.3  309.4 66.4 297.7 170.6 893.9 765.2 95.8 90.1 

L14-4  3697.9 1910.4 1939.4 947.9 1418.6 2090.4 1114.9  174.6 25.0 200.2 97.7 1146.4 965.0 158.6 155.2 

L15-4  3218.9 1418.3 2074.1 1330.1 922.9 1049.6 569.1  304.3 75.2 306.9 162.9 954.2 769.4 131.3 122.3 

L16-4  1881.2 870.1 1158.7 775.3 505.8 664.7 338.5  218.8 58.2 218.3 115.6 796.7 656.2 106.5 99.5 

L17-4  5306.1 2481.0 3185.8 1623.7 2043.3 2656.8 1383.3  317.5 96.9 289.4 150.1 1042.9 844.4 138.1 127.9 

L18-4  6421.3 3831.2 2903.0 1733.5 1514.1 1817.8 970.2  1066.3 464.3 733.7 457.3 907.6 744.7 107.1 98.4 

L19-4  3808.3 2271.6 1751.8 1120.5 795.1 1043.3 487.3  238.9 86.8 218.2 137.4 632.4 459.8 134.5 128.0 

L20-4  8954.1 6570.0 2833.6 1979.7 1145.6 1369.3 756.6  1399.1 842.1 711.9 402.4 1108.3 757.0 214.9 194.0 

L21-4  6665.7 4577.1 2403.2 1457.6 1279.0 1831.8 986.0  346.7 166.2 268.0 149.6 1024.2 831.6 153.1 146.0 

L22-4  5516.6 3834.3 1931.1 1239.7 881.4 1117.1 582.5  266.7 123.2 224.3 135.9 721.1 472.9 203.6 196.9 

L23-4  10148.1 6904.1 3755.6 2497.3 1501.3 1507.9 779.8  953.6 510.3 589.0 355.3 1200.5 940.6 157.6 140.4 

L24-4  5022.0 3384.8 1916.1 1297.9 793.9 1005.4 512.6  350.4 165.4 270.7 160.3 845.3 581.1 202.1 192.7 

L25-4  8568.4 6487.9 2487.8 1621.3 1124.5 1393.4 725.8  439.0 251.7 313.8 185.9 1006.5 691.0 233.1 220.6 

L26-4  12337.6 9721.5 3122.9 2120.5 1196.7 1051.4 556.3  849.6 579.7 396.3 241.6 877.6 751.2 90.8 84.2 

L01-5  1258.3 339.4 1089.0 948.2 217.3 323.6 193.9  246.9 25.6 284.9 186.1 496.4 459.4 30.6 27.9 

L02-5  936.0 220.8 870.4 747.9 170.2 233.8 151.0  255.4 39.1 292.0 208.5 306.4 297.4 7.7 6.6 

L03-5  3684.0 1186.1 2878.8 1875.1 1277.9 1475.1 877.1  385.8 74.4 392.9 224.5 762.0 624.5 87.5 75.3 

L04-5  1951.1 710.1 1411.5 1139.3 343.7 361.1 200.8  418.6 110.4 392.8 289.3 362.5 278.5 58.5 52.0 

L05-5  2739.1 875.7 2129.2 1354.4 1045.0 1392.9 708.0  246.2 42.2 262.0 166.5 524.2 421.2 89.3 87.1 

L06-5  1790.4 755.9 1176.8 933.0 345.0 444.8 261.6  268.2 65.9 259.7 170.8 463.4 387.0 62.8 58.9 

L07-5  760.6 350.1 482.7 421.4 88.0 132.7 74.6  195.5 31.9 215.7 137.0 614.9 495.7 107.9 106.0 

L08-5  1514.0 461.8 1208.2 863.2 468.3 580.0 343.6  391.9 53.5 414.1 213.0 1155.9 984.7 133.3 126.5 

L09-5  4161.9 2116.1 2277.6 1477.7 1033.4 1164.2 686.4  389.8 116.7 340.6 229.6 473.5 333.9 112.9 107.5 

L10-5  1677.0 679.6 1166.8 835.2 429.4 470.7 252.8  482.2 179.1 350.3 234.5 733.0 636.1 82.5 80.3 

