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Abstract— A software toolset for the design of robots is
described. Modular and system level design issues are discussed
and criteria for the appropriate selection of software design
tools are presented. Case studies of a design toolset illustrate
the principles.

I. INTRODUCTION

The research and development (R&D) of robotic systems is
a complicated process and the produced systems are usually
expensive. Robot systems designers prefer to use a modular
approach in order to reduce development and maintenance
costs as well as make their systems more flexible. However,
these modules are task oriented and restrained within the scope
of the particular platform. This kind of modularity is called
in–house modularity. As a result research teams are wasting
considerable amounts of time and resources in developing their
own modules.

On the other hand if standard components were available in
the market, developers would be able to build their prototypes
faster as there will be reduced need for individual development
of the components. Furthermore, the whole process is more
cost effective due to the increased possibility of adopting al-
ready developed techniques, mass production and reuse of the
modules and the technologies for a wide range of applications.
This kind of modularity is called open modularity [1], [2].

Figure 1 shows an approach to open modularity R&D where
the overall problem is broken down into different stages.
Firstly, the application areas and the operational environments
are identified. A generic list of task requirements is then
formed for each. The general capabilities required by the
robot are then formed, followed by a design of the specific
capabilities. All components are grouped under four generic
categories, namely input, processing, output and infrastructure
modules. Super modules can be constructed from basic ones.
All modules (basic and super) integrate with each other using
the interaction space as defined by the CLAWAR commu-
nity [3]; this defines six ways in which interactions can take
place, namely mechanics, power, digital, analogue, databus
and environment. Normally we would expect system level and
module level designs to be carried out in a parallel way as
shown in Figure 1. Standard protocols must also be developed
for that. Assessments must be conducted at different levels
of the R&D process before any real models are built and
the modules are finalised for mass production and effective

Fig. 1. Open modularity process

R&D. This is achieved by extensive testing and refining of
the solutions until all aspects are achieved.

Therefore, software tools that can assist in formalising
the requirements specifications in some structured manner,
in analysing the problem and the systems, in designing,
simulating and assessing them would be useful. However,
there is a vast number of software packages with different
capabilities for each and they come at different costs, from free
up to thousands of pounds. As already mentioned, building a
robot prototype is a complex, time consuming and expensive
task and these costs are increasing. This is a major barrier
to progressing the area of robotics and a step change in
culture is needed in the view of the CLAWAR community.
We need to start a “common thinking approach” so that we
can reuse existing technology and stop wasting efforts in
“re-inventing the wheel”. Promoting an open modular design
approach presents the most viable strategy for this to work,
we need appropriate software design tools. This paper presents
a software support toolset approach building on the modular
work developed by CLAWAR. These tools should be selected
from a menu in a fast and accurate way without any waste of
time or money to realise and test concepts.



Fig. 2. Example interaction space diagram

II. DESIGN LEVELS

It is shown in Figure 1 that the overall design process is
separated in three distinct levels; the system level, the module
level and the protocol level. All three levels are developed in
parallel with interactions between them at different stages of
their development.

The module level refers to the design and assessment issues
of basic and super modules. “A module for mobile robots is de-
scribed as any functionally complete device, or sub–assembly,
that can be independently operated and can be readily fitted
and connected to, or in combination with, additional modules
to comprise a complete and functionally reliable system” [2].
Four generic categories of modules have been identified from
the work and experience of the CLAWAR project [1]–[3],
namely input, output, processing and infrastructure modules.
Input modules are related with the perception and the control
of the system and output modules are to allow the robot to
interact with the environment and with the operators. The
processing modules deal with all the computational aspects
of the system, both in software as well as hardware. The
infrastructure modules refer to all aspects of electromechanical
support of the system, such as the mechanical materials, the
locomotion system, the communications networking and the
power supply and its distribution.

The protocol level deals with the design and development
of communication interfaces and protocols that allow the
integration of the modules themselves and in re–configurable
robotic systems. This is achieved by identifying the interaction
space, which describes the communications and interactions
between themselves and the environment. Following the work
of CLAWAR, six types of interactions have been identified;
power regarding the power supply issues, mechanical regard-
ing the physical linkages and support of the modules, analogue
and digital regarding any analogue or digital flow of infor-
mation respectively, databus referring to some structured and
standardised representation and flow of data, and environment
regarding all the interactions and influences from the operating
environment. An example interaction space diagram is shown
in Fig 2.

