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Abstract

Intepret a set of players all playing the same strategy and all with
similar attributes as a society. Is it consistent with self interested be-
haviour for a population to organise itself into a relatively small number
of societies? By introducing the concept of approximate substitutes in
non-cooperative games we are able to put a bound on the rationalty
of such social conformity for an arbitrary game and arbitrary number
of societies. This is then applied, in the context of a non-cooperative
pregame, to show that, given ε > 0, there is an integer Q, depending
on ε but not on the number of players, such that any sufficiently large
game has an ε-equilibrium that induces a partition of the player set
into fewer than Q societies. An ε-puriÞcation result is also derived.
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1 Introduction

Social conformity is an important issue in sociology, economics, and game
theory. A culture or society is a group of individuals who have commonalities
of language, social and behavioral norms, and customs. Social learning
consists, at least in part, in learning the norms and behavior patterns of the
society into which one is born and in those other societies which one may
join � our professional associations, our workplace, and our community, for
example. Social learning may also include learning a set of skills from others
that will enable one to Þt into a society. The society in question may be
broad as �Western civilization� or Canada, or as small as the Econometric
Society. A fundamental question is whether this can be consistent with
self-interested behavior. Such consistency requires the existence of a Nash
equilibrium where individuals within the same society play the same or
similar strategies.

In an earlier paper (Wooders, Cartwright and Selten (2001)) we provide
conditions under which such an equilibrium will exist. To understand the
motivation for the present paper we brießy summarize this work. We take
as given a non-cooperative pregame of which a key element is a set Ω of
attributes. A component of attribute space is a complete description of the
possible characteristics of a player. As such, a player set N and a function
α allocating an attribute to each player, induce, through the pregame, a
game Γ(N,α). We say that a pregame satisÞes the large game property if,
for sufficiently large games induced by the pregame, (1) payoffs are only
slightly altered by a small perturbation of the attributes of players, and (2)
each player�s payoff is primarily a function of their own strategy and of the
numbers of players of each attribute playing each strategy, relative to the size
of the population. We interpret a set of players, all with attributes in some
convex subset of attribute space and all playing the same pure strategy, as a
society. Our main result shows, that given any ε > 0 and B ≥ 1, there is an
integer J(ε,B) and real number η(ε,B), such that for any game of complete
information which has at least η(ε,B) players, but less than B players of
any one attribute, and is induced by a pregame satisfying the large game
property, there exists a Nash ε-equilibrium in pure strategies that induces a
partition of the set of players into at most J(ε,B) societies.

The purpose of this paper is to extend this result which we do in variety
of different ways. These can be summarized as (1) to generalize to games of
incomplete information, (2) to make social conformity a property of a game
rather than a pregame, and (3) to consider alternative notions of conformity.
The Þrst of these extensions should lead little explanation. We explain the
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latter two extensions in turn.
In order to look at social conformity as a property of a game rather

than as a property of a pregame we introduce the notion of approximate
substitutes of a non-cooperative game. This is a counterpart to the notion
of approximate substitutes in cooperative games (Kovalenkov and Wooders
(2001)). Informally, two players are approximate substitutes if they, (1) have
similar payoff functions, and (2) are such that if they �exchanged strategies�
a third player would be relatively indifferent to this exchange. By putting a
bound δ on the similarity of players, in terms of these three criteria, we talk
of a δ-substitute partition as a partition of the player set into classes such
that any two players with the same class are approximate (δ) substitutes.
A game is then deÞned as a (δ,Q) class game if there exist a δ-substitute
partition that partitions the player set into Q classes. It should also be
noted that we restrict attention throughout to games with a Þnite number
of strategies.

Within this framework we derive our Theorem 1, namely, if a game Γ is
a (δ,Q) class game then there exists an ε-equilibrium in pure strategies for
any ε ≥ 2δ. One key point to note, is that for any game Γ and any Q there
exists some δ for which the game Γ is a (δ,Q) class game. As such, for any
game we can put a bound on the ε for which there exists an ε-equilibrium
in pure strategies. Alternatively, the value of 2δ could be interpreted as
a bound on the rationality of players using pure strategies as opposed to
mixed strategies.

The approximate substitute framework allows us to draw conclusions
about arbitrary games. It is also useful to have some general examples
of (δ,Q) class games for arbitrary values of δ. As such, in the Þnal sec-
tion, we return to the pregame framework of our earlier paper, extended
to the incomplete information case. We are able to connect the concept of
games with approximate substitutes to that of games induced by a pregame
satisfying the large game property. This is allows us to apply Theorem 1
in deriving an ε-puriÞcation result such that, given any real number ε > 0
there exists a real number η(ε) > 0 such that any game induced by a pregame
satisfying the large game property with more that η(ε) players has a Nash
ε-equilibrium in pure strategies. This result extends the ε-puriÞcation result
of Wooders, Cartwright and Selten (2001) and contrasts from existing re-
sults on the existence of a pure strategy Nash ε-equilibrium in not assuming
a continuum of players (cf. Schmeidler 1973, Mas-Colell 1984, Khan 1989,
Pascoa 1993,1998, Khan et al. 1997, Araujo and Pascoa 2000).

These puriÞcation results illustrate the potential applications of both
frameworks of approximate substitutes in non-cooperative games and pregames
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of non-cooperative games. We apply these frameworks further in addressing
the bounded rationality of social conformity. We deÞne a society such that
any two players belonging to a society have the same class and play the same
strategy. An immediate consequence of Theorem 1 is that if a game Γ is
a (δ,Q) class game then there exists an ε-equilibrium in pure strategies for
any ε ≥ 2δ which partitions the player set into no more than QK societies,
where K is the number of strategies. This essentially provides a benchmark
result which we look to reÞne.

By way of motivation suppose that a population is playing a form of
n person matching pennies, and, as such, in equilibrium half of the time
�heads� should be played and half of the time �tails� should be played. If
players only use pure strategies then in this example we would get two
distinct societies between those players who play �heads� and those who
play �tails�. This would have been the conclusion from our earlier paper and
in some instances this would probably seem an appropriate distinction. In
some instances, however, it may not be appropriate. For example, the game
may be driving and the strategies are to give way or to not give way at road
junctions. At any one instance we might expect half of the drivers to give
way and half to not give way but, if this is because players are conforming to
some highway code, we would clearly not want to think of the player set as
being split into two distinct societies. Instead, we would say that players are
merely taking different roles within the game and make actions conditional
on their roles. Making strategy choice conditional on roles to symmetrize
a game is standard in the evolutionary game theory literature (e.g. Selten
(1980) and Young (2001)).

Clearly, if social conformity is boundedly rational when any two players
in a society must use the same action it will be boundedly rational when
two players in the same society may potentially use different actions. The
converse, however, need not be true. Thus, by relaxing the deÞnition of a
society we can hope to demonstrate that it is potentially rational to have
a higher level of social conformity. More formally, let the inverse of the
number of societies be a measure of the level of social conformity. Our Þrst
result shows that it can be (2δ) boundedly rational to have a level of social
conformity of 1

QK . By relaxing the criteria by which we judge a society can
we put, for the same criterion of rationality, a larger bound on the level of
social conformity?

The extension to incomplete information immediately implies, that de-
spite the fact that every player within a society plays the same strategy,
players within the same society may use different actions dependent upon
their type. That is, players may take up different roles in their society as
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determined by the type that �nature� deals them. In the context of the ex-
ample, it may be that men play �heads� and women play �tails� for example
- a persons action being determined by their type which in this case is gen-
der. Allowing imperfect information does not imply, however, that social
conformity is any more rational than in games of perfect information. The
reasons for this are clear in that the probabilities with which the types of
players are drawn by nature may not be appropriate for the equilibrium of
the game. In the context of our example, a highway code based on gender
may not be entirely satisfactory.

