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Introduction

The study of Pareto efficient allocations with endogenous fertility decisions seems
crucial to understand the consequences on loosing parental links after implementing
government policies and opening new financial markets. The existence of a suit-
able way to transfer wealth to the future may account for fertility, both through
the developing of security products and some governmental welfare programs. An
example of the latter is Becker and Murphy (1988) which presents a reformulation
of the welfare state, later modeled by Boldrin and Montes (2002) in an exogenous
fertility set-up. These latter authors have justified a welfare state as a mechanism
to complete financial markets that, otherwise, do not exist in real world. On the
other hand, Cigno (1992) and Conde-Ruiz et al (2002) and Miles (1997) among oth-
ers, have pointed out that the expansion of the Welfare State may explain for the
decrease of fertility.

However, an additional source of inefficiency due to incompleteness of markets
arises with endogenous fertility, since there is no market where offspring may bar-
gain with their own parents the right to be born. In this sense it is interesting to
provide a suitable framework to explore the consequences of the welfare state in a
world of endogenous population.

The model we are dealing with consists of an overlapping generations model with
endogenous fertility and incomplete financial markets. Agents live for three peri-
ods: child, young and old. When child, the agent only accumulates human capital.
When old, the agent only consumes. The young generation plays the main role in
the model and takes three economic decisions: the number of children; how much
human capital invest on them and, at the same time, they are the financial support
of their parents. When they reach old age, parents become dependent on their im-
mediate offspring from material support, consisting basically in financial transfers.

We emphasis that old-age security is likely to be an important motive for fertility.
Because of the incompleteness of the markets, parents can only rely on their own
children for supporting at old times.1 Children are dependent on their parents for

1In this sense our model departures from previous literature where parents are assumed to
be purely altruistic with their children. Hence our demand of children is explained without any
assumption on parents’ utility function.

The characterization of the motives for childbearing account to understand the fertility decline.
First, the consumption motive is diminished because there is a substitution effect either with
higher costs of growing up children or with better labor force opportunities for women, i.e. higher
opportunity cost of women (higher real wage rates) substituting time for child-bearing with working
time (see Barro and Lee, 1994). But, unless we consider that offspring is an inferior good, income
effect should increase fertility, since the population of development countries have been experienced
an important increase in income (see Cigno, 1992, and Boldrin and Jones, 2001). This reinforces
the importance of other motives for childbearing. For instance, the importance of the “income
motive” since children are not used to participate in labor activities in development countries.
However, we claim the relevance of the old-age security motive on the fertility fall in a way shown
to be essential in the present paper. The existence and availability of a set of statements, jointly
with commitments, to transfer wealth into the future allow agents to risk hedge on old times. The
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both their material needs and the acquisition of productive knowledge. Accumula-
tion of human capital thus occurs in our model through implicit contracts involving
intergenerational trade and companionship. If parents have some certainty that
their children are going to support them at elderhood, parents may be strongly in-
terested in invest higher on their own children’s human capital, since more income
is possible for children.

The literature have provided some criteria for an allocation to be efficient, after
a notion of efficiency must be shown. First, Cass (1972) presents a sufficient efficient
conditions for a production growing economy, where higher aggregate consumption
is needed for improving optimality. Galor and Ryder (1991) rely their notion of
Pareto efficient as an improvement on utility. They establish sufficient technologi-
cal conditions for dynamic efficiency at the economy’svsteady-steate equilibria in a
OLG with production. Balasko and Shell (1980) also study efficiency in an overlap-
ping generation model with endowments. They characterize some notions of Pareto
efficiency and show that, although an allocation can be short-run efficient (or stati-
cally efficient), i.e., individually all agents are maximizing their individual welfare, it
could not be long-run efficient (or dynamically efficient); that is, that a lower rate of
savings in all generation can achieve higher levels of welfare. This dichotomy arises
very often in overlapping generations model.

Both papers, however, deals with exogenous fertility. Some attempts has been
made to study the case where an optimal number of populations yields the higher
level of welfare, e.g. Samuelson (1975 and 1976) and Deardorff (1976) or, at least,
the case of endogenous fertility. Examples of the latter, like Eckstein and Wolpin
(1985), Bental (1989) orAbio and Patxot (2001), are restricted, however, to the
golden rule, so a wide range of optimal allocations are not identified.

The present paper undertakes a study on optimality in an overlapping genera-
tions model with endogenous fertility. First, we present two definitions of Pareto
dominance and, consequently, of Pareto efficiency. Some conceptual problems (which
could also be said “ethical”) arises when fertility decisions are analyzed. For exam-
ple an allocation with a given number of individuals in each of the infinite periods,
could not be Pareto comparable with another with lower number of individuals at
least in one period. The reason is that the “disappeared” (or killed) individuals are,
obviously, worst. In consequence, we provide two definitions: a weak Pareto domi-
nance, where the case mentioned are considered, and the strong Pareto dominance.
In the latter, the notion of efficiency is period dependent, in the sense that we can
compare allocations where at any given period some agent previously born may be
improved without considering all the contingent non-born descendants still not born
at that given period.

more developed private financial markets is, the lesser the fertility. This is the case of societies with
financial institutions, property rights on land property or the existence of large families with strong
siblings relationships. Analogous result is achieved if there is a well developed public welfare state,
like the social security. These types of institutions are mainly associated with developed countries,
so the fertility drop is reinforced.
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Second, we present both necessary (static) efficient conditions and a sufficient
(dynamic) efficient condition for an allocation to be efficient. That is, in order to
show up that efficiency is fulfilled, we do not only require to equalize the rate of
return of all investments, both in quantity and in quality of children. We show that
the criteria with endogenous fertility is analogous to that provided by Cass (1972).

The paper develops along the following lines. First the model is presented. Next
we characterize Pareto dominance and Pareto efficiency. In section 3 we present the
necessary conditions for an allocation to be efficient, while in section 4 the sufficient
conditions are provided. The paper concludes with some straight forward extensions.

1 The model: the primitives

At each date t = 0, 1, 2...and, for each dinasty or family, there exist nt−2 old adults
(that is, nt−2 agents born at date t− 2), nt−1 young adults (that is, nt−1agents born
at date t − 1) and nt children (that is, nt agents born at t). The set of agents is
endogenous.

Given co
0 ∈ <+, n−1 ∈ <+, and d−1 ∈ <+, an allocation is feasible if, for each

t = 0, 1, 2, ...,one has

co
t + nt−1 (cm

t + b(nt) + dtnt) ≤ nt−1yt(dt−1); (1.1)

and
co
0 = co

0; n−1 = n−1; d−1 ≤ d−1. (1.2)

Condition (1.1), written in per capita terms, establishes that consumption and in-
vestment made by all agents cannot exceed the total amount of the perishable good,
which is assumed to be produced out of human capital accumulated in the previ-
ous period according to a non-increasing returns to scale technology yt : <+ → <.
Condition (1.2) establishes that, by the time the economy starts (that is, at time
t = 0), consumption made by people who are old at that time is fixed at co

0 = co
0; the

number of agents who are at their mature age at that time is fixed at n−1 = n−1;
and, finally, per capita investment in education of each of these agents is fixed at
d−1 = d−1.

