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Abstract

This paper deals with the issue of arbitrage with incomplete financial markets and dif-
ferential information with a focus on information that no-arbitrage asset prices can reveal.
Time and uncertainty are represented by two periods and a finite set S of states of nature,
one of which will prevail at the second period. Agents may operate limited financial transfers
across periods and states via finitely many nominal assets. Each consumer has a private (or
idiosyncratic) information about which state will prevail at the second period; this informa-
tion is represented by a subset Si of the state space S, associated to each agent i, which
defines his set of subjectively realizable states for the second period.

Our analysis is two-fold, namely, we first extend the classical symmetric information
analysis to the asymmetric setting, via a concept of no-arbitrage price, and, secondly we study
how such no-arbitrage prices convey information to agents. The main difference between the
symmetric and the asymmetric settings stems from the fact that a classical no-arbitrage asset
price (common to every agent) always exists in the first case, but not in the asymmetric one,
thus allowing arbitrage opportunities. This is the main reason why agents will refine their
information up to an information structure which precludes arbitrage.
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Arbitrage with Incomplete Markets and Asymmetric Information

1 Introduction

Differences in agents’ awareness about tomorrow’s possible events, i.e., asymmetric information,
may stem from subjective beliefs about the future, a private knowledge of agents regarding their
own risk (adverse selection) or decision making processes limiting the set of alternatives (moral
hazard). In economies subject to uncertainty and asymmetric information, agents seek to infer
relevant information from market indicators, such as prices, to refine their strategies. This paper
deals with the issue of arbitrage with incomplete financial markets and differential information
with a focus on information that no-arbitrage asset prices can reveal.

Our approach differs from the so called “rational expectations” treatment of asymmetric
information, in the sense that we do not assume that agents know the ex ante characteristics
of the economy (preferences, endowments of other agents) or a defined relationship between
prices and the collection of private information signals in the economy. While full revelation is
pervasive in standard models of “rational expectations” [Radner, (1979), Allen (1981), Jordan
(1982)], in our approach, agents may keep stable distinct beliefs, i.e., unaffected by changes in
the characteristics of the other agents.

In this paper, time and uncertainty are represented by two periods (t = 0 and t = 1) and
a finite set S of states of nature, one of which will prevail at the second period. Agents may
operate limited financial transfers across periods and states via finitely many nominal assets.
Each consumer has a private (or idiosyncratic) information about which state will prevail at the
second period. Asymmetric information is hence represented by a subset Si of the state space S,
associated to each agent i, which defines his set of subjectively realizable states for the second
period. Agents receive no wrong information in the sense that the “true state” belongs to ∩iSi,
hence assumed to be nonempty. Similarly, when agents refine their information, i.e., when they
infer a smaller set Σi ⊂ Si, they also receive no wrong signal, so that ∩iΣi 6= ∅. Such a family
(Σi)i will be called a refined information structure.

Our analysis is two-fold, namely, we first extend the classical symmetric information non-
arbitrage analysis to the asymmetric setting, via a concept of no-arbitrage price, and, secondly,
we study how such no-arbitrage prices convey information to agents. The main difference be-
tween the symmetric and asymmetric settings stems from the fact that a classical no-arbitrage
asset price (common to every agent) always exists in the symmetric case, but not in the asym-
metric one, thus allowing arbitrage opportunities. This is the main reason why agents will refine
their information up to an information structure precluding arbitrage.

In Section 3, we characterize the absence of future (i.e., at t = 1) arbitrage opportunities on
the financial market, called the AFAO property, by the existence of a (classical) no-arbitrage
price common to every agent [Proposition 3.2]. The failure of the AFAO property in an asym-
metric setting has two consequences. First, it leads to define, for every information structure
(Si)i, an extended notion of no-arbitrage asset price [Definition 3.3], which is characterized in
the next section. Secondly, we associate to every information structure (Si)i, the least refined
information structure which meets condition AFAO [Proposition 3.5].

In Section 4, we first define, for every agent i and every asset price q, the “revealed information
set” Si(q) ⊂ Si [Proposition 4.1]. This allows us to characterize no-arbitrage prices q as those
which “reveal” an information structure, i.e., such that ∩iSi(q) 6= ∅ [Proposition 4.2]. We
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then show that the revealed information structure (Si(q))i can be equivalently defined via the
overall elimination of the so called “arbitrage states” [Proposition 4.6] and then obtained, in a
constructive way, via a sequential elimination of these “arbitrage states” [Proposition 4.8].

Section 5 presents an example which illustrates the previous results in a synthetic way and
concludes that rational agents observing a no-arbitrage price may always update their beliefs
up to the largest information structure which is arbitrage-free at that price. We also draw
some consequences of the previous analysis in terms of consumers’ behavior in an asymmetric
information setting, a subject which will be developed in a companion paper devoted to financial
equilibrium with incomplete markets and idiosyncratic information. 1

2 The model

2.1 The two-period economy and financial markets

We consider the basic model of a two time-period economy with idiosyncratic (private) infor-
mation. The economy is finite, in the sense that there are finite sets I, S, and J , respectively,
of consumers, states of nature, and assets.

In what follows, the first period will also be referred to as t = 0 and the second period, as
t = 1. There is an a priori uncertainty at the first period (t = 0) about which of the states of
nature s ∈ S will prevail at the second period (t = 1). The non-random state at the first period
is denoted by s = 0 and S′ stands for the set {0} ∪ S. Each consumer has an idiosyncratic
information at the first period about the possible states of nature of the second period, that is,
he/she knows that the true state will be in a subset Si of S, or, equivalently, that the true state
will not belong to the complementary set (in S) of Si.

Agents may operate financial transfers across states in S′ (i.e., across the two periods and
across the states of the second period) by exchanging a finite number of nominal assets j ∈ J ,
which define the financial structure of the model. The nominal assets are traded at the first
period (t = 0) and yield payoffs at the second period (t = 1), contingent on the realization of
the state of nature. The payoff of asset j ∈ J , when state s ∈ S is realized, is V j

s , and we
denote by V the S × J-return matrix V = (V j

s ), which does not depend upon the commodity
prices p and the asset prices q ∈ IRJ . We summarize by [(I, S, J), V, (Si)i∈I ] the financial and
information characteristics, which are fixed throughout the paper and referred to as the (financial
and information) structure.

2.2 Idiosyncratic information structures

At the first period, each agent i ∈ I has some private (idiosyncratic) information Si ⊂ S about
which states of the world may occur at the next period : either he keeps this information, or

1We shall use hereafter the following notations. If I and J are finite sets, the space IRI (identified to IR#I

whenever necessary) of functions x : I → IR (also denoted x = (x(i))i∈I or x = (xi)) is endowed with the Euclidean
product x · y :=

∑
i∈I

x(i)y(i), and we denote by ‖x‖ :=
√

x · x the Euclidean norm. In IRI , the notation x ≥ y

means that x(i) ≥ y(i) for every i and we let IRI
+ = {x ∈ IRL | x ≥ 0}. An I×J-matrix A = (aj

i )i∈I,j∈J (identified
with a classical (#I) × (#J)-matrix if necessary) is an element of IRI×J whose rows are denoted A[i] or Ai for
(aj

i )j∈J ∈ IRJ (i ∈ I), and columns Aj = (aj
i )i∈I ∈ IRI (j ∈ J). To the matrix A, we associate the linear mapping,

from IRJ to IRI , also denoted by A, defined by Ax = (Ai ·x)i∈I . The span of the matrix A, also called the image of
A, is the set < A >:= {Ax | x ∈ IRJ}. The transpose matrix of A, denoted by tA, is the J × I-matrix whose rows
are the columns of A, or equivalently, is the unique linear mapping tA : IRI → IRJ , satisfying (Ax) · y = x · (tAy)
for every x ∈ IRJ , y ∈ IRI .
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he is able to infer that the true state will be in a smaller set Σi ⊂ Si. In both cases agents are
assumed to receive no wrong information signal, that is, the true state always belongs to the set
∩i∈ISi, or ∩i∈IΣi, hence assumed to be non-empty.