It clearly seems plausible that in some games players will try to Þnd
some signalling mechanism by which players can be assigned roles within
the society; if gender is not an appropriate signal then try something else.
As such we suppose that players can endogenise the set of types and their
probability distribution over types. We refer to the set of endogenised types
as roles. Thus, instead of being given a type by nature we say that players
are assigned to roles within a society. Strategies can be made conditional
on a player�s role. A society is then essentially such that any two players
belonging to the same society have the same approximate type, play the
same strategy, and agree on the allocation of players to roles within the
society. In the context of our example, drivers would agree on a strategy,
say �give way on minor roads�, but, furthermore, they would also agree on
which roads should be classed as minor roads and which major roads. We
are able to show, under such a framework, that if a game Γ is a (δ,Q)
class game then there exists a Nash ε-equilibrium in pure strategies for any
ε ≥ 4δ which partitions the player set into no more than Q societies. Thus,
if players have some way of endogeneising types, that is allocating players
to different roles within the society, then we can put a higher bound on the
level of social conformity. Indeed, given our constraint that two players in
the same society must be of the same class, we get the highest level of social
conformity to be expected.

A second way in which we consider reÞning the notion of a society is
to assume that players can play mixed strategies. In most games players
probably are restricted to pure strategies (such as driving) but this does not
mean there at not games in which mixed strategies can be played (e.g. in
sport or gambling). Allowing the use of mixed strategies, we show that if a
game Γ is a (δ,Q) class game then there exists a Nash ε-equilibrium strategy
vector for any ε ≥ 4δ which partitions the player set into less than Q soci-
eties. That is, there exists an ε-equilibrium such that any two players with
the same class play the same mixed strategy. In the context of our earlier
example this would equate to every player playing �heads� with probability
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one half and �tails� with probability one half.
Together this provides three different ways of looking at social conformity

and the notion of a society, (1) all players within a society play the same
pure strategy, (2) all players within a society play the same, possibly, mixed
strategy, or (3) within a society there is some agreed upon framework within
which players are allocated to roles and all players given the same role play
the same action. We recall that for any game Γ and any Q there exists
some δ for which the game Γ is a (δ,Q) class game. As such, the results
we derive in these three contexts apply to any game and for any level of
social conformity. One implication of this is that we can put a bound on the
rationality of social conformity in an arbitrary game and for an arbitrary
number of societies.

We Þnish by applying these social conformity results to games induced
by a pregame satisfying the large game property. One derived result is that,
for any ε > 0 and B ≥ 1 there exists real numbers η(ε,B) and Q(ε,B)
such that for any game Γ(N,α) with at least η(ε,B) players, induced by a
pregame satisfying the large game property, there (1) exists a Nash ε equi-
librium which partitions the player set into C ≤ Q(ε,B) societies, and (2) if
there are less than B players of any one attribute, there exists a Nash ε equi-
librium in pure strategies which partitions the player set into C ≤ Q(ε,B)K
societies. It is important to note that the number of societies is bounded in-
dependently of the size of the population. Thus, the size of societies become
arbitrarily large as the size of the population increases.

We proceed as follows; section 2 introduces the notation and section 3
deÞnes the notion of approximate substitutes. Section 4 looks at approxi-
mate puriÞcation and section 5 social conformity in games with approximate
substitutes. Section 6 looks at large games before we conclude in section 7.

2 A Bayesian Game - deÞnitions and notation

A Bayesian game Γ is given by the tuple (N,A, T, g, u) where N is the player
set, A the set of action proÞles, T the set of type proÞles, g the probability
function over type proÞles and u the set of utility functions. We deÞne these
in turn.

Let N = {1, ..., n} be a Þnite player set. For all i ∈ N there exists
a Þnite set Ti of feasible types of player i and a Þnite set Ai of feasible
actions of player i (independent of type). Let T = ×iTi be the set of type
proÞles and A = ×iAi the set of actions proÞles. We assume throughout,
for convenience, that Ti = TΓ and Ai = AΓ for all i ∈ N and for some TΓ
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and AΓ. We will typically index a type as tz ∈ TΓ and an action as al ∈ AΓ.
A pure strategy of a player i is given by a vector si = {si(t1), ..., si(t|Ti|)}

where si(ti) is interpreted as the action chosen by player i when of type ti.
Denote the set of pure strategies for player i by Si or equivalently SΓ. For
any player i we allow choice among any feasible pure strategy as allowed
by the set of feasible types Ti and actions Ai. Thus, |Si| = |Ai||Ti|. Let
K = |AΓ||TΓ| be the number of pure strategies.

A strategy of a player i is given by a vector σi = {σi1, ...., σiK} where
σik is interpreted as the probability player i plays pure strategy sk ∈ Si.
A strategy σ implies a vector {σi(·|t1), ..., σi(·|t|Ti|)} where σi(·|ti) is inter-
preted as a probability distribution over the set of actions Ai to be used by
player i when of type ti. The value σi(ai|ti) is interpreted as the probability
player i uses action ai given he or she is of type ti. Let ∆(Si) denote the
set of strategies for player i. Given strategy σi let support(σi) denote the
pure strategies played with strictly positive probability. Let S = ×i∈N∆(Si)
denote the set of strategy vectors. We refer to a strategy vector σ as degen-
erate if σi places unit weight on a unique pure strategy for all i ∈ N . We
will typically index a strategy as sk ∈ ∆(SΓ).

Let Ci = Ti × Ai denote the feasible compositions of player i. That
is, a composition is a type-action pair. Let C = ×i∈NCi denote the set of
composition proÞles. For each player i ∈ N there exists a utility function
ui : C → R. The interpretation is that ui(c) denotes the payoff of player
i if the composition proÞle is c. We will typically index a composition as
cr ∈ CΓ. Let u = {u1, ...., un} denote the set of player utility functions.

For each player i ∈ N there exists a prior probability distribution over
types gi. That is, gi(ti) denotes the probability that player i is of type ti ∈ Ti
if the types of the remaining players N\{i} are undetermined. Let g denote
a probability function over the set of type proÞles. Thus, g(t) denotes the
probability of type proÞle t ∈ T . Each player i ∈ N forms their own beliefs
about the types of other players as given by a function pi mapping Ti into
the set of probability distributions over T−i = ×j∈N

j/∈i
Tj . The distribution

pi(ti) is interpreted as the probability function over the type proÞle of the
remaining players in the population conditional on player i knowing his or
her own type is ti. With a slight abuse of notation let pi(t−i|ti) denote
the probability that player i puts on the type proÞle being t = (t−i, ti) ∈ T
given that he or she is of type ti. We make two assumptions over probability
distributions:

1. independent type allocation: for all i ∈ N , gi is independent of the
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type proÞle over the remaining players. That is, g(t) =
Q
i gi(ti) where

t = (t1, ..., tn).

2. consistent beliefs: for all i ∈ N and for all ti ∈ Ti,

pi(t−i|ti) = g(t−i, ti)P
l−i∈T−i g(l−i, ti)

We make both these assumptions for simplicity and intuitive appeal. In real-
ity, none of the subsequent results in this paper seem dependent upon these
assumptions. To gain some intuition for why this is the case we highlight
that our main objective in this paper is to take a Nash equilibrium strategy
σ and show that there exists a �nearby� approximate Bayesian Nash equi-
libria m that has certain properties. The beliefs of players therefore have
little bearing, because we take the initial equilibrium σ as given. That is, if
σ was a Nash equilibrium for some set of beliefs then we can always Þnd an
approximate equilibrium m for those same set of beliefs. We say that the
probability over type proÞles is degenerate if g(t) = 1 for some t ∈ T . In
this case we say game Γ = (N,T,A, g, u) is a game of perfect information.

The strategy of a player i, σi, and their prior probability distribution
over types, gi, determine a distribution over player i�s compositions, γi,
where γi(ci) = gi(ti)σi(ai|ti) for composition ci = (ai, ti). We can then
derive a probability distribution over outcomes of the game γ where γ(c) =Q
i γi(ci) for all c ∈ C. Any strategy vector σ and probability function over

the set of type proÞles g induce a particular probability distribution over
outcomes of the game which we index γσ,g. Thus, given strategy vector σ
and a probability function over the set of type proÞles g the probability of
composition proÞle c = ((a1, t1), ...., (an, tn)) is given by

γσ,g(c) =
Y
i

gi(ti)σi(ai|ti).

