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1. Radiometry and Photometry

1.1. Introduction

Radiometry is the process of measuring electromagnetic radiation. Radiometry deals with

the measurement of the energy transferred by a source through a medium (or media) to a

receiver. In radiometry, radiation of all wavelengths in the electromagnetic spectrum (see Fig.

1) is treated equally. Traditionally, radiometry uses the laws of geometrical optics in order to

treat the propagation of energy from a source to the surrounding space [1]. This treatment

is equivalent to assuming that the energy flow is achieved via incoherent electromagnetic

fields. The complexity that is added due to the degree of coherence as well as due to the

interference and diffraction effects, is not necessary in most of radiometry problems [1].

Radiometry is divided according to various regions of the electromagnetic spectrum for

which similar measurement techniques can be applied. Therefore, ultraviolet radiometry,

intermediate-infrared radiometry, far-infrared radiometry and microwave radiometry are con-

sidered separate fields. However, all radiometries are distinguished from the radiometry in

the visible and near-visible region of the electromagnetic spectrum. This subdivision of ra-

diometry that deals with the measurement of the electromagnetic radiation in the visible

range and near-visible part of the electromagnetic spectrum, is called Photometry and is

based on the human perception of light.

1.2. Basic Radiometric and Photometric Quantities

An important part of the design of an optical system is its efficiency in transferring light.

One must be able to specify the amount of energy emitted or received. Many similar quan-

tities are used to specify the amount of light (electromagnetic radiation in general) leaving

a source or arriving at a receiver, and many different systems of units are used. In this

section, all quantities related to radiometry have the adjective radiant and carry the sub-

script “e” (for electromagnetic). On the other hand all quantities related to photometry

have the adjective luminous and carry the subscript “v” (for visible). The basic radiometric

and photometric quantities are the radiant/luminous energy (Qe and Qv respectively), the

radiant/luminous power (Φe and Φv respectively), the radiant/luminous intensity (Ie and Iv

respectively), the radiance/luminance (Le and Lv respectively), the irradiance/illuminance

(Ee and Ev respectively), and the radiant/luminous emittance (Me and Mv respectively).

The radiant/luminous intensity, the radiance/luminance, and the radiant/luminous emit-

tance are usually associated with sources. On the other hand the irradiance/illuminance are

usually associated with receivers of radiation.
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Figure 1: The electromagnetic spectrum from the radio-wave regime up to the gamma-ray regime.

(from url-link: https://en.wikipedia.org/wiki/Electromagnetic spectrum ).

All these quantities definitions and their corresponding SI (System International) units

are summarized in Table 1. In the definitions of Table 1, dΩ is the differential solid angle,

dAs is the differential area of an extended sourse, dAs⊥ is the projected sourse area in a

direction of observation (dAs⊥ = dAs cos θ where θ is the observation angle from the normal

of the source surface). More details on this area and corresponding angle will be presented

later. For the photometric quantities and especially for illuminance and luminance there are

many other non-SI units. The most important of those other units are summarized in Table

2 for information purposes.

1.3. Point Source

A point light source (inside an isotropic homogeneous medium) usually radiates energy

isotropically in the surrounding space. Therefore its intensity I = dΦ/dΩ can be considered

constant. A simple representation of a point light source is shown in Fig. 2, and its intensity

is given by

I =
dΦ

dΩ
=

Φ

Ω
, (1)

where I is the constant intensity (could be either radiant or luminous).

Now consider a planar surface at distance R from an isotropic point source of intensity

I as shown in Fig. 3. The irradiance (or illuminance) at various points of the planar surface
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Table 1: Radiometric and Photometric Quantities

Radiometric Photometric

Quantity Symbol Unit Definition Quantity Symbol Unit

Radiant Luminous

Energy Qe Joule Energy Qv Talbot

Radiant Luminous Lumen

Power Φe Watt Φ =
dQ

dt
Power Φv (lm)