Preferences of each agent born at time τ = −2 are represented by a utility
function U−2 : A → < defined, for each a = {(nt−1, co

t , c
m
t , dt−1)}∞t=0 by

U−2(a) = u(co
0)

and, for each t ≥ 0, preferences of each agent born at date t− 1 are represented by
a utility function Ut−1 : A → < defined, for each a = {(nt−1, co

t , c
m
t , dt−1)}∞t=0 , by

Ut−1(a) = U(cm
t , co

t+1) = um(cm
t ) + uo(co

t+1),
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where um : <+ → <+ and uo : <+ → <+ are strictly increasing, concave functions2

satisfying
um(0) = uo(0) = 0.

2 Efficiency with endogenous population

In this section, we discuss several extensions of the Pareto criteria to economies with
endogenous population. Throughout the section, we focus on symmetric allocations,
that is, on allocations in which living agents belonging to the same generation are
treated equally. Thus, we focus on allocations of the form

a = {xt}∞t=1 ,

where , for each t = 1, 2, ..., τ , τ + 1, ..., the vector xt = (nt, co
t , c

m
t , dt) specifies

• the number of children, nt born at date t;

• the amount of a perishable good, cm
t , consumed at date t by each agent born

at date t− 1,

• the amount of the perishable good, co
t , consumed at date t by each agent born

at date t− 2,

• the amount of the perishable good, dt, invested on the education of each agent
born at date t− 1.

Given a vector of initial conditions
(

n0, d0
)

∈ <2
+, an allocation a = {(nt, co

t , c
m
t , dt)}∞t=1

is said to be feasible if, for each t = 1, 2, ..., one has

co
t ≤ nt−1 [yt(dt−1)− cm

t − b(nt)− dtnt] (2.1)

and
(n0, d0) =

(

n0, d0
)

. (2.2)

Denote by A the set of al feasible allocations.

2.1 Pareto-dominance criteria

In order to extend the notion of Pareto-dominance to a framework in which pop-
ulation is endogenous, one needs to decide first how agents that never get to be
born should be taken into account when making social welfare judgements. Here,
we propose two different extensions of the notion of Pareto-dominance.

2This formulation is slightly more general than your current formulation. The gains in generality
can be made at no cost and might bring out some advantages in modeling agents’ behavior as a
cooperative game. For example, quasilinear preferences allows one the problem of deciding the
level of education as a cooperative game with transferable utility.
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2.1.1 Strong dominance

The first dominance criterium, which will be referred to as strong dominance, takes
into account all potential agents in the economy, and it is based on the assumption
that all these potential agents prefer to be alive. Thus, according to this criterium,
an allocation a ∈ A dominates an allocation a′ ∈ A if both the number of individuals
and per capita utility obtained by each individual under the allocation a are never
lower than those corresponding to the allocation a′; and there exists at least one
period in which either the number of individuals or per capita utility obtained by
each individual is strictly higher under a than it is under a′. Formally, an allocation
â =

{(

n̂t−1, ĉo
t , ĉ

m
t , ̂dt−1

)}∞

t=1
∈ A strongly dominates an allocation a′ ∈ A if the

following conditions are satisfied:

i) for all t = 1, 2, ....one has
n̂t ≥ nt

and
um(ĉm

t ) + uo(ĉo
t+1) ≥ um(cm

t ) + uo(co
t+1);

and

ii) there exists at least one period τ such that either

n̂τ > nτ

or
um(ĉm

t ) + uo(ĉo
t+1) > um(cm

t ) + uo(co
t+1)

is satisfied.

Observe that taking into account all potential agents might be too demanding.
Note also that allocation â only can be compared with allocations with the same
or less number of children, i.e. n̂t ≥ nt. The allocation â is not Pareto-comparable
with allocations with more children at the same t.

2.1.2 Weak dominance

The second criterium, referred to as weak dominance, is based exclusively on prefer-
ences of those individuals who get to be born. Formally, an allocation â ∈ A weakly
dominates an allocation a en A if the following conditions are satisfied.

i) for all t = 1, 2, ....one has

um(ĉm
t ) + uo(ĉo

t+1) ≥ um(cm
t ) + uo(co

t+1);
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and

ii) there exists at least one period τ such that

um(ĉm
t ) + uo(ĉo

t+1) > um(cm
t ) + uo(co

t+1)

is satisfied.

This two dominance criteria defined above have associated two efficiency criteria.
An allocation a ∈ A is said to be weakly efficient if it is not strongly dominated by any
other allocation. Analogously, an allocation a ∈ A is said to be strongly efficient if it
is not weakly dominated by any other allocation. Every strongly efficient allocation
is, therefore, weakly efficient, although the converse might not be true.

3 Weak efficiency. Necessary conditions

In order to obtain necessary conditions to achieve weak efficiency in this framework,
some additional notation is now introduced. Given an allocation a = {(nt, co

t , c
m
t , dt)}∞t=1

and, for each t, let

Zt =
{

0, if nt−1 = 0
co
t/nt−1, otherwise.

That is, Zt represents the amount of the consumption good transferred by each
agent born at date t−1 to those agents born at date t−2. Note that for each t ≥ 1,
the feasibility condition in (2.1) can be equivalently written as

cm
t ≤ yt(dt−1)− Zt − b(nt)− dtnt. (3.1)

Let t be arbitrary. Given an efficient allocation â =
{(

n̂t−1, ĉo
t , ĉ

m
t , ̂dt−1

)}∞

t=1
∈

A, let
̂Ut−1 = Ut−1(â) = um(ĉm

t ) + uo(ĉo
t+1),

that is,
̂Ut−1 = um

[

yt(̂dt−1)− ̂Zt − b(n̂t)− ̂dtn̂t

]

+ uo(n̂t
̂Zt+1).

Also ̂U−1 = uo(n̂0
̂Z1).

Now let Pt ⊆ <2
+ be defined as the set containing all pairs (Ut−1, cm

t+1) ∈ <2
+ such

that
Ut−1 > ̂Ut−1

and
cm
t+1 > ĉm

t+1.
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Also, let Ft ⊆ <2
+ be defined as the set containing all pairs (Ut−1, cm

t+1) ∈ <2
+ for

which there exists a triple (nt, dt, Zt+1) ∈ <3
+, with b(nt) + dtnt ≤ yt(̂dt−1)− ̂Zt and

b(n̂t+1) + ̂dt+1n̂t+1 ≤ yt+1(dt)− Zt+1, such that

Ut−1 ≤ um

(

yt(̂dt−1)− ̂Zt − b(nt)− dtnt

)

+ u0 (ntZt+1)

and
cm
t+1 ≤ yt+1(dt)− Zt+1 − b(n̂t+1)− ̂dt+1n̂t.