The following definition introduces the notion of information structures and the notion of
refinement of information as an order relation on the set of information structures. Heuristically,
the information of the agents will be finer if their information sets are smaller.

Definition 2.1 A collection {Σi| i ∈ I}, also denoted (Σi)i, of subsets of S whose intersection
is non-empty is called an (idiosyncratic) information structure.

Given two information structures (Σ1
i )i, and (Σ2

i )i, we say that (Σ1
i )i is finer than (refines,

is a refinement of) (Σ2
i )i if Σ1

i ⊂ Σ2
i for every i, and we denote it by (Σ1

i )i ≥ (Σ2
i )i.

The nonempty subset ∩j∈IΣj is called the collective (revealable) information held by the
information structure (Σi)i. It can be realized when the agents decide to share their information,
hence leading to the pooled information structure (Σi)i defined by Σi := ∩j∈IΣj for every i.

The refinement (Σi)i is said to preserve the collective information of (Si)i if ∩j∈IS
j ⊂

Σi for every i, [or equivalently if ∩j∈IS
j = ∩j∈IΣj, or if (Si)i ≥ (Σi)i, or if (Si)i ≥ (Σi)i].

Refinement of information clearly preserves the collective (revealable) information, when
it is performed without the help of an information source outside the given set I of agents
(auctioneer, ...). Hereafter, we do not rule out, however, cases where agents will be able to
update their beliefs beyond the collective information initially detained by consumers.

Idiosyncratic information conveys the idea that agents have a different awareness about the
possible events which will take place tomorrow. A first interpretation is that each agent may
not know the total set of states S but only his idiosyncratic set Si; hence, he does not know the
matrix V but only the rows V [s] of V for s ∈ Si. A second interpretation is that each agent
knows the total set of states S but the agents have different subjective probabilities on S. In this
case, the set Si is the set of states in S for which agent i has a positive subjective probability.

Idiosyncratic information is often encountered in contract or insurance models, where agents
have a private knowledge regarding their own risk. This problem is formulated in the following
example.

Example (An adverse selection economy). Consider an economy where the random state
of nature s = (s0, (si)i∈I)) is the product of a macro-economic component s0 ∈ Σ0, whose
probability distribution is known and common to all agents, and of idiosyncratic components
si ∈ Σi, representing the individual risks of agent i (i ∈ I), and on which agent i has some
private information. It is assumed that, for every i, the risk component si is realized at the first
period and that its realization, denoted by si, is privately known by agent i and by no other
agent (see, for example, Bisin and Gottardi (1999)). In that case, the total information set is

S := Σ0 ×Πj∈IΣj ,

and agent i has for idiosyncratic information set, namely:

Si := {s = (s0, (sj)j∈I)) ∈ Σ0 ×Πj∈IΣj | si = si}.

Consider, for instance, a two-period economy with two agents (I = {1, 2}) and no macroeco-
nomic risk, where endowments are dependent on idiosyncratic-risk as follows. The two consumers
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have two cars in common which will be sold at the second period. They will then share equally
the product of the sale and this will define the endowments ei of consumers i = 1, 2 at t = 1.

Each agent i knows the state s̄i ∈ {1, 2} of one only of the two cars (the one he drove),
say “bad” (si = 0) or “good” (si = 1), which can, for example, reflect the fact that he had
an accident in the past. This information is detained privately by agent i at t = 0 until the
next period. The total set of states is thus S = {0, 1}2 = {(0, 0), (0, 1), (1, 0), (1, 1)} and the
knowledge, by agent i, of the state s̄i ∈ {1, 2} induces idiosyncratic sets Si, as defined above.
For every i, the sale price pi at the second period of the car driven by agent i, will depend on the
state “bad” or “good”. To make things clear, we let p1 = (8, 20) and p2 = (6, 8), then agents’
endowments are e1 = e2 = (7, 8, 13, 14). Finally, let us assume that the consumers can insure
themselves against the risk on their future endowments with the following nominal asset with
returns :

V =

 5

4

0

0

.

If agents had no information at period t = 0 about their idiosyncratic risk s̄i, (or equivalently
if S1 = S2 = S), then they would have no speculative motive for exchanging assets. Since agents
know their risk realizations s̄i at t = 0, one of them may have an informational advantage.

In the following, we consider the case s̄1 = 1, and s̄2 = 0. Denoting for the sake of simpler
notations S = {1, 2, 3, 4}, where state 1 stands for (0, 0), 2 for (0, 1), 3 for (1, 0), and 4 for (1, 1).
Then, clearly, S1 = {3, 4} and S2 = {1, 3}. This situation is a prototype of what will be studied
in this paper. It will be shown that agents will refine their information to the information
structure S̄1 = {3, 4} and S̄2 = {3} and that this refinement can be achieved as follows. There
exists a unique no-arbitrage price (in a precise sense given hereafter) q = 0 which “reveals”
the information structure S̄1 and S̄2, without any agent knowing his partner’s characteristics
(preferences and endowments). This revelation of information can be achieved in a constructive
way by successive elimination of “arbitrage states” as defined in Section 4.

2.3 Consumers’ behavior with asymmetric information

Throughout the paper we shall use the following basic equilibrium model as a guideline and
an illustration of the results we shall present in arbitrage theory. The main problem, with
idiosyncratic information, concerns the modelling of consumers’ behavior.

We consider the model of a two time-period finite pure exchange economy with idiosyncratic
(private) information, where time and uncertainty are described as previously. In addition, we
now assume that there is a finite set, H, of commodities which are available at each period
(t ∈ {0, 1}) and each state s ∈ S (thus at each state S′ := {0} ∪ S). Then, the commodity
space is (IRH)S′ and a consumption is a vector x = (x(s)) ∈ (IRH)S′ . Similarly, a price vector
p ∈ (IRH)S′ will also be denoted by p = (p(s)).