Players are assumed to act according to expected payoffs. Thus let Eγ
denote the expectations operator where expectations are taken according to
the probability distribution over outcomes of the game γ. For each player
i ∈ N, let Ui(·|g) denote the expected utility function of player i conditional
on the distribution over player types g, mapping strategy vectors into the
real line, such that

Ui(σ|g) = Eγσ,g(ui(c)).
We note how the function Ui accounts for both the uncertainty over player
types, and the uncertainty due to mixed strategy vectors.
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A strategy vector σ is a Bayesian Nash ε Equilibrium if,

Ui(σ) ≥ Ui(sk, σ−i)− ε
for all sk ∈ Si and for all i ∈ N . We say that a Bayesian Nash ε equilibrium
m is a Bayesian Nash ε equilibrium in pure strategies if mi is degenerate for
all i.

3 Approximate substitutes

We consider approximating games with many players, all of whom may be
distinct, by games with a Þnite set of player classes. In particular, a δ-
substitute partition, given game Γ = (N,T,A, g, u), is a partition of the
player set N into subsets such that any two players in the same subset are
�within δ of each other�. The game Γ is referred to as a (δ,Q)-class game
if there is a Q-member δ-substitute partition {N1, ..,NQ} of N . Players in
the same element of a δ-substitute partition we call δ-substitutes. The set
Nq is referred to as a class of player.

This, of course, begs the question of how we measure the distance be-
tween two players. In cooperative game theory this distance is typically
measured by the difference in value that players can add to coalitions. In-
formally, a δ-substitute partition is such that, given any coalition structure,
�swapping� around players of the same class, has relatively little effect on
the value of the coalitions. The counterpart in a non-cooperative framework
would appear to be one in which the distance between players is measured by
the effect that players can have on each others payoffs. A δ-substitute par-
tition would now be such that given any strategy proÞle, �swapping� around
the strategies of players with the same class, has relatively little effect on
the payoff to some player who keeps the same strategy. We formalize this
below but Þrst introduce two preliminary concepts.

3.1 Representative strategies and similarity of priors

Take as given a partition of the player set N into subsets N1, ..., NQ. We
then introduce the following,

Representative strategy for class q (relative to σ): Given any strat-
egy σ ∈ S and any subset Nq of N let σ(Nq) denote the representative
strategy for class q deÞned as,

σ(Nq)(al|tz) = 1P
i∈Nq gi(tz)

X
i∈Nq

gi(tz)σi(al|tz)
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for all al ∈ AΓ and all tz ∈ TΓ.1

We should check that σ(Nq) is indeed a strategy for any σ and any
Nq. That is, we must show that σ(Nq) maps TΓ into the set of probability
distributions over AΓ. For arbitrary tz ∈ TΓ,X

al∈AΓ
σ(Nq)(al|tz) =

1P
i∈Nq gi(tz)

X
al∈AΓ

X
i∈Nq

gi(t)σi(al|tz)

=
1P

i∈Nq gi(tz)

X
i∈Nq

gi(tz)

 X
al∈AΓ

σi(al|tz)


= 1

and clearly 1 ≥ σ(Nq)(al|tz) ≥ 0 for all al, tz. Thus, σ(Nq) is indeed a
strategy.

In interpretation, suppose that gi(tz) = gj(tz) for all i, j ∈ Nq and all tz.
We can see that a �player� with strategy σ(Nq) truly is a �representative� of
the class Nq in the sense that

σ(Nq)(al|tz) = 1

|Nq|
X
i∈Nq

σi(al|tz).

That is, the probability the representative has composition (tz, al) equals the
average probability players of class Nq have that composition. If for some
players i, j ∈ Nq, gi(tz) > gj(tz) then the representative strategy, given type
tz, is weighted towards the action chosen by player i.

We now introduce our second preliminary concept,

Similarity of prior probabilities for class q (relative to g): Given any
strategy any subset Nq of N (and probability function over the set of
type proÞles g) let β(Nq) denote the similarity of prior probabilities
for class q deÞned as,

β(Nq) = max
i,j∈Nq

max
tz∈TΓ

|gi(tz)− gj(tz)| .

We note that given an assumption of common priors β(Nq) = 0 for any
subset Nq of N .

1 If
P

i∈Ωq gi(th) = 0 then let σωq (·|th) be any probability distribution over AΓ.
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3.2 δ-substitute partition

With the notion of a representative strategy and similarity of prior proba-
bilities introduced we can now formally deÞne the notion of δ-substitutes.
A partition {N1, ...,NQ} is a δ-substitute partition if,

Anonymity: for any two strategy proÞles σ1, σ2 ∈ S if,

max
al∈AΓ

max
tz∈TΓ

¯̄̄̄
¯̄¡σ1(Nq)(al|tz)− σ2(Nq)(al|tz)¢ X

i∈Nq
gi(tz)

¯̄̄̄
¯̄ < 1+β(Nq) |Nq|

(1)

for all Nq, q = 1, ..., Q, then,¯̄
Ui(sk, σ

1
−i)− Ui(sk, σ2−i)

¯̄
< δ

for any player i ∈ N and any strategy sk ∈ ∆(SΓ).

and,

Similarity of payoffs: for all q = 1, ..., Q, for any two players i, j ∈ Nq
and for any strategy proÞle σ ∈ S,

|Ui(sk, σ−i)− Uj(sk, σ−j)| < δ

for any sk ∈ ∆(SΓ).

The anonymity constraint is a key requirement which we explain in more
detail. This condition is essentially composed of two elements. First, the
anonymity condition requires that payoffs should depend primarily on just
the representative strategies for the Q classes.2 Thus, there is anonymity in
that �exchanging� the strategies of players with the same class leaves payoffs
relatively unaffected. Second, the anonymity condition requires that pay-
offs should be relatively invariant to bounded changes in the representative
strategies of the Q classes. We illustrate by considering two extremes.

Suppose that |Nq| = 1 for all i ∈ N . The representative of a class
q would then clearly be identical to the actual player of that class. As
such, that payoffs should depend only on the representative strategies for
the Q classes, is trivial. Note, however, that (1) can now be phrased,¯̄
σ1i (al|tz)− σ2i (al|tz)

¯̄
gi(tz) ≤ 1 + β for all i ∈ N. Thus, any player i ∈ N

2They, of course, also depend on the player�s own strategy choice.
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can change their strategy any way they wish. It seems, therefore, unlikely
that anonymity can hold, in this circumstance for any meaningful value of
δ. Essentially, we would require that the game is such that each player is
indifferent to what their opponents play (which is not much of a game).

By way of contrast, suppose that |N1| = n and so there is only one class
of player. Further, suppose there is common priors so that β(N1) = 0. It
is now much more restrictive to say that payoffs should depend only on the
representative strategies for the Q classes. It would require that payoffs
depend only on the �population average� or the number of players playing
each strategy. This is plausible (such an assumption is used in Kalai (2000),
for example) but clearly fairly restrictive. Suppose, however, it was the case
that payoffs did depended only on the population average. The deÞnition
of anonymity now reads

¯̄
σ1(Nq)(a|t)− σ2(Nq)(a|t)

¯̄P
i∈N gi(tz) ≤ 1. Thus,

the deÞnition of anonymity requires that payoffs be relatively unchanged for
only small changes in the representative strategy; this seems reasonable.

Between these two extremes we clearly Þnd a trade off between a small
or large number of classes Q. In particular, for an arbitrary game Γ, Þnding
the minimum δ for which there exists a δ-substitute partition would seem to
involve a trade-off when varying the size ofQ; ifQ is large then it seems more
plausible that payoffs should depend only on the representative strategies
for the Q classes, while, if Q is small, it seems more likely that payoffs should
be relatively invariant to bounded changes in the representative strategies
of the Q classes.

