04/03/2024

Fundamentals of Radiometry & Photometry

Optical Engineering

Prof. Elias N. Glytsis

School of Electrical & Computer Engineering National Technical University of Athens

Radiometry and Photometry

What is Radiometry?

<u>**Radiometry</u>** is the field of metrology related to the physical measurement of the properties of electromagnetic radiation, including visible light (usually in the range between 0.01-1000 μ m – UV, Visible,IR).</u>

 $https://www.bipm.org/metrology/photometry-radiometry/\#: \citext=Radiometry \cite20 is \cite20 is$

What is Photometry?

<u>Photometry</u> is the science of measuring visible light (360-830 nm) in units that are weighted according to the sensitivity of the human eye. It is a quantitative science based on a statistical model of the human visual response to light - that is, our perception of light - under carefully controlled conditions.

https://andor.oxinst.com/learning/view/article/radiometry-photometry

Radiometric and photometric measurements are of importance for a wide range of industries and applications, including the lighting, space, semiconductor, photovoltaic, optical communication, automotive and color industries, displays and imaging. Other emerging fields include appearance, terahertz applications, photonics, and quantum-based information.

https://www.bipm.org/metrology/photometry-radiometry/#:~:text=Radiometry%20is%20the%20field%20of,terms%20of%20brightness%20and%20colour.

Radiometry and Photometry

https://imagine.gsfc.nasa.gov/Images/science/EM_spectrum_compare_level1_lg.jpg

Radiometric and Photometric Quantities

Radiometric		Photometric				
Quantity	\mathbf{Symbol}	\mathbf{Unit}	Definition	Quantity	\mathbf{Symbol}	\mathbf{Unit}
Radiant				Luminous		
Energy	Q_e	Joule		Energy	Q_v	Talbot
Radiant				Luminous		
Power	Φ_{e}	Watt	$\Phi = \frac{dQ}{dt}$	Power	Φ_v	Lumen (lm)
Radiant				Luminous		candela (cd) =
Intensity	I_e	Watt/sr	$I = \frac{d\Phi}{d\Omega}$	Intensity	I_v	Lumen/sr
Radiance	L_e	$Watt/m^2 sr$	$L = \frac{d^2 \Phi}{d\Omega dA_{s\perp}}$	Luminance	L_v	$Lumen/m^2 sr$
Irradiance	E_e	$\rm Watt/m^2$	$E = \frac{d\Phi}{dA}$	Illuminance	E_v	Lux=Lumen/m ²
Radiant				Luminous		
Exitance	M_e	$\rm Watt/m^2$	$M = \frac{d\Phi}{dA_s}$	Exitance	M_v	$Lumen/m^2$

English Terms	Greek Terms	
Radiant Energy	Ακτινοβολούμενη Ενέργεια	
Luminous Energy	Φωτεινή Ενέργεια	
Radiant Power	Ακτινοβολούμενη Ισχύς	
Luminous Power	Φωτεινή Ισχύς	
Radiant Intensity	Ακτινοβολούμενη Ένταση	
Luminous Intensity	Φωτεινή Ένταση	
Radiance	Ακτινοβολία	
Luminance	Φωτεινότητα (Λαμπρότητα)	
Irradiance	Ένταση Ακτινοβολίας	
Illuminance	Ένταση Φωτισμού	
Radiant Exitance	Αφετική Ικανότητα Ακτινοβολίας	
Luminous Exitance	Αφετική Ικανότητα Φωτεινής Ακτινοβολίας	

Solid Angle Definition

$$\Omega = \int_{S} \frac{d\vec{S} \cdot \hat{\imath}_{R}}{|\vec{R}|^{2}} = \int_{S} \frac{\hat{\imath}_{n} \cdot \hat{\imath}_{R} dS}{|\vec{R}|^{2}} = \int_{A} \frac{dA}{R^{2}}$$

Point Source

$$I = \frac{d\Phi}{d\Omega}$$
$$d\Omega = \frac{dA}{R^2}$$

The intensity *I* of a point source is constant!