Each consumer i ∈ I (a finite set) is characterized by his/her consumption set Xi = (IRH
+ )S′ ,

his/her endowment vector ei ∈ (IRH)S′ , his/her initial idiosyncratic information set Si ⊂ S, and
a conditional utility function ui (conditional on the information set Σ ⊂ Si that the consumer
will infer). Denoting Σ′ := {0} ∪ Σ for every Σ ⊂ Si, then the conditional utility, denoted by
ui(·|Σ), is a function from (IRH

+ )Σ
′
to IR. It thus defines the preferences of agent i when he/she

knows that the random state of the second period will be in the set Σ ⊂ Si. To illustrate this
model we present the following important example :
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Example (Von Neumann-Morgenstern utility). In the case of a V.N.M. utility function, a
fixed utility index vi : (IRH

+ )2 → IR is given and we denote by pi(s|Σ) the subjective probability
that agent i assigns to the realization of state s ∈ S, conditionally on the event s ∈ Σ. Then,
the conditional utility is defined as follows :

ui(x|Σ) =
∑

s∈Σ pi(s|Σ)vi(x(0), x(s)) for every Σ ⊂ S and x ∈ (IRH
+ )Σ

′
.

The economy that we have described can thus be summarized by the collection :

E = [(I,H, S, J), V, (Si, Xi, ui, ei)i∈I ].

Given his initial information set Si ⊂ S, consumer i will (possibly) need to “infer” a better
information set Σi ⊂ Si, before maximizing his utility under his budget constraint, as explained
below. For given commodity prices p = (p(s)) ∈ (IRH)S′ and asset prices q ∈ IRJ , agent i

will then maximize his utility (for the known information set Σi) ui(·|Σi) on his budget set
Bi(p, q, V, Σi), defined as follows:

Bi(p, q, V, Σi) :=

{
(x, z) ∈ (IRH)Σ

′
i × IRJ |

p(0) · [x(0)− ei(0)] ≤ −q · z
∀s ∈ Σi, p(s) · [x(s)− ei(s)] ≤ V [s] · z

}
.

The next sections will detail this behavior and seek to answer the following relevant questions.
(i) When are agents keeping their initial information sets Si (i ∈ I), instead of refining their
information? Alternatively, why would agents be obliged to update their beliefs? (ii) What kind
of communication process between agents is needed to infer new information sets (Σi)i ? Pooling
information? Using some kind of auction? The knowledge of the other agents’ characteristics?
The only knowledge of prices? (iii) For each agent, how does refinement proceed, which leads
from the initial set Si to some better information set Σi? (iv) How can we guarantee that the
refinement of information will not lead to the inadmissible situation where ∩i∈IΣi = ∅? Will the
refined information structure (Σi)i preserve the collective information of (Si)i? In other words
shall we always have ∩i∈I Si = ∩i∈IΣi or not? (v) How and who is fixing the asset prices q?
Section 5 will provide answers to these questions.

3 No-arbitrage prices with asymmetric information

3.1 The classical concept of no-arbitrage price

We recall the following standard definition. Given q ∈ IRJ , we denote by W (q, V, Si) the S′
i×J-

matrix, defined by W (q, V, Si)[0] = −q, and W (q, V, Si)[s] = V [s] for every s ∈ Si.

Definition 3.1 The price q ∈ IRJ is said to be a no-arbitrage price for agent i (i ∈ I) (or the
couple (V, Si) to be q-arbitrage free) if one of the following equivalent assertions is satisfied :

(i) there is no portfolio zi ∈ IRJ such that −q · zi ≥ 0 and V [s] · zi ≥ 0 for every s ∈ Si, with
at least one strict inequality;

(ii) < W (q, V, Si) > ∩ IRS′i
+ = {0};

(iii) There exists λi = (λi[s]) ∈ IRSi
++, q =

∑
s∈Si

λi[s]V [s].
We denote by Qc[V, (Si)i] the set of q which are no-arbitrage prices for every agent i ∈ I,

called common no-arbitrage prices.
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The equivalence between the three assertions above is standard and relies on the following
lemma (see, for example, Magill-Quinzii (1996) for the proof) which will also be used hereafter.

Lemma 1 Let W be a S′ × J matrix, then the following conditions are equivalent:
(i) < W > ∩ IRS′

+ = {0};
(ii) ∃ λ ∈ IRS′

++, tW λ = 0;
(ii’) ∃ λ = (λ[s]) ∈ IRS′

++,
∑

s∈S′ λ[s] W [s] = 0.

Remark 1 (Symmetric and asymmetric settings). The main difference between the symmetric
and the asymmetric settings is that, in the first case, the set Qc[V, (Si)i] is always nonempty,
whereas it is no longer true, in general, in the asymmetric one, as shown in the Example of
Section 5. When the information structure (Si)i is symmetric, i.e., when all the Si are equal
(say to S), for every λ = (λ[s]) ∈ IRS

++, then q :=
∑

s∈S λ[s]V [s] belongs to Qc[V, (Si)i], hence
the discount factors λ[s] (s ∈ S) need not depend on i.

Remark 2. The condition that q is a common no-arbitrage price is stronger than the following
condition :

< W (q, V,∪i∈ISi) > ∩ IR∪iS
′
i

+ = {0},

but not equivalent it (see the example in Section 5).

We end the section with a standard property of no-arbitrage prices in terms of consumers’
behavior. We first introduce the following assumption (which is used below for Σi = Si, but will
be needed later in the general setting).

Assumption (NSS) (Non-Satiation of Preferences at every State) ∀ i ∈ I,∀Σi ⊂ Si,

∀ si ∈ Σ′
i,∀ x ∈ (IRH

+ )Σ
′
i , ∃ x′ ∈ (IRH

+ )Σ
′
i ,∀ s ∈ Σ′

i\{si}, x′(s) = x(s), ui(x′ | Σi) > ui(x | Σi).

Proposition 3.1 Under Assumption (NSS), if, for every agent i ∈ I, the strategy (x∗i , z
∗
i )

maximizes the utility ui(· | Si) on the budget set Bi(p∗, q∗, V, Si), then q∗ ∈ Qc[V, (Si)i].

Proof. By contraposition. If q∗ 6∈ Qc[V, (Si)i], there exists i ∈ I, and z ∈ IRJ such that
w(z)[0] := −q∗ · z ≥ 0 and w(z)[s] := V [s] · z ≥ 0, for every s ∈ Si, with at least one strict
inequality, say for si ∈ Si ∪ {0}. From Assumption (NSS), there exists x′i ∈ (IRH

+ )S′i such that
x′i(s) = x∗i (s) for every s ∈ S′

i\{si} and ui(x′i | Si) > ui(x∗i | Si). Let λ = |p∗(si) · [x′i(si) −
x∗i (si)]| / w(z)[si] and z′i = z∗i + λz. We let the reader check that (x′i, z

′
i) ∈ Bi(p∗, q∗, V, Si). But

the conditions (x′i, z
′
i) ∈ Bi(p∗, q∗, V, Si) and ui(x′i | Si) > ui(x∗i | Si) contradict the fact that

(x∗i , z
∗
i ) maximizes the utility of agent i on his budget set Bi(p∗, q∗, V, Si).

3.2 The absence of future arbitrage opportunities

We shall now characterize the existence of a common no-arbitrage price by the following property.

Definition 3.2 The financial and information structure [V, (Si)i] is said to be future arbitrage-
free, or simply arbitrage-free if
(AFAO) (Absence of Future Arbitrage Opportunity) there is no (zi)i ∈ (IRJ)I such that

∑
i∈I zi =

0 and V [si] · zi ≥ 0 for every i ∈ I and every si ∈ Si, with at least one strict inequality.

