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Résumé
Nous considérons une économie d’échange avec des préférences non-ordonnées et des effets externes.

Premièrement, nous montrons une formule de l’index sous une hypothèse de comportement au bord
des préférences qui implique l’existence d’équilibres pour toutes les dotations initiales. De plus, nous
montrons la semi continuité supérieure des la correspondance de Walras. Nous énonçons ensuite une
hypothèse de différentiabilité sur les préférences qui nous permet de montrer que la variété des équilibres
is une sous-variété différentiable non vide d’un espace euclidien. Nous définissons les économies régulières
de façon usuelle comme les valeurs régulières de la projection naturelle. Nous en déduisons que l’ensemble
des économies régulières est ouvert, dense et de mesure pleine pour la mesure de Lebesgue. Une économie
régulière a un nombre fini, impair d’équilibres et pour chacun d’eux, il existe une sélection différentiable
locale. Donc, de telles économies ont des propriétés similaires à celles où les préférences sont représentées
par des fonctions d’utilités différentiables.

Mots-Clés : équilibre de Walras, économie régulière, préférences non-ordonnées, effets externes, unicité
locale des équilibres.

Abstract
We consider an exchange economies with non-ordered preferences and external effects. We first prove

an index formula under an assumtion on the boundary behavior of the preferences, which implies the
existence of equilibria for all initial endawments. Furthermore, one shows the upper semi-continuity of
the Walras correspondence. We then posit a differentiability assumption on the preferences which allows
us to prove that the equilibrium manifold is a nonempty differentiable submanifold of an Euclidean space.
As usual, we define regular economies as the regular value of the natural projection. We deduce that the
set of regular economies is open, dense and of full Lebesgue measure. A regular economy has a finite odd
number of equilibria and for each of them, there exists a local differentiable selection. So, such economies
have the same properties as the one with differentiable utility functions.

Key Words: Walras equilibrium, regular economy, non-ordered preferences, external effects, local
uniqueness of equilibria.
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1 Introduction

This work is in the line of works that dates back to the seminal paper of Debreu (1970) on economies
with a finite set of equilibria. The literature on this subject and related topics is huge. We can find
surveys on it in Balasko (1988), Debreu (1976), Dierker (1974, 1982), Mas-Colell (1985), Smale (1981).

From the Debreu-Mantel-Sonnenschein Theorem (Debreu (1974), Mantel (1974), Sonnenschein (1973,
1974)), we know that we cannot hope to get a finite set of equilibria for each economy only under
strong assumptions. Thus, the concept of regular economies appears as the right one. In this case, the
equilibria are locally unique and thus, finite. Furthermore, there exists a differentiable selection of the
equilibrium price around each equilibrium. These properties are very important to analyze the behavior
of the markets.

In Bonnisseau-Florig-Jofré (2001a,b), a notion of regular economies is defined with linear preferences
and it is proven that they have the same nice properties as those where the utility functions are strictly
quasiconcave. The purpose of this work is to deal with another weakening of the standard assumption
on the preferences. We consider an exchange economy with non-ordered preferences and external effects.
This means that preferences are not assumed to be complete or transitive and the preferred set of an
agent depends on the consumption bundles of the others.

This is less demanding on the rationality of the agents. An interpretation is that they only take into
account consumption bundles in a neighborhood of the actual consumption plan and they have a local
preference relation. The presence of external effects is also recognized in economics since a long time and
it is interesting to incorporate this feature as it has been done in the existence problem.

A major difficulty comes from the fact that the demand is no more single valued. Thus, we characterize
the maximal element in the budget set by considering the normal cone to the preferred set. When the
preferences are represented by a differentiable utility function, this merely means that relative prices
equal marginal rates of substitution.

Consequently, only the normal cone of the preferred set at a consumption bundle matters for equi-
librium purposes. This means that if the preference relations are different but the normal cones are the
same, then the equilibria are the same. Since the normal cone is actually a local concept and since we do
not assume the existence of a utility function, this means that the behavior of the consumers is reduced
to a local rationality in the following sense. At each consumption bundle x, the consumer has a concave
homogeneous valuation of the bundles around and she/he is at a maximal element in the budget set if
she/he cannot find a consumption bundle in the budget set close to x and with a higher personal valuation
than x. The valuation can be described by a set of vectors of weights on the commodities which is the
set of normalized vectors in the normal cone to the preferred set at x.

We first posit an assumption on the preferences, which is not stated in the usual way. Nevertheless,
we show that usual conditions imply it. In particular, we need to know the boundary behavior of the
preferences. Usually, this is a consequence of the fact that it is assumed that the better than sets are
closed in the space of commodities, together with a strict monotony of utility functions. Here, it is not
possible to translate this assumption. Consequently, we assume that, if the quantity of one commodity
tends to 0, then the consumer puts a strong weights on this commodity. More precisely, the individual
valuation of a bundle tends to 0 if the quantity of one commodity tends to 0. Later, we show that it is
weaker than the usual assumption when preferences are representable by utility functions.

Under this assumption, we prove an index formula, which is an extension of what is done in the usual
framework (see, Mas-Colell (1985)). More precisely, we consider a correspondence Φ, which characterizes
the equilibria in the following sense. Up to translations, an equilibrium is a zero of Φ. We prove that
the degree of Φ with respect to the value 0 on an open convex set containing 0 is 1. Later, one deduces
from this formula that a regular economy has an odd number of equilibria. This also implies that for
each initial endowments there exists an equilibrium. We also show that the boundary condition implies
that the equilibrium correspondence is upper semicontinuous.

Then, we consider a differentiability assumption on the preferences. It says that the normal cone to
the preferred set is reduced to a half line and the selection obtained by normalization is differentiable.
Furthermore, one posits an assumption on the range of the differential. It is weaker than assuming that
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it is onto. This assumption extends the one given in Smale (1974 a, b), since we do not assume that
this mapping is a normalized gradient vector of a utility function and we allow for external effects. It
is closely related to the one in Jouini (1992, 1993). Note that the assumption is adapted to take into
account the external effects.

In the appendix, we give an example of a preference relation, which satisfies the differentiability
assumption and we show that the demand is a finite set of isolated points for some prices and incomes
and the number of elements in the demand varies. This shows that our assumption allows considering
much more general demand than in the standard model. Indeed, in this later case, the demand is always
a singleton and it is a diffeomorphism on the consumption set.

We also prove that our assumption holds true for a preference relation, which is representable by a
utility function satisfying the standard assumption. Note that our boundary condition is weaker than
the usual one since the indifference curves may be tangent to the boundary of the consumption set
in our setting and this is excluded in the usual models. Furthermore, we encompass the case where the
preferences of one consumer are not strictly quasi concave. This is possible since we never use the demand
function, which may be multi-valued in this case.