Observe that since â =
{(

n̂t−1, ĉo
t , ĉ

m
t , ̂dt−1

)}∞

t=0
is efficient, the sets Pt and Ft are

disjoint sets. Also, since U and yt are concave functions and the function b is convex,
the sets Pt and Ft are convex sets, both having non-empty interior. It follows from
the Separating Hyplerplane Theorem that there exists a pair of welfare weights
λt = (λm

t , λy
t ) 6= 0 and a number r such that, for every (UP

t−1, c
mP
t+1) ∈ Pt and every

(UF
t−1, c

mF
t+1) ∈ Ft one has

λm
t UP

t−1 + λy
t c

mP
t+1 ≥ r

and
λm

t UF
t−1 + λy

t c
mF
t+1 ≤ r.

Morover, it can be shown that λm
t and λy

t are both non-negative. To see this,
note first that the vector (UF

t−1, c
mF
t+1) = (U(0), 0) ∈ Ft and, hence, one has r > 0.

Therefore, if either λm
t < 0 or λy

t < 0 were satisfied, then it would be possible to
find a pair (Up

t−1, c
mP
t+1) ∈ Pt such that λt−1tUP

t−1 +λt−1tcmP
t+1 < r, a contradiction that

establishes that both λm
t ≥ 0 and λy

t ≥ 0 are satisfied. Taking this into account,
together with the fact that â is efficient one obtains

λm
t UP

t−1 + λy
t c

mP
t+1 ≥ λm

t
̂Ut−1 + λy

t ĉ
m
t+1 ≥ λm

t UF
t−1 + λm

t cmF
t+1, (3.2)

that is,

λm
t

λm
t + λy

t
UP

t−1+
λy

t

λm
t + λy

t
cmP
t+1 ≥

λm
t

λm
t + λy

t

̂Ut−1+
λy

t

λm
t + λy

t
ĉm
t+1 ≥

λm
t

λm
t + λy

t
UF

t−1+
λy

t

λm
t + λy

t
cmF
t+1.

Let S1 denote the simplex in <2
+. Also, given a vector

(

̂dt−1, ̂Zt

)

∈ <2
+, a vector

λt = (λm
t , λy

t ) ∈ S1, and for each triple (nt, dt, Zt+1) ∈ <3
+, let

Wt

(

nt, dt, Zt+1; λt, ̂dt−1, ̂Zt

)

= λm
t

[

um

(

yt(̂dt−1)− ̂Zt − b(nt)− dtnt

)

+ uo (ntZt+1)
]

+λy
t ([yt+1(dt)− Zt+1]]].

With this notation, and taking into account that the inequalities in (3.2) hold
for every (UP

t−1, c
mP
t+1) ∈ Pt and every (UF

t−1, c
mF
t+1) ∈ Ft, it follows that each triple

(n̂t, ̂dt, ̂Zt+1) corresponding to an efficient allocation can be rationalized as the solu-
tion to a welfare maximization problem, as summarized in the following Proposition.
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Proposition 2.1. For every strongly efficient allocation â, there exists a sequence
λ =

{

(λm
t , λy

t ) ∈ <2
+

}∞
t=0 such that, for every t ≥ 1, the triple (n̂t, ̂dt, ̂Zt+1) maximizes

Wt

(

nt, dt, Zt+1; λt, ̂dt−1, ̂Zt

)

among those triples (nt, dt, Zt+1) satisfying

b(nt) + dtnt ≤ yt(̂dt−1)− ̂Zt (P.1.1)

b(n̂t+1) + ̂dt+1n̂t+1 ≤ yt+1(dt)− Zt+1. (P.1.2)

and
(nt, dt, Zt+1) ≥ 0. (P.1.3)

Therefore, following from Kuhn Tucker Theorem that for every efficient alloca-
tion â and for each t ≥ 0, there exists a pair(λm

t , λy
t ) ∈ S2

+, a vector µt =(µ1
t , µ

2
t ) ≥ 0,

and a vector αt = (αn
t , α

d
t , α

R
t ) ≥ 0 such that the maximum satisfies the following

conditions:

λm
t u′o(n̂t

̂Zt+1) ̂Zt+1−
[

λm
t u′m

(

yt(̂dt−1)− ̂Zt − b(n̂t)− ̂dtn̂t

)

+ µ1
t

] [

b′(n̂t) + ̂dt

]

+αn
t = 0;
(3.3)

−λm
t u′m

(

yt(̂dt−1)− ̂Zt − b(n̂t)− ̂dtn̂t

)

n̂t +
[

λy
t + µ2

t

]

y′t+1(̂dt) + αd
t = 0; (3.4)

λm
t u′o(n̂t

̂Zt+1)n̂t −
[

λy
t + µ2

t

]

+ αZ
t = 0; (3.5)

µ1
t

[

b(n̂t)− ̂dtn̂t − yt(̂dt−1)− ̂Zt

]

= 0; (3.6)

µ2
t

[

yt+1(̂dt)− ̂Zt+1 − b(n̂t+1)− ̂dt+1n̂t+1

]

= 0; (3.7)

and
αn

t n̂t = 0; αd
t
̂dt = 0; αR

t
̂Zt+1 = 0. (3.8)

Remark 2.1. It is straightforward to check out that Proposition 2.1 can be
deduced by arguing that for every efficient allocation â and every t ≥ 1, the triple
(n̂t, ̂dt, ̂Zt+1) ∈ <+ should maximize

Ut−1 = um

(

yt(̂dt−1)− ̂Zt − b(n̂t)− dtnt

)

+ uo (ntZt+1)

subject to the constraints in (P.1.1), (P.1.2,) (P.1.3), and the additional constraint

um

(

yt+1(dt)− Zt+1 − b(n̂t+1)− ̂dt+1n̂t+1

)

≥ um

(

yt+1(̂dt)− ̂Zt+1 − b(n̂t+1)− ̂dt+1n̂t+1

)

which, given monotonicity of preferences, is equivalent to

yt+1(dt)− Zt+1 ≥ yt+1(̂dt)− ̂Zt+1.
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Remark 2.2. Consider an strongly efficient allocation â = {x̂t}∞t=1 and select
an arbitrary period τ . Then, there exists a sequence {γt}

τ
t=0 such that the sequence

{x̂t}τ−1
t=1 solves the welfare maximization problem

max
{xt}τ

t=1

{

γ−1c
o
t +

τ−1
∑

t=1

γt−1

[

um(cm
t ) + uo(co

t+1)
]

+ γτum(cm
τ )

}

subject to the constraints

co
t + nt [cm

t + b(nt) + dtnt] ≤ ntyt(dt−1) for t = 1, 2, ...τ . (3.9)

and
yτ+1(dτ )− Zt ≤ −b(nt)um(cm

t )

must be a solution of the optimization problem.
Consider a weakly efficient allocation â =

{(

n̂t−1, ĉo
t , ĉ

m
t , ̂dt−1

)}∞

t=0
satisfying,

for each t ≥ 0,
(ĉm

t , ĉo
t ) > (0, 0).

