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Abstract

We investigate the geometry of finite data sets defined by equilibrium
prices, income distributions, and total resources. We show that the equilib-
rium condition imposes no restriction if total resources are held constant or
constrained to remain collinear, a property robust to small perturbations of
the total resources. When there are restrictions imposed by the equilibrium
condition (because total resources are for example highly variable), a first
step in understanding the geometry of equilibrium data sets is achieved with
our proof of the arcconnectedness of that set.
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1. Introduction

It has been shown by Brown and Matzkin in [5] that finite collections of data con-
sisting of price equilibria associated with individual endowments cannot be totally
arbitrary. Their proof is based on an example defined by a two good two consumer
economy. It follows from this property that the theory of general equilibrium is
falsifiable. If the philosophical and scientific implications of falsifiability lay far
beyond the scope of the current paper, one can nevertheless investigate how easy
it is to formulate a “falsifiable statement” within the setup of general equilibrium
theory. Assuming that one can define a “measure” on the set of “statements,” how
big is then the subset of “falsifiable statements?” This question is less rhetorical
than it may seem in view of a recent result of Snyder [9]. This author shows that,
if the number of consumers is larger than or equal to the number of goods, there
are no restrictions on finite data sets consisting of total resources and equilibrium
prices—equilibrium prices are associated here with some individual endowments
compatible with the total resources. The property discovered by Snyder is very
much in line with the essence of the Sonnenschein-Mantel-Debreu theorem [6]. In
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a companion result, however, Snyder shows that finite data sets cannot be totally
arbitrary if income distribution is taken as (exogenously) given. The global picture
of equilibrium data sets is therefore certainly complex. In addition, these two prop-
erties underline the importance of income distributions and total resources when it
comes to explaining properties of finite equilibrium data sets.

The goal of this paper is to improve our understanding of the geometry of
equilibrium data sets. We show that if total resources are held constant, or restricted
to remain collinear, no further restrictions apply to equilibrium data sets. In other
words, the sets of equilibrium data coincide with the full space. This property
does not require the number of consumers to be larger than or equal to the number
of goods. In addition, this property is robust to small perturbations of the total
resources. Therefore, if the variations of total resources are small, or if the growth
rate of total resources is almost the same for all goods, again no restrictions apply
to equilibrium data sets. In such cases, there are no falsifying equilibrium data sets.

When a set is a strict subset of some other set or, more specifically, a topo-
logical subspace of some topological space, for example some Euclidean space,
some information on the geometry of the subspace is provided by algebraic topol-
ogy constructs like the various homology and cohomology groups of the subspace.
The zero homology group being directly related to the number of connected com-
ponents of the subspace, a very first step in the computation of these groups is the
determination of whether the subspace is arcconnected. In this regard, we prove in
this paper that equilibrium data sets that are strictly smaller than the full sets (which
therefore supposes change rates of total resources sufficiently variable across the
various goods), are arcconnected. (This property is trivially satisfied if the equilib-
rium data set coincides with the full data set.)

The paper is organized as follows. In Section 2, we recall the main assumptions
and definitions, and set the notation. In Section 3, we state and prove the property
that, if total resources are constant or collinear, there are no further restrictions on
equilibrium datasets. In Section 4, we prove the arcconnectedness of the set of
T-tuples of equilibrium datasets (whéefes some arbitrarily chosen integer) when
that set is strictly smaller than the full set (of data sets). Only the most standard
concepts of set topology like arcconnectedness are required for reading this paper.
They can be found in, for example, [7]. Though algebraic topology provides some
motivation for this research, no knowledge of algebraic topology is needed.

2. Definitions, assumptions, and notation

A mathematical definition: Sets ofT-tuples with distinct coordinates

We start with a mathematical definition. LEtbe some set and be some finite
integer. The Cartesian produt’ consists by definition of the orderddtuples
(' 2, .yt YD) with yt € Y for 1 <t < T. We define the subsat(™) of

YT as consisting of th&-tuples whose components are all distingt: ' for

1<ttt <T.