We are now able to prove that the equilibrium manifold, which is the graph of the equilibrium cor-
respondence, also called Walras correspondence, is actually a differentiable submanifold of an Euclidean
space. This is deduced from the fact that it is the inverse image of 0 by a submersion. To define the
submersion, we follow the method of Smale. Note that the same approach is used in Jouini (1992, 1993)
to deal with economies with non-convex production sets. The two problems are related since, with non-
convex production sets, the supply function is no more single valued when the behavior of the producers
is represented by pricing rules.

We define, as usual, the natural projection, which associates the initial endowments to an equilibrium.
Then, an economy is regular if the initial endowments are a regular value of the natural projection. Since
the equilibrium correspondence is upper semi-continuous, the natural projection is proper in the sense
that the inverse image of a compact set is compact. Consequently, with the usual arguments, one obtains
the following results : the set of regular economies is open, dense and of full Lebesgue measure; each
regular economy has a finite odd number of equilibria; for each of them, there exists a local differentiable
selection.

Note that the results in the standard case have been extended to non-smooth demand functions by
using the method of Debreu (1970) (See, Rader (1973), Shannon (1994)). Until now, we are not able to
deal with such generalization with non-ordered preferences.

To conclude, one remarks that the nice properties of the equilibrium manifold and of the regular
economies remain true even if we consider a wide class of non-ordered preferences with external effects.
This shows that the coordination of agents’ actions through the market is relatively strong since almost
everywhere, one gets only a finite number of states which clear the market and where all consumers are
at an optimal allocation.

2 The model

We1 consider a class of exchange economies. The parameters of these economies are the same but
the initial endowments. L and I are the nonempty finite sets of commodities and of consumers. The
consumption set Xi of consumer i, i ∈ I is RL++. The preferences of the agent i are represented by a
correspondence Pi from

∏
i∈I Xi to Xi. For each x ∈∏i∈I Xi, Pi(x) ⊂ Xi is the set of consumption plan

which are strictly preferred to xi if the consumption bundles of the other consumers are (xj)j 6=i. This
presentation allows us to encompass the case of external effects among the agents. In the following, we

1Notations. If x and y are vectors of RJ where J is a finite set, then x · y =
∑
j∈J xjyj is the canonical inner product of

x and y. The norm of x is ‖x‖ =
√
x · x. For all r > 0, B(x, r) = {x′ ∈ RJ | ‖x′ − x‖ < r}. x⊥ is the linear subspace of RJ

defined by {x′ ∈ RJ | x · x′ = 0} and projx⊥ is the orthogonal projection on x⊥. 1J is the vector of RJ whose coordinates
are all equal to 1, RJ+ = {x ∈ RJ | xj ≥ 0, ∀j ∈ J} and RJ++ = {x ∈ RJ | xj > 0, ∀j ∈ J}. If X is a subset of RJ , then

X is the closure of X and ∂X the boundary of X. If ϕ is a linear mapping, then Imϕ is the range of ϕ. ]L denotes the
cardinality of L.
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never assume that the preference relations are complete or transitive. Thus, we cannot represent them
by utility functions.

Taking these elements as given, an economy is completely determined by the initial endowments,
which are a collection e = (ei)i∈I ∈

∏
i∈I Xi. The class of economies is then {Ee =

(
(Xi, Pi, ei)i∈I

)
| ei ∈

Xi, ∀i ∈ I}.
The set of normalized prices is S = {p ∈ RL+ | 1L · p = 1} where 1L is the vector of RL whose

coordinates are all equal to 1. In the following, A = {p ∈ RL | 1L · p = 1} denotes the affine subspace
spanned by S. H is the linear subspace of (1⊥L )I defined by H = {s ∈ (1⊥L )I | si = sj , ∀(i, j) ∈ I2}.

Definition 2.1 For each e ∈ ∏i∈I Xi, an equilibrium of the economy Ee is an element (p∗, (x∗i )) ∈
RL+ \ {0} ×

∏
i∈I Xi such that :

a) For all i, x∗i ∈ B∗i = {xi ∈ Xi | p∗ · xi ≤ p∗ · ei} and B∗i ∩ Pi(x∗) = ∅;

b)
∑
i∈I x

∗
i =

∑
i∈I ei.

For each e ∈ ∏i∈I Xi, W (e) ⊂ S ×∏i∈I Xi denotes the set of equilibria of the economy Ee with a
normalized equilibrium price. We now posit some remarks on this definition, which will be useful in the
following to understand our characterization of equilibria. First note, that (b) and x∗i ∈ B∗i for all i,
implies that p∗ · x∗i = p∗ · ei.

We recall that the normal cone of the convex analysis to a subset X (not necessarily convex) of RL
at a point x ∈ X, NX(x), is defined by NX(x) = {y ∈ RL | y · (x′ − x) ≤ 0, ∀x′ ∈ X}. If the local
nonsatiation holds true at x∗i (x∗i ∈ P i(x∗)) and if the preferred set Pi(x

∗) is open, then B∗i ∩Pi(x∗) = ∅
is equivalent to p∗ ∈ −NP i(x∗)(x∗i ). This means that only the normal cone to the preferred set matters
for equilibrium purposes. Its precise shape is not relevant.

Consequently, one has the following proposition.

Proposition 2.1 If for each agent and for each consumption bundle, the preferences are locally non-
satiated with open values, then for each e ∈∏i∈I Xi, (p∗, (x∗i )) ∈W (e) if and only if

a) For all i, x∗i ∈ Xi, p
∗ · x∗i = p∗ · ei and p∗ ∈ −NP i(x∗)(x∗i ) ∩ S;

b)
∑
i∈I x

∗
i =

∑
i∈I ei.

We now posit an assumption on the preferences, which allows us to prove a generalization of the
index formula and, then, to deduce the existence of equilibrium. We first define the correspondence Gi
as follows : for all x ∈∏i∈I Xi,

Gi(x) = −NP i(x)(xi) ∩ S
Since the normal cone is always convex valued, Gi has always convex values.

Assumption P. For each i ∈ I,

a) for each x ∈∏j∈I Xj , Pi(x) is open, xi ∈ P i(x);

b) the correspondence Gi is upper semi-continuous with nonempty, compact values;

c) for each sequence (xν , gνi ) of
∏
j∈I Xj × S, such that gνi ∈ Gi(xν), if (xν) converges to x ∈ ∏j∈I X̄j

and xi ∈ ∂Xi, then (gνi · xνi ) converges to 0.

Assumption P implies that the standard irreflexivity and convexity assumption (xi does not belong
to the convex hull of Pi(x)) is satisfied by the preferences relation Pi. Indeed, it is a consequence of the
fact that Gi(xi) has nonempty values and that Pi(x) is open. Condition (c) deals with the boundary
behavior of the preferences. It means that if the quantity of one commodity becomes very small, then
the consumer essentially wants to increase the quantity of this commodity. An important consequence of
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this assumption is that the set of equilibria remains in a compact set if the initial endowments remain in
a compact set. It is also a key argument in the proof of the index formula.