Let H((δ,Q)) denote the set of all (δ,Q)-class games. We recall that a
game Γ is (δ,Q)-class game if there is a Q-member δ-substitute partition
{N1, .., NQ} of N . Note that for any q and any game Γ, Γ ∈ H((δ,Q)) for
some δ.

4 PuriÞcation of mixed strategies

We begin with two technical results and then state and prove out main
ε-puriÞcation result. First, we introduce some notation. Given a vector
σ = (σ1, .., σn) (where σi = (σi1, ..., σiK) ∈ ∆K for i = 1, ..., n) let M(σ)
denote the set of vectors m = (m1, ..,mn) such that for all i = 1, ..., N ,

1. support(mi) ⊂support(σi) for all i ∈ N and,

2. mi is degenerate.

Informally, given a strategy vector σ the strategy vector m ∈ M(σ)
if, for all i, strategy mi is such that player i plays some pure strategy
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sk ∈support(σi) with probability one.
Our main result makes use of the following Lemma fromWooders, Cartwright

and Selten (2001),

Lemma 1 (Wooders, Cartwright, Selten): For any vector σ =
(σ1, ..., σn) and for any vector g ∈ ZK+ such that

P
i σi ≥ g, there exists a

vector m = (m1, ...,mn) ∈M(σ) such that:X
i

mi ≥ g.

We extend Lemma 1. First, we introduce further notation. Given real
number h let bhc denote the nearest integer less than or equal to h and dhe
the nearest integer greater than or equal to h (i.e. b9.5c = 9 and d9.5e = 10
etc.). Given vector h denote by bhc the vector such that bhck = bhkc for all
k with a similar deÞnition for dhe.

Lemma 2: For any vector σ = (σ1, ..., σn) there exists a vector m =
(m1, ...,mn) ∈M(σ) such that:&

nX
i=1

σi

'
≥

nX
i=1

mi ≥
$

nX
i=1

σi

%
.

Proof: Denote by M∗(σ) the set of vectors m = (m1, ...,mn) ∈M(σ)
such that

P
imi ≥ b

P
i σic . By Lemma 1 this set is non-empty. Proving the

Lemma thus amounts to showing that there exists a vector m ∈M∗(σ) such
that dPi σie ≥

P
imi. Suppose not. Then, for every vector m ∈ M∗(σ)

there exists some strategy sk ∈ S such that
P
imik > d

P
i σike . Choose a

vector m0 ∈M∗(σ) such that

C ≡
X

sk:
P
imik>dPi σike

ÃX
i

mik −
&X

i

σik

'!

is minimized. That is, m0 comes as close as any vector to satisfying the
statement of the Lemma. Denote by sbk a pure strategy such that

nX
i=1

m
ibk >

&
nX
i=1

σ
ibk
'
.
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We then introduce the following sets W t and Lt, t = 0, 1, 2, ...,

W 0 = {i : m
ibk = 1}

Lt = {sk : σik > 0 for some i ∈W t} for t ≥ 0
W t = {i : mik = 1 for some sk ∈ Lt} for t > 0.

For some t∗, W t∗ = W t∗+1 ≡ W and Lt
∗
= Lt

∗+1 ≡ L. The construction
of W t and Lt imply that for any sk∗ ∈ Lt∗ there must exist a set of players
{i0, i1, ..., it} ∈W t and set of strategies {sk1 , ..., skt} such that,

m0
i0bk = 1 and σi0k1 > 0,

m0
irkr = 1 and σirkr+1 > 0 for all r = 1, .., t− 1,
m0
itkt = 1 and σitk∗ > 0,

where we allow the possibility that t = 0, 1. Suppose there exists a k∗ ∈ L
such that

nX
i=1

mik∗ ≤
nX
i=1

σik∗ .

Given the chain of players {i0, i1, ..., it} ∈W given above, consider the vector
m∗ constructed as follows,

m∗
i0bk = 0 and m∗

i0k1 = 1,

m∗
irkr = 0 and m∗

irkr+1 = 1 for all r = 1, ..., t− 1,
m∗
itkt = 0 and m∗

itk∗ = 1,

m∗
ik = m0

ik for all other sk ∈ S and i ∈ N .
It is easily checked that the vector m∗ ∈M(σ) leads to the desired contra-
diction by reducing by one the value C. We note, however, that

nX
i=1

X
k∈L

mik = |W | =
X
i∈W

X
sk∈L

σik.

Thus, if
nX
i=1

m
ibk >

nX
i=1

σ
ibk ≥X

i∈W
σ
ibk

there must exist some k∗ ∈ L such that
nX
i=1

mik∗ ≤
X
i∈W

σik∗ ≤
nX
i=1

σik∗

14



giving the desired contradiction¥

With this we can now state and prove our Þrst main result:

Theorem 1: For any Bayesian game Γ ∈ H((δ,Q)). Let ε be a positive
real number. If, ε ≥ 2δ then there exists a Bayesian Nash ε-equilibrium in
pure strategies.3

Proof: By deÞnition there exists a δ-substitute partition of N into non-
empty subsets N1, ...,NQ. Furthermore, using Nash�s Theorem there must
exist a Nash Equilibrium strategy σ∗ ∈ Σ. This implies, for all i ∈ N , that,

Ui(σi, σ
∗
−i) ≥ Ui(sk, σ∗−i) (2)

for all σi where support(σi) ⊂support(σ∗i ) and for all sk ∈ ∆(S).
We apply Lemma 2 in turn to each Nq. Doing so implies that there exists

a strategy vector m ∈ S where support(mi) ⊂support(σ∗i ), mi is degenerate
for all i ∈ N and where,

X
i∈Nq

σ∗i

 ≥
X
i∈Nq

mi ≥
X
i∈Nq

σ∗i

 .
for all q = 1, ...,Q. Thus, ¯̄̄̄

¯̄X
i∈Nq

mik −
X
i∈Nq

σ∗i

¯̄̄̄
¯̄ ≤ 1

for all sk ∈ S and all q. This implies that,

max
al∈AΓ

max
tz∈TΓ

¯̄̄̄
¯̄X
i∈Nq

mi(al|tz)−
X
i∈Nq

σ∗i (al|tz)
¯̄̄̄
¯̄ ≤ 1. (3)

3We remark that Theorem 1 merely requires that the anonymity property hold with
regard to the deÞnition of a (δ,Q) class game. That is, similarity of payoffs need not
apply.
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For each q pick a player jq ∈ Nq. Then for all q, using the identity
gi(tz) = gjq(tz)− (gjq(tz)− gi(tz)),

max
al∈AΓ

max
tz∈TΓ

¯̄̄̄
¯̄X
i∈Nq

gi(tz)mi(al|tz)−
X
i∈Nq

gi(tz)σ
∗
i (al|tz)

¯̄̄̄
¯̄

≤ max
al∈AΓ

max
tz∈TΓ

¯̄̄̄
¯̄gjq(tz)

X
i∈Nq

mi(al|tz)−
X
i∈Nq

σ∗i (al|tz)
¯̄̄̄¯̄+

max
al∈AΓ

max
tz∈TΓ

¯̄̄̄
¯̄X
i∈Nq

(gjq(tz)− gi(tz))(mi(al|tz)− σ∗i (al|tz))
¯̄̄̄
¯̄ .

Given (3), that gi(tz) ≤ 1 and gjq(tz) − gi(tz) ≤ β(Nq) for all j ∈ N , all q
and all tz ∈ TΓ, and Þnally that mi(al|tz)− σ∗i (a|tz) < 1 we get,

max
al∈AΓ

max
tz∈TΓ

¯̄̄̄
¯̄X
i∈Nq

gi(tz)mi(al|tz)−
X
i∈Nq

gi(tz)σ
∗
i (al|tz)

¯̄̄̄
¯̄ < 1 + β(Nq) |Nq|

for all q. Thus, denoting σ∗(Nq) and m(Nq) as the representative strategy
for class q = 1, ..., Q, we see that,

max
al∈AΓ

max
tz∈TΓ

¯̄̄̄
¯̄(σ∗(Nq)(al|tz)−m(Nq)(al|tz))X

i∈Nq
gi(tz)

¯̄̄̄
¯̄ < 1 + β(Nq) |Nq|

(4a)
for all q.