The system level concerns the issues of the complete robotic
systems. These start from the high level abstract capabilities
and specifications of the robots to the implementation of the
complete system from the available basic and super modules.

This means that the system level design has to interact with
the module level design constantly. The protocol level is also
assessed within this level. The complete robotic systems are
assessed in simple scenarios as well as more realistic ones
in their application environments. The assessments are firstly
computer simulations before any real prototypes are devel-
oped, which in turn should also pass a number of assessments.

III. SOFTWARE SELECTION FRAMEWORK

It is clear that a software toolset should be adopted for the
design and assessment of the issues concerned by the system,
module and protocol levels. However, the vast number of avail-
able software packages makes a selection of an appropriate
software framework not a trivial task. Moreover, the need for
quick selection and rapid and reliable development has resulted
in the proposal of several evaluation frameworks which try
to provide some selection guidance to the system analysts.
Most of them use some form of hierarchical organisation.
One of them, defined by the ISO/IEC 9126 standard [4], has
a hierarchical structure of high level characteristics that are
decomposed into sub–characteristics and attributes. The high
level ones are reliability, usability, efficiency, maintainability
and portability. An alternative hierarchical framework consid-
ers the user, the vendor, the model and the input, the execution,
the animation, the testing and the efficiency and the output
of the software as the highest levels in the hierarchy [5].
Another one uses input, processing, output, support and cost as
the generic categories [6]. Relative evaluation methods where
the candidate software tools are compared in pairs with each
other have also been used [7]. Furthermore, case studies have
been applied in fields such as aerospace engineering [8], mail
transfer issues [9] and structural engineering [10]. Expert sys-
tems that implement selection frameworks have been written
as well [11].

In this study an evaluation framework which consists of the
following criteria has been used [12].

• Cost: The cost of the simulator.
• Usability: This measures how well the design and assess-

ment tool fulfils the simulation requirements.
• Expandability: This measures the how likely is the tool

to be updated with new components in the near future or
if it already provides this capability to the user.

• Reusability: This measures if a software tool can be used
for the design as well as the assessment of a model; if
the produced models can be used by other software tools;
and if the implemented control programs can be reused
with real robots.

• Development time: This measures how fast the new
designs can be developed.

• Efficiency: This measures the performance and other
execution facilitation of the software.

• Visualisation: This measures how realistic the imple-
mented designs and environments look like.

• Portability: This considers if the tool can be run in the
required operating systems.



Fig. 3. Simulation cycle

• User friendly: This measures how easy it is for the users
to learn to use the software.

• Technical support: This measures how likely is to get
technical assistance.

• Analysis facilitation: This measures if the software pro-
vides any facilitation for analysing and visualising the
assessment data.

IV. CASE STUDIES

In Section I the issue of the generic design of robotic
systems was addressed. This requires the specification and
design of the following:

• Module dynamics and statics.
• Integration of the subsystems to form complete robotic

systems.
• Tasks to be performed.
• Operational environments and objects to be encountered.

A design and assessment cycle is shown in Figure 3. At the
module level the basic and the super modules are normally
designed and assessed both individually and together. At the
system level the complete robotic systems are considered in
their operational environments. A design methodology and a
software toolset for the system, module and protocol levels are
described and illustrated through case studies in colonoscopy
and urban search and rescue applications.

A. Colonoscopy application

The case study discusses the modular design of a mobile
robot for colonoscopy [13], [14]. It introduces and proposes
design environments for mobile climbing robots on irregular
and/or smooth terrains. There are two general categories of
climbing scenarios depending on the application; the first
includes all kinds of terrain vertical or horizontal, rough or
smooth, while the second arises in medical applications where
wet and dry, rough and smooth, and rigid and pressure–
deformed surfaces need to be addressed.