To be more precise, let us consider the following correspondence and preference relation : for all i ∈ I,
for all x ∈∏j∈I Xj ,

G+
i (x) = {u ∈ RL | gi · u > 0, ∀gi ∈ Gi(x)}

for all xi ∈ Xi,
P̃i(x) = ({xi}+G+

i (x)) ∩ RL++

Proposition 2.2 If Pi satisfies Assumption P, then for all x ∈∏j∈I Xj, Pi(x) ⊂ P̃i(x), the preferences

relation P̃i satisfies Assumption P(a) and

b’) the correspondence P̃i is convex valued, it has open lowersection and for all x ∈∏i∈I Xi, xi /∈ P̃i(x)

and P̃i(x) + RL+ = P̃i(x);

c’) for each sequence (xν) of
∏
j∈I Xj, such that (xν) converges to x ∈ ∏j∈I X̄j and xi ∈ ∂Xi, for all

ξi ∈ Xi, then ξi ∈ P̃i(xν) for all ν large enough.

Furthermore, (p, (xi)) is an equilibrium with the preferences Pi if and only if it is an equilibrium with
the preferences P̃i.

Conversely, if the preference correspondence Pi satisfies Assumption P(a) and conditions (b’) and (c’)
above, then it satisfies Assumption P(b) and (c).

The proof of this proposition is given in Appendix. Note that the end of the proposition gives sufficient
condition directly on the preference relation, which are sufficient to satisfy Assumption P. In the following,
we use an extension Γi of Gi which is defined on the closure of the consumption sets as follows : for all
x ∈ (RL+)I ,

Γi(x) = co{p ∈ S | ∃(xν , gνi ) ⊂
∏

j∈J
Xj × S, lim

ν
xν = x, lim

ν
gνi = p, gνi ∈ Gi(xν)∀ν}.

One easily checks that Γi(x) = Gi(x) if x ∈ ∏j∈J Xj since Gi is upper semi-continuous with convex
values. Furthermore, the graph of Γi is closed and, since it takes their values in the compact set S, it
is upper semi-continuous with nonempty convex compact values. The boundary behavior of Gi implies
that p ·xi = 0 for all p ∈ Γi(x) if xi ∈ ∂RL+. We may define directly the preference relations on the closed
positive orthant with this last property but it does not change anything for the equilibrium analysis since
the allocations are never on the boundary.

3 An index formula

In this section, we provide an index formula, which generalizes the well known result for exchange
economies with ordered preferences (see, Mas-Colell (1985)). Note also that this result is directly re-
lated to the computation of the degree of the natural projection as in Balasko (1988). The two main
consequences are that each economy has at least one equilibrium and the number of equilibria is odd if
the economy is regular.

Even if the result is not stated in these words, the basic fact behind the index formula, involves the
degree of the excess demand function or, more precisely, of a projection of the excess supply function.
Actually, it is well known that the Walras law implies that there is a redundant equation in the excess
demand function, which can be eliminated by considering a projection. The proof is based on the fact
that the excess supply function is homotopic to the identity and this is due to the boundary behavior of
the excess demand. Then, the computation of the degree for differentiable mappings, leads to the index
theorem for regular economies.
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In our framework, the excess demand function is not defined and, thus, we need to work with additional
variables. We consider a correspondence Φ, which depends on the price and the allocation. To work on a
bounded set, we consider the initial endowment as an upper bound of the individual allocation. The two
following propositions shows that the set of zeros of Φ is directly linked with the set of equilibria and the
degree of Φ is equal to one. One then deduces that each economy has at least one equilibrium. It appears
that this result essentially rests on the boundary behavior of the correspondences Gi (Assumption P(c)).

Let (ei)i∈I an initial endowment and e =
∑
i∈I ei the total initial endowment. Let for ρ ≥ 0,

Σρ = {q ∈ 1⊥L | qh ≥ − 1
]L − ρ, ∀h ∈ L} and Ki = {ξi ∈ RL | −ei ≤ ξi ≤ e − ei}. We consider the

correspondence Φ from Σρ ×
∏
i∈I Ki to 1⊥L × (RL)I defined by

Φ(q, (ξi)) = (−proj1⊥L (
∑

i∈I
ξi), (−Γi(ξi + ei) + {p+ p · ξi1L})i∈I)

where Γi is defined at the end of the previous section and p = q + 1
]L1L.

Proposition 3.1 If 0 ∈ Φ(q, (ξi)), then p = q + 1
]L1L ∈ S, xi = ξi + ei ∈ RL++ for all i, and (p, (xi))

is an equilibrium of the economy Ee. Conversely, if (p, (xi)) is an equilibrium of the economy Ee, then
0 ∈ Φ(p− 1

]L1L, (xi − ei)).

Proof. If 0 ∈ Φ(q, (ξi)), then there exists (gi) ∈
∏
i∈I Γi(ξi + ei) such that

∑
i∈I ξi = α1L, and

p− gi + p · ξi1l = 0. Since p and gi belong to A, p− gi is orthogonal to 1L. Thus, p = gi and p · ξi = 0 for
all i. Consequently, α = p ·∑i∈I ξi = 0 and

∑
i∈I ξi = 0. We now show that ξi À −ei for all i. If it is

not true, then, from the definition of Γi and Assumption P , one has gi · ξi = gi ·−ei. But this contradicts
the fact that gi · ξi = p · ξi = 0. Finally, since

∑
i∈I ξi = 0, one deduces that ξi ¿

∑
j 6=i ej = e − ei.

Hence, ξi ∈ intKi. Since, Gi(ξ + ei) = Γi(ξ + ei) when ξ + ei À 0, one deduces that p ∈ Gi(ξi + ei) ⊂ S.
Consequently, (p, (xi)) is an equilibrium of the economy Ee. The converse assertion is obvious.¤

In the following, we choose ρ > 0 small enough such that for all q ∈ Σρ, for all i, (q + 1
]L1L) · ei > 0.

Proposition 3.2 Under Assumption P, deg(Φ, irΣρ ×
∏
i∈I intKi, 0) = 1.

Proof. Since irΣρ ×
∏
i∈I intKi is an open subset of 1⊥L × (RL)I , which contains 0, it is sufficient

to check that Φ is homotopic to the identity. This means that there exists a mapping H from [0, 1] ×
Σρ ×

∏
i∈I Ki to 1⊥L × (RL)I such that H(0, .) = Φ, H(1, .) is the identity and H(t, (q, (ξi))) 6= 0 for

all (t, (q, (ξi))) ∈ [0, 1] × ∂(Σρ ×
∏
i∈I Ki). Since Σρ ×

∏
i∈I Ki is convex, it is enough to prove2 that

Φ(q, (ξi)) ∩ −NΣρ×
∏
i∈I Ki

(q, (ξi)) = ∅ for all (q, (ξi)) ∈ ∂(Σρ ×
∏
i∈I Ki).

We now prove this assertion. Let (q, (ξi)) ∈ Σρ ×
∏
i∈I Ki. Let us assume that

Φ(q, (ξi)) ∩ −NΣρ×
∏
i∈I Ki

(q, (ξi)) 6= ∅

Then, there exists (gi) ∈
∏
i∈I Γi(ξi + ei) such that :

a) proj1⊥L (
∑
i∈I ξi) ∈ NΣρ(q),

b) for all i ∈ I, gi − p− p · ξi1L ∈ NKi(ξi),
with p = q + 1

]L1L.