It is important to notice that the above Condition (AFAO) always holds for symmetric
information structures as shown below.
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Remark 3 (Symmetric case). Condition (AFAO) always holds if the information structure
(Si)i is symmetric, i.e., when Si = Sj , for all i, j ∈ I. Otherwise, there exists (zi)i∈I ∈ (IRJ)I ,
such that

∑
i∈I zi = 0 and V [si] · zi ≥ 0, for every i ∈ I and every si ∈ Si, together with

V [s]·zi0 > 0, for some i0 ∈ I, and some s ∈ Si0(= Si for every i). Consequently, V [s]·(
∑

i∈I zi) =∑
i∈I V [s] · zi > 0 holds and contradicts

∑
i∈I zi = 0.

Remark 4 (Complete markets). In complete markets, only symmetric information structures
are arbitrage-free. Indeed, let V be a complete financial structure, that is, such that rank
V = #S, and let (Si)i be an arbitrage-free information structure. Assume it is not symmetric,
then there exists i, j in I and si ∈ Si\Sj . Consider the Arrow-security paying one in state si

and zero in other states, and let Asi ∈ IRS be the return of this asset, i.e., Asi [s] = 1 if s = si

and Asi [s] = 0 otherwise. Since rank V = #S, we deduce that Asi ∈ < V >, that is, there
exists zi ∈ IRJ such that Asi = V zi. Defining zj = −zi, we check that V [s] · zi = 0, for every
s ∈ Si, V [si] · zi = 1, for si ∈ Si and V [s] · zj = 0, for all s ∈ Sj (since si 6∈ Sj). This contradicts
the fact that (V, (Si)i) is arbitrage-free.

We now characterize arbitrage-free information structures in terms of the existence of a
common no-arbitrage price.

Proposition 3.2 For a given structure [V, (Si)i], the two following statements are equivalent:
(i) the structure [V, (Si)i] is arbitrage-free, i.e., satisfies Condition (AFAO);
(ii) the structure [V, (Si)i] admits a common no-arbitrage price, i.e., Qc[V, (Si)i] 6= ∅.

Proof. [(i)=⇒(ii)]. We define the linear mapping W : (IRJ)I → IRJ × IRJ ×Πi∈IIRSi by:

Wz = (
∑

i∈I zi,−
∑

i∈I zi, [(V [si] · zi)si∈Si ]i∈I) for z = (zi)i∈I ∈ (IRJ)I .

Condition (i), stating that [V, (Si)i] is arbitrage-free, is equivalent to say :

< W > ∩ [IRJ × IRJ ×Πi∈IIRSi ]+ = {0}. (1)

A characterization of Condition (1) is given by Lemma 1 and, for this purpose, we let the
reader check that the transpose of the linear mapping W is the mapping tW from IRJ × IRJ ×
Πi∈IIRSi to (IRJ)I defined by:

tW (α, β, (λi)i∈I) = (α− β +
∑

s∈Si
λi[s]V [s])i∈I .

Consequently, from Lemma 1, the above Condition (1) is equivalent to the existence of some
α, β in IRJ

++, and some λi = (λi[s]) ∈ IRSi
++, such that

for every i ∈ I, 0 = α− β +
∑

s∈Si
λi[s]V [s].

But this latter condition, by Definition 3.1, is equivalent to saying that q := β − α (which is
inedependent of i) is a common no-arbitrage price for the structure [V, (Si)i], that is, Condition
(ii) holds.

[(ii)=⇒(i)]. By contraposition. If condition (i) fails, there exists a collection of portfolios
(zi)i∈I ∈ (IRJ)I such that

∑
i∈I zi = 0 and V [si] · zi ≥ 0, for all i ∈ I, all si ∈ Si, with

at least one strict inequality. By condition (ii) we let q ∈ Qc[V, (Si)i]. By Definition 3.1, for
every i ∈ I, there exists λi = (λi[s])s∈Si ∈ IRSi

++ such that q =
∑

s∈Si
λi[s]V [s]. Consequently,

q · zi = (
∑

s∈Si
λi[s]V [s]) · zi ≥ 0 and one inequality is strict. Hence,

∑
i∈I q · zi > 0, which

contradicts
∑

i∈I zi = 0.
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Remark 5 (Non equivalence between (AFAO) and the Absence of Bilateral Arbitrage Op-
portunity). We may define a weaker concept than (AFAO), namely the “Absence of Bilateral
Arbitrage Opportunity”, as follows: for every i, j ∈ I, i 6= j, there are no portfolios zi, zj ∈ IRJ

satisfying the conditions zi + zj = 0 and V [si] · zi ≥ 0, for every si ∈ Si, V [sj ] · zj ≥ 0 for every
sj ∈ Sj , with at least one strict inequality.

Then, condition (AFAO) implies condition (ABAO) but is not equivalent to it, as shown
by the following counterexample. Consider an economy with three agents (I = {1, 2, 3}), seven
states (S = {1, 2, 3, 4, 5, 6, 7}) and assume that S1 = {1, 2, 3}, S2 = {1, 4, 5}, S3 = {1, 6, 7} and
that the payoff matrix V is defined as follows :

V =



0 0
−2 1
1 −1
0 −1
0 1
−1 0
1 0


The above structure [V, (Si)i] yields no bilateral arbitrage opportunity but is not arbitrage-

free (take z1 = (−1,−1), z2 = (1, 0), z3 = (0, 1)).

3.3 No-arbitrage prices with asymmetric information structures

When the initial information structure (Si)i is not arbitrage-free, the agents may refine their
information and reach an arbitrage-free structure. The common no-arbitrage prices associated
to all the refined information structures lead to the following broader concept of no-arbitrage
price.

Definition 3.3 The price q ∈ IRJ is said to be a no-arbitrage price relative to the structure
[V, (Si)i] if q is a common no-arbitrage price for some information structure (Σi)i refining (Si)i,
that is, if there exists an information structure (Σi)i refining (Si)i such that q ∈ Qc[V, (Σi)i].

We denote by Q[V, (Si)i] the set of no-arbitrage prices relative to the structure [V, (Si)i].

We point out the following simple, but important, result:

Proposition 3.3 Every structure [V, (Si)i] admits a no-arbitrage price, i.e., Q[V, (Si)i] 6= ∅.

Proof. The pooled information refinement (Si)i, defined by Si = ∩j∈JSj for every i ∈ I, is
arbitrage-free, since it is symmetric (see Remark 3). Hence, ∅ 6= Qc[V, (Si)i] ⊂ Q[V, (Si)i].

We end the section with a property of no-arbitrage prices in terms of consumers’ behavior.

Proposition 3.4 Under Assumption (NSS), if, first, every agent i refines his individual infor-
mation (from Si) to Σi, in such a way that ∩i∈IΣi 6= ∅ [that is, (Σi)i is an information structure
refining (Si)i], and, secondly, every agent i chooses a strategy (x∗i , z

∗
i ) which maximizes the util-

ity ui(· | Σi) on the budget set Bi(p∗, q∗, V, Σi), then q∗ ∈ Qc[V, (Σi)i], hence q∗ is a no-arbitrage
price for [V, (Si)i∈I ].
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In the above proposition, we did not make explicit how each agent i is refining his individual
information. The purpose of the next section is to explain (i) how the information structure
(Σi)i can be “revealed” by (the only knowledge of) price q∗, and (ii) when the family (Σi)i will
satisfy the condition ∩i∈IΣi 6= ∅ or the stronger one ∩i∈IΣi = ∩i∈ISi.