Point Source (continue)

Cosine-to-the-third Irradiance Falloff

Radiance and Luminance

Lambertian Source

Extended Source (Lambertian)

Cosine-to-the-fourth Irradiance Falloff

Radiance/Luminance Conservation

$$d^2\Phi_1 = d^2\Phi_2 \implies L_1 = L_2$$

Radiance/Luminance Conservation

Radiance/Luminance Conservation

Prof. Elias N. Glytsis, School of ECE, NTUA

CAIQjRxqFwoTCOjzqIqWq-gCFQAAAAAdAAAABAS

https://askabiologist.asu.edu/sites/default/files/resources/articles/seecolor/Light-though-eye-big.png

Fig. 16.1. (a) Cross section through a human eye. (b) Schematic view of the retina including rod and cone light receptors (adapted from Encyclopedia Britannica, 1994).

- Cones: Provide color sensitivity
- Rods: Color-insensitive
- Color perception depends on light level
- Scotopic vision regime: Low-light-level-vision regime
- Photopic vision regime: High-light-level-vision regime

E. F. Schubert, Light Emitting Diodes, 2nd Ed., Cambridge University Press, 2006

http://book.bionumbers.org/how-big-is-a-photoreceptor/

Rod and Cone photoreceptors in mammalian retina. A) A human retinal section showing three neuronal cell layers: outer nuclear layer (ONL) containing the nucleus of rods and cones; inner nuclear layer (INL) containing the nucleus of bipolar, horizontal and amacrine and Muller glial cells; gonglion cell layer (GCL). B) Diagram of rod and cone structure. C) Scan EM showing the outer segments

Detection of the Blind Spot

Because no neuroepithelial cell is present in the portion of the retina where the optic nerve penetrates, this portion cannot sense light and is called the blind spot. The blind spot is located at an angle of 15° from the line of sight (optical axis) and is about 5° wide. This can be confirmed readily by a visual experiment using the above figure. If the observer fixates his/her right eye on the cross while closing his/her left eye and adjusting the distance between the eye and the cross to about 20 cm, the solid circle disappears from sight. This occurs because the solid circle is imaged on the blind spot.

N. Ohta and A. R. Robertson, "Colorimetry", J. Wiley & Sons, 2005

The Color-Sensitive Cones

In 1965 came experimental confirmation that there are three types of colorsensitive cones in the retina of the human eye, corresponding roughly to red, green, and blue sensitive detectors. The "green" and "red" cones are mostly packed into the *fovea centralis*. By population, about 64% of the cones are redsensitive, about 32% green sensitive, and about 2% are blue sensitive. The "blue" cones have the highest sensitivity and are mostly found outside the fovea. The shapes of the curves are obtained by measurement of the absorption by the cones, but the relative heights for the three types are set equal for lack of detailed data.

E. F. Schubert, Light Emitting Diodes, 2nd Ed., Cambridge University Press, 2006

The Color-Sensitivity of Cones and Rods of Human Eye

Number of Cones: 6-7 millions, 12:6:1 to 40:20:1/R-G-B

Number of Rods: 120 millions

E. F. Schubert, Light Emitting Diodes, 2nd Ed., Cambridge University Press, 2006

Vision Regimes

E. F. Schubert, Light Emitting Diodes, 2nd Ed., Cambridge University Press, 2006

Luminous Efficiency Curve of Human Eye CIE Standard Curve - 1931

Flickering Photometry Measurements

C. Oleari, "Standard Colorimetry", Wiley & Sons, 2016

History of Photometric Units

- Photograph shows plumber's candle
- A plumber's candle emits a luminous intensity of 1 candela (cd). The cd is historical origin of all photometric units.

- First definition (now obsolete): The luminous intensity of a standardized candle is 1 cd.
- Second definition (now obsolete): 1 cm² of platinum (Pt) at 2042°K (temperature of solidification) has a luminous intensity of 20.17 cd.
- Third definition (current): A monochromatic light source emitting an optical power of (1/683) Watt at $\lambda_0 = 555$ nm into the solid angle of 1 steradian (sr) has a luminous intensity of 1 cd.