By anonymity and (4a),¯̄
Ui(sk, σ

∗
−i)− Ui(sk,m−i)

¯̄
< δ

for all sk ∈ ∆(Si) and for all i ∈ N . Given (2),
Ui(mi,m−i)− Ui(sk,m−i) ≥ − ¯̄Ui(mi, σ

∗
−i)− Ui(mi,m−i)

¯̄− ¯̄Ui(sk, σ∗−i)− Ui(sk,m−i)
¯̄

> −2δ ≥ −ε
for all i ∈ N and all sk ∈ ∆(Si). This completes the proof¥

As previously remarked, any game Γ is a (δ,Q) class game for some δ.
Theorem 1 allows us, therefore, to put a bound on the rationality of using
pure strategies as opposed to mixed strategies. It would be interesting to
have a class of games which are (δ,Q) substitute games for arbitrarily small
δ. We consider this when looking at large games. First, we consider social
conformity in more detail.
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5 Social conformity

We begin by deÞning a society. Take as give a δ-substitute partition {N1, ..., NQ}
and a strategy vector σ ∈ S. For any strategy sk ∈ ∆(SΓ) and any q, con-
sider the subset Nk

q of N such that i ∈ Nk
q if and only if i ∈ Nq and σi = sk.

If Nk
q is non-empty then we refer to the set N

k
q as a society. Thus, a society

is (a maximal set) such that every player belonging to that society plays the
same strategy and has the same class.

Given a δ-substitute partition N = {N1, ...,NQ} and a strategy vector
σ ∈ S there exists a unique partition {N1, ...., NC} of the player set N
into societies. We say that N and σ induce the partition into societies
{N1, ...., NC}.

Our Þrst result of this section essentially summarizes the immediate im-
plications of Theorem 1 and should need no proof.

Corollary 1: Let Γ ∈ H((δ,Q)) be any Bayesian game and let N be any
δ-substitute partition with Q classes. Let ε be a positive real number where
ε ≥ 2δ. Then there exists a Bayesian Nash ε-equilibrium in pure strategies
m such that N and m induce the partition into societies {N1, ..., NC} where
C ≤ QK .

This is clearly an immediate consequence of the fact that any partition
into societies induced by a δ-substitute partition with Q classes must have no
more than QK societies. It still, however, is an interesting result in that the
number of societies is Þxed independently of the size of the population. Thus,
if we can envisage a �family of games� in which as the population grows the
number of classes remains the same, then Corollary 1 is an important result.
We consider this point in the latter half of the paper. In the following three
sub-sections we consider three contrasting extensions to this initial result.
In the Þrst extension we strengthen the deÞnition of a society, in the latter
two sections we weaken the deÞnition.

5.1 Social conformity with connected societies

Assume that there is a one-to-one characteristic function y mapping N into
[0, 1]. We interpret y as ordering the player set in the sense that we can put
some signiÞcance to the fact that y(i) > y(j). In particular, the character-
istics of a player as given by y may be a measure of similarity. For example,
we will assume for any δ-substitute partition {N1, ...,NQ} and three play-
ers i, j, k ∈ N that if i, k ∈ Nq, for some q, and y(i) > y(j) > y(k) then
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j ∈ Nq. We say that a set Y ⊂ N is connected with respect to y when, for
any i, k ∈ N , if there exists a player j ∈ N such that y(i) > y(j) > y(k)
then j ∈ Y . Thus, the set of players with the same class is connected.

It may be intuitive for societies to be connected with respect to some
characteristic function y. An example may be useful. Suppose that the
characteristics of a player can be summarized by a number from the unit
interval. Then, if societies are connected this would seem to imply that the
majority of players belong to the same society as those players with the
characteristics most similar to their own. This example is taken further in
the Þnal part of this paper leading to corollary 5.

We now state our second social conformity result,

Corollary 2: Let Γ ∈ H((δ,Q)) be any Bayesian game and let N be
any δ-substitute partition with Q classes. Let ε be a positive real number
where ε ≥ 6δ. Let y denote any characteristic function. Then there exists a
Bayesian Nash ε-equilibrium in pure strategiesm such that N and m induce
the partition into societies {N1, ..., NC} where Nc is connected with respect
to y for all c = 1, ..., C and where C ≤ JK.

Proof: By Theorem 1 there exists a Bayesian Nash 2δ equilibrium in
pure strategies σ. Thus,

Ui(σ) ≥ Ui(sk, σ−i)− 2δ
for all sk ∈ ∆(S) and for all i ∈ N . For all sk ∈ SΓ and all q = 1, .., Q,
let nkq denote the number of players i ∈ Nq such that σik = 1. Assume,
subject to a possible reordering of the player set that, for all i, j ∈ N , if i > j
then y(i) > y(j). Suppose, further, that player 1 belongs to N1. Let m be
informally deÞned as the strategy vector where for players i ∈ {1, ..., n11},
mi = s1, for players i ∈ {n11+1, ..., n11+n21}, mi = s2 and so on. Strategy
vector m is such that N and δ induce a partition into societies {N1, ..., NC}
where Nc is connected with respect to y for all c = 1, ..., C. We also note
that, X

i∈Nq
gi(tz)mi(al|tz)−

X
i∈Nq

gi(tz)σi(al|tz) ≤ β(Nq) |Nq|

for all q and all al, tz. Thus, by anonymity for any i ∈ N ,
|Ui(sk,m−i)− Ui(sk, σ−i)| < δ

for any strategy sk ∈ ∆(S). Furthermore, for any two players i, j ∈ Nq,
|Ui(sk,m−i)− Uj(sk,m−j)| < δ
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for any sk ∈ ∆(SΓ).
For every player j ∈ Nq and for all q, ifmjr = 1 then there exists a player

irq ∈ Nq such that σir = 1. This implies that Uirq(σ) ≥ Uirq(sk, σ−irq)− 2δ.
Note it is possible that i = j. Thus,

Uj(m) ≥ Uj(sk,m−j)− 2δ
− |Uirq(σ)− Uirq(m)|− |Uirq(m)− Uj(m)|
− |Uirq(sk, σ−irq)− Uirq(sk,m−irq)|− |Uirq(sk,m−irq)− Uj(sk,m−j)|

> Uj(sk,m−j)− 6δ
for all sk ∈ ∆(SΓ). This completes the proof¥

For the statement of this result the deÞnition of a society is strengthened
in requiring societies be connected. As such, the bound on the rationality
of social conformity increases. That is, it appears potentially less rational
that players form societies which are connected as opposed to societies that
may or may not be connected.

5.2 Social conformity in mixed strategies

Suppose that players can choose mixed strategies. We retain the same notion
of a society such that two players belonging to the same society must have
the same class and same strategy. If we allow players to use mixed strategies
then we can derive the following result

Theorem 2: Let Γ ∈ H((δ,Q)) be any Bayesian game and let N be any
δ-substitute partition with Q classes. Let ε be a positive real number where
ε ≥ 4δ. Then, there exists a Bayesian Nash ε equilibrium m such that N
and m induce the partition into societies {N1, ...,NC} where C = Q.

Proof: By Nash�s Theorem there exists a Bayesian Nash equilibrium σ
of the game Γ. That is, for any i ∈ N and any strategy sk ∈ ∆(SΓ),

Ui(σ) ≥ Ui(sk, σ−i).
There also exists a δ substitute partition N = {N1, ...., NQ}. For each q
let σ(Nq) denote the representative strategy of class q. Consider now the
strategy vector m such that, for all i ∈ N ,

if i ∈ Nq then mi = σ(Nq).
ClearlyN andm induce a partition into societies {N1, ..., NC} where C = Q.
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We note that the representative strategy for each class q is now,

m(Nq)(al|tz) =
1P

i∈Nq gi(tz)

X
i∈Nq

gi(tz)σ(Nq)(al|tz)

= σ(Nq)(al|tz).