Goods and prices

There is a finite numbef of goods. Let = (p1,p, ..., pe—1,pe) € RY, be the
price vector. We normalize the price vecioby picking the/-th commodity as the
numeraire, which is equivalent to settipg = 1. Let .S denote the set of strictly
positive normalized price vectors.

Individual preferences and demands

A consumer is characterized by a preference preordering represented by a utility
functionu; defined on the strictly positive orthait = R , and an endowment
vectorw; € X. The utility functionu; : X — R satisfies the standard assumptions
of smooth equilibrium analysis, i.e., is smooth, monotobe.(z;) € X for any
r; € X), smoothly strictly quasi-concave (the inequaliy D?u;(x;) X > 0 and
equality X* Du;(x;) = 0 have a unique solutioX = 0), and every indifference
set{z; € X | u;(x;) = u;} is closed inR’ for anyu; € R.

Given any price vectop € S and endowment; € X, consumel’s demand
fi(p,p - wi) maximizes the utilityu;(z;) subject to the budget constraimt z; =

D w;.

The SARP property and the existence of a utility function

A classical issue in consumer theory is the characterization of collections of prices
and commodity bundle@?’, z!), with ¢ varying from1 to 7', such that there exists
a utility functionu; : X — R that satisfies the assumptions of the previous section
and such that; satisfies the relatiom; = f;(p,p - z;). Such a characterization
exists and is known as the Strong Axiom of Revealed Preference, often called the
SARP property. It takes the following form:

For any collectionjy, jo, ..., j. taken betweenn andT and such that the
following inequalities

pjl x:zl Spjl xi2’p]2 xZQ SP]Q xisvvp]n71 xzn71 ijnil xZn (1)
are satisfied, the strict inequality
in . pdn in . od
pneat >t

is also satisfied. For a proof, see [8].

Equilibrium and the equilibrium manifold

There is a finite numbem of consumers. Lef) = X™ denote the set of indi-
vidual endowments. The price vectore S is an equilibrium price vector for the
collection of individual endowments = (w1,ws,...,w,,) if there is equality of

aggregate supply and demand for that price vector:

Zfz‘(pvp'wz‘) :sz’- 2
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One then calls the paip,w) € S x 2 an equilibrium.

The setE of equilibria (p,w) is then a dimensiomn¢ smooth submanifold
of S x 2 whose global structure (arcconnectedness, simple connectedness, con-
tractibility, and diffeomorphism with a Euclidean space for example) has been in-
vestigated by one of the coauthors in [1], [2], and [3]. It follows from these global
properties that not all dimension/ smooth manifolds can be identified to equi-
librium manifolds of exchange economies.

Equilibrium data sets

From a practical standpoint, one observes only finite collections of points belong-
ing to the equilibrium manifoldZ. This raises the question of whether such finite
collections of points satisfy properties that would not be satisfied by arbitrary col-
lections of points. Brown and Matzkin have established in [5] that the set of such
collections (of points that belong to the equilibrium maniféljlis indeed strictly
smaller than the set of similar collections where prices do not have to equate ag-
gregate supply and demand. The Brown and Matzkin property, however, tells us
little about the “geometry” of the set @f-tuples of equilibrium pairs as a subset of
the set(S x Q)7

Equilibrium triples or the price—income distribution—total resource equi-
libria

Since we want to highlight the role of total resources and income distributions in
the properties of equilibrium data sets, we first parameterize equilibrium data by
prices, income distributions, and total resources.

We say that the vector of total resources R | is is compatible with the
price vectorp € S and the income distributiofw;) € R, if the equality

Zwi:pr 3

is satisfied. Note that, once this equality is satisfied, there exists for every consumer
i individual endowments; € X that satisfy the conditions_, w; = r andp-w; =

w;. It suffices to picky; = (w;/p - r)r. Note, however, that the pafp, (w;)) is

not necessarily an equilibrium. This leads us to consider in thé& sattriplets

b= (p, (w;), r) that satisfy equality (3) the triplets that satisfy the equation

Zfz’(p,wz‘) =r. (4)

We call such triples price-income distribution-total resouecgiilibria or, more
simply, equilibrium triplets They extend to the case of variable total resources
r € X the price-income equilibria considered in [4].