E. F. Schubert, Light Emitting Diodes, 2nd Ed., Cambridge University Press, 2006

Luminous and Radiant Powers

Luminous and Radiant Power Relation

$$\Phi_v = K \Phi_e$$

Efficacies Photopic Vision $K(\lambda_0) = K_m V(\lambda_0),$ Scotopic Vision $K'(\lambda_0) = K'_m V'(\lambda_0),$

$$\Phi_{v} = 683(lm/W) \int_{\lambda_{0}} \Phi_{e}(\lambda_{0})V(\lambda_{0})d\lambda_{0}, \quad \text{Photopic Vision,}$$

$$\Phi_{v} = 1700(lm/W) \int_{\lambda_{0}} \Phi_{e}(\lambda_{0})V'(\lambda_{0})d\lambda_{0}, \quad \text{Scotopic Vision,}$$

Luminous Flux and Efficiency

 $\begin{aligned} \textbf{Luminous flux} \quad \text{(Unit: Im)} \\ \Phi_{\text{lum}} &= 683 \ \frac{\text{lm}}{\text{W}} \ \int_{\lambda} V(\lambda) \ P(\lambda) \ d\lambda \end{aligned}$

Luminous efficacy of radiation (Unit: Im / W) Luminous efficacy = $\Phi_{\text{lum}} / P = \left(\frac{683 \frac{\text{lm}}{\text{W}}}{1000 \text{ J}_{\lambda} V(\lambda) P(\lambda) d\lambda} \right) / \left(\frac{\int_{\lambda} P(\lambda) d\lambda}{1000 \text{ J}_{\lambda} P(\lambda) d\lambda} \right)$

Luminous efficacy of the source (Unit: Im / W)

Luminous efficiency = $\Phi_{lum} / (IV)$

Caution: Luminous "efficacy" and "efficiency" is being used in literature

E. F. Schubert, Light Emitting Diodes, 2nd Ed., Cambridge University Press, 2006

Category	Туре	Overall luminous efficacy (lm/W)	Overall Iuminous efficiency
Combustion	candle	0.3	0.04%
	gas mantle	1–2	0.15-0.3%
Incandescent	100–200 W tungsten incandescent (220 V)	13.8–15.2	2.0-2.2%
	100–200–500 W tungsten glass halogen (220 V)	16.7 – 17.6 –19.8	2.4-2.6-2.9%
	5–40–100 W tungsten incandescent (120 V)	5-12.6-17.5	0.7-1.8-2.6%
	2.6 W tungsten glass halogen (5.2 V)	19.2	2.8%
	tungsten quartz halogen (12–24 V)	24	3.5%
	photographic and projection lamps	35	5.1%
Light-emitting diode	white LED (raw, without power supply)	4.5–150	0.66-22.0%
	4.1 W LED screw base lamp (120 V)	58.5-82.9	8.6-12.1%
	6.9 W LED screw base lamp (120 V)	55.1-81.9	8.1-12.0%
	7 W LED PAR20 (120 V)	28.6	4.2%
	8.7 W LED screw base lamp (120 V)	69.0–93.1	10.1–13.6%
Arc lamp	xenon arc lamp	30–50	4.4-7.3%
	mercury-xenon arc lamp	50–55	7.3-8.0%
Fluorescent	T12 tube with magnetic ballast	60	9%
	9–32 W compact fluorescent	46–75	8–11.45%
	T8 tube with electronic ballast	80–100	12–15%
	T5 tube	70–104.2	10-15.63%
Gas discharge	1400 W sulfur lamp	100	15%
	metal halide lamp	65–115	9.5–17%
	high pressure sodium lamp	85–150	12–22%
	low pressure sodium lamp	100–200	15–29%
deal sources	Truncated 5800 K blackbody	251	37%
	Green light at 555 nm (maximum possible LER)	683	100%

Mesopic Vision

$$M(m)V_{mes,m}(\lambda_0) = mV(\lambda_0) + (1-m)V'(\lambda_0)$$

m = adaptation coefficient

CIE, "The use of terms and units in photometry implementation of the CIE system for mesopic photometry," *Commission Internationale de l'Eclairage Proceedings (CIE)*, 2016. Technical Report 004:2016.