Thus, by the assumption of anonymity,

|Ui(sk, σ−i)− Ui(sk,m−i)| < δ

for all i ∈ N and all sk ∈ ∆(SΓ).
For each q let Sq = {sk ∈ SΓ : there exists a player i ∈ Nq such that

σik > 0}. We note that for all q and for each degenerate strategy sr where
support(sr) ⊂ Sq there exists a player jrq ∈ Nq such that

Ujrq(sr,m−jrq) ≥ Ujrq(sk,m−jrq)− 2δ

for all sk ∈ ∆(SΓ). We also note for all i ∈ N that support(mi) ⊂ Sq.
For any q, for any two players i, j ∈ Nq and for any strategy sr where
support(sr) ⊂ Sq,

|Ui(sr,m−i)− Uj(sr,m−j)| < δ
by similarity of payoffs. Thus, for any i ∈ N and for any sr ∈ Sq,

Ui(m) ≥ Ui(sk,m−i)− 4δ.

for any sk ∈ ∆(SΓ). This completes the proof¥

This result shows that if players can use mixed strategies then the num-
ber of societies can be bounded by the number of classes. That is, if Γ
is a (δ,Q) class game then for any ε ≥ 4δ there exists a Bayesian Nash
ε-equilibrium such that any two players belonging to the same class play
the same strategy. It is interesting to note that despite Theorem 1 being
a puriÞcation result it can be used to prove a similar result to Theorem 2
although the bound becomes �for all ε ≥ 6δ�.

5.3 Social conformity with roles

As discussed in the introduction it sometimes appropriate that players be-
longing to the same society should play different actions. This is possible
through games of incomplete information by making actions conditional on
a player�s type - a player�s type being determined by nature. Suppose, by
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way of extension, that players could endogenously choose a set of roles and
a probability distribution over those roles.

Formally, suppose that there exists a set of roles R = {r1, ..., rK}. Each
player can then choose their own probability distribution over roles fi : Ri →
[0, 1]. Given a Bayesian game Γ = (N,A, T, g, u) we then consider a two stage
Bayesian game with endogenous types ΓR deÞned such that

1. In stage 1 each player independently chooses a probability distribution
over roles fi, the choices of players as given by f = (f1, ..., fn) are freely
communicated,

2. In stage 2 the Bayesian game Γf = (N,A, T f , gf , uf ) is played where,

(a) T fi = Ti ×Ri for all i ∈ N ,
(b) gfi (tz, rk) = gi(tz)fi(rk) for all i ∈ N , all tz ∈ TΓ and all rk ∈ R
(c) ufi ((a1, t1, r1), ..., (an, tn, rn)) = ui((a1, t1), ...., (an, tn)) for any com-

position proÞle .

We highlight that in the Bayesian game Γf players are allowed to make
their action choice conditional on their role in the same as action choice can
be made conditional on type. The standard deÞnition of a an approximate
Nash equilibrium still applies. We refer to a strategy of a two stage Bayesian
game with endogenous types ΓR as a pure strategy if each player i ∈ N
chooses a pure strategy for game Γf given any choice of f in stage 1.

The deÞnition of a society remains the same - namely that two players
in the same society are of the same class and play the same strategy. This
means that they have the same choice of probability distributions over roles
and the same strategy for the resulting Bayesian game. As such, the players
share some common goal or identity. This is despite the fact that different
players within the society may end up playing using different actions.

We can now state our Þnal result of this section.

Corollary 3: Let Γ ∈ H((δ,Q)) be any Bayesian game and let N be
any δ-substitute partition with Q classes. Let ε be a positive real number
where ε ≥ 4δ. Then, in the two stage Bayesian game with endogenous types
ΓR there exists a Bayesian Nash ε equilibrium in pure strategies σ such that
N and σ induce the partition into societies {N1, ..., NC} where C = Q.

Proof: Consider an arbitrary player i ∈ N . We note that any mixed
strategy σi of the game Γ can be decomposed as a choice of strategy mi in
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a game Γf and choice of probability distribution over roles fi. In particular,
suppose that player i plays pure strategy sk (from game Γ) if given role rk,
for all k. Then, put fi(rk) = σi(sk) for all k. Having noted this the result
is immediate give Theorem 2¥

This result demonstrates that if players have some endogenous system
by which players can be assigned roles then we can conceive of societies in
which players play different actions. There actions are determined by the
role that they are playing within the society. Within this framework the
number of societies is again equal to the number of classes. Thus, any two
players of the same class play the same strategy.

6 Large Games

We begin be reaffirming that for any game Γ and any Q there exists some
δ such that game Γ is a (δ,Q) class game. Thus, the results of above apply
to any game. Clearly, in interpretation, however, we would want that δ
is small. So, what characteristics of a game imply that there will exist a
δ-substitute partition for small δ? We would expect such a game to have
the characteristics that, (1) a player�s payoff is not largely dependent upon
the actions of any small subset of the population, and (2) there is a natural
way of grouping players with similar characteristics. Games induced from a
pregame with the large game property satisfy both these requirements. In
this section to demonstrate the later claim and thus provide an example of
how Theorem 1 can be applied in practice.

6.1 DeÞnitions

6.1.1 Pregames

Let Ω denote a compact metric space of player attributes. Let AΓ de-
note a Þnite set of actions and TΓ a Þnite set of types. The set of pure
strategies is given by SΓ and the set of strategies by ∆(SΓ). A function
from Ω × AΓ × TΓ into R+ is said to be a weight function if it satisÞesP
al∈AΓ

P
tz∈TΓ w(ω, al, tz) ∈ Z+ for all ω ∈ Ω. Let W denote the set of

weight functions.
A pregame is given by a tuple G = (Ω, AΓ, TΓ, g, h), consisting of a com-

pact metric space Ω, Þnite sets AΓ and TΓ, a function g : Ω× TΓ −→ [0, 1]
and a function h : Ω×∆(SΓ)×W −→ R+.
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6.1.2 Societies and games

Let N be a Þnite set and let α be a mapping from N to Ω, called an attribute
function. The pair (N,α) is a population. The proÞle of the population
(N,α) is a function proÞle(N,α) : Ω→ Z+ given by

proÞle(N,α)(ω) =
¯̄
α−1(ω)

¯̄
Thus, the proÞle of a population tells us the number of players with each
attribute in the population.

Given a population (N,α) and a strategy vector σ for the population
(N,α) we say that weight function wα,σ is relative to strategy vector σ and
attribute function α if,

wα,σ(ω, al, tz) =
X

i∈N : α(i)=ω
σi(al|tz)gi(tz)

for all al ∈ AΓ, tz ∈ TΓ and all ω ∈ Ω. In interpretation, given the population
(N,α) and the strategy vector σ,

wα,σ(ω, al, tz)

|proÞle(N,α)(ω)|
is the expected proportion of times composition cr = (al, tz) will be seen by
a player of attribute ω. We note that,X

al∈AΓ

X
tz∈TΓ

wα,σ(ω, al, tz) =
X
al∈AΓ

X
tz∈TΓ

X
i∈N : α(i)=ω

σi(al|tz)gi(tz)

= |proÞle(N,α)(ω)|.

Let Wα denote the set of weight functions relative to attribute function α.
Given a population (N,α) and player i ∈ N , deÞne α−i as the restriction

of α to N\{i}. Thus, given an attribute function α and strategy vector σ, for
all ω ∈ Ω, all sk ∈ S and for all i ∈ N ,

wα−i,σ(ω, al, tz) =

½
wα,σ(ω, al, tz)− σi(al|tz)gi(tz) if α(i) = ω
wα,σ(ω, al, tz) otherwise.