Proof. From Proposition 3.1, under Assumption (NSS), the price q∗ is a common no-arbitrage
price for the structure [V, (Σi)i], i.e., q∗ ∈ Qc(V, (Σi)i). Since the information structure (Σi)i is
finer than (Si)i, we deduce that q∗ ∈ Q(V, (Si)i), that is, q∗ is a no-arbitrage price.

3.4 The least refined arbitrage-free information structure

When the structure [V, (Si)i] is not arbitrage-free, from Propositions 3.1 and 3.4, agents’ problem
will admit no solution until they refine their information up to an arbitrage-free information
structure. The following proposition shows that there exists a unique least refined arbitrage-
free information structure, denoted by (S̄i)i. Formally, we denote by S, the set of arbitrage-free
information structures refining (Si)i.

Proposition 3.5 Given the structure [V, (Si)i], the set S admits a unique smallest element for
the refinement relation ≥, denoted by (Si), that is:

(Si)i ∈ S and (Σi)i ∈ S =⇒ (Σi)i ≥ (Si)i, or, equivalently, Σi ⊂ Si, for every i.
Furthermore the set, Qc(V, (Si)i), of common no-arbitrage prices is nonempty.

Proof. We prepare the proof with a claim.

Claim 1 We define the upper bound of two information structures (Σ1
i )i and (Σ2

i )i, denoted by
(Σi)i := (Σ1

i )i ∨ (Σ2
i )i, by the relations Σi := Σ1

i ∪Σ2
i for every i ∈ I. Then, (Σ1

i )i ∨ (Σ2
i )i is an

information structure and, if (Σ1
i )i and (Σ2

i )i are both arbitrage free, so is (Σ1
i )i ∨ (Σ2

i )i.

We first prove the Claim and notice that (Σi)i := (Σ1
i )i ∨ (Σ2

i )i is an information structure.
Indeed, for all i ∈ I, ∅ 6= ∩j∈IΣ1

j ⊂ Σ1
i ⊂ Σi ⊂ Si, hence ∅ 6= ∩i∈IΣi.

Assume now that (Σ1
i )i and (Σ2

i )i are both arbitrage free, but not (Σ1
i )i ∨ (Σ2

i )i. Then, a
collection of portfolios (zi)i∈I ∈ (IRJ)I exists, which satisfies, for every i ∈ I,

∑
i zi = 0 and

V [si] · zi ≥ 0, for all si ∈ Σ1
i ∪ Σ2

i , with at least one strict inequality. That strict inequality
may be assumed, non restrictively, to be met for some j ∈ I and s ∈ Σ1

j . Hence, the conditions∑
i zi = 0 and V [si] · zi ≥ 0, for all i ∈ I and all si ∈ Σ1

i hold, together with V [s] · zj > 0 for
j ∈ I and s ∈ Σ1

j , which contradicts the assumption that (Σ1
i )i is arbitrage free. This ends the

proof of the Claim.
We come back to the proof of the Proposition. The set S is finite and we can define the in-

formation structure (Si)i as the upper bound of all the elements in S, i.e., (Si)i := ∨(Σi)i∈S(Σi)i.

From the above Claim, (Si)i is an information structure, is arbitrage-free, and satisfies (Σi)i ≥
(Si)i for every (Σi)i ∈ S. The last assertion of the proposition, i.e., Qc(V, (Si)i) 6= ∅, is a
consequence of Proposition 3.2.

4 Information revealed by prices

This section shows that every no-arbitrage price q ∈ IRJ “reveals” a (uniquely defined) informa-
tion structure, denoted by (Si(q))i, which is the least refined information structure having q as
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a common no-arbitrage price, i.e., q ∈ Qc[V, (Si(q))i]. The refinement process is decentralized,
in the sense that the price q conveys enough information for each agent to update his beliefs up
to the refinement (Si(q))i, without having any information from the other agents. We shall then
show that the information structure (Si(q))i can be revealed in a constructive and sequential
way, each agent eliminating sequentially his “arbitrage states.”

4.1 Individual information sets revealed by prices

Given an (arbitrary) price q ∈ IRJ , for every agent i, we define the notion of the greatest
individual q-arbitrage-free set of information, denoted Si(q), a subset of Si, as follows:

Proposition 4.1 For every q ∈ IRJ and every i, there exists a unique (possibly empty) subset of
Si, denoted by Si(q), which is the greatest element (for the inclusion) among the subsets Σ ⊂ Si

which satisfy one of the two following equivalent conditions:
(i) q =

∑
s∈Σ λ[s]V [s] for some λ = (λ[s])s∈Σ ∈ IRΣ

++;
(ii) the set Σ is q-arbitrage-free, i.e., there exists no z ∈ IRJ such that −q · z ≥ 0 and

V [s] · z ≥ 0 for every s ∈ Σ, with one strict inequality.
Consequently, if Si(q) is nonempty, then q =

∑
s∈Si(q) λ[s]V [s] for some λ[s] > 0 (s ∈ Si(q)).

We point out that the equivalence between (i) and (ii) is clearly a consequence of Lemma 1.
We also notice that the set Si(q) may be empty (see Section 5.1). Moreover, even if each Si(q)
(i ∈ I) is nonempty, the collective information set ∩iSi(q) may be empty (see again Section 5.1),
i.e., the family (Si(q))i is not, in general, an information structure, a property that we shall
characterize in the next section.

Proof. Let q ∈ IRJ and denote by Si(q) the set of subsets Σ ⊂ Si such that Σ is q-arbitrage-free
for agent i. We first show that the set Si(q) is stable for the inclusion, i.e., if Σ1,Σ2 belong to
Si(q), then Σ1 ∪ Σ2 also belongs to Si(q). Indeed, if it is not true, there exists z ∈ IRJ such
that −q · z ≥ 0 and V [s] · z ≥ 0, for every s ∈ Σ1 ∪ Σ2, with one strict inequality. Then, either
−q · z > 0 or V [s] · z > 0, for some s ∈ Σ1 ∪ Σ2, say in Σ1. In both cases, this contradicts the
fact that Σ1 is q-arbitrage-free for agent i.

Consequently, we define the set Si(q) as the union of all the sets in Si(q) (which is finite).
From above, Si(q) is q-arbitrage-free for agent i and, clearly, is the greatest set in Si(q) satisfying
this property.

4.2 Information structures revealed by no-arbitrage prices

The first result states that the family of sets (Si(q))i defines an information structure if and
only if q is a no-arbitrage price. We let S(q) be the set of information structures (Σi)i refining
(Si)i and satisfying q ∈ Qc(V, (Σi)i).

