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Abstract. In this paper, we consider a pure exchange economy with a finite

number of agents and commodities. By considering a notion of dominated allo-

cations, we show that the Walrasian equilibrium set is characterized by the non-

dominated allocations in a precise class of economies nearby the initial economy.

The first and second welfare theorems are particular cases of this equivalence

result.
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1 Introduction

In this paper, we consider a pure exchange economy E , with a finite number of

agents and commodities, where the initial endowments are ω = (ω1, . . . , ωn).

Given a feasible allocation x in the economy E , we define a class of pure

exchange economies which differs from E in the initial endowments that, in these

new economies, are given by a convex combination of xi and ωi for every agent

i.

We say that x is dominated in an economy if it is blocked by the coalition of

all the agents.

We identify the finite economy with a continuum economy with a finite number

of types of agents. We use Vind’s (1972) remark on core allocations to show

that non-dominated allocations in this class of economies characterize Walrasian

equilibria in the initial economy E .

We remark that the first and second welfare theorems are particular cases of

this equivalence result.

2 The Equivalence Result

Let us consider a pure exchange economy E with a finite number of consumers

and ` commodities.

Each agent i ∈ {1, . . . , n} is characterized by her consumption set Xi = IR`
+,

her initial endowment ωi ∈ IR`
+, and her preference relation �i .

We state the following assumptions on endowments and preference relations:

(H.1) The total endowment is strictly positive, that is,
n∑

i=1

ωi � 0.

(H.2) For every consumer i, the preference relation �i is continuous, monotone

and convex.

Note that the continuity of preferences implies that each preference relation

�i is represented by a continuous and monotone utility function Ui : IR`
+ → IR

(see Eilenberg (1941), Debreu (1954) or Debreu (1983) pp. 105-110).
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Then, the economy is defined by E ≡ (X = IR`, (Ui, ωi), i = 1, . . . , n)

An allocation x = (x1, . . . , xn) is feasible if
n∑

i=1

xi ≤
n∑

i=1

ωi.

A competitive (or Walrasian) equilibrium for the economy E is a pair (p, x),

where p is a price system and x is a feasible allocation such that for every agent i,

the consumption bundle xi maximizes Ui on the budget set {x ∈ IR`
+|p·x ≤ p·ωi}.

A coalition S blocks an allocation x if there exists y = (yi, i ∈ S), such that∑
i∈S

yi ≤
∑
i∈S

ωi and yi �i xi for every i ∈ S.

Definition 2.1 An allocation (feasible or not in the economy E) is dominated

in the economy E if the coalition of all agents can improve upon it. That is, an

allocation x is dominated in the economy E if the whole coalition blocks x.

Note that the non-dominated and feasible allocations in the economy E are,

precisely, the Pareto optimal or efficient allocations.

Given an allocation x and a vector a = (a1, . . . , an), with 0 ≤ ai ≤ 1, let

E(a, x) be a pure exchange economy which coincides with E except for the initial

endowments that are given by ω(a, x) = aω + (1− a)x.

That is, E(a, x) ≡
(
X = IR`, (Ui, ωi(ai, xi) = aiωi + (1− ai)xi) , i = 1, . . . , n

)

Theorem 2.1 x is a walrasian allocation for the economy E if and only if x is

a non-dominated allocation in every economy E(a, x).

Proof. Let (p, x) be a walrasian equilibrium for the economy E . Suppose that

there exists a = (a1, . . . , an), such that x is dominated in the economy E(a, x).

Then, there exists y = (y1, . . . , yn) such that
n∑

i=1

yi =
n∑

i=1

ωi(ai, xi) and Ui(yi) >

Ui(xi) for every agent i ∈ {1, . . . , n}. These inequalities imply that p · yi > p ·ωi,

which is a contradiction with the feasibility of y in the economy E(a, x).

Let x be a non-dominated allocation for every economy E(a, x). Let f a step

function on the real interval I = [0, 1], defined by f(t) = xi if t ∈ Ii =
[

i−1
n

, i
n

)
,

if i 6= n, and f(t) = xn if t ∈ In =
[

n−1
n

, 1
]
. Analogously, let ω(t) = ωi if t ∈ Ii,

if i 6= n, and ω(t) = xn if t ∈ In. Let µ the Lebesgue measure on I.

Assume that x is not a walrasian allocation for the economy E . Then, the step

allocation f given by x is not a Walrasian allocation for the associated continuum
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economy with n different types of agents (see Garćıa and Hervés (1993) for

details). Applying Core-Walras equivalence (see Aumann (1964, 1966)), we have

that f does not belong to the core of the associated continuum economy. Even

more, there exists a coalition S ⊂ I = [0, 1], with µ(S) > 1− 1
n
, and there exists

g, such that
∫

S
g(t)dµ(t) ≤

∫
S
ω(t)dµ(t) and Ui(g(t)) > Ui(f(t)) for almost all

t ∈ Ii for every i = 1, . . . n (see Vind (1972)). Let Si = S
⋂

Ii and ai = µ(Si).

Now, in the finite economy, let us consider the allocation (g1, . . . , gn), where

gi =
1

µ(Si)

∫
Si

g(t)dµ(t).

By convexity of preferences, Ui (aigi + (1− ai)xi) > Ui(xi), for every agent

i ∈ {1, . . . , n}. Note that, since µ(S) > 1− 1
n
, we have that ai > 0 for every i.

Therefore, x is a dominated allocation in the economy E(a.x), which is a

contradiction.

Q.E.D.

This result provides a precise characterization of the walrasian equilibria in

finite economies as non-dominated allocations.

Note that the first welfare theorem is an immediate consequence of the result

above.

Moreover, note also that taking x = ω, we obtain, exactly, the second welfare

theorem.

Therefore, both welfare theorems are, obviously, particular cases or immediate

interpretations of the result we have obtained.
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