We denote by the subset oB consisting of equilibrium triples.



It is obvious that if the paifp, (w;)) is an equilibrium pair in the sense that
equation (2) is satisfied, then the triple- ( ,(wi),r) wherew; = p-w; for every
consumet, andr = ) . w; is an equilibrium triple. Conversely, given the equilib-
rium tripleb = (p, (w;), ), then any pai(p, (wi)) that is compatible with the triple
is an equilibrium pair in the sense that equation (2) is satisfied. The concepts of
equilibrium pairs and equilibrium triples are therefore equivalent because one can
go from one to the other and conversely. The concept of equilibrium triple presents
the advantage of making apparent from the very definition income distributions
and total resources.

Equilibrium data sets

Let T denote a finite number of distinct observations. This leads us to consider the
two subsetsS (") and B(T) consisting ofI" distinct triples and equilibrium triples
respectively. The main result of Brown and Matzkin in [5] can be reformulated in
our setup of equilibrium triples as saying that there exist finite nunibersch that
the two sets are unequal:

e(T) - B(T)

Our goal in this paper is to get some better understanding of the §edidfierent
equilibrium triples&(?) as a subset of the s&{?).

3. The case of fixed and collinear total resources

A lemma about totally ordered commodity bundles

The commodity spac®? is partially ordered by the conditian < y equivalent to
y —x € X. We say that a collection', 22, ...,z of T commodity bundles is
totally orderedif the partial order ofR¢ induces a total order of the collection of
theT elements:!, 22, ..., zL.

Lemma 1. Letx}, 22, ..., 27 be a fully ordered sequence dfstinctcommodity
bundles. Then, for any arbitrary sequence of price vectdre?, ..., p", theT
pairs (p', z) satisfy the SARP property.

Proof. We can assume without loss of generality that we have

w}ﬁx?ﬁ...<xr.

= g
Note that the inequality! < z! combined with the inequality! # ! implies,

for any price vectop!, the strict inequality

t/
i

pt . xf < pt - X
Assume now that the following inequalities
Pl <pteal el <palt o pihet et s pen (5)
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are satisfied. It then suffices that we show that the strict inequality
Pl > pin

is satisfied in order to establish the SARP property.
It follows from the complete ordering property that the inequalities (5) are com-
patible with only one full ordering of the commodity bundles, namely:
:cgl §x{2 §...§x§'”,
which implies the ordering ' ‘
]t <z

It follows from this inequality combined with the inequality' # =" that the
strict inequality . ' ‘ ‘

Pt <p
is then satisfied. O

Corollary 2. Letz}, 22, ...,z7 be a sequence of non-negative commodity bundles
that are collinear with the origin. Then, for any arbitrary sequence of price vectors
pt, p?, ...,p", then pairs (p/, z)) satisfy the SARP property.

Proof. It follows from the assumptions that the sequence is fully ordered. It then
suffices to apply Lemma 1. O

The case of fixed total resources

Let £ (r) (resp. B(T)(r) denote the intersection &™) (resp. B(M)) with the
set(S x (Ryy)™ x {r})". The sete®)(r) therefore consists df two by two
distinct price-income distribution-total resource equilibrium triples for a vector of
total resources € R’ | that is constant.

Theorem 3. We have
M) =3D(r)

Proof. Let (p', (w!),r!) be a collection ofl" two by two distinct price-income
distribution-total resource triples (which are not necessarily equilibrium triples).
The idea of the proof is show that there exist commodity bundjeand utility
functionsu; for i varying from1 to m andt from 1 to T that satisfy the equali-
tiesa! = f;(pt,w!) (wheref; is the demand function associated with the utility
functionu;) and)", 2t = .

We first assume that the following additional property is satisfied:

L ©

for all ¢, ¢/, ands.



Define .

w:
z; = ot .ZT
By construction, all the vectors for a giveni are collinear with the positive vector
T E RLF. It follows from inequalities (6) that the!’s are all distinct for any given
i. It then suffices to apply Lemma 1 to conclude that, for evierthe T' pairs
(p*, zt) (for ¢ varying from1 to T') satisfy the SARP property. This implies for
everyi betweenl andm the existence of a utility function; such that the equality
= fi(p',w!) is satisfied. In addition, it follows from the formula defining

that we have

r.