Proposition 4.2 Let q ∈ IRJ , the following conditions are equivalent:
(i) q is a no-arbitrage price, i.e., q ∈ Q[V, (Si)i];
(ii) ∩i∈ISi(q) 6= ∅ , i.e., (Si(q))i is an information structure;
(iii) (Si(q))i belongs to S(q) and every (Σi)i in S(q) is finer than (Si(q))i.
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Proof. [(i) =⇒ (ii)]. If q ∈ Q[V, (Si)i], from the definition of a no-arbitrage price, there exist an
information structure (Σi)i refining (Si)i, and a common no-arbitrage price q for the structure
(Σi)i, that is, q ∈ Qc[V, (Σi)i]. From Definition 3.1, for every i ∈ I, there exists vectors λi =
(λi[s])s ∈ IRΣi

++, such that q =
∑

s∈Σi
λi[s]V [s]. But, for every i, the set Si(q) is the greatest one

satisfying the previous property, hence Σi ⊂ Si(q). Consequently, ∅ 6= ∩iΣi ⊂ Σi ⊂ Si(q) ⊂ Si,
for every i, which implies that ∩iSi(q) 6= ∅.

[(ii) =⇒ (iii)] Assume that condition (ii) holds. We first show that (Si(q))i belongs to S(q).
Indeed, (Si(q))i is an information structure (from (ii)) which clearly refines (Si)i (since, for every
i, Si(q) ⊂ Si) and from its definition (cf. Proposition 4.1) one always has q ∈ Qc[V, (Si(q))i].
Now let (Σi)i ∈ S(q) then, q ∈ Qc[V, (Σ)i], which implies that, for every i, Σi is q-arbitrage free.
Consequently, from Proposition 4.1, for every i, Σi ⊂ Si(q), that is (Σi)i is finer than (Si(q))i.

[(iii) =⇒ (i)] If Condition (iii) holds, we deduce that (Si(q))i ∈ S(q), i.e., (Si(q))i is an
information structure refining (Si)i, and q ∈ Qc[V, (Si(q))i]. Consequently, q ∈ Qc[V, (Si(q))i] ⊂
Q[V, (Si)i].

Remark 6 (Equivalent no-arbitrage prices). Let q1 and q2 be two no-arbitrage prices, we say
that q1 � q2 if (Si(q2))i ≥ (Si(q1))i (for the refinement relation). The relation � clearly defines
a preorder on the set Q[V, (Si)i] and we can associate to it the equivalence relation ∼ defined
by q1 ∼ q2 if [q1 � q2 and q2 � q1], or equivalently if, for every i, Si(q1) = Si(q2), i.e., q1 and q2

reveal the same information structure. Since S is finite, one shows that there is a finite number
of equivalent classes, denoted q̇ (for the relation ∼) which define a finite partition of the set
Q[V, (Si)i].

We shall now reformulate the previous proposition to give a characterization of information
structures which can be revealed by prices.

Definition 4.1 We say that an information structure (Σi)i, refining the (given) structure (Si)i,
can be revealed by prices if there exists q ∈ IRJ such that, for every i, Σi = Si(q).

Proposition 4.3 Let [V, (Si)i] be a given structure and let (Σi)i, be an information structure
refining (Si)i, then the three following conditions are equivalent:

(i) the information structure (Σi)i can be revealed by prices;
(ii) ∅ 6= {q ∈ IRJ | ∀i, Σi = Si(q)} ⊂ Qc[V, (Σi)i];
(iii) there exists q ∈ Qc(V, (Σi)i) such that every (Σ′

i)i in S(q) is finer than (Σi).
Furthermore, if (Σi)i can be revealed by a price q, then (Σi)i is arbitrage-free and q is a

common no-arbitrage price for (Σi)i, hence a no-arbitrage price for [V, (Si)i].

Proof. [(i) =⇒ (ii)]. If the information structure (Σi)i can be revealed by prices, from the
above definition, there exists q such that, for every i, Σi = Si(q). Consider such a price q, then
q ∈ Qc(V, (Si(q))i) = Qc(V, (Σi)i) (from Proposition 4.1, defining the information sets Si(q)).

[(ii) =⇒ (iii)]. From (ii), there exists q ∈ IRJ such that, for every i, Σi = Si(q) and
q ∈ Qc[V, (Σi)i]. From Proposition 4.2, we deduce that every (Σ′

i)i in S(q) is finer than (Si(q))i =
(Σi).

[(iii) =⇒ (i)]. From (iii), there exists q ∈ Qc(V, (Σi)i) and, from the definition of (Si(q))
[i.e., Proposition 4.1] one has, for every i, ∅ 6= Σi ⊂ Si(q) and q ∈ Qc(V, (Si(q))i). Consequently,
(Si(q))i belongs to S(q), hence from Condition (iii), it is finer than (Σi), that is, for every i,
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Si(q) ⊂ Σi. We have thus shown that, for every i, Si(q) = Σi, that is, the information structure
(Σi)i can be revealed by the price q.

The last assertion of the proposition is straightforward from (ii).

We now give an important example of an information structure that can always be revealed
by prices, namely the least refined information structure (Si)i defined in Section 3.4.

Proposition 4.4 (a) Let [V, (Si)i] be a given structure, then

∅ 6= {q ∈ IRJ | ∀i, Si = Si(q)} = Qc[V, (Si)i].

Hence, the information structure (Si)i can be revealed by every price q ∈ Qc[V, (Si)i].
(b) If the structure [V, (Si)i] is arbitrage-free, then

∅ 6= {q ∈ IRJ | ∀i, Si = Si(q)} = Qc[V, (Si)i].

Proof. Part (a). We first notice that, from Proposition 3.5, the set Qc[V, (Si)i] is nonempty. We
now let q ∈ IRJ be such that (Si)i = (Si(q))i, then, from Proposition 4.1, q ∈ Qc[V, (Si(q))i] =
Qc[V, (Si)i]. Conversely, let q ∈ Qc[V, (Si)i], then from Proposition 4.2 (iii), for every i, Si ⊂
Si(q). This implies that (Si(q))i is an information structure (i.e., ∩i∈ISi(q) 6= ∅) and it is clearly
arbitrage-free (since q is a common no-arbitrage price). But (Si)i is the least refined arbitrage-
free information structure, hence for every i, Si = Si(q). This ends the proof of the equality.
The second part of the Proposition is straightforward.

Part (b). If the structure [V, (Si)i] is arbitrage-free, then Si = Si for every i, from the
definition of (Si)i. The result then follows from Part (a).

Let S denote the set of information structures (Σi)i refining (Si)i and preserving the collective
information ∩i∈ISi, that is, such that ∩i∈IΣi = ∩i∈ISi. We now characterize prices q which
reveal information structures (Si(q))i in S.

Proposition 4.5 Let q ∈ IRJ , the following conditions are equivalent:
(i) ∩i∈ISi ⊂ ∩i∈ISi(q) , i.e., (Si(q))i preserves the collective information ∩i∈ISi;
(ii) (Si(q))i ∈ S;
(iii) q is a common no-arbitrage price for some information structure in S,
i.e., q ∈ ∪(Σi)i∈S Qc(V, (Σi)i);
(iv) (Si(q))i belongs to S(q) ∩ S and every (Σi)i in S(q) ∩ S is finer than (Si(q))i.

Furthermore there exists prices q satisfying one of the above assertion (i) to (iv).

Proof. The proof is a direct consequence of Proposition 4.2. We further notice that there
clearly exist prices q, satisfying one of the above equivalent assertions (i) to (iv), since both
information structures (Si)i and (S̄i)i belong to S.