From a), one deduces that there exists α ∈ R such that

z =
∑

i∈I
ξi ≤ α1L and (z − α1L) · (p+ ρ1L) = 0

From b), one deduces that for all i ∈ I,

2For the sake of completeness, we give a detailed proof in Proposition 5.1 in Appendix.
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(I)





if ξih = −eih, then ph ≥ gih − p · ξi
if −eih < ξih < eh − eih, then ph = gih − p · ξi
if ξih = eh − eih, then ph ≤ gih − p · ξi

We recall that Assumption P implies that, if ξi+ei ∈ ∂RL++, then gi ·(ξi+ei) = 0 since gi ∈ Γi(ξi+ei).

Claim 1. For all i ∈ I, p · ξi ≤ 0 and p · ξi < 0 if ξi + ei ∈ ∂RL++.

If ξi + ei ∈ RL++, condition (I) implies that ph ≤ gih − p · ξi for all h. Since
∑
h∈L ph =

∑
h∈L gih = 1,

one gets 0 ≤ −p · ξi.
If ξi + ei ∈ ∂RL++, then gi · (ξi + ei) = 0. Since gi ∈ S and ξi + ei ≥ 0, one has gih = 0 if ξih + eih > 0.

If p · ξi ≥ 0, from condition (I), one deduces that ph ≤ 0 if ξih + eih > 0. Hence, phξih ≤ ph(−eih). Thus,

0 ≤ p·ξi =
∑

h|ξih=−eih
ph(−eih)+

∑

h|ξih>−eih
phξih ≤

∑

h|ξih=−eih
ph(−eih)+

∑

h|ξih>−eih
ph(−eih) = p·(−ei) < 0

Consequently, one gets a contradiction. Note that the last inequality comes from the fact that we have
chosen ρ small enough.¤
Claim 2. Let z =

∑
i∈I ξi. Then, z ≤ 0 and α ≤ p · z ≤ 0.

From the previous claim, p · z ≤ 0. Furthermore, since z ≤ α1L and (z − α1L) · (p + ρ1L) = 0, one
has p · z−α = −ρ1L · (z−α1L) ≥ 0. The last inequality comes from the fact that z ≤ α1L and ρ1L ≥ 0.
Consequently, α ≤ p · z ≤ 0 and z ≤ 0.¤
Claim 3. For all i ∈ I, ξi ¿ e− ei.

If it is not true, there exists j ∈ I and h ∈ L such that ξjh = eh − ejh. Since z ≤ 0, one has∑
i 6=j ξih + eh − ejh ≤ 0. Since ξih ≥ −eih for all i 6= j,

∑
i 6=j ξih ≥ −

∑
i 6=j eih = −eh + ejh. Hence

zh =
∑
i∈I ξih = 0 and ξih = −eih for all i 6= j. This implies that α = 0 and p · z = 0. Consequently,

p · ξi = 0 for all i ∈ I. This contradicts the first claim, since for all i 6= j, ξi + ei ∈ ∂RL++.¤
Claim 4. For all i ∈ I, ξi ∈ intKi and p ∈ S ⊂ irΣρ.

From condition (I) and the previous claim, for all i ∈ I, for all h ∈ L, ph ≥ gih − p · ξi, which implies
p · ξi ≥ 0 since

∑
h∈L ph =

∑
h∈L gih = 1. From the Claim 1, one deduces that p · ξi = 0 for all i ∈ I and

ξi + ei ∈ RL++. Consequently, For all i ∈ I, ξi ∈ intKi. From condition (I), p = gi for all i ∈ I and p ∈ S
since Γi takes its values in S.¤

The previous claims prove that Φ(q, (ξi)) ∩ −NΣρ×
∏
i∈I Ki

(q, (ξi)) 6= ∅ implies (q, (ξi)) ∈ irΣρ ×∏
i∈I intKi, thus Φ(q, (ξi)) ∩ −NΣρ×

∏
i∈I Ki

(q, (ξi)) = ∅ if (q, (ξi)) ∈ ∂(Σρ ×
∏
i∈I Ki). ¤

Theorem 3.1 For each (ei) ∈
∏
i∈I Xi, the economy Ee has an equilibrium. For each compact K of

(RL++)I , ∪e∈KW (e) is a compact subset of S × ∏i∈I Xi. In particular, W (e) is compact for each e.
Furthermore, the correspondence W has a closed graph and hence, it is upper semi-continuous.

Proof. The existence of an equilibrium is a direct consequence of the two above propositions and
of the following property of the degree : deg(Φ, irΣρ ×

∏
i∈I intKi, 0) 6= 0 implies that there exists

(q, (ξi)) ∈ irΣρ ×
∏
i∈I intKi such that 0 ∈ Φ(q, (ξi)).

The remaining of the proposition is a consequence of the following result. Let (pν , xν , eν) be a
sequence of S ×∏i∈I Xi × (RL++)I such that (eν) converges to ē ∈ (RL++)I and (pν , xν) ∈ W (eν) for all
ν. Then, the sequence (pν , xν) has a subsequence which converges to (p̄, x̄) ∈ W (e). Indeed, since the
sequence (eν) is converging, it is bounded. Consequently, since 0 ≤ xνi ≤

∑
i∈I e

ν
i for all i, the sequence

(xνi )i∈I is also bounded. Hence, the sequence (pν , xν) has a subsequence, again denoted (pν , xν), which
converges to (p̄, x̄) ∈ S × ∏i∈I X̄i. For all i, p̄ · x̄i = limν→∞ pν · xνi = limν→∞ pν · eνi = p̄ · ēi > 0.
Since pν ∈ Gi(x

ν) for all ν, the last inequality and Assumption P(c) imply that x̄i ∈ Xi for all i.
Thus, since Gi is upper semi-continuous on

∏
j∈I Xj , one has p̄ = limν→∞ pν ∈ Gi(x̄) for all i. Finally,∑

i∈I x̄i = limν→∞
∑
i∈I x

ν
i = limν→∞

∑
i∈I e

ν
i =

∑
i∈I ēi. This shows that (p̄, x̄) ∈W (e).¤
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4 Equilibrium manifold and regular economies

4.1 Differentiable Preferences

To apply tools of differential geometry, we need to assume further properties on the preference relations
like in the case where they are represented by utility functions. Nevertheless, contrary to the usual
presentation, the following assumption involves directly the preference relation without any reference to
a representation of it.

Assumption DP. For each i ∈ I, Gi is single valued and the mapping G = (Gj) from
∏
j∈I Xj to SI is

continuously differentiable and for each x ∈∏j∈I Xj , ImDG(x) +H = (1⊥L )I ;

Remark. The existence and the uniqueness of Gi(x) may also be formulated in this way. There exists a
unique open half space, which contains Pi(x) + RL+ and not xi. The vector Gi(x) can be interpreted as
the direction along which the welfare of the ith consumer increases the most rapidly.