Observe that for each t ≥ 0, the triple (n̂t, ̂dt, ̂Zt+1) correponding to such allocation
such allocation â satisfies (with strict inequality) the constraints in (P.1.1), (P.1.2)
and (P.1.3). Then it follows from the above conditions that the triple (n̂t, ̂dt, ̂Zt+1)
satisfies

̂Zt+1

b′(n̂t) + ̂dt

=
u′m(ĉm

t )
u′o(ĉo

t+1)
= y′t(̂dt). (3.10)

Proposition 2.1 above summarizes this result.

Proposition 2.2. Let â =
{(

n̂t−1, ĉo
t , ĉ

m
t , ̂dt−1

)}∞

t=1
∈ A be an strongly efficient

allocation satisfying, for every t ≥ 1,3

(ĉm
t , ĉo

t ) > (0, 0). (P.2.1)

Then, there exists a sequence p̂ = {pt}∞t=0 of strictly positive real numbers satisfying,
for every t ≥ 0,

̂Zt+1

b′(n̂t) + ̂dt

=
u′m(ĉm

t )
u′o(ĉo

t+1)
= y′t+1(̂dt) =

pt

pt+1
. (P.2.2)

That is, every efficient allocation can be associated to a sequence of relative prices
defined implicitly by the marginal rate of return to any investment (either on quan-
tity or in quality of human capital), which in turn must be equal to the marginal

3Why strictly positive is required in (P.2.1)? In order for the solution to be interior (Look for
primitives to support this result.)
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rate of substitution between current and future consumption. Observe that the two
equalities at the left hand side of (3.10), together with the feasibility condition

ĉm
t = yt(̂dt−1)− ̂Zt − b(n̂t)− ̂dtn̂t

and the identity
n̂t

̂Zt+1 = ĉo
t+1

form a system with 4 equations and 5 unknowns. Thus, there might be infinitely
many triples that solve the system in (1.10). Each of this solutions can be ratio-
nalized as the solution to the welfare maximization problem in the statement of
proposition 2.1, where the system of welfare weights is defined by

λy
t

λm
t

= u′m(ĉo
t+1)n̂t.

Finally, the following results allow us to identify certain properties of those al-
locations that, although verifying the Proposition 2.2, they are not inefficient. An
example is the following result:

Corollary 2.3. Let â be an allocation satisfying, for each t = 1, 2, ..., conditions
(P.2.1) and (P.2.2), and suppose there exists an allocation a that strongly dominates
the allocation â satisfying the following inequalities 4nt ≤ 0, 4cm

t ≤ 0 and 4dt ≤ 0,
for each t = 1, 2, ... Then for each t = 1, 2, .. one has

4co
t+1 ≥

pt

pt+1
∇cm

t .

The proof is immediate from (5.1), (5.2) and (P.2.2). This results indicate that
there would be always an improvement whenever the reduction on consumption for
middle age agents is far from being balanced, in welfare terms, by the increase with
consumption in old times.4

4 Efficiency. Sufficient conditions

In this section we provide conditions that guarantee that an allocation â =
{(

n̂t, ĉo
t , ĉ

m
t , ̂dt

)}∞

t=1
∈ A satisfying conditions (P.2.1) and (P.2.2) is efficient.

The main result is presented as follows:
4For example, take the case for a feasible allocation a such that 4nt = 0 and 4dt = 0 for all

t. Then, the allocation a will Pareto-dominate the allocation â if the reduction on consumption
when young 4cm

t ≤ 0 is balanced in utility terms with the increase in consumption when old, i.e.
4co

t = n̂t−1∇cm
t at (5.1).
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Proposition 3.1. Let â be an allocation satisfying, for each t = 1, 2, ..., conditions
(P.1.1) and (P.1.2,). Let be the sequence of strictly positive real numbers p̂ = {pt}∞t=0
defined in Proposition 2.2. Then, the condition

lim
T→∞

[

pT

T
∏

τ=1

nτ

]

= 0.

is sufficient for an allocation satisfying (P.2.1) to be efficient.

This proposition is very close to Proposition 5.3 and Lemma 5.5 in Balasko and
Shell (1980) for an exogenous endowment economy. We could also think on an
extension to Proposition 1 and Theorems 2 and 3 in Cass (1972) for an capital
accumulation growth economy with exogenous population growth, as a consequence
of this proposition.

Corollary 3.2. If feasible path a is innefficient then

lim
T→∞

[

pT

T
∏

τ=1

nτ

]

= ∞.

Two comments on this result, proved in the Appendix. First, observe that Bal-
asko and Shell (1980) assume that 4dt = 0 and nt = 1 for all t, so their proposition
5.3 is a particular case of ours.

Second, to show that for all t, both the required condition

4nt−14Zt − n̂t−14dt4nt ≤ 0

holds and the term ht = 4co
t − n̂t−1

pt−1
pt
4dt−1 − 4nt−1

̂Zt is always non-negative,
it is sufficient to show that there is no loss of generality in assuming that for any
allocation a strongly dominating â, one has

4nt ≤ 0; 4cm
t ≤ 0; 4dt ≤ 0.

In order to prove our previous assumption we are going to proceed by steps by
proving the following auxiliary results.

The following Lemma 3.4 is in line with the argument presented in Corollary 2.3
which indicates that there would be always an improvement whenever the reduction
on consumption for middle age agents is far from being balanced, in welfare terms,
by the increase with consumption in old times. Observe, finally, that concavity
conditions for preferences on individuals’ intertemporal consumption are crucial for
this result.

12



Lemma 3.4. Let â be an allocation satisfying, for each t = 1, 2, ..., conditions
(P.1.1) and (P.1.2), and suppose there exists an allocation ã that weakly dominates
the allocation â. Then for each t = 1, 2, .. one has

c̃m
t + b(ñt) + ñt

˜dt ≤ ĉm
t + b(n̂t) + n̂t

̂dt.

That is, allocations that weakly dominates those who verifies the necessary con-
ditions for optimality are such that the total resources not devoted to feed the old
generation must be lower. In other words, the old generation must improve in an
efficient allocation. The Lemma is proved in the appendix.