Mesopic Vision

$$M(m)V_{mes,m}(\lambda_0) = mV(\lambda_0) + (1-m)V'(\lambda_0)$$

Prof. Elias N. Glytsis, School of ECE, NTUA

Luminous Efficacy/Efficiency of a Blackbody

Prof. Elias N. Glytsis, School of ECE, NTUA

ILLUMINATION VALUES

(from I.E.S. Lighting Handbook)

TYPICAL VALUES OF ILLUMINANCE		
ILLUMINANCE (footcandles)	ILLUMINATION SITUATION	
0.02	Full moonlight	
50	Artificial Illuminated Interiors	
100	Sunlight (dull day)	
5000-10000	Sunlight (bright day)	
RECOMMENDED VALUES OF ILLUMINANCE		
ILLUMINANCE (footcandles)	ILLUMINATION SITUATION	
5-10	Halls, aisles, auto parking areas	
10-20	Stairways, storage rooms, dining rooms, bedrooms, auditoriums	
20-50	Rough assembly, materials wrapping, average workshop, reading usual prints	
50-100	Medium assembly work, kitchens, reading fine print, sewing, writing, workbench, barber shops	
100-200	Drafting rooms, severe visual work, extra fine grading and sorting, difficult inspection	
200-500	Fine bench and machine work, very difficult inspection	

 $1 \text{ footcandle} = 1 \text{ lumen/ft}^2 = 10.7639 \text{ lumen/m}^2 = 10.7639 \text{ lux}$

Other Luminance (non SI) Units

Name	Symbol	Conversion to SI
Apostilb	asb	$1 \text{ asb} = 1/\pi \text{ cd}/\text{m}^2$
Blondel	blondel	1 blondel = $1/\pi$ cd/m ²
Candela per square foot	cd/ft ²	1 cd/ft ² =
		10.764 cd/m ²
Candela per square inch	cd/in²	1 cd/in ² = 1550 cd/m ²
Footlambert	fL	1 fL = 3.426 cd/m ²
Lambert	L	$1 L = 10^4/\pi \text{ cd/m}^2$
Nit	nit	1 nit = 1 cd/m ²
Skot	skot	$1 \text{ skot} = 10^{-3}/\pi \text{ cd/m}^2$
Stilb	sb	1 sb = 10000 cd/m ²

Colorimetry Fundamentals

Colorimetry is the field of science and technology that deals with the assessment, quantification and measurement of color as it is perceived by the human eye.

Trichromatic Theory of Color

Every visible color can be reproduced by appropriate mixing of three basic colors (red, R), (green,G) and (blue,B)

CIE Color Matching Functions

- $\lambda_R = 700.0\,\mathrm{nm}$ (red, R)
- $\lambda_G = 546.1\,\mathrm{nm}$ (green,G)
- $\lambda_B = 435.8\,\mathrm{nm}$ (blue,B)

Color Space

 $[F(\lambda_0)] = \bar{r}(\lambda_0)[R] + \bar{g}(\lambda_0)[G] + \bar{b}(\lambda_0)[B]$

Color Matching Functions Experiment

Cone Spectral Sensitivities

Color Matching Functions

 $[F(\lambda_0)] = \bar{r}(\lambda_0)[R] + \bar{g}(\lambda_0)[G] + \bar{b}(\lambda_0)[B]$

RGB color matching functions

Stiles-Burch 10° color matching functions averaged across 37 observers (adapted from Wyszecki & Stiles, 1982)

RGB Tristimulus Values and Chromaticity Coordinates

Tristimulus Values

$$egin{aligned} R &= k \int_{\lambda_0} ar{r}(\lambda_0) P(\lambda_0) d\lambda_0, \ G &= k \int_{\lambda_0} ar{g}(\lambda_0) P(\lambda_0) d\lambda_0, \ B &= k \int_{\lambda_0} ar{b}(\lambda_0) P(\lambda_0) d\lambda_0, \end{aligned}$$