Since Gi takes its value in S, DG(x) takes its value in (1⊥L )I . Consequently, the range of DG(x) is
included in (1⊥L )I . Note that our assumption is weaker than assuming that DG(x) is onto.

If there is no external effects, the preference correspondence Pi depends only on xi. Thus, Gi depends
only on xi. In this case, for all v ∈ ∏j∈I Gj(x)⊥, DG(x)(v) = (DGi(xi)(vi))i∈I . Consequently, the

assumption is satisfied if DGi(xi) is onto on 1⊥L for each i. Usually, when the preferences are represented
by strictly quasi-concave utility functions, a stronger assumption is made which says that D2ui(xi) is
negative definite on Gi(xi)

⊥. Since Gi is the normalized gradient of ui, one shows that DGi(xi) is
then onto. Our assumption holds true even if all but one mappings DGi(xi) are onto (see the proof of
Proposition 4.1). This means that one consumer may have non strictly quasi-concave utility function.

In the appendix, we give an example of a mapping Gi in a two goods economy which satisfies Assump-
tions P and DP. Gi is not the gradient mapping of a utility function and the demand associated with Gi
is a finite set of isolated points. The number of elements in the demand varies from 1 to 3 with respect to
the price and the income. Furthermore, there is no differentiable selection of the demand correspondence.
This example shows that Assumptions P and DP allow to consider a larger class of preference relations
than the one representable by differentiable utility functions.

The next proposition shows that the usual assumptions on the utility function imply that the prefer-
ence correspondence satisfies Assumption P.

Proposition 4.1 We assume that the preferences are represented by a utility function ui from Xi to R
which means that for each xi ∈ Xi, Pi(xi) = {x′i ∈ Xi | ui(xi) < ui(x

′
i)}. If ui is a twice continuously

differentiable mapping which satisfies for each xi ∈ Xi,

a) ∇ui(xi) ∈ RL++;

b) {x′i ∈ Xi | ui(xi) ≤ ui(x′i)} is a closed subset of RL;

c) the restriction of D2ui(xi) to ∇ui(xi)⊥ is negative definite;

then, the preferences satisfy Assumptions P and DP.

The proof of this proposition is given in Appendix. Note that we actually do not need the strong
version of the boundary condition stated in (b) to prove that Pi satisfies the boundary condition of
Assumption P(c). Actually, it is sufficient to assume that for each sequence (xνi ) of Xi which converges
to xi ∈ ∂Xi, then, the sequence ( 1

1L·∇ui(xνi )∇ui(xνi ) · xνi ) converges to 0. For example, a utility function

like u(a, b) =
√
a+
√
b satisfies the later condition but not (b) of Proposition 4.1.
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4.2 The Equilibrium Manifold

As usual, the equilibrium manifold is defined as the graph of the correspondence W . With our notations,
EM = {(p, x, e) ∈ S ×∏i∈I Xi × (RL++)I | (p, x) ∈ W (e)}. Theorem 3.1 implies that EM is nonempty.
Actually, it means that for each e ∈ (RL++)I , there exists at least on element (p, x, e) in EM . We now
characterize EM to prove that it is a differentiable submanifold of an Euclidean space. We first define a
mapping F from 1⊥L ×

∏
i∈I Xi × (RL++)I to 1⊥L × (RL)I :

F (q, x, e) = (proj1⊥L

∑

i∈I
(xi − ei), (−Gi(xi) + p+ p · (xi − ei)1L)i∈I)

where p = q+ 1
]L1L. One remarks that, for all (q, (xi)) ∈ Σ0×{ξ ∈ RL++ | ξ ¿ e}I , F (q, x, e) = Φ(q, (xi−

ei)) where Φ is defined in Section 3. Consequently, (p, x, e) ∈ EM if and only if F (p − 1
]L1L, x, e) = 0.

In other words, up to a translation, the equilibrium manifold is the set of zeros of F . We use this
characterization to prove that EM is a differentiable submanifold.

Proposition 4.2 Under Assumptions P and DP, F is a submersion, which means that the differential
of F is onto everywhere. Consequently, EM is a differentiable submanifold of dimension |L||I| of A ×∏
i∈I Xi × (RL++)I .

In the case where the preferences are represented by utility functions, we can use the demand functions
to define a global parameterization of the equilibrium manifold. This is not possible in our framework.
The proof of this proposition is given in Appendix. Note that it is essential to know that EM is nonempty
to conclude, that is, the result of Theorem 3.1.

4.3 Regular Economies

We can now define the notion of regular economies. For this, we consider the natural projection from
EM to (RL)I which is the restriction to EM of the canonical projection from RL × (RL)I × (RL)I to its
third component (RL)I . The natural projection associates the initial endowments to equilibria.

Definition 4.1 Under Assumptions P and DP, an economy Ee is regular if e is a regular value of the
natural projection. We denote by Er the set of regular economies.

Applying Sard’s lemma to the natural projection and the implicit function theorem, we deduce the
following result, which generalizes the main result of Debreu (1970). Note that the finiteness is due to
the compactness of W (e) which is proved in Theorem 3.1.

Theorem 4.1 Under Assumptions P and DP, the set Er of regular economies is open, dense and of
full Lebesgue measure in the set of economies. Each regular economy Ee ∈ Er has an odd number of
equilibria. Furthermore, for each (p∗, (x∗i )) ∈ W (e), there exists a neighborhood N of e, a neighborhood
N ′ of (p∗, (x∗i )) and a differentiable mapping Φ from N to N ′ such that :

a) Φ(e) = (p∗, (x∗i ));

b) for each e′ ∈ N , Φ(e′) = W (e′) ∩ N ′.
Thus, the economy with non-ordered preferences has the same properties under Assumptions P and

DP than the one where the preferences are represented by differentiable utility functions. Nevertheless,
it remains to study more thoroughly the structure of the equilibrium manifold.

Proof. All the arguments are standard but the one, which shows that the number of equilibria is odd.
For this, we give an explicit formula of the degree of Φ for regular economies. This is possible since the
economy Ee is regular if and only if 0 is a regular value of Φ.

From the definition of EM and Proposition 4.2, the tangent space to EM at (p, x, e) is KerDF (q, x, e),
the kernel of DF (q, x, e), with q = p − 1

]L1L. Thus, an economy Ee is regular if and only if for all
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equilibrium (p, (xi)), (ξ, y, 0) ∈ KerDF (q, x, e) implies ξ = 0 and y = 0. Since F (q, x, e) = Φ(q, (xi− ei)),
(ξ, y, 0) ∈ KerDF (q, x, e) if and only if DΦ(q, (xi−ei))(ξ, y) = 0. Consequently, an economy Ee is regular
if and only if for all equilibrium (p, (xi)), DΦ(q, (xi−ei)) is regular, which means that 0 is a regular value
of Φ. In this case, since the degree of Φ is 1, one deduces that 0 has an odd number of preimage. Thus,
the economy Ee has an odd number of equilibria.¤

5 Appendix

Proof of Proposition 2.2 Pi(x) ⊂ P̃i(x) is a direct consequence of the definition of the normal cone and
of the fact that Pi(x) is open. P̃i(x) is open since Gi(x) compact, which implies G+

i (x) open. xi belongs

to the closure of P̃i(x) since 0 belongs to G
+

i (x). P̃i(x) is convex since G+
i (x) is so. xi does not belong to

P̃i(x) since 0 /∈ G+
i (x). P̃i(x) + RL+ = P̃i(x), since Gi(x) ⊂ RL+ and consequently, G+

i (x) + RL+ = G+
i (x).