Lemma 3.5. Let â be an allocation satisfying, for each t = 1, 2, ..., conditions
(P.2.1) and (P.2.2,) and suppose â is not strongly efficient. Then there exists an
allocation a that weakly dominates the allocation â and satisfies the following in-
equalities, for each t = 1, 2, .. ,

4nt ≤ 0;4cm
t ≤ 0;4dt ≤ 0.

Lemma 3.5, proved in the Appendix, means that an allocation that verifies nec-
essary conditions for efficiency given in Proposition 2.1 could not be efficient, if and
only if there exists another allocation that also verifies necessary conditions given
by Proposition 2.1 but with at least with one of the following: less number of chil-
dren, lower investment in children’s human capital, or with lower middle age agents’
consumption.

5 Conclusions and Extensions

In this paper we have undertaken an optimality study in an overlapping generation
model with endogenous fertility and exogenous endowments. The contribution of
this paper were twofold. First, two definitions of Pareto dominance and, therefore,
Pareto efficiency has been presented. Second, the necessary (static) and sufficient
(dynamic) efficient conditions have been shown.

This work is the starting point for several lines of research. Theoretically, there
are two straight forward extensions. First, an study on efficiency can be carried out
in a model where it is considered that offspring are not only childbeared by old-age
security motive but also by consumption motive. Notice that in our framework the
old-age security motive arises as a necessary condition for having children. However,
that would not be the case if parents enhance welfare with the mere fact of being born
them. In this case, would be worth exploring of the results are robusted or changed.
The incompleteness of markets derived in the paper may still cause inefficiency.

Second, we are ready to explore efficiency, even in the presence of free-access
to capital markets there might be markets could be incomplete due to parents and

13



their own children may not be able to trade on the right to existence. So further
research will study the role of the family and the Welfare State in the completeness
of this market.

Third, it is interesting to find contracts between parents and their children in
decentralized economies that reproduce optimal allocations. Some contracts have
been proposed in the literature, Ehrlich and Lui (1991), Cigno (1993) and Conde-
Ruiz et al (2002) These would lead us to extend Becker and Murphy’s ideas on how
the state reproduces family roles at aggregate level and, then, to proceed Boldrin
and Montes’s study in an endogenous fertility set-up.

Appendix

Proof of Proposition 3.1. Some additional notation is now introduced. Con-
sider an allocation â = {x̂t}∞t=1 satisfying conditions (P.2.1) and (P.2.2). For every
other feasible allocation a = {xt}∞t=1 and let 4xt = (4nt,4co

t ,4cm
t ,4dt) each

t = 1, 2, 3, ... be defined as difference

4xt = xt − x̂t.

By feasibility both allocations â and a verifies (2.1); that is, one has

ĉo
t = n̂t−1

̂Zt = n̂t−1

[

yt(̂dt−1)− ĉm
t − b(n̂t)− ̂dtn̂t

]

and

ĉo
t +4co

t = [n̂t−1 +4nt−1]
[

yt(̂dt−1 +4dt−1)− ĉm
t +∇cm

t − b(n̂t +4nt)−

−
(

̂dt +4dt

)

(n̂t +4nt)
]

where ∇cm
t = −∆cm

t . Subtracting the latter from the former one obtains

4co
t = n̂t−1

[(

yt(̂dt−1 +4dt−1)− yt−1(̂dt−1)
)

+∇cm
t − (b(n̂t +4nt)− b(n̂t))−

−̂dt4nt −4dtn̂t −4dt4nt

]

+4nt−1Zt (5.1)

By concavity of preferences and production function, and convexity of children cost
function one has5

4co
t ≤ n̂t−1

[

y′t(̂dt−1)4dt−1 +
u′o(ĉ

o
t+1)

u′m(ĉm
t )
4co

t+1 −
(

b′(n̂t) + ̂dt

)

4nt −4dtnt −4dt4nt

]

+4nt−1

(

̂Zt +4Zt

)

5First, the concavity of preferences implies that ∆co
t+1∆cm

t ≥ 0. Then if ∆cm
t < 0 then

u′m(bcm
t )

u′o(bco
t+1)

≤ −4co
t+1

∆cm
t

, and if ∆cm
t > 0 then u′m(bcm

t )
u′o(bco

t+1)
≥ −4co

t+1
∆cm

t
; that is, ∇cm

t
u′m(bcm

t )
u′o(bco

t+1)
≤ 4co

t+1

. Second, the concavity of production function means that y′(̂d) ≥ y(bd+4d)−y(bd)
4d . Finally, the

convexity of children cost function means that b′(n̂) ≥ b(bn+4n)−b(bn)
4n .
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Since â satisfies the necessary conditions in (P.2.1) and (P.2.2) one has

4co
t ≤ n̂t−1

[

pt−1

pt
4dt−1 +

pt+1

pt
4co

t+1 −
pt+1

pt

̂Zt+14nt −4dtn̂t −4dt4nt

]

+

+4nt−1

(

̂Zt +4Zt

)

(5.2)

That is,

4co
t − n̂t−1

pt−1

pt
4dt−1 −4nt−1

̂Zt ≤ n̂t−1
pt+1

pt

[

4co
t+1 − n̂t

pt

pt+1
4dt −4nt

̂Zt+1

]

−

−n̂t−14dt4nt +4nt−14Zt

In Lemma 3.5 we show that there is no loss of generality in assuming that for every
allocation a that weakly dominates a given allocation â, one has, for all t,

4nt−14Zt − n̂t−14dt4nt ≤ 0

Let us denote ht = 4co
t − n̂t−1

pt−1
pt
4dt−1 −4nt−1

̂Zt. Lemma 3.5 also implies that
this term is non negative. Then applying the argument recursively one has

ht ≤ n̂t−1
pt+1

pt
ht+1 ≤ n̂t−1n̂t

pt+1

pt

pt+2

pt+1
ht+2 < ... < ht+T

pt+T

pt

T
∏

τ=1

nt+τ−2

Given that there exist other feasible allocation this inequality must be strict at least
for some t. Thus, given that ht+T is bounded by feasibility for all T , a sufficient
condition for an allocation satisfying (P.2.1)

lim
T→∞

[

pT

T
∏

τ=1

nτ

]

= 0.�

Proof of Lemma 3.4.. Let t > 0, A > 0 and B > 0, and define

Wt(A,B) = max
(nt,dt,Zt+1)≥0

{um(A− b(nt)− dtnt) + uo(ntZt+1) : b(nt) + dtnt ≤ A,

yt+1(dt)− Zt+1 ≥ B}

Consider now and allocation â =
{(

n̂t, ĉo
t , ĉ

m
t , ̂dt

)}∞

t=1
∈ A satisfying conditions

(P.1.1) and (P.1.2). It is straightforward to check out that, given d0,

W1(y1(d0)− ̂Z1, y2(̂d1)− ̂Z2) = um(y1(d0)− ̂Z1 − b(n̂1)− ̂d1n̂1) + uo(n̂1
̂Z2) = U1(â).