The ability to handle these types of surfaces and various
robot kinematic and dynamic mechanics needed to be simu-
lated in the appropriate internal body environments. In order to
visualiser the problem(s) and invent new solutions, they can
be studied in the simulated set up before risking having to
build anything. Applications other than medical ones can be

simulated by various software packages that provide 3D design
and simulation engines together with CAD capabilities for
kinematic analysis. As a result of the research carried out on
the software packages available, packages like Visual Nastran,
Darwin2K and Yobotics were found to be suitable. Visual
Nastran is felt to be the most appropriate and will be used
in this case study for specific limb motion as it gives a variety
of joint types and motions with various properties to match
different design and simulation concepts. Player/Stage/Gazebo
(PSG, system level tool) is another powerful simulation studio
which includes mapping, localisations both in 2D and 3D with
on board camera views, path planning and 3D world design
and all these make it a useful robot design tool. Darwin2k
is a combination of the PSG system level software but with
module level design capabilities.

The CLAWAR design approach to start with formulating the
system level requirements and breaking these into appropriate
module level sub–designs is followed here. Regarding any
application, the system level design should come before the
modular level one. The details of how a system level approach
can be realised is discussed in [12] and is used in this case
study in order to continue to the modular level design. The
design aspects for the modular design are focused upon here.

For the application of colonoscopy, 3D environments are
vital for realising effective robot designs. All mobile robots
in any environment need to sense, make some decisions and
move themselves or move something. This is also the case for
robot colonoscopy systems. By completing the system level
design first it is possible to produce a list of the necessary
modules from considering the task requirements regarding the
specific application. The colonoscopy robot should be biocom-
patible and able to navigate within the restrictive confines
of the large intestine. The main constraint apart from the
biocompatibility and strength for locomotion is that it must
be compact and able to stabiliser itself while navigating. In
other words a mechanism must allow the robot to either grip
or stick to the walls around it without rupturing them and be
able to manoeuvre freely.

Having this in mind the System Level Tasks are listed
below:
Working Environment: The Inner Human Body:

1) 3D, Intestine (Colon) - tight confined environment
2) Pressure–deformed surfaces
3) Danger of rupturing walls
4) Sleek/smooth walls
5) Liquid flow might be present

Tasks to be carried out:
1) Semi–autonomous in navigation
2) Allow medical examination
3) Provide visual feedback to doctors
4) Perform medical procedures (remove tumours)

Performance metrics:
1) Safe: biocompatible
2) Effective: locomotion, inspection, treatment
3) Compact



4) Reliable
Operation:

1) Remote
2) Semi-autonomous
This way of approach highlights the need for different soft-

ware for the environment design and simulation. Firstly any
possible CAD or robot design and simulation software could
work well for applications involving rigid pipes in petrochemi-
cal plant situations [15], [16], but the introduction of soft tissue
tubes in biomedical situation such as in colonoscopy exposes
the need for a new type of software where pressure-deformed
surfaces and tissue dynamics are included [17]. Pressure-
deformed surfaces lead to the need to have specialised locomo-
tion methods. End effectors, sensors (grippers/manipulators,
pressure sensors, camera, temperature sensors, distance and
collision avoidance detection sensors) and specialised mechan-
ics are the system level design requirements. The pressure-
deformed characteristic of the colonoscopy environment leads
to the formulation of the following list of requirements:

• Safety: need for umbilical to retrieve device
• Soft surface dynamics: need for special contact mecha-

nisms
• Mechanics: wet bioactive environment.
• Motion planning: Movement without damaging delicate

intestine wall
• Umbilical: useful for power, communication to/ from

device
Simulating soft surface dynamics and in general the whole

internal-to-body environments such as those of the colon is
not widely available. Legged locomotion on soft ground has
been considered [18] but to the authors knowledge there is no
software suitable for simulation of internal body environments.
In view of this, rigid pipes have been used to simulate the
colonoscopy application. Hence in the simulations the pressure
at the contact points (assuming rigid pipes) is monitored and
controlled so that it does not exceed the threshold for causing
rupturing of the colon wall.