We now prove that P̃i has open lowersection. If it is not true at x, there exists ξi ∈ P̃i(x) and a
sequence (xν), which converges to x and such that ξi /∈ P̃i(xν) for all ν. This means that there exists
gνi ∈ Gi(xν) such that gνi · (ξi − xνi ) ≤ 0. Since Gi takes its values in the compact set S, the sequence
(gνi ) has a converging subsequence and its limit gi belongs to Gi(x) since Gi is upper semi-continuous.
At the limit, one gets gi · (ξi − xi) ≤ 0, which contradicts ξi ∈ P̃i(xν).

We show that P̃i satisfies assertion (c’). If the result is not true, there exists ξi ∈ RL++ and a sequence

(xν), which converges to x such that ξi /∈ P̃i(xν) for all ν and xi ∈ ∂RL++. This implies that there exists
gνi ∈ Gi(xν) such that gνi · (ξi − xνi ) ≤ 0. From Assumption P(c), the sequence (gνi · xνi ) converges to
0. This implies that the sequence (gνi · ξi) converges to 0 since it is a nonnegative sequence. But this is
impossible since ξi ∈ RL++ and gνi is in the simplex, hence gνi · ξi ≥ infh∈L{ξih} > 0.

To prove that the equilibria are the same with the preferences Pi or P̃i, from Proposition 2.1 , it
suffices to show that −NPi(x)(xi) ∩ S = Gi(x) = −NP̃i(x)(xi) ∩ S. But NP̃i(x)(xi) = NG+

i (x)(0). Since

G+
i (x) is a convex cone, NG+

i (x)(0) is the negative polar cone of G+
i (x). From the bipolar theorem, this

is the closed convex cone generated by −Gi(x). Since −Gi(x) is compact and does not contain 0, one
deduces that NG+

i (x)(0) = −R+Gi(x) and consequently, Gi(x) = −NP̃i(x)(xi) ∩ S.

We now suppose that the preference correspondence Pi satisfies conditions (b’) and (c’). We first prove
that it satisfies P(b). Since xi /∈ Pi(x) and Pi(x)+RL+ = Pi(x), one deduces that Gi(x) = −NPi(x)(xi)∩S
is nonempty and compact. We now show that Gi is upper semi-continuous. Since it takes their values
in S, which is compact, it suffices to show that it has a closed graph. Let (xν , gνi ) be a sequence of∏
j∈I Xj × S, which converges to (x, gi) ∈

∏
j∈I Xj × S, and such that gνi ∈ Gi(x

ν). Let ξi ∈ Pi(x).
Since Pi has open lowersection, for ν large enough, ξi ∈ Pi(xν). Consequently, gνi · (ξi − xνi ) ≥ 0. At
the limit, one gets gi · (ξi − xi) ≥ 0. Since this inequality is true for all ξi ∈ Pi(x), one deduces that
gi ∈ −NPi(x)(xi) = −NP i(x)(xi) and, thus, gi belongs to Gi(x).

We finish the proof of the proposition by showing that the preference correspondence Pi satisfies
condition P(c). We consider a sequence (xν , gνi ) of

∏
j∈I Xj × S, such that gνi ∈ Gi(xν), (xν) converges

to x ∈ ∏j∈I X̄j and xi ∈ ∂Xi. From condition (c’), for all ξi ∈ RL++, ξi ∈ Pi(xν) for ν large enough.
Consequently, since gνi ∈ −NP i(xν)(x

ν
i ), one has 0 ≤ gνi ·xνi ≤ gνi ·ξi ≤ maxh∈L{ξih}. Since this inequality

is true for all ξi ∈ RL++, one gets that the sequence (gνi · xνi ) converges to 0. ¤

Proof of Proposition 4.1 Note that there is no external effect since each utility function depends
only on the consumption bundle of the agent. We recall that condition (c) implies that ui is strictly
quasi-concave. Thus, Pi(xi) is convex. Furthermore, for all xi ∈ Xi and for r > 0 small enough,
one has P i(xi) ∩ B(xi, r) = {x′i ∈ Xi | ui(xi) ≤ ui(x

′
i)} ∩ B(xi, r). Thus, since ∇ui(xi) 6= 0, one

has NP i(xi)∩B(xi,r)
(xi) = NP i(xi)(xi) = {t∇ui(xi) | t ∈ R+}. Consequently, since ∇ui(xi) ∈ RL++,

there exists a unique element in NP i(xi)(xi) ∩ S, which is Gi(xi) = 1
1L·∇ui(xi)∇ui(xi). Since ui is twice
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continuously differentiable, Gi is continuously differentiable. One also has for all v ∈ RL,

DGi(xi)(v) =
1

1L · ∇ui(xi)

(
D2ui(xi)(v)− 1

1L · ∇ui(xi)
(1L ·D2ui(xi)(v))∇ui(xi)

)
.

One easily remarks that DGi(xi) has its range included in 1⊥L . Its restriction to Gi(xi)
⊥ is onto since

its kernel is reduced to 0. Indeed, if v ∈ Gi(xi)
⊥ is in the kernel of DGi(xi), one has D2ui(xi)(v) =

1
1L·∇ui(xi) (1L·D2ui(xi)(v))∇ui(xi). If we do the inner product with v, one deduces that v·D2ui(xi)(v) = 0

since ∇ui(xi) · v = Gi(xi) · v = 0. Since the restriction of D2ui(xi) to ∇ui(xi)⊥ is negative definite, one
deduces that v = 0.