Consider now an allocation ã =
{(

ñt, c̃o
t , c̃

m
t , ˜dt

)}∞

t=1
∈ A that weakly dominates

the allocation â. From the definition of weak dominance one has that at least some
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agent at generation t−2 or at t−1 (old and middle age agents at t = 1, respectively)
is better and none is worst; that is,

˜Z1 ≥ ̂Z1 and U1(ã) ≥ U1(â),

which taking into account that each function is increasing in A yields

U1(ã) ≥ U1(â) = W1

(

y1(d0)− ̂Z1, y2(̂d1)− ̂Z2

)

≥ W1

(

y1(d0)− ˜Z1, y2(̂d1)− ̂Z2

)

.

¿From the definitions, this inequality can only be preserved if the inequality

y2(˜d1)− ˜Z2 ≤ y2(̂d1)− ̂Z2.

is satisfied. Suppose that it is not true. Since, ˜Z1 ≥ ̂Z1 then the triple
(

ñt, c̃o
t , c̃

m
t , ˜dt

)

verifies both b(nt) + dtnt ≤ A, and yt+1(dt) − Zt+1 ≥ B, for the given A and B.
This contradicts, therefore, that the triple

(

ñt, c̃o
t , c̃

m
t , ˜dt

)

solves the optimization
problem above stated.

By applying an entirely analogous argument one obtains

U2(ã) ≥ U2(â) = W2

(

y2(̂d1)− ̂Z2, y3(̂d2)− ̂Z3

)

≥ W2

(

y2(d1)− ˜Z2, y3(̂d2)− ̂Z3

)

,

which in turn implies that the inequality

y3(d2)− ˜Z3 ≤ y3(̂d2)− ̂Z3.

must be satisfied. By proceeding recursively one obtains for all t,

c̃m
t + b(ñt) + ñt

˜dt = yt(˜dt−1)− ˜Zt ≤ yt(̂dt−1)− ̂Zt−1 = ĉm
t + b(n̂t) + n̂t

̂dt,

which establishes Lemma 3.4.�

Proof of Lemma 3.5.. Let â be an allocation satisfying, for each t = 1, 2, ...,
conditions (P.2.1) and (P.2.2), and suppose â is not strongly efficient. The proof
proceeds by selecting arbitrarily a feasible allocation ã that weakly dominates â
and use it to identify a third allocation a satisfying the required property in the
statement of Lemma 3.5.

We now proceed to identify such allocation a = {(nt, cm
t , co

t , dt)}∞t=1, with nt =
n̂t +4nt, dt = ̂dt +4dt and cm

t = ĉm
t +4cm

t . Given an allocation ã that weakly
dominates â, select a vector (ηt, δt, γt) ∈ [0, 1]3 such that

4nt = 4ñt(1−ηt) ≤ 0; 4cm
t = 4c̃m

t (1−γt) ≤ 0; 4dt = 4˜dt(1−δt) ≤ 0, (A.3.1)

and

[c̃m
t + γt∇c̃m

t ]+b(ñt+ηt∇ñt)+
[

˜dt + δt∇˜dt

]

[ñt + ηt∇ñt] = c̃m
t +b(ñt)+ñt

˜dt (A.3.2)
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are satisfied.
That is, the vector (ηt, δt, γt) is used to modify the vector

(

ñt, c̃m
t , ˜dt

)

in such
a way that i) the required property in the statement of Lemma 3.5 is satisfied,
condition (A.3.1);6 and ii) total expenditures on current consumption of young
adults and current investments in children and education is preserved, condition
(A.3.2), i.e., the resources in the economy after making the transfers to the old
generation at each period t is the same to those existed in the allocation ã at each
period t, so that the condition in Lemma 3.4 is verified.

To show such vector (ηt, δt, γt) exists, it is useful to consider a particular case.
First, let et : [0, 1]3 → < be a function defined, for each (ηt, δt, γt) ∈ [0, 1]3, by

et(ηt, δt, γt) = [c̃m
t + γt∇c̃m

t ] + b(ñt + ηt∇ñt) +
[

˜dt + δt∇˜dt

]

[ñt + ηt∇ñt]−

−c̃m
t − b(ñt)− ñt

˜dt =

= γt∇c̃m
t + [b(ñt + ηt∇ñt)− b(ñt)] +

[

˜dt + δt∇˜dt

]

ηt∇ñt + δt∇˜dtñt.

Note that condition (A.3.2) can be written as

et(ηt, δt, γt) = 0.

Then, consider, for example, the case in which 4ñt > 0, 4c̃m
t > 0 and 4˜dt < 0

is satisfied. Observe that, in this particular case, condition (A.3.1) imposes that
ηt = 1 and γt = 1 must be satisfied. Also, observe that in this case the function
et((1, δt, 1) is strictly increasing in δt. Therefore et(1, 0, 1) < 0 must be satisfied.
Note finally that given by assumption of this Lemma ã Pareto dominates â, then
Lemma 3.4 implies7 et(1, 1, 1) > 0. Since the function et(·) is continuous, there
must exist a number δ∗t ∈ [0, 1] such that et(1, δ∗t , 1) = 0. Therefore the vector
(ηt, δt, γt) = (1, δ∗, 1) satisfies (A.3.1) and (A.3.2). By applying analogous arguments
to all possible cases, one can show that a vector (ηt, δt, γt) satisfying the required
conditions always exists.

Given a sequence {(ηt, δt, γt)}
∞
t=0 of vectors satisfying conditions (A.3.1) and

(A.3.2), let a = {(nt, cm
t , co

t , dt)}∞t=1 be a feasible allocation defined, for each t > 0,
6This could be understood geometrically. Let be an hypercube where allocations â and ã =

(

− | ñt |,− | c̃m
t |,− | ˜dt |

)

are set at the far opposite vortex. Then, i) means that by construction,
the new allocation a is chosen such that it belongs to the adherence of this hypercube.