As already mentioned CLAWAR’s generic methodology
uses four basic modules to interact via six variables (power,
mechanics, data bus, analogue signals, digital signals and
the environment) to integrate with each other to allowing
application specific solutions to be formed. These main basic
modules that are needed comprise sensors actuators, power
supplies, computing hardware, software, communication de-
vices and appropriate materials [2], [3]. In order to realise
and implement the open design methodology we need to
determine a good way of integrating the modules by having
open protocols for the interfacing allowing the modules to
be seen as black boxes. In order to do this we introduce the
Common Module Block shown in Figure 4 where the input
and output variables can be specified. The “input variables”
simply state the input requirements of the module while the
“output variables” categorise what is being output for the
six interfacing space variables. When a few modules have
been designed so that they match and can be integrated, it

Fig. 4. The Module Block showing the input and output variables

is hoped that a mature and robust methodology and set of
standards can be determined that will be acceptable to the
CLAWAR and wider robot communities. Having as reference
the subsumption architecture which Brooks established [19],
we can extend it to have the emphasis on modular components
and how they can integrate together; the concept is shown
more clearly in [20].

B. Search and rescue applications

This case study concentrates on the design of modular
robotic systems used for search and rescue (SAR) missions.
The field of SAR is an important application domain for
robotic systems both for humanitarian and safety reasons.
However, the operational environments are complex, hostile
and dynamic and autonomous agents can fail in even simple
tasks. Although current technology in tele–operated systems
has made advancements, the produced systems are still un-
reliable and fail to achieve their expectations. Studies have
shown that completely remotely operated vehicles are not
the best solution, rather a mixture of autonomy and tele–
operation should be used [21], [22]. The experience and the
results gained from the use of SAR robots in World Trade
Centre disaster following 11 September 2001 have given great
insight into the reasons underlying the failure and rejection
of robotic systems by the rescue teams [23]. Modularity was
requested by the rescue teams as it is desirable to use the
robots across the various sub–teams. Furthermore, modularity
extends the lifetime and usability of the robotic systems into
other types of missions. This can be made feasible by using
available plug–n–play modules, even though they utilise in–
house designs. Due to space and time limitations we will
focus on urban search and rescue (USAR). It is usually used
to describe SAR operations of survivors trapped in confined
spaces under the debris of collapsed structures after natural
or human–made disasters, such as earthquakes, landslides, or
warfare and criminal activities.

The methodology described in Section II and Figure 1 is
realised. The first step is to identify the task requirements of
a robot in a USAR mission. These are,

• to navigate in a confined space leading to power au-
tonomy, large power/weight ratios, compact size require-
ments,

• to search for survivors and important objects or clues that
could lead to them, by using range sensors, data fusion



(a) World Trade Center
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(b) Damaged house after an
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Fig. 5. USAR environments

techniques and autonomous search and failure recovery
capabilities,

• to provide data back to the rescue base that will help in
formalising a search strategy or a rescue plan,

• actively participate in the rescue operation.
The operational environments in USAR (Figure 5) can be

characterised as dynamic, hostile and rough. Entry points are
often narrow and difficult to reach. The terrains the robots
have to navigate are unstructured and uneven, making even the
simplest movements difficult without getting stuck. There is
always the danger of further collapse. The light conditions are
normally very poor. In addition, survivors or clues leading to
them are usually covered by dust, a camouflage which makes
them difficult to differentiate from the environment [23]. Even
worse, due to the complete disorder of the environment the
readings of individual sensor can be noisy and unreliable.

In order for the robot to achieve its mission specifications
the following modules could be of use. They are grouped
according to the four generic categories of modules.

• Input: camera, thermal camera and directional micro-
phones, laser range finder, infrareds, compass, tiltmeter,
gas sensors, medical sensors;

• Processing: motherboard, CPU, memory, software mod-
ules such as internal monitoring, victim recognition,
mapping, localisation, hazards detection and avoidance,
communication dropout recovery, etc.;

• Output: speakers, grippers, drill gun, welding gun, suction
pipe, etc.;

• Infrastructure: power supply, motors, speed controllers,
wireless transceiver, tether attach socket for cable com-
munication, carrier case, water-air-toxic proof structure.