Chromaticity Coordinates

$$r=rac{R}{R+G+B}, \ g=rac{G}{R+G+B}, \ b=rac{B}{R+G+B},$$

CIE 1931 – r, g Chromaticity Diagram

XYZ Color Matching Functions

Fig. 17.1. CIE (1931) and CIE (1978) $\overline{x}\overline{y}\overline{z}$ color matching functions (CMFs). The \overline{y} CMF is identical to the eye sensitivity function $V(\lambda)$. Note that the CIE 1931 CMF is the currently valid official standard.

800 E. F. Schubert Light-Emitting Diodes (Cambridge Univ. Press) www.LightEmittingDiodes.org

Prof. Elias N. Glytsis, School of ECE, NTUA

XYZ Color Matching Functions and Chromaticity Coordinates

X, Y, Z Tristimulus Values

$$egin{aligned} X &= k \int_{\lambda_0} ar{x}(\lambda_0) P(\lambda_0) d\lambda_0, \ Y &= k \int_{\lambda_0} ar{y}(\lambda_0) P(\lambda_0) d\lambda_0, \ Z &= k \int_{\lambda_0} ar{z}(\lambda_0) P(\lambda_0) d\lambda_0, \end{aligned}$$

X, Y, Z Chromaticity Coordinates

$$egin{aligned} x &= rac{X}{X+Y+Z}, \ y &= rac{Y}{X+Y+Z}, \ z &= rac{Z}{X+Y+Z}, \end{aligned}$$

Chromaticity Coordinates x and y are only needed since:

$$x + y + z = 1$$

Transformation between XYZ and RGB

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} 2.7689 & 1.7517 & 1.1302 \\ 1.0000 & 4.5907 & 0.0601 \\ 0.0000 & 0.0565 & 5.5943 \end{pmatrix} \begin{pmatrix} R \\ G \\ B \end{pmatrix} \xrightarrow{x = (0.49000r + 0.31000g + 0.20000b)} /(0.66697r + 1.13240g + 1.20063b) /(0.66697r + 1.13240g + 1.20063b)} /(0.66697r + 1.13240g + 1.20063b) /(0.66697r + 1.13240g + 1.20063b) /(0.66697r + 1.13240g + 1.20063b)} /(0.66697r + 1.13240g + 1.20063b) /(0.66697r + 1.13240g + 1.20063b)) /(0.66697r + 1.13240g + 1.20063b) /(0.66697r + 1.13240g + 1.20063b)) /(0.66697r + 1.13240g + 1.20063b) /(0.66697r + 1.13240g + 1.20063b)) /(0.66697r + 1.13240g + 1.20063b))$$

N. Ohta and A. R. Robertson, Colorimetry: Fundamentals and Applications, J. Wiley & Sons, 2005

CIE 1931 – x,y Chromaticity Diagram

CIE 1931 – x,y Chromaticity Diagram

CIE 1931 – x,y Chromaticity Diagram (created with MatLab)

CIE 1931 – x,y Chromaticity Diagram

Isotemperature Lines – Correlated Color Temperature (CCT)

$$CCT = T_{CCT} = \min_{T} \left\{ d = \left[(u - u(T))^2 + (v - v(T))^2 \right]^{1/2} \right\}$$

Prof. Elias N. Glytsis, School of ECE, NTUA

Color Mixing

Fig. 19.1. (a) Schematic of additive color mixing of three primary colors. (b) Additive color mixing using LEDs.

E. F. Schubert, Light Emitting Diodes, 2nd Ed., Cambridge University Press, 2006

Object's Apparent Color

Additive Colors and Color Mixing

Colored lights are mixed using additive color properties. Light colors are **combining two or more additive colors together which creates a lighter color that is closer to white**. Examples of additive color sources include computer monitors and televisions.