We end the proof by showing that Assumption P(c) is satisfied. Let (xνi ) be a sequence converging to
xi ∈ ∂Xi. Then for all t > 0, one has ui(x

ν
i ) ≤ ui(t1L) for ν large enough. Indeed, if it is not true, there

exists a subsequence of (xνi ) which always satisfies ui(x
ν
i ) ≥ ui(t1L). Recalling that {x′i ∈ Xi | ui(t1L) ≤

ui(x
′
i)} is closed in RL, one deduces that the limit xi of the subsequence belongs to Xi which is impossible

since xi ∈ ∂Xi. For ν large enough, since Gi(x
ν
i ) ∈ NP i(xνi )(x

ν
i ), one has Gi(x

ν
i ) · xνi ≤ Gi(xνi ) · x′i for all

x′i ∈ P i(xνi ). In particular, since t1L ∈ P̄i(xνi ), Gi(x
ν
i ) · xνi ≤ Gi(x

ν
i ) · t1L = t. Since this inequality is

true for every t > 0 if ν is large enough, one deduces that the sequence (Gi(x
ν
i ) · xνi ) converges to 0.¤

Proof of Proposition 4.2 Let (χ, ξ = (ξi)i∈I , η = (ηi)i∈I) ∈ 1⊥L × (RL)I × (RL)I . For all (q, x =
(xi)i∈I , e = (ei)i∈I) ∈ 1⊥L ×

∏
i∈I Xi × (RL++)I , one has :

DF (q, x, e)(χ, ξ, η) = (proj1⊥L

∑

i∈I
(ξi − ηi), (χ−

∑

j∈J
DxjGi(x)(ξj) + [χ · (xi − ei) + p · (ξi − ηi)]1L)i∈I))

with p = q + 1
]L1L. Consequently, for all (π, ζ = (ζi)i∈I) ∈ (1⊥L )I × (RL)I , one has,

(π, ζ) ·DF (q, x, e)(χ, ξ, η) = π · proj1⊥L
∑
i∈I(ξi − ηi)

+
∑
i∈I ζi · (χ−

∑
j∈J DxjGi(x)(ξj) + [χ · (xi − ei) + p · (ξi − ηi)]1L)

= χ ·∑i∈I(ζi + (1L · ζi)(xi − ei))
+
∑
i∈I [ξi · (π −

∑
j∈I

tDxiGj(x)(ζj) + (1L · ζi)p) + ηi · (−π − (1L · ζi)p)]

Thus, the transpose of DF (q, x, e) is defined by :

tDF (q, x, e)(π, ζ) =
(∑

i∈I(ζi + (1L · ζi)(xi − ei)), (π −
∑
j∈I

tDxiGj(x)(ζj) + (1L · ζi)p)i∈I ,
(−π − (1L · ζi)p)i∈I

)

DF (q, x, e) is onto if and only if the kernel of its transpose is reduced to 0. If (π, ζ) belongs to the
kernel of tDF (q, x, e), one immediately deduces that π = 0, 1L · ζi = 0 for all i ∈ I, and

∑
i∈I ζi = 0.

Consequently, tDG(x)(ζ) = 0. From Assumption DP, there exists π0 ∈ 1⊥L and w ∈ (RL)I such that
ζi = π0 + DGi(x)(w) for all i ∈ I. Consequently,

∑
i∈I ζi · ζi = π0 ·

∑
i∈I ζi +

∑
i∈I ζi · DGi(x)(w) =

0 +t DG(x)(ζ) · w = 0. This implies that ζ = 0 and thus the kernel of tDF (p, x, e) is reduced to 0.
Hence F is a submersion which implies that EM = F−1(0) is a differentiable submanifold. Finally,

its dimension is the difference between the dimension of 1⊥L × (RL)I × (RL)I and 1⊥L × (RL)I .¤

Proposition 5.1 Let C be a bounded, closed subset of a finite dimensional Euclidean space E such that
0 ∈ intC. Let F be a u.s.c. correspondence with nonempty convex compact values from C to E such that
for all c ∈ ∂C, F (c) ∩ −NC(c) = ∅. Then, deg(F, intC, 0) = 1.

Proof. From the definition of the degree for a correspondence, one has deg(F, intC, 0) = deg(f, C, 0)
for all continuous mapping f from C to E such that the graph of f is in an ε-neighborhood of the graph
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of F for ε small enough. Since the graph of F is compact and the graph of the normal cone is closed, for
ε small enough, one has f(c) /∈ −NC(c) for all c ∈ ∂C.

For all c ∈ ∂C, let Γ(c) = {u ∈ intTC(c) | f(c) · u < 0} and for all c ∈ intC, Γ(c) = E. From our
assumption, Γ has nonempty values and one easily checks that it has convex values and open inverse
values and 0 /∈ Γ(c) for all c ∈ ∂C. Thus, there exists a continuous selection h of Γ. Let us consider
the homotopy mapping H from [0.1] × C to E defined by H(t, c) = tf(c) + (1 − t)(−h(c)). For all
(t, c) ∈ [0, 1] × ∂C, 0 6= H(t, c). Indeed, if it is not true, there exists (t, c) ∈ [0, 1] × ∂C such that
0 = H(t, c) = tf(c) + (1 − t)(−h(c)). Since f and h do not vanish on ∂C, one has t ∈]0, 1[. From
the definition of Γ, f(c) · h(c) < 0. Consequently, one obtains 0 = f(c) · (tf(c) + (1 − t)(−h(c)) =
t‖f(c)‖2 − (1− t)(f(c) · h(c)), which implies f(c) = 0 and f(c) · h(c) = 0, a contradiction.

Since −h(c) ∈ −TC(c) for all c ∈ ∂C, it is easy to check that −h is homotopic to the identity
mapping on C by a simple “convex” homotopy. So, since the degree is invariant by homotopy, one has
deg(F, intC, 0) = deg(f, intC, 0) = deg(−h, intC, 0) = deg(id, intC, 0) = 1. ¤

A numerical example. To state the formula of the mapping g, which represents the preferences of a
consumer, we introduce auxiliary mappings and we show some properties on them.

We consider the mappings a, b and α from ]0, 1[×R to R defined by a(t, τ) = τ+1
t , b(t, τ) = −(2 + τ)

and α(t, τ) = τ+1
t−1 . We consider the mapping ϕ from R×]0, 1[×R to R defined by :

ϕ(x, t, τ) =

{
a(t, τ)x2 + b(t, τ)x+ 1 if x ≤ t
α(t, τ)(x− 1)2 + b(t, τ)(x− 1) if x ≥ t

By a simple computation, one remarks that ϕ is continuously differentiable. For fixed t and τ , the
graph of the mapping x→ ϕ(x, t, τ) is the union of two pieces of parabola which are connected at the point
(t, 1− t). At this point, the derivative is τ . ϕ(0, t, τ) = 1 and ϕ(1, t, τ) = 0. If τ < 0, then ∂ϕ

∂x (x, t, τ) < 0

and ϕ(x, t, τ) ∈]0, 1[ for each x ∈]0, 1[. If τ = 0, then ∂ϕ
∂x (x, t, 0) = 0 only for x = t and ϕ is strictly

decreasing on ]0, 1[. If τ > 0, then ∂ϕ
∂x (x, t, τ) = 0 at x1(t, τ) = t(2+τ)

2(1+τ) and at x2(t, τ) = 1 + (t−1)(2+τ)
2(1+τ) .