A simpler version of a possible USAR robot was chosen
in order to form the interactions space diagram. Recalling
that CLAWAR’s interaction variables are mechanical, power,
databus, analogue, digital and environment, it can be seen in
Figure 6 how the modules define the interaction variables
and how they interact with each other. For example the
motherboard has a USB port in which a USB camera can
be plugged in providing a databus and a power supply; the
motors power supply is at 12V defining the power layer in
which 12V devices can be plugged in.

Fig. 6. CLAWAR interaction space diagram for a simple USAR robot.

Lastly but not least, benchmarks must be defined in order
to assess the modules individually and within the integrated
system. These depend on the task and user requirements as
well as the operational environment. Some may have higher
importance than others. We believe that for a USAR robot the
benchmarks ranked from more important to least are:

• Safety
• Goal achievement-performance
• Usability
• Reliability
• Efficiency
• Technical
• Cost–expendable
Safety issues are of highest importance and a rescue team

will firstly consider them in order to use the technological
advancements in their missions. A robot must not compromise
the safety of the rescuers and of the survivors. A robot that
will set an explosion in a hazardous gas area or cause a floor
to collapse due to its weight will not be accepted. For that
reason part of the technical benchmarks should be considered
in conjunction with the safety ones. The performance of the
robot can be simply measured on how well it is able to detect
survivors. For this, standard benchmarks have been defined
by NIST through the RoboRescue competition [24], [25]. The
usability is another important assessment criterion so that the
robots can be used for other missions in the SAR operation
(eg. structural integrity inspection, identification of hazardous
materials, etc.). A solution to that is to have easily manually
reconfigurable robots in short time. Moreover, the robot should
not add to the extensive fatigue of its operator [23]. Lastly, it
should provide facilitation that makes its operation and the
accomplishment of the goals as easy as possible. Designs
and benchmarks for that can be derived from human–machine
interaction interfaces as well as from autonomous behaviours.

In order for these designs and assessments to be realised
software tools are needed. As the design methodology is
decomposed into system and module levels, different software
tools can be used for each. A system level software tool
should allow the developer to build a virtual environment
similar to the real operational one, describe a robot system
and its components and simulate it within the environment.



A more comprehensive list of available software tools as well
as the criteria that were used to evaluate them is presented
in [12]. From these results it was concluded that the “package”
of Player/Stage/Gazebo (PSG) [26] is the most suitable one.
Stage is a 2D simulator that allows a large number of robots
to be simulated in a virtual environment. Gazebo is like Stage
with the only difference that it is 3D. A drawback of Gazebo
is that it is compute intensive and simulations involving large
populations of robots should be avoided. Robot modules and
systems can be described and used both in Stage and Gazebo.
Player is a robot interface providing a network interface to
a variety of robot and sensor hardware. The user can extend
it with his/her own modules. The server/client architecture al-
lows the control programs to be written in any language. These
can be used for virtual robots in Stage, Gazebo as well as
real ones (through TCP) with no or little modification. Lastly,
PSG has interconnections with other SourceForge1 projects
such as MARIE and RobotFlow. An alternative system level
simulator with similar capabilities to PSG is the commercial
WebotsTM [27]. However, its cost is much higher compared to
the free PSG.

V. CONCLUSIONS

The design of modular robotic systems can be decomposed
into system, module and protocol level designs which are
expected to be carried out in parallel. Software tools are
needed for these. However, the vast number of available
packages makes the selection difficult and time consuming.

In this paper a design methodology and a software toolset
for the design and development of robotic systems was for-
malised with the aid of an evaluation framework which is
appropriate for this kind of selection. The toolset was formed
according to the required design and assessment issues for
the system, module and protocols levels of the open modu-
larity problem. This was illustrated through two case studies
focusing on search and rescue and colonoscopy applications.
These show that having a formal structured approach with
appropriate software toolset support, it is possible to develop
and test design concepts very quickly and easily. In this
way developing a modular library can be made possible so
that robotics R&D can focus on the advancement of new
technologies and not those that are known already. In this way
the area of robotics can move forward much faster to deliver
the systems that we all need.
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