4.3 Elimination of arbitrage states

For every price q ∈ IRJ , for every i ∈ I, and for every Σ ⊂ Si we define the two sets :

Ai(Σ, q) = {s ∈ Σ | ∃ z ∈ IRJ ,−q · z ≥ 0, V [s] · z ≥ 0, ∀ s ∈ Σ, V [s] · z > 0},

Si(Σ, q) = Σ\Ai(Σ, q).
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The set Ai(Σ, q) consists in states (of the second period t = 1) s ∈ Σ ⊂ S, called arbitrage
states, that provide arbitrage opportunity to agent i (i ∈ I). The set Si(Σ, q) is the first stage
of elimination of arbitrage states.

Proposition 4.6 Let q ∈ IRJ , for every i, there exists a unique (possibly empty) subset of Si,
denoted by Si(q), which is the greatest element (for the inclusion) among all subsets Σ ⊂ Si such
that Ai(Σ, q) = ∅ (or equivalently Si(Σ, q) = Σ).

Proof. Let i ∈ I, q ∈ IRJ , and define Si(q) = {Σ ⊂ Si | Ai(Σ, q) = ∅}. We first show that the
set Si(q) is stable for the inclusion, i.e., if Σ1 and Σ2 belong to Si(q), then Σ1 ∪Σ2 also belong
to Si(q). Indeed, if Σ1 ∪Σ2 /∈ Si(q), then Ai(Σ1 ∪Σ2, q) 6= ∅. Let s ∈ Ai(Σ1 ∪Σ2, q) ⊂ Σ1 ∪Σ2,
then, there exists z ∈ IRJ such that −q ·z ≥ 0, V [s] ·z ≥ 0, for every s ∈ Σ1∪Σ2, and V [s] ·z > 0.
Without any loss of generality, we can assume that s ∈ Σ1 and, from above, we deduce that
s ∈ Ai(Σ1, q), a contradiction with Σ1 ∈ Si(q).

We now define the set Si(q) as the union of all the sets in Si(q). Since the set Si(q) is finite,
from above, we deduce that Si(q) belongs to Si(q) and is the greatest element in Si(q) for the
inclusion.

By construction, Si(q) is the largest set in Si containing no state of arbitrage at t = 1,
while the set Si(q) satisfies the stronger condition of being q-arbitrage free for agent i. The link
between the two sets is given by the following proposition. An example for which the sets Si(q)
and Si(q) may be different is given in Section 5.

Proposition 4.7 Let [V, (Si)i] be a given structure and let q ∈ IRJ .
(a) For every agent i ∈ I, Si(q) ⊂ Si(q).
(b) For every agent i, the following conditions are equivalent:

(i) Si(q) = Si(q);
(ii) Si(q) is q-arbitrage free for agent i;
(iii) Si(q) is q-arbitrage free for agent i at the first period (i.e., t = 0), in the sense that there

is no portfolio z ∈ IRJ such that −q · z > 0, V [s] · z ≥ 0, for every s ∈ Si(q).
(c) If q ∈ Q[V, (Si)i], then, Si(q) = Si(q) , for every i ∈ I.

Proof. Part (a). Let q ∈ IRJ , and let i ∈ I. From the definition of the set Si(q) [i.e., Proposition
4.1], one deduces that Ai(Si(q), q) = ∅. Consequently, from the definition of the set Si(q) [i.e.,
Proposition 4.6], one gets Si(q) ⊂ Si(q).
Part (b). [(i) =⇒ (ii)]. From its definition [i.e., Proposition 4.1], the set Si(q) is q-arbitrage
free. From (i), Si(q) = Si(q), hence Si(q) is q-arbitrage free.

[(ii) =⇒ (iii)]. It is obvious.
[(iii) =⇒ (i)]. By definition of Si(q), for every s ∈ Si(q), there is no z ∈ IRJ such that

−q · z ≥ 0, V [s] · z ≥ 0, for every s ∈ Si(q), and V [s] · z > 0. That condition, together
with Condition (iii), implies that Si(q) is q-arbitrage free for agent i. Consequently, from
the definition of the set Si(q), one has Si(q) ⊂ Si(q). From Part (a), we then deduce that
Si(q) = Si(q).
Part (c). If q ∈ Q[V, (Si)i], then there exists an information structure (Σi)i refining (Si)i such
that q ∈ Qc[V, (Σi)i]. From the definition of Si(q) and Part (a), we deduce that ∅ 6= Σi ⊂
Si(q) ⊂ Si(q). In view of Part (b), the proof will be complete if we show that, for every i, Si(q)



Arbitrage with asymmetric information 14

is q-arbitrage free for the first period (t = 0). Indeed, if it is not true, there is some agent i and
some portfolio z ∈ IRJ such that −q · z > 0, V [s] · z ≥ 0, for every s ∈ Si(q), and the same
inequalities holds, in particular, for every s ∈ Σi ⊂ Si(q). This contradicts the fact that Σi is
q-arbitrage free for agent i.

4.4 Sequential elimination of arbitrage states

In this section, we shall define the set Si(q) in a constructive way, by eliminating the arbitrage
states (as defined previously) sequentially. We shall give two different ways of eliminating the
arbitrage states. They are slightly different in formulation, but will be shown to be equivalent.

Let q ∈ IRJ , for every i, and every Σ ⊂ Si, the sets Ai(Σ, q) and Si(Σ, q) are defined as in
the previous section. We define, by induction on k ∈ N , the sets Sk

i (q) as follows:

S0
i (q) = Si, and for k ≥ 1

Sk+1
i (q) = Si(Sk

i (q), q) := Sk
i (q)\Ai(Sk

i (q), q) .

Similarly, we define by induction on k ∈ N , the sets S′k
i (q) as follows:

S′0
i (q) = Si, and for k ≥ 1

S′k+1
i (q) =

{
S′k

i (q), if Ai(S′k
i (q), q) = ∅,

S′k
i (q)\{sk} for some sk ∈ Ai(S′k

i (q), q) if Ai(S′k
i (q), q) 6= ∅.

The two sequences (Sk
i (q))k∈N and (S′k

i (q))k∈N are decreasing, that is, Sk+1
i (q) ⊂ Sk

i (q) and
S′k+1

i (q) ⊂ S′k
i (q) for every k. Since both sequences are contained in the finite set Si, each

sequence must be constant for k large enough. We let

S∗
i (q) := ∩k∈N Sk

i (q) = Sk∗
i (q) for some k∗ large enough;

S∗∗
i (q) := ∩k∈N S′k

i (q) = S′k∗∗
i (q) for some k∗∗ large enough.

Proposition 4.8 (a) For every q ∈ IRJ , then Si(q) = S∗
i (q) = S∗∗

i (q) for every i ∈ I.
(b) For every q ∈ Q[V, (Si)i], then Si(q) = Si(q) = S∗

i (q) = S∗∗
i (q) for every i ∈ I.

Proof. Part (a). We prepare the proof with two claims.

Claim 2. Let q ∈ IRJ and Σ1 ⊂ Σ2 ⊂ Si, then Si(Σ1, q) ⊂ Si(Σ2, q).