7Observe that, given the definition of the function et(·), it can only be non-negative et(1, 1, 1) if
at least one of the following4ñt, 4c̃m

t or4˜dt is non-positive. Geometrically, this means that no al-
location ã that strongly dominates â is placed at the positive orthant of a hypercube with center â =
(

n̂t, ĉm
t , ̂dt

)

, and where allocations ã =
(

| ñt |, | c̃m
t |, | ˜dt |

)

and ã =
(

− | ñt |,− | c̃m
t |,− | ˜dt |

)

are
set at the far opposite vortex. This is a direct application of Lemma 3.4, where the hiperplane
defined in that Lemma c̃m

t + b(ñt) + ñt ˜dt = ĉm
t + b(n̂t) + n̂t ̂dt, which intersects with the vortex â

of the hypercube preclude that the positive vortex verifies this relation with inequality.
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by:

nt = ñt − ηt4ñt = n̂t + (1− ηt)4ñt,

dt = ˜dt − δt4˜dt = ̂dt + (1− δt)4˜dt,
cm
t = c̃m

t − γt4c̃m
t = ĉm

t + (1− γt)4c̃m
t ;

and8

co
t+1 = c̃o

t+1 + (ñt − ηt4ñt)
[

yt+1(˜dt − δt4˜dt)− yt+1(˜dt)
]

− ηt4ñt
˜Zt+1

= c̃o
t+1 + nt

[

yt+1(˜dt − δt4˜dt)− yt+1(˜dt)
]

− ηt4ñt
˜Zt+1

= c̃o
t+1 + ñt

[

yt+1(˜dt − δt4˜dt)− yt+1(˜dt)
]

− ηt4ñtZt+1 (5.3)

It is straightforward to show that a is feasible. Also, since a satisfies (A.3.2), one
has that et(ηt, δt, γt) = 0 for every t > 0. That is,

0 = γt∇c̃m
t + [b(ñt + ηt∇ñt)− b(ñt)] +

[

˜dt + δt∇˜dt

]

ηt∇ñt + δt∇˜dtñt,

which taking into account the strict convexity of the cost function b(·) yields

γt∇c̃m
t + [b′(nt) + dt] ηt∇ñt + ñtδt∇˜dt > 0 > γt∇c̃m

t +
[

b′(ñt) + ˜dt

]

ηt∇ñt + ntδt∇˜dt

(A.3.3)
In order to complete the proof, we will prove that the allocation â, although

verifying conditions (P.2.1) and (P.2.2), is not efficient and the allocation a strongly
dominates it. Hence, it is sufficient to show Corollary 2.3; that is, for every t > 0,

4co
t+1 ≥

pt

pt+1
∇cm

t ,

or equivalently,9

4c̃o
t+1 +

(

co
t+1 − c̃o

t+1

)

≥ pt

pt+1
[∇c̃m

t + γt∆c̃m
t ] (A.3.4)

is satisfied. Taking into account that, by assumption, allocation ã strongly dom-
inates the allocation â, so it verifies Corollary 2.3, i.e. 4c̃o

t+1 ≥
pt

pt+1
∇c̃m

t , it is
sufficient to show that

(

co
t+1 − c̃o

t+1

)

≥ pt

pt+1
γt∆c̃m

t (A.3.5)

is satisfied.
8The following result is found by subtracting co

t+1 − c̃o
t+1, substitution by (2.1) and considering

the condition (A.3.2).
9Remember that 4xt = xt − x̂t. Subtracting co

t+1 − c̃o
t+1, and taking into account (A.3.1).
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To show (A.3.5) is satisfied, use (5.3) and the strict concavity of the production
function to obtain

co
t+1 − c̃o

t+1 = ñt

[

yt+1

(

˜dt + δt∇˜dt

)

− yt+1(˜dt)
]

+ Zt+1ηt∇ñt (A.3.6)

> y′t+1 (dt) ñtδt∇˜dt + Zt+1ηt∇ñt.

By combining the inequalities in (A.3.3) and (A.3.6) one can find different lower
bounds for the term co

t+1 − c̃o
t+1. More precisely, considering that from the first

inequality in (A.3.3), ñtδt∇˜dt > γt4c̃m
t − [b′(nt) + dt] ηt∇ñt, yields

co
t+1 − c̃o

t+1 > y′t+1 (dt) γt4c̃m
t + ηt∇ñt

[

Zt+1 − y′t+1 (dt) [b′(nt) + dt]
]

. (A.3.7)

Analogously, substituting the term ηt∇ñt in (A.3.6) by its lower bound obtained
from the first inequality in (A.3.3), yields

co
t+1 − c̃o

t+1 >
[

Zt+1

b′(nt) + dt

]

γt4c̃m
t + ñtδt∇˜dt

[

y′t+1 (dt)−
Zt+1

b′(nt) + dt

]

(A.3.8)

In what follows, it is useful to consider all possible cases separately.10

Case i) 4nt < 0, 4cm
t < 0 and 4dt < 0, i.e., 4ñt < 0, 4c̃m

t < 0 and 4˜dt < 0. In
this case, (A.3.5) is trivially satisfied for ηt = δt = γt = 0.

Case ii) 4dt = 0. In this case, it follows from (A.3.1) that either δt = 1 or 4˜dt = 0
must be satisfied; that is, dt = ˜dt. If ã weakly dominates â then Lemma 3.4,
jointly with the strictly concavity of the production function, will yield

(

Zt+1 − ̂Zt+1

)

> y′t+1 (dt)4dt = 0

Taking this into account, together with the fact that dt = ̂dt and 4nt ≤ 0
are satisfied (so b′(n̂t) > b′(nt)), and that the allocation â verifies (P.2.1) and
(P.2.2) by assumption of this Lemma 3.5, write the inequality (A.3.7) as

co
t+1 − c̃o

t+1 > y′t+1

(

̂dt

)

γt4c̃m
t + ηt∇ñt

[

̂Zt+1 − y′t+1

(

̂dt

) [

b′(n̂t) + ̂dt

]]

=

=
pt

pt+1
γt4c̃m

t + ηt∇ñt

[

b′(n̂t) + ̂dt

]

[

pt

pt+1
− pt

pt+1

]

=
pt

pt+1
γt4c̃m

t ,

10The following proof can be understood geometrically. First, think on an usual three dimen-
sional cube with eight vortex, the huge cube defined above by

{

ã, ã
}

. The center of the cube is
placed with the allocation ât. Second, each vortex and each center of each side and edge repre-
sents the twenty-seven possible situations of the allocation ã. (We saw above that, given that by
definition ã strongly dominates â, the four possible allocations at the positive orthant are ruled
out.) The new allocation a was chosen such that it belongs to the adherence of the hypercube
{ã, â}. That is, the allocation a is situated in the sub-hypercube where all coordinates are lower
or equal than those in allocation â. This sub-hypercube can be represented by a cube of 1 unit
of length, where the coordinates are given by et(ηt, δt, γt). The origin, et(0, 0, 0), is ã, while the
opposite far vortex et(1, 1, 1) is the allocation â. Therefore, only four cases are possible: where all
coordiantes are negative (inside the cube), and where at least one of the three coordinates is zero,
i.e., the sides and edges of the cube where at least one coordinate is set to zero.
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which establishes that (A.3.5) is satisfied.