Weight functions modiÞed by the property that one player of some par-
ticular attribute is not included will play a role in the deÞnition of games.
We will useWα−ω to denote the set of weight functions relative to α−i where
ω = α(i).

23



6.1.3 Induced games

Given a population (N,α), a game

Γ(N,α) =

µ
(N,α), AΓ, TΓ, {gω : TΓ −→ [0, 1]|ω ∈ α(N)}
{hω : ∆(SΓ)×Wα−ω −→ R+|ω ∈ α(N)}

¶
is induced from the pregame G = (Ω, AΓ, TΓ, g, h) by deÞning

gω(tz)
def
= g(ω, tz)

and
hω(sk, w)

def
= h(ω, sk, w)

for all sk ∈ ∆(SΓ), w ∈Wα−ω and ω ∈ α(N). In interpretation, hα(i)(sk, w) is
the payoff received by a player i ∈ N of attribute α(i) from playing the strat-
egy sk when the strategies of other players are summarized by w. Thus,
players of the same attribute have the same payoff function, inherited from
the pregame. Similarly, gω(tz) is the probability that a player i ∈ N of
attribute α(i) is of type tz.

We impose the standard assumptions on the linearity of payoffs with
respect to mixed strategies. To explain further it is useful to relate the
utility function induced from the pregame hω : ∆(SΓ) ×Wα−ω −→ R+ to
the expected utility function Ui : S −→ R+ as used in the Þrst half of this
paper. Consider a game Γ(N,α) induced from the pregame G. We assume
that this game Γ(N,α) is equivalent to the Bayesian game Γ(N,A, T, g, U)
where A = ×i∈NAΓ, T = ×i∈NTΓ, g(t) =

Q
i∈N gω(ti) for all t ∈ T and

Ui(σ) = hα(i)(σi, wα−i,σ) = for all σ and all i ∈ N .

6.2 Large game property

We continue by deÞning the concepts of global interaction and continuity in
attributes. These two concepts allow us to introduce the large game property.
This property constitutes an assumption on a pregame G = (Ω, AΓ, TΓ, g, h).
In particular, it places restrictions on the payoff function h and distribution
over types g of the pregame. As a preliminary step, let F (G, n) denote the
set of games induced by the pregame G by populations of Þnite size n. That
is game Γ(N,α) ∈ F (G, n) if and only if |N | = n.

Global Interaction: Given positive real numbers δ > 0 and τ > 0 the
game Γ(N,α) is said to satisfy δ, τ -global interaction when for any
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two weight functions wα and gα, both relative to attribute function α,
if,

1

|N |
X
al∈AΓ

X
tz∈TΓ

X
ω∈α(N)

|wα(ω, al, tz)− gα(ω, al, tz)| < τ

then, ¯̄
hα(i)(sk, wα−i)− hα(i)(sk, gα−i)

¯̄
< δ

for all i ∈ N and all sk ∈ ∆(SΓ).
Continuity in attributes: Given positive real numbers δ > 0 and τ > 0,

the set of games F (G, n) is said to satisfy δ, τ -continuity in attributes
when for any two games Γ(N,α) and Γ(N,α) in F (G, n), if, for all
i ∈ N ,

dist(α(i), α(i)) < τ

then, for any j ∈ N and for any strategy vector σ,¯̄
hα(j)(sk, wα−j ,σ)− hα(j)(sk, wα−j ,σ)

¯̄
< δ

for all sk ∈ ∆(SΓ). where wα,σ and wα,σ are the weight functions
relative to strategy vector σ and, respectively, attribute functions α
and α.

We can now introduce the main property,

Large game property: The pregame G = (Ω, AΓ, TΓ, g, h) satisÞes the
large game property if for any δ > 0 and there exists real numbers
ηl(δ), τg(δ) > 0 and τ c(δ) > 0 such that for any n > η(δ) the set of
games F (G, n) satisfy δ, τ c(δ)-continuity in attributes and any game
Γ(N,α) ∈ F (G, n) satisÞes δ, τg(δ)-global interaction.

Thus, the pregame G satisÞes the large game property if both global
interaction and continuity of payoff functions are satisÞed by large games.
The large game property implies a form of continuity of h : Ω × ∆(SΓ) ×
W −→ R+ with respect to changes in the weight function w and attribute ω
while the strategy sk remains constant. It also, implies a form of continuity
on g : Ω× TΓ −→ [0, 1].

A detailed motivation and explanation of the above assumptions, for
games of complete information, is provided by Wooders, Cartwright and
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Selten (2001) so we give here only a brief discussion. Global interaction says
that players payoffs a largely a function of their own strategy and on the
numbers of players we each attribute of each type playing each action. As
such a player�s payoff is not largely dependent on the actions of any small
group of individuals. This clearly has a close relationship with the notion
of anonymity in the deÞnition of δ-substitutes.

The assumption of continuity in attributes is a more wide ranging as-
sumption. Essentially, given a strategy vector σ, it says that the attributes
of all players can be slightly perturbed and the payoff to each player remains
largely unaffected. The Þrst thing we should highlight is how two distinct
games Γ(N,α) and Γ(N,α) are compared. This is possible through the use
of the pregame. The assumption thus formalizes the intuition that if a pop-
ulation changes only slightly from (N,α) to (N,α) then the games induced
by these societies should be largely the same.

One element of continuity in attributes that should be emphasized. Namely,
even though the strategies of the players remain the same, in both societies,
their attributes have changed and thus their prior probability over types
may have changed. As such, the same strategy can imply a different prob-
ability distribution over compositions. This would imply that implicit in
the continuity in attributes assumption is the idea that players with similar
attributes should have similar probability distributions over types.

6.3 Preliminary result

Having deÞned the large game property we can now go on to apply the
results from the Þrst half of this paper. To do this we need to Þnd a con-
nection between the games induced by the a pregame G satisfying the large
game property and the set H(δ,Q) for some Q. This relationship is not
straightforward. We can show, however, that for any pregame G and any
sufficiently large game Γ(N,α) induced by that pregame there is �nearby�
a game Γ(N,α) which is also induced by the pregame and is a (δ,Q)-class
game for some Q. Formally, we have,

Lemma 3: If the pregame G satisÞes the large game property then
given any real numbers δ > 0 and τ > 0 there exists real numbers η(δ, τ)
and Q(δ, τ) such that for any population (N,α), where |N | > η(ε), there
exists a population (N,α) such that maxi∈N{dist(α(i), α(i))} < τ and the
induced game Γ(N,α) belongs to the set H(δ,Q(δ, τ)).

Proof: Suppose that the statement of the lemma is false. Then there
is some δ > 0 and τ > 0, such that for any real number Q and for each
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integer ν there is a population (Nν , αν) where |Nν | < ν and such that
for no population (Nν , αν) where maxi∈N{dist(α(i), α(i))} < τ does the
induced game Γ(Nν , αν) belongs to the set H(δ,Q).

Given that the pregame G satisÞes the large game property we may
choose non-negative real numbers ηl(δ), τg(δ) > 0 and τ c(δ) > 0 such that
for any n > η(δ) the set of games F (G, n) satisfy δ, τ c(δ)-continuity in at-
tributes and any game Γ(N,α) ∈ F (G, n) satisÞes δ, τ g(δ)-global interaction.
Let τ = min{τ c(δ), τ}. Partition Ω into subsets Ω1, ...,ΩQ each of diameter
less than τ , that is, for any ω,ω0 ∈ Ωq and for any q, dist(ω,ω0) < τ . To
each subset Ωq choose and Þx an attribute ωq. DeÞne the attribute function
αν as follows, for all i ∈ Nν ,

αν(i) = ωq if and only if α(i) ∈ Ωq.
For each ν consider the game (Nν , αν). Let N ν = {Nν

1 , ..., N
ν
Q} denote,

for each ν, the partition of the player set such that i ∈ Nν
q if and only if

αν(i) = ωq. We propose N ν as a candidate for a δ-substitute partition in
the game (Nν , αν) for each ν.