L11-5  1230.0 533.8 808.5 572.5 340.2 450.1 271.4  270.5 60.4 250.1 163.0 670.2 601.0 60.8 59.1 

L12-5  2399.7 1030.5 1576.5 987.8 770.3 1013.3 526.7  183.2 39.3 192.8 103.3 779.0 602.8 157.1 154.0 

L13-5  1549.8 795.7 895.4 711.6 232.3 243.8 132.4  250.8 62.0 253.6 140.9 581.7 426.7 140.5 138.3 

L14-5  1223.5 455.2 953.6 654.5 434.8 574.4 327.7  196.3 31.2 201.9 92.5 1226.9 967.9 229.7 226.3 

L15-5  1861.5 897.6 1126.6 805.8 434.7 580.4 353.2  211.3 47.1 232.5 148.9 713.7 596.5 106.5 104.8 

L16-5  3358.9 1582.5 1997.4 1230.0 1015.9 1239.8 671.9  292.1 89.0 262.9 143.3 783.5 580.9 167.7 161.7 

L17-5  9357.2 5453.7 4333.0 2018.4 2781.7 2974.3 1607.6  308.0 100.0 273.2 146.0 883.4 629.4 211.7 204.6 

L18-5  3065.0 1703.5 1616.6 1159.6 585.8 620.3 335.2  628.2 227.8 514.5 306.5 822.4 652.8 133.9 130.0 

L19-5  4229.3 2439.5 1991.5 1060.3 1234.3 1671.2 793.1  185.8 54.4 187.4 102.6 831.4 552.8 248.4 244.2 

L20-5  4212.1 3027.5 1391.8 874.8 670.1 815.9 448.9  411.8 210.1 270.7 159.8 799.7 605.2 158.2 153.6 

L21-5  7524.2 4597.3 3337.7 1649.9 2155.5 2608.8 1289.5  606.4 287.5 434.7 228.4 1529.7 941.7 437.5 421.8 

L22-5  6889.5 4484.4 2755.0 2000.9 939.8 1036.3 491.6  569.4 294.6 390.1 233.3 1065.0 680.3 294.8 284.0 

L23-5  5273.5 3535.7 2044.7 1346.5 918.1 1189.5 575.9  222.0 90.7 214.5 122.6 893.0 604.6 251.2 246.5 

L24-5  4802.7 3130.0 1943.1 1173.5 1030.4 1338.4 699.6  244.1 103.2 219.1 121.3 914.1 598.9 275.0 270.3 

L25-5  6839.8 4890.4 2355.1 1412.5 1208.8 1467.1 739.7  276.1 131.4 259.1 148.1 1108.2 736.9 317.3 311.2 

L26-5  17776.9 12981.3 5406.7 2704.5 3224.7 3463.5 1479.5  390.7 228.1 270.6 158.2 944.0 751.0 169.9 166.8 

Fm: number of loading feasibility for local-search moves, Fsmd: move feasibility retrievals from the SMD instances, Fr: number of necessary route loading feasibility examinations, 

Frh: number of route feasibility retrievals from the route hashtables, Fa: number of necessary arc loading feasibility examinations, Fah: number of arc feasibility retrievals from the 

arc hashtables, Fp: calls to the packing heuristic procedure, Fps: number of successful packing heuristic calls.  

Note: Reported values are divided by 10
3
. 
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Table A.12. Loading feasibility examinations for the LIFO and basic 2L-SPD model (Item Rotations) 