The additive primary colors are **red**, green and blue (RGB). Combining one of these additive primary colors with equal amounts of another one results in the additive secondary colors of cyan, magenta and yellow. Combining all three additive primary colors in equal amounts will produce the color white. Remember combing additive colors creates lighter colors, so adding all three primary colors results in a color so "light" it's actually seen as white. Although that may seem strange, if you think of the absence of all light equaling black, it begins to make sense that adding different colors creates white.

http://www.colorbasics.com/AdditiveSubtractiveColors/

Additive Color Mixing

http://www.colorbasics.com/AdditiveSubtractiveColors/

Subtractive Color Mixing

Before TVs and computer monitors, printers and publishers wondered if they could print color pictures using just three colors of ink. Yes, it is possible, but you have to work in reverse of the process of mixing light colors! We see light colors by the process of **emission** from the source. We see pigment colors by the process of **reflection** (light reflected off an object). The colors which are not reflected are absorbed (subtracted).

The subtractive primary colors are cyan, magenta and yellow (CMY). These are the three colors used in printer ink cartridges.

http://www.colorbasics.com/AdditiveSubtractiveColors/

Subtractive Color Mixing

Subtractive Colors Mixing				
Combine	Absorbs	Leaves		
Cyan + Magenta	Red + Green	Blue		
Cyan + Yellow	Red + Blue	Green		
Magenta + Yellow	Green + Blue	Red		
Cyan + Magenta + Yellow	Red + Green + Blue	Black		

http://www.colorbasics.com/AdditiveSubtractiveColors/

Transform a Visible Wavelength into RGB values

https://www.quora.com/What-is-the-method-to-convert-an-RGB-value-to-a-wavelength http://www.physics.sfasu.edu/astro/color/spectra.html

Some Simple Photometry Examples

A 50mW He-Ne Laser at 633 nm (red light): what is its luminous power?

λ ₀ (nm)	$V(\lambda_0)$	
628	0.2865936	
629	0.2756245	
630	0.265	$\langle lm \rangle$
631	0.2547632	$\Phi = 683 \left(\frac{tm}{m} \right) V(\lambda_0) \Phi(\lambda_0)$
632	0.2448896	$\Phi_v = 683 \left(rac{lm}{W} ight) V(\lambda_0) \Phi_e(\lambda_0)$
633	0.2353344	
634	0.2260528	$\Phi_v = 683 \left(\frac{lm}{W}\right) (0.2353344) \times (50 \times 10^{-3} W) = 8.0367 lm$
635	0.217	$= \Psi_v = 0.05 \left(\frac{W}{W} \right) (0.2555344) \times (50 \times 10^{-10} W) = 0.0507 tm$
636	0.2081616	
637	0.1995488	

<u>A 1W of white light equally distributed between $0.360\mu m \le \lambda_0 \le 0.750\mu m$:</u> what is its luminous power?

$$\Phi_{v} = 683 \left(\frac{lm}{W}\right) \int_{\lambda_{0}} V(\lambda_{0}) \Phi_{e}(\lambda_{0}) d\lambda_{0}$$

$$\Phi_{v} \simeq 683 \left(\frac{lm}{W}\right) \sum_{i} V(\lambda_{0,i}) \Phi_{e}(\lambda_{0,i}) \Delta\lambda_{0}$$

$$= 683 \left(\frac{lm}{W}\right) \sum_{i=1}^{N} \frac{V(\lambda_{0,i}) + V(\lambda_{0,i+1})}{2} \frac{1W}{\lambda_{max} - \lambda_{min}} \left(\frac{1}{nm}\right) \Delta\lambda_{0}(nm)$$

$$= 243.1340 \, lm \quad \text{for} \quad \Delta\lambda_{0} = 1 \, nm$$

https://briankoberlein.com/2015/04/08/blinded-by-the-light/

Luminous efficacy of LED luminaires measured in DIAL's accredited photometric laboratory

https://www.dial.de/en/blog/article/efficiency-of-ledsthe-highest-luminous-efficacy-of-a-white-led/

https://www.konicaminolta.com/instruments/knowledge/color/part2/06.html