Furthermore ϕ(x1(t, τ), t, τ) = 1− t(2+τ)2

4(τ+1) and ϕ(x2(t, τ), t, τ) = − (t−1)(2+τ)2

4(τ+1) . ϕ is strictly decreasing on

]0, x1(t, τ)[∪]x2(t, τ), 1[ and strictly increasing on ]x1(t, τ), x2(t, τ)[.
Finally, we define two mappings t̄ and τ̄ from R++ to R as follows:

t̄(w) =





1
12−8w if w ≤ 1
1
2w − 1

4 if 1 ≤ w ≤ 2
14w−25
16w−28 if 2 ≤ w

τ̄(w) =




− 1

2 if w ≤ 1
1
2 sin(2πw − π

2 ) if 1 ≤ w ≤ 2
− 1

2 if 2 ≤ w

One easily checks that t̄ and τ̄ are continuously differentiable. We remark that τ̄ ≤ 1
2 and τ̄ ≥ 0 if

w ∈ [ 5
4 ,

7
4 ]. On this interval, t̄(w) = 1

2w − 1
4 ∈ [ 3

8 ,
5
8 ].

We are now able to give the explicit formula of the mapping g from R2
++ to the simplex of R2 by its

first component :

g1(x, y) = ϕ(
x

x+ y
, t̄(x+ y), τ̄(x+ y))

We now prove that the mapping g satisfies Assumption P and DP. g is continuously differentiable since
ϕ, t̄ and τ̄ are so. We now show that g takes its value in the simplex which means that g1(x, y) ∈]0, 1[.
From the properties of ϕ, this is true if τ̄(x + y) ≤ 0. If τ̄(x + y) > 0, then w ∈ [ 5

4 ,
7
4 ]. So, one has

to check that ϕ(x1(t̄(w), τ̄(w)), t̄(w), τ̄(w)) = 1 − t̄(w)(2+τ̄(w))2

4(τ̄(w)+1) > 0 and ϕ(x2(t̄(w), τ̄(w)), t̄(w), τ̄(w)) =

− (t̄(w)−1)(2+τ̄(w))2

4(τ̄(w)+1) < 1 for w ∈ [ 5
4 ,

7
4 ]. This is equivalent to t̄(w) < 4(τ̄(w)+1)

(2+τ̄(w))2 and 1 − t̄(w) < 4(τ̄(w)+1)
(2+τ̄(w))2 .
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This is true because t̄(w) ≤ 5
8 , 1 − t̄(w) ≤ 5

8 and 4(τ+1)
(2+τ)2 is a decreasing function of τ and its value at

τ = 1
2 is 24

25 >
5
8 .

We now prove that the differential of g is onto on 1⊥2 . Since 1⊥2 is of dimension 1, this is equivalent
with ∇g1(x, y) 6= (0, 0). One has :

∂g1

∂x
(x, y) =

∂ϕ

∂x
(ξ, t, τ)

(
y

(x+ y)2

)
+
∂ϕ

∂t
(ξ, t, τ)t̄′(x+ y) +

∂ϕ

∂τ
(ξ, t, τ)τ̄ ′(x+ y)

and
∂g1

∂y
(x, y) =

∂ϕ

∂x
(ξ, t, τ)

( −x
(x+ y)2

)
+
∂ϕ

∂t
(ξ, t, τ)t̄′(x+ y) +

∂ϕ

∂τ
(ξ, t, τ)τ̄ ′(x+ y)

with (ξ, t, τ) = ( x
x+y , t̄(x+y), τ̄(x+y)). If∇gi(x, y) = (0, 0), then ∂ϕ

∂x (ξ, t, τ) = 0. Thus, since ∂ϕ
∂x (ξ, t, τ) =

0 only if ξ = x1(t, τ) or x2(t, τ) and τ ≥ 0, to prove that ∇gi(x, y) never vanishes, it suffices to show that

∂ϕ

∂t
(x1(t̄(w), τ̄(w)), t̄(w), τ̄(w))t̄′(w) +

∂ϕ

∂τ
(x1(t̄(w), τ̄(w)), t̄(w), τ̄(w))τ̄ ′(w) 6= 0

and
∂ϕ

∂t
(x2(t̄(w), τ̄(w)), t̄(w), τ̄(w))t̄′(w) +

∂ϕ

∂τ
(x2(t̄(w), τ̄(w)), t̄(w), τ̄(w))τ̄ ′(w) 6= 0

for all w ∈ [ 5
4 ,

7
4 ].

Since ∂ϕ
∂t (x, t, τ) = − τ+1

t2 x2 and ∂ϕ
∂τ (x, t, τ) = 1

tx
2 − x if x < t and ∂ϕ

∂t (x, t, τ) = − τ+1
(t−1)2 (x − 1)2 and

∂ϕ
∂τ (x, t, τ) = 1

t−1 (x− 1)2 − (x− 1) if x > t, one has to prove that

−τ̄ ′(w)τ̄(w)t̄(w) 6= t̄′(w)(2 + τ̄(w))(1 + τ̄(w))

and
−τ̄ ′(w)τ̄(w)(t̄(w)− 1) 6= t̄′(w)(2 + τ̄(w))(1 + τ̄(w))

Since τ̄ ′(w)τ̄(w) = 1
2 sin(2πw− π

2 )π cos(2πw− π
2 ) = π

2 sin(4πw− π) and t̄(w) ∈ [ 3
8 ,

5
8 ], the left side is less

than 5π
16 < 1. Since t̄′(w) = 1

2 and τ̄(w) ≥ 0, the right side is greater than 1. Thus they are never equal.
We now show that g satisfies the boundary condition. Let (xν , yν) a sequence of R2

++ which converges
to (x, y) ∈ ∂R2

++. Since g(xν , yν) remains in the simplex, if (x, y) = (0, 0), then limν g(xν , yν) · (xν , yν) =

0. If (x, y) 6= (0, 0), then ( xν

xν+yν ) converges to x
x+y , which is equal either to 0 or 1, and (g1(xν , yν))

converges to ϕ( x
x+y , t̄(x + y), τ̄(x + y)) which is equal to 1 if x

x+y = 0 or 0 if x
x+y = 1. Consequently,

limν g(xν , yν) · (xν , yν) = 0.
We now have a look to the demand when the prices are ( 1

2 ,
1
2 ) and the income is w > 0, that is the

element (x, y) which satisfies 1
2x+ 1

2y = w and g(x, y) = ( 1
2 ,

1
2 ). If w ≤ 5

4 or w ≥ 7
4 , then the demand is

a singleton because g1(x, 2w− x) is strictly decreasing with respect to x on ]0, 2w[ and thus, it takes the
value 1

2 only one time. If we consider the income w = 3
2 , then the demand contains three isolated points.

One easily checks that the point ( 3
4 ,

3
4 ) belongs to the demand since t̄( 3

2 ) = 1
2 . But, since τ̄( 3

2 ) > 0, one
deduces from the properties of ϕ that there exist exactly two elements x1 <

3
2 and x2 >

3
2 such that

g1(xi, 3−xi) = ϕ( 2xi
3 , 1

2 , τ̄( 3
2 )) = 1

2 for i = 1, 2. Consequently, the points (x1, 3−x1) and (x2, 3−x2) are
also in the demand.

This shows that when the preferences satisfy Assumption P, the demand may be multivalued with a
finite number of isolated points.

References

[1] Balasko, Y., (1988), Foundations of the theory of general equilibrium, Academic Press.



  

14
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