  2|R|SPD-L  2|R|SPD 

Instance  Fm Fsmd Fr Frh Fa Fp Fps  Fm Fsmd Fr Frh Fa Fah Fp Fps 

L01-4  969.4 269.2 824.2 692.1 190.9 305.4 165.3  175.9 25.6 206.5 153.3 336.1 315.7 18.1 17.1 

L02-4  2625.9 743.6 2197.7 1792.0 493.3 499.5 284.3  377.9 65.6 411.1 288.5 363.4 316.9 32.4 28.0 

L03-4  1488.7 534.0 1129.3 933.5 280.8 346.0 217.9  470.9 107.7 455.1 310.8 544.0 474.8 49.1 44.1 

L04-4  1074.7 381.7 837.7 705.5 195.7 287.5 174.2  217.2 38.8 234.8 159.8 442.1 405.5 30.0 27.8 

L05-4  1496.0 567.6 1085.8 876.0 251.2 264.1 162.6  486.7 140.4 426.2 292.4 421.9 399.7 18.1 17.1 

L06-4  1514.0 569.5 1082.6 893.0 268.6 381.9 220.6  192.1 37.9 208.6 154.5 323.2 288.6 29.9 28.2 

L07-4  577.0 147.1 514.5 414.0 139.8 173.0 103.8  272.0 24.9 309.4 156.1 1112.3 935.9 150.2 145.9 

L08-4  1269.9 428.3 949.9 662.3 370.2 465.6 259.1  336.3 50.3 366.6 203.3 758.8 683.5 60.8 57.7 

L09-4  1076.3 465.9 725.9 609.8 167.0 250.3 142.7  174.6 36.3 194.5 135.8 403.9 329.4 64.4 62.1 

L10-4  2955.9 1636.0 1438.4 997.3 613.2 753.3 467.0  269.7 94.9 213.0 141.2 568.6 515.6 45.1 42.9 

L11-4  1949.1 1225.6 847.3 708.2 191.8 228.8 132.5  355.8 95.7 315.3 183.4 706.7 566.9 103.9 96.8 

L12-4  1688.1 641.9 1223.4 826.2 543.1 742.5 394.0  231.8 50.9 238.5 119.0 1006.6 826.4 152.2 146.9 

L13-4  3431.1 1505.9 2128.5 1141.9 1308.8 1659.2 886.1  280.1 58.6 273.0 156.2 887.5 768.1 97.4 93.6 

L14-4  2372.3 1078.7 1416.2 691.9 1002.2 1388.7 768.0  165.3 23.0 192.1 96.2 1103.8 936.3 154.5 152.6 

L15-4  3500.8 1398.4 2370.9 1235.7 1405.4 1519.4 873.9  277.0 65.6 285.2 151.1 925.0 748.4 142.7 136.7 

L16-4  1995.9 916.0 1238.4 787.2 591.4 737.5 397.7  209.3 53.4 212.7 111.5 806.5 669.9 112.1 107.1 

L17-4  4125.6 1927.6 2513.1 1303.3 1605.6 2024.3 1122.7  263.7 76.8 250.7 127.1 985.1 807.6 140.5 133.9 

L18-4  5500.5 3416.0 2366.4 1495.1 1111.6 1235.6 674.8  922.8 363.0 693.4 412.6 967.1 806.5 117.0 110.2 

L19-4  3158.9 1888.3 1452.4 964.8 618.6 775.9 390.4  215.6 73.8 205.2 132.7 586.5 432.5 128.4 124.1 

L20-4  7798.7 5754.7 2413.2 1670.4 992.3 1137.2 662.5  1380.7 829.9 709.6 410.4 1033.1 747.5 201.4 187.8 

L21-4  4914.5 3358.1 1826.5 1184.4 885.8 1216.0 705.0  288.6 127.5 248.2 142.3 950.8 790.9 136.6 132.3 

L22-4  5698.1 3977.5 1976.2 1175.4 1033.5 1302.4 701.6  222.4 93.8 206.6 122.0 716.4 468.7 218.3 213.9 

L23-4  8369.8 5618.2 3168.4 2114.6 1287.0 1292.0 733.1  748.0 394.0 486.8 301.8 1035.5 838.0 142.3 132.5 

L24-4  3882.8 2578.5 1542.0 1097.8 570.8 680.4 365.0  294.3 130.2 249.6 143.4 840.3 579.7 215.2 208.5 

L25-4  8109.3 6137.9 2353.9 1590.4 997.3 1174.9 655.5  415.8 240.0 298.8 176.9 970.0 678.2 233.4 224.5 

L26-4  13040.7 10281.0 3268.7 2006.3 1520.3 1427.7 761.2  942.9 634.1 443.6 260.9 1003.8 815.4 134.0 125.4 