%

which implies that the equality
> filphwh)y=r=1'

is satisfied for varying from1 to 7. This proves that such price-income distribution-
total resource triples are indeed equilibrium triples for suitably defined utility func-
tions.

The next step is to deal with situations where, for some consiyttegre exist
t andt’ such that the equality

is satisfied withpt £ p*'.
t/
wy

: i v
are not good candidates for our construction because they are equal while the can-
didate “supporting” price vectors’ andp! are different. The idea is therefore
to perturbz! andz! in such a way that the perturbed sequenge =2, ..., z;”
remains totally ordered, and the equalif}€s ;! = * are satisfied for alf's.

In order to do that, consider the lidk, that passes through the origin and that
is collinear with the vector € X. Let A be a line parallel to the liné\, and
sufficiently close ta\ for the following property to be satisfied The intersection
pointsz;* andz;! of A with the budget hyperplangé- z! = w! andp" x = w!
are distinct and if we defing)” = z!" for t" # t,¢/, the sequence;, ... xiT
is completely ordered. This foIIows from the fact that the sequejjcerz
z! is already fully ordered, with the elementsandz!’ being identical. The new
sequence is obtained by just perturbing those two identical elements: the elements
a:;t andz;’t’ can therefore be compared to all the other elements of the sequence
provided the perturbation is small enough. In addition, thanks to the choice of the
direction of the lineA, these two elements are themselves ordered.

Because of this equality, the commodity bundiés=



A

Figure 1: Perturbation of the collectiqn!} for 1 <¢ < T

The next step is to find another consurjeand to perturb the corresponding

sequencer!, a:jz x]T so that the total resources remain constant. Therefore,
. . . . U /2 /T

we pick some arbitrary consumgiand define the new sequenc]é, TP, T

by

x;-t = x? + (af — x;t), x;»t/ = 33;-/ + (m’;/ — x;t/), x;-t” = :1:;//
with ¢ £ t.¢'.

Using the same line of reasoning as above, we observe that the perturbation
that defines the consumption bundles of consuintan be made small enough for
the new sequence to be fully ordered and the already distinct elements to remain
distinct through the perturbation. In addition, the total resources are then equal,
by construction, to the vecter. Overall, this construction reduces by at least one
unit the number of non distinct commodity bundles. It then suffices to iterate this
construction for every consumeand pairs(t, ') such thate! = z¥". Eventually,
one gets for each consumer a collection of ordered sequen@egleiments that
sum up to the vector of total resourcese X. One then concludes with the

application of Lemma 1. O

Extension to the case of collinear total resources

Theorem 3 admits the following extension when total resources, instead of being
constant, are collinear, i.e., the total resource vecta collinear with some fixed
vectorr fort =1,2,...,T.

Let us denote by (") [r] the intersection o€ (") with the set(S x (R4 )™ x



{r]R})T. The se€ (") [r] then consists of the price-income-total resource equilibria
for total resources’ € R, .r C X. Similarly, we define the sé|r] as the set of
price-income-total resources, with total resources collinear wihX .

Theorem 4. We have
7] =3"p]

Proof. It suffices to reproduce the same line of proof as in Theorem 3, a theorem
that is actually a special case of the current theorem.
Ul

Remarkl. One checks readily that the proofs of Theorems 3 and 4 extend to the
case where the total resources are not collinear, but only sufficiently close to being
collinear, which includes as a special case variable total resources provided the
variations are sufficiently small. From a practical standpoint, equilibrium data sets
show no restrictions in these cases.

4. Connectedness of the s&t”)

In general, however, the sét”) of T-tuples of equilibrium triples is a strict subset
of the setB(T). The following theorem states a remarkable global topological

property.
Theorem 5. The sett(?) is arcconnected.