Case iii) 4nt = 0, so nt = n̂t. In this case, either 4ñt = 0 or ηt = 1 must be
satisfied, as well as it follows from (A.3.1) ∇cm

t ≥ 0 and ∇dt > 0 (if 4dt = 0
we return to Case ii)). The latter implies that ∇˜dt > 0, dt < ˜dt and, therefore,
y′t+1(dt) ≥ y′t+1(̂dt).
First, 4ñt = 0 implies, from (A.3.7) that

co
t+1 − c̃o

t+1 > y′t+1 (dt) γt4c̃m
t ≥ y′t+1(˜dt)γt4c̃m

t =
pt

pt+1
γt4c̃m

t ,

which establishes that (A.3.5) is satisfied.
Second, if ηt = 1, i.e. nt = ñt, then

et(1, δt, γt) = γt∇c̃m
t + [b(n̂t)− b(ñt)] + ˜dt∇ñt + δt∇˜dtn̂t

which, by Lemma 3.4, implies that et(1, 1, 1) =
{

[b(n̂t)− b(ñt)] + ˜dt∇ñt

}

+

∇c̃m
t +∇˜dtn̂t ≥ 0.

Now, in the case that 4ñt > 0, i.e. ñt > n̂t, then et(1, 0, 0) = [b(n̂t)− b(ñt)] +
˜dt∇ñt < 0. Then, for this case, et(1, 0, 0) < 0 and et(1, 1, 1) ≥ 0 implies
that the function et(1, δt, γt) = γt∇c̃m

t + δt∇˜dtn̂t +
{

[b(n̂t)− b(ñt)] + ˜dt∇ñt

}

is increasing in δt. If 4c̃t < 0 it is also increasing in γt, and there exists some
δ∗t and γ∗t such that represents an allocation verifying (A.3.1) and (A.3.2), i.e.,
et(1, δ∗t , γ

∗
t ) = 0, for which γ∗t∇c̃m

t + δ∗t∇˜dtn̂t ≥ 0, that is, δ∗t∇˜dtn̂t ≥ γ∗t4c̃m
t .

Due to ñt > n̂t then δ∗t∇˜dtñt > γ∗t4c̃m
t . This implies, from (A.3.8) that

co
t+1 − c̃o

t+1 > y′t+1 (dt) γ∗t4c̃m
t > y′t+1(˜dt)γ∗t4c̃m

t =
pt

pt+1
γ∗t4c̃m

t ,

which establishes that (A.3.5) is satisfied.

Finally, in the case that 4ñt < 0 then et(1, 0, 0) = [b(n̂t)− b(ñt)] + dt∇ñt >
0. Then, for this case, given that et(1, 0, 0) > 0 and et(0, 0, 0) = 0 then
the allocation where ηt = 0 also verifies the conditions (A.3.1) and (A.3.2)
returning to Case i).

Case iv) 4cm
t = 0, so cm

t = ĉm
t . In this case, it follows from (A.3.1) that ∇dt >

0 and ∇nt > 0 (if 4dt = 0 or 4nt = 0 we return to Cases ii) and iii),
respectively). These imply that ∇ñt > 0, ∇˜dt > 0, so dt < ˜dt and, therefore,
y′t+1(dt) ≥ y′t+1(̂dt).

Now, notice that there are two cases. First, 4c̃m
t ≥ ñt∇˜dt. In this case, since

∇˜dt > 0, this means that 4c̃m
t > 0, so γt = 1 and, therefore, et(0, 1, 1) =

∇c̃m
t + ñt∇˜dt < 0. Hence, given that et(1, 1, 1) > 0 there must exist some η∗t
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such that represents an allocation verifying (A.3.1) and (A.3.2), i.e., et(η∗t , 1, 1) =
0. But this allocation implies that 4dt = 0, so the Case ii) applies again.

Second, 4c̃m
t < ñt∇˜dt. In this case, if 4c̃m

t > 0 then et(0, 0, 1) = ∇c̃m
t < 0.

Hence for continuity of the function et(ηt, δt, γt) and given that et(1, 1, 1) > 0,
there must exist a set (η∗t , δ

∗
t , γ

∗
t ) such that represents an allocation verifying

(A.3.1) and (A.3.2). Then, there must exist a particular values such that i.e.,
et(0, δ∗∗t , γ∗∗t ) = γ∗∗t ∇c̃m

t + δ∗∗t ñt∇˜dt = 0. This implies, from (A.3.8) that

co
t+1 − c̃o

t+1 > y′t+1 (dt) γ∗∗t 4c̃m
t > y′t+1(˜dt)γ∗∗t 4c̃m

t =
pt

pt+1
γ∗∗t 4c̃m

t ,

which establishes that (A.3.5) is satisfied.
Finally, if 4c̃m

t < 0 then et(0, δt, 1) = ∇c̃m
t + δtñt∇˜dt > 0, and in particular

et(0, 0, 1) > 0. We will prove that, in this case, there is no allocation that
verifies γt = 1, for any ηt and γt and, then, this case refers to the previous
case i). It would be sufficient to prove that et(1, 0, 1) > 0. To prove this,
observe first that et(1, 0, 1) = et(0, 0, 1) + et(1, 0, 0). The first term is positive.
Then, given that this case iv) specifies ∇ñt > 0, so n̂t > ñt, and ∇˜dt > 0, we
can find et(1, 0, 0) = [b(n̂t)− b(ñt)] + ˜dt∇ñt > 0. So this completes the proof.

This concludes the proof of Lemma 3.5.�
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“Endogenous Fertility, Pension Programs and Intergenerational Welfare” Pro-
ceedings volumen of IFAC Symposium on Modeling and Control of Economic
Systems. Klagenfurt, Austria. forthcoming.

[12] Deardorff, Alan V. (1976) “The Optimum Growth Rate for Population: Com-
ment”, International Economic Review, vo. 17, n.2 pp. 510-515.

[13] Eckstein, Zvi and Kenneth I. Wolpin (1985) “Endogenous Fertility and Optimal
Population Size” Journal of Public Economics 27, 93-106.

[14] Ehrlich, I. and F. L. Lui (1991) “Intergenerational Trade, Longevity, and Eco-
nomic Growth” Journal of Political Economy, vol 99, n.5, 1029-59.

[15] Galor, Oded and Harl E. Ryder (1991) “Dynamic efficiency of steady-state equi-
libria in an overlapping-generation model with productive capital” Economics
Letters, vol 35, pp.365-390.

[16] Miles, D. (1997) “Financial Markets, Ageing and Social Welfare”, Fiscal Stud-
ies, vol.18, no.2, pp. 161-187.

[17] Samuelson, Paul A. (1975) “The Optimum Growth Rate for Population”, In-
ternational Economic Review, vo. 16, n.3 pp. 531-538.

[18] Samuelson, Paul A. (1976) “The Optimum Growth Rate for Population: Agree-
ment and Evaluations”, International Economic Review, vo. 17, n.2 pp. 516-525.

22