We begin by noting that β(Nq) = 0 is similarity of prior probabilities
for each class q. With regard to anonymity, for an arbitrary ν, take any two
strategy proÞles σν1 and σν2, of the game Γ(Nν , αν) where,

max
al∈AΓ

max
tz∈TΓ

¯̄̄̄
¯̄¡σν1(Nq)(al|tz)− σν2(Nq)(al|tz)¢ X

i∈Nq
gi(tz)

¯̄̄̄
¯̄ < 1 (5)

for all q, for all al ∈ AΓ and tz ∈ TΓ. Let wαν ,σν1 denote the weight function
relative to attribute function αν and strategy vector σν1. Let wαν ,σν2 denote
the weight function relative to attribute function αν and strategy vector σν2.
By (5) (and that β(Nq) = 0 for all q) we have that,

1

|Nν |
X
al∈AΓ

X
tz∈TΓ

X
ω∈α(Nν)

¯̄
wαν ,σν1(ω, al, tz)−wαν ,σν2(ω, al, tz)

¯̄
<
Q |AΓ| |TΓ|
|Nν | .

(6)
By global interaction and (6) there exists a ν∗ such that if ν > ν∗,¯̄̄

hα(j)(sk, wα−j ,σν1)− hα(j)(sk, wα−j ,σν2)
¯̄̄
< δ

for all sk ∈ ∆(SΓ).

We now consider similarity of payoff functions. For an arbitrary ν con-
sider any strategy vector σν of the game Γ(Nν , αν). Let i, j ∈ N be any two
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players such that i, j ∈ Nq for some q. Let σν be the strategy vector such
that σνi = σ

ν
j and for all l 6= i, σνl = σνl . We note that wα−j ,σν = wα−i,σν .

Further, by global interaction for any ν > ν∗,¯̄
hα(j)(sk, wα−j ,σν )− hα(j)(sk, wα−j ,σν )

¯̄
< δ

for all sk ∈ ∆(SΓ). Thus, similarity of payoff functions and anonymity hold
for all games Γ(Nν , αν) where ν > ν∗. This completes the proof¥

6.4 Approximate puriÞcation in Large games

Lemma 3 allows us to apply all of the results obtained for (δ,Q)-class games
to sufficiently large games induced by a pregame satisfying the large game
property. We demonstrate with three additional results. The Þrst result
shows the existence of a pure strategy Bayesian Nash ε-equilibrium.

Corollary 4: Given a real number ε > 0 there exists a real number
η(ε) > 0 such that if the pregame G satisÞes the large game property, then
for any population (N,α) where |N | > η(ε), the induced game Γ(N,α) has
an ε-equilibrium in pure strategies.

Proof: Let δ = ε
4 . Given that the pregame G satisÞes the large game

property we may choose non-negative real numbers ηl(δ), τg(δ) > 0 and
τ c(δ) > 0 such that for any n > η(δ) the set of games F (G, n) satisfy
δ, τ c(δ)-continuity in attributes and any game Γ(N,α) ∈ F (G, n) satisÞes
δ, τg(δ)-global interaction. Let τ = τ c(δ).

By Lemma 3 there exists a real number η(δ, τ) such that for any popula-
tion (N,α), where |N | > η(δ, τ), there exists a population (N,α) such that
maxi∈N{dist(α(i), α(i))} < τ and the induced game Γ(N,α) belongs to the
set H(δ,Q) for some Þnite real number Q. By Theorem 1, for any popula-
tion (N,α), where |N | > η(δ, τ), there exists a population (N,α) such that
maxi∈N{dist(α(i), α(i))} < τ and the induced game Γ(N,α) has a Bayesian
Nash ε-equilibrium in pure strategies m. Thus, for all i ∈ N ,

hα(i)(mi, wα−i,m) ≥ hα(i)(sk, wα−i,m)−
ε

2

for all sk ∈ ∆(SΓ). By choice of τ and continuity in attributes,¯̄
hα(i)(sk, wα−i,m) ≥ hα(i)(sk, wα−i,m)

¯̄
<
ε

4

for all sk ∈ ∆(SΓ). Thus, m is a Bayesian Nash ε-equilibrium of the game
Γ(N,α).
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6.5 Social conformity in large games

Corollary 4 and its proof show how the results from the framework of ap-
proximate substitutes in non-cooperative games can be applied in a straight-
forward way within the framework of non-cooperative pregames satisfying
the large game property. As such, in the section, we state without proof two
social conformity results.

Before, stating our next result we deÞne a further term. Given any
population (N,α) and any player i ∈ N we say that player j is player i�s
closest neighbor if dist(α(i), α(j)) ≤ mink∈N{dist(α(i), α(k)}. A person
may have more than one closest neighbor. The following result, applying
corollary 2, demonstrates how we can apply the notion of a characteristic
function on the set of players.

Corollary 5: Let G be any pregame satisfying the large game property
and assume the space of attributes is given by Ω = [0, 1]. Given any ε > 0
there exists a real number η(ε) such that for any population (N,α) where
|N | > η(ε) there is an ε-equilibrium in pure strategies of the induced game
Γ(N,α) with the property that at least |N | (1 − ε) players play the same
strategy as a closest neighbor.

In contexts where players attributes can be ordered along the unit in-
terval (Greenberg and Weber (1986) for example) this result clearly demon-
strates that for large games it can be efficient for similar players to play
similar strategies. We highlight, however, that a player may not play the
same strategy as all of their closest neighbors but the majority of players
will play the same strategy as a closest neighbor.

Before stating our Þnal result we reÞne the deÞnition of a society to
reßect the existence of a space of attributes. Firstly we assume that the
attributes space Ω is a compact subset of a normed, real linear space.4 The
choice of attribute space allows us to treat convex subsets of Ω and to deÞne
a society.5 Given a population (N,α) and strategy vector σ we interpret a

4An example of such an attribute space is provided in Wooders, Cartwright and Selten
(2001).

5Throughout this paper we will treat convexity as a property relative to an attribute
space Ω rather than the linear space of which Ω is a subset. Formally, given an attribute
space Ω we say that A ⊂ Ω is convex when for any two points a, b ∈ A and for any
λ ∈ [0, 1],

if λa+ (1− λ)b ∈ Ω

then λa+ (1− λ)b ∈ A.
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set of players D as a society (relative to α and σ) if (i) there exists some
strategy t ∈ ∆(S) such that σi = t for all i ∈ D, and (ii) for any player i ∈ N
if i ∈ convex hull(α(D)) then i ∈ D. Thus, any two players belonging to a
society D must play the same strategy. Furthermore, to any society D we
can associate a convex subset ΩD of attribute space Ω with the properties
that any player i belonging to D has attributes in ΩD while there exists no
other player j ∈ N\D who has attributes in ΩD.

Corollary 6: Let G be any pregame satisfying the large game property.
Then, for any ε > 0 there exists real numbers η(ε) and Q(ε) such that for
any population (N,α) where |N | > η(ε) the induced game Γ(N,α) has a
Bayesian Nash ε equilibrium σ such that N and σ induce the partition into
societies {N1, ..., NC} where C ≤ Q(ε) for some partition N .

From the earlier discussion it is trivial to note that this result also implies
the existence of a Bayesian Nash ε equilibrium in pure strategies m for the
two stage Bayesian game with endogenous types ΓR(N,α) which partitions
the society into less than Q(ε) societies for all populations (N,α) where
|N | > η(ε).

7 Conclusion

Can it be rational for individuals to form societies in which all players within
a society play the same strategy? By using the framework of games with
classes we are able to put bounds on the rationality of such social conformity
for arbitrary games and for arbitrary numbers of societies. We then apply
this to large games induced by a pregame satisfying the large game property.
Such games are characterized primarily by the fact that no player�s payoff
is overly dependent on any small subset of the population. For such games
we demonstrate that there does exist a Bayesian Nash ε equilibrium, for
arbitrarily small ε, which partitions the player set into a relatively small
number of societies. It would appear, therefore, that in such games social
conformity can be boundedly rational.
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