Recall that a subset of a topological space is arcconnected if any two ele-
mentsz andy of C' can be linked by some continuous path belonging to th€'set
This is the same thing as saying that there exists a continuousmép1] — C
such that.(0) = z andh(1) = y.

Proof. The idea of the proof of the arcconnectednes8 (@ consists therefore in
the construction of a continuous path linking two arbitrarily giZ&tuples of equi-
liorium triplesb andd’ defined by the collection@?, (w?), 7*) and (p", (w;'),r")
for ¢ varying from1 to 7.

We first define the following set df triples:

(p/ta (w;t)v Z fi(p/tv w;t) )

for ¢ varying from1 to T'. These are equilibrium triples associated with the prefer-
ences (or utility functions) corresponding to the demand functfpnsith i vary-
ing from1 to m.

Note that thesd triples are necessarily two by two distinct so thatThéuple
they define, a-tuple denoted by”, does belong to the s&{?). In order to
connect and¥’, it therefore suffices to connecto v andd” to t'.



Path from b to b”

Here, the preferences (or utility functions) do not vary. One starts by constructing
a continuous path linkingp’, (w!)),_, . to (p"*, (w;!)),_, ., @ path such that all

coordinates remain different for the points in the path. (That such a construction
is always possible is straightforward; for example, one can start with the line seg-
ment linking the two points. If, at some points, some coordinates become equal,
it is easy to see that a small perturbation of the path will restore inequality of the
coordinates.) Letp'(6), (w!(0))),.,.» With 0 € [0, 1], denote the generic point

(2

of this path. One then defines
r(0) = fi(p"(0),wi(0)).

By definition, the triple
b(0) = (p(0), (wi(6)),r'(6))

is an equilibrium triple. It follows from the continuity of the individual demand
functions that this is a continuous path (fovarying fromo0 to 1) linking b to b".

Path from %" to ¥’

Here, theT-tuple (p't, (w;!) ) is kept fixed. Consider the points

1<i<T
! ! ! ! ! /
i = filptw') and =z = f;(p* w)

in X. Let K be some convex compact subset®fthat contains thesgl" points

in its interior. It follows from the assumptions regarding the preferences associated
with the demand functiong; and f; that these preferences can be represented by
utility functions u; andu, whose restrictions to the interior of the compact Ket

are strictly concave. Then, consider tbe [0, 1] the function

ui(0) = (1 — 0)u; + Ou.

The restriction of the function;(6) to the interior of the compact séf is strictly
concave in addition to satisfying the assumptions that we impose on utility func-
tions. The preference preordering defined on the comjgamy the utility function

u;(0) | K can be extended into a preference preordering defined on the strictly
positive orthantX. Let f;(6) be the corresponding demand function. One checks
readily that the restriction of the demand functifiid) to the points(p?, w;")
varies continuously witld € [0, 1]. Define

r'(0) = Z HO®@w).

Then, thel'-tuple



is aT-tuple made of distinct equilibrium triples, and varies continuously fém
to b whend varies from0 to 1.
By piecing together the two continuous paths just constructed, one defines a
continuous path linking to &'
O

5. Concluding comments

Arcconnectedness is often the first global property investigated for a topological
space. A positive result regarding arcconnectedness is then followed by investi-
gations regarding simple connectedness, contractibility, and the determination of
the homeomorphism or diffeomorphism type of the topological space under study.
The study of the global properties of a topological space culminates with the com-
putation of the various homology and cohomology groups of that space, something
much more demanding than just checking connectedness (or arcconnectedness).
It is likely, therefore, that, at variance with the approach followed in the current
paper, any further step along this direction will have to exploit the semi-algebraic
structure of the set(Z), a remarkable property that follows readily from [5] as a
consequence of the equivalence between Afriat’s inequalities and the SARP prop-
erty.

From a purely philosophical standpoint, the falsifiability issue requires only
that the space of equilibrium data triples be strictly smaller that the set of all data
triples. That these two sets are in fact identical when total resources are the same
or almost the same or, more generally, collinear or almost collinear, shows us that
the theory of general equilibrium, though falsifiable in principle, may turn out to
be almost impossible to falsify using real world data, a point so far neglected by
philosophers.
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