L01-5  1057.8 274.6 943.9 823.2 187.5 255.5 166.7  232.1 23.2 270.1 177.9 488.5 453.6 31.2 29.4 

L02-5  844.9 195.6 790.2 680.2 152.3 197.4 134.1  246.8 37.5 283.9 204.0 302.3 293.5 8.0 7.3 

L03-5  3099.1 1075.0 2327.3 1490.8 1089.1 1219.0 769.9  310.9 57.6 323.9 193.2 639.1 530.5 80.7 73.2 

L04-5  1602.0 591.3 1161.7 935.2 287.4 292.3 173.7  367.7 97.2 345.3 250.7 338.1 266.6 57.9 54.0 

L05-5  1897.0 587.7 1516.1 1032.9 665.0 874.8 472.0  252.4 41.2 269.2 166.3 560.5 456.9 95.3 93.9 

L06-5  1459.0 576.1 1023.5 800.2 311.0 393.4 229.5  261.1 65.3 248.6 169.2 433.7 365.1 59.7 57.0 

L07-5  355.3 88.9 323.9 274.4 71.9 107.9 60.2  192.6 31.4 212.4 135.5 611.0 496.9 107.7 106.7 

L08-5  1282.6 392.6 1038.4 713.2 441.9 555.2 322.5  357.7 44.8 383.7 197.4 1114.1 950.6 142.6 138.6 

L09-5  3149.7 1487.1 1866.6 1174.5 888.5 948.2 597.4  338.1 97.1 306.0 211.5 424.0 307.2 101.8 98.5 

L10-5  1528.4 647.5 1023.9 731.7 376.4 393.9 218.2  445.9 158.7 329.9 229.4 695.2 621.4 69.6 68.6 

L11-5  1169.9 478.0 802.9 579.0 322.1 404.5 254.7  260.8 56.8 242.7 158.6 666.3 602.5 60.0 59.1 

L12-5  2062.6 874.9 1375.1 862.5 673.8 840.0 459.9  174.3 37.2 184.4 97.1 779.2 608.0 163.2 161.8 

L13-5  1133.8 549.1 699.9 590.0 142.5 140.3 85.2  251.1 61.1 254.2 139.1 586.1 431.3 147.1 146.0 

L14-5  2098.9 797.0 1483.9 816.7 915.4 1154.1 653.9  182.7 26.4 191.9 88.6 1177.1 937.6 228.0 226.5 

L15-5  1468.1 645.9 968.4 691.9 374.4 475.7 307.7  209.1 46.7 231.0 155.1 655.8 563.5 88.9 88.3 

L16-5  2021.9 895.1 1280.0 854.4 576.1 689.6 409.6  257.6 75.0 238.3 128.8 751.2 565.4 165.7 162.1 

L17-5  6768.8 3847.4 3244.0 1570.8 2068.1 2259.7 1314.0  282.4 84.7 262.1 137.8 890.2 645.0 224.6 221.2 

L18-5  2492.7 1327.3 1399.8 1002.1 506.3 522.5 297.0  539.7 190.9 459.3 284.5 733.7 594.0 127.0 125.5 

L19-5  3029.8 1706.7 1487.1 838.6 863.9 1076.7 571.4  174.9 49.7 181.0 99.1 811.2 534.1 262.0 260.0 

L20-5  3317.0 2390.3 1113.7 738.2 520.1 652.7 404.6  340.6 165.3 241.4 141.8 761.2 576.1 168.3 166.1 

L21-5  5147.0 3281.5 2174.6 1194.7 1278.3 1419.3 819.1  485.3 224.6 367.0 192.6 1372.9 872.2 434.2 427.4 

L22-5  6110.4 3997.5 2499.3 1641.3 1061.7 1042.1 552.7  576.8 290.3 402.8 227.7 1147.4 727.0 362.3 355.7 

L23-5  3822.3 2493.9 1596.8 1065.9 706.6 866.0 474.4  193.4 73.6 202.1 117.3 836.8 577.5 242.0 239.7 

L24-5  4597.9 2990.7 1871.0 1096.9 1036.9 1311.8 708.1  219.2 87.2 209.2 111.9 926.1 602.2 299.6 296.8 

L25-5  4960.4 3544.1 1765.8 1139.1 836.1 994.4 563.9  242.0 107.0 248.2 141.5 1093.2 756.6 313.8 311.1 

L26-5  9414.8 7352.0 2500.5 1594.0 1118.1 1054.3 583.9  577.1 336.7 366.9 204.1 1248.1 965.1 254.5 251.3 

The notation of Table A.11 is used 

 

 

 

 