We prove Claim 2 by contraposition. Suppose that there exists some s ∈ Si(Σ1, q) ⊂ Σ1 ⊂ Σ2

and s /∈ Si(Σ2, q). Then, s ∈ Ai(Σ2, q), that is, there exists z ∈ IRJ such that −q ·z ≥ 0, V [s]·z ≥
0, for every s ∈ Σ2 and V [s] · z > 0. Since s ∈ Σ1 ⊂ Σ2, we deduce that s ∈ Ai(Σ1, q), which
contradicts the fact that s ∈ Si(Σ1, q).

Claim 3. Si(q) ⊂ Sk
i (q) ⊂ S′k

i (q), for every k.

We prove Claim 3 by induction on k. Indeed, the above inclusions are true for k = 0, since
S0

i (q) = S′0
i (q) := Si. Suppose that they are also true up to rank k. From Claim 2, we deduce

that

Si(Si(q), q) ⊂ Si(Sk
i (q), q) ⊂ Si(S′k

i (q), q).

But, from the definition of the set Si(q) [i.e. Proposition 4.6] and the definitions of the sets
Sk

i (q) and S′k
i , one gets Si(q) = Si(Si(q), q), Sk+1

i (q) := Si(Sk
i (q), q), and
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Si(S′k
i (q), q) := S′k

i (q)\Ai(S′k
i (q), q) ⊂ S′k+1

i (q).

Consequently, Si(q) ⊂ Sk+1
i (q) ⊂ S′k+1

i (q).

We now come back to the proof of the Proposition. From Claim 3, taking k large enough, we
get Si(q) ⊂ S∗

i (q) ⊂ S∗∗
i (q) for every i. But, from the definitions of S∗

i (q) and S∗∗
i (q) we deduce

that Ai(S∗
i (q), q) = Ai(S∗∗

i (q), q) = ∅. Recalling that, from Proposition 4.6, Si(q) is the greatest
element (for the inclusion) among the subsets Σ of Si such that Ai(Σ, q) = ∅, we deduce that
Si(q) = S∗

i (q) = S∗∗
i (q).

Part (b). It is a consequence of Part (a) and Proposition 4.7 (c).

5 Conclusion

5.1 A synthesizing example

We first give an example which allows us to synthesize many counterexamples given previously. It
also helps to understand the links between prices q and the information sets Si(q) they “reveal”.

Consider the economy with two agents (I = {1, 2}), five states (S = {1, 2, 3, 4, 5}), idiosyn-
cratic information sets S1 = {1, 2, 3}, S2 = {1, 4, 5}, and the payoff matrix :

V =


−1 0 0
1 1 0
0 0 1
0 1 0
0 0 0

.

• We note that V is not arbitrage-free (consider for agent 1 the portfolio z1 = (0, 0, 1) and,
for agent 2, z2 = (0, 0,−1), then V [s1] · z1 ≥ 0, for s1 ∈ S1, V [s2] · z2 ≥ 0, s2 ∈ S2, with
one strict inequality).

• For q = (1, 1, 0), S1(q) = {2} and S2(q) = ∅, whereas S2(q) = {5}.

• For q = (0, 1, 0), S1(q) = {1, 2} and S2(q) = {4, 5}, hence S1(q) ∩ S2(q) = ∅.

• For q = (−1, 0, 0), S1(q) = {1} and S2(q) = {1, 5}.

• For q = (−1, 1, 0), S1(q) = {1, 2} and S2(q) = {1, 4, 5}.

• The least refined information structure is S1 = {1, 2} and S2 = {1, 4, 5}. Indeed, it is
arbitrage-free (since, from above, q = (−1, 1, 0) ∈ Qc(V, (Si)i)) and the only information
structure, contained in (S1, S2), which is less refined than (S1, S2) is (S1, S2), which is not
arbitrage-free, from above.

• The pooled information structure is S1 = S2 = {1}, which cannot be revealed by prices
since, from above, for every common no-arbitrage price q ∈ Qc(V, (Si)i) = {λ(−1, 0, 0) |
λ > 0}, we have S2(q) = {1, 5} 6= {1}.
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5.2 Inferences permitted by no-arbitrage prices

Given a no-arbitrage price, that is q ∈ Q[V, (Si)i], the successive elimination of arbitrage states
as defined in the previous section, may be interpreted as a rational behavior. Indeed, agents
observing price q and starting from initial information sets Si, may always refine their beliefs by
ruling out successively these arbitrage states. Agents are then said to update their beliefs by the
“no-arbitrage principle”. Along Proposition 4.8, whether agents rule out the states of arbitrage
one by one, or in bundles, will not change the outcome. Neither will the path (chronology)
of elimination represented by the sequences (S′k+1

i \S′k
i )k of the previous section will change

this outcome. The “no-arbitrage principle” will always lead to the arbitrage-free information
structure (Si(q))i.

The inference behavior consisting in updating beliefs by the “no-arbitrage principle” does not
require any specific knowledge on the ex ante characteristics of the economy (endowments and
preferences of the other consumers). In particular, agents need not be aware of a relationship
between prices and the private information of the other agents to implement inferences based
on the no-arbitrage principle. This is the main difference between the model we consider and
rational expectations models with differential information.

In the next section, we summarize the consequences of the “no-arbitrage principle” in terms
of consumers’ behavior.

5.3 The “no-arbitrage principle” and consumer’s behavior

We can now provide some answers to the questions raised about consumers’ behavior (in Section
2.3). (i) When the initial information structure (Si)i is arbitrage-free, consumers may keep
their initial information sets. Otherwise, they must refine their beliefs up to an arbitrage-free
information structure, to be able to perform their maximization problem. [cf. Proposition 3.1
and 3.4]. (ii) The refined information sets (Si(q))i are then “revealed” by the (only knowledge
of) the asset price q. Hence, refinement is achieved in a decentralized manner : neither the
presence of another agent, nor the knowledge of the other agents’ characteristics is necessary.
[cf. Proposition 4.1 defining the set Si(q) to be chosen as the new information set Σi]. (iii)
Refinement proceeds in a constructive and sequential way, where each agent is eliminating at each
stage one or several states (of the second period) [cf. Proposition 4.8]. States are eliminated
when they display some arbitrage opportunities which reveal that the states will not prevail
tomorrow. (iv) The answer will depend upon the choice of the no-arbitrage price q and we have
characterized the two situations for which, either ∩i∈IΣi 6= ∅, or ∅ 6= ∩i∈I Si = ∩i∈I Σi [cf.
Proposition 4.2, and 4.5, respectively]. (v) Neither this paper (in the asymmetric information
case), nor the classical literature with symmetric information (where indeterminacy prevails) is
explaining who is fixing asset prices q and how they are determined. In the present study, we
leave open the possibility that asset prices q be explained by a communication process between
agents. In this case, agents will not reach a better collective knowledge of information. A
companion paper will tackle the existence problem (and the definition) of equilibria stemming
from these comments.

References

[1] Allen, B. (1981): “Generic Existence of Completely Revealing Equilibria for Economies
with Uncertainty when Prices Convey Information”, Econometrica 49, 1173-1199.



Arbitrage with asymmetric information 17

[2] Arrow, K (1953): “Le rôle des valeurs boursières pour la répartition la meilleure des
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