Radiant Luminous candela

Intensity Ie

Watt

sr
I =

dΦ

dΩ
Intensity Iv cd =

lm

sr

Radiance Le

Watt

m2sr
L =

d2Φ

dΩdAs⊥

Luminance Lv

lm

m2sr

Irradiance Ee

Watt

m2
E =

dΦ

dA
Illuminance Ev Lux =

lm

m2

Radiant Luminous

Exitance Me

Watt

m2
M =

dΦ

dAs

Exitance Mv

lm

m2

Table 2: Common Non-SI units of Illuminance and Luminance

Quantity SI unit Non-SI Unit Conversion to SI (K)

(non-SI unit) = K (SI unit)

Illuminance, Ev Lux Phot 10000

Footcandle 10.764

Luminance, Lv cd/m2 Stilb 10000

Apostilb 1/π = 0.3183

Lambert 104/π = 3183

MilliLambert 10/π = 3.183

FootLambert 3.426

Nit 1

Skot 10−3/π

cd/ft2 10.764

cd/in2 1550
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Figure 2: A point light source emitting radiation isotropically into surrounding space. The
intensity of the point source is I .

is sought. Consider a differential area dA which is at the angle θ = 0 (just against the point

source). The irradiance received by this area is given by

E(θ = 0) =
dΦ

dA
=

dΦ

R2dΩ
=

dΦ

dΩ

1

R2
=

I

R2
= E0. (2)

Now the irradiance at a differential area that is located at a direction specified by the angle

θ is sought. Assume that the differential area on the planar surface is dA′ (see Fig. 3). Then

the irradiace due to the point source at this position can be determined as follows

E(θ, φ) =
dΦ′

dA′
=

dΦ′

dA/ cos θ
=

dΦ′

dΩ′R′2
cos θ =

I

R2/ cos2 θ
cos θ =

I

R2
cos3 θ = E0 cos3 θ. (3)

The last equation reveals a fall-off of the received irradiance on the plane that is governed by

the cos3θ term. The fall-off is shown in Fig. 4 where the simple cosine fall-off is also shown as

a reference. Due to the isotropic behavior of the point source the irradiance is independent

of the azimuthal angle φ.

1.4. Extended Source

For an extended source the significant quantity is the radiance/luminance. The radiance (or

luminance), L, can be defined based on the geometric configuration of Fig. 5 as

L =
d2Φ

dΩdAs⊥

=
d2Φ

dΩdAs cos θ
=

dI

dAs cos θ
. (4)

From the previous definition it is evident that when an extended source is observed at a

grazing angle (i.e., when θ → π/2) the radiance/luminance tends to infinity which means that

the source will look brighter and brighter as it is observed at larger angles θ. However, this is
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Figure 3: A point light source emitting radiation in front of a planar surface.

contradictory to everyday practice where extended sources usually look dimmer when they

are observed at angles close to grazing angle. A special case is when the radiance/luminance

is independent of the angle θ. An extended source that has a constant radiance/luminance

is defined as a Lambertian source. In order for this to occur a Lambertian source’s intensity

should be given by I(θ) = I0 cos θ. Therefore, for a Lambertian source, the intensity and

radiance are given by

I(θ) = I0 cos θ, (5)

L(θ) = L0, (6)

where I0 and L0 are constants. A polar plot of the intensity and radiance of a Lambertian

source is shown in Fig. 6.

Now consider a planar surface at distance R from an extended source of radiance L as

shown in Fig. 7. The irradiance/illuminance at various points of the planar surface is sought.

Consider a differential area dA which is at the angle θ = 0 (just against the extended source).

Also consider an elementary area dAs of the extended source.

The irradiance dE received at the plane on the area dA is given by

dE(θ = 0) =
d2Φ

dA
=

LdΩdAs

dA
= L

dA

R2

dAs

dA
= L

dAs

R2
. (7)

If the extended source is Lambertian and has a size with dimensions much smaller than the

distance from the planar surface R, then the last equation can be integrated as follows

E(θ = 0) = E0 =

∫

As

L
dAs

R2
= L

∫

As

dAs

R2
' LΩ, (8)
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Figure 4: The fall-off of irradiance as a function of the angle θ for a point source and an extended
source. The cosine curve is shown for reference purposes.
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Figure 5: An extended source of differential element dAs, emitting radiation flux of d2Φ inside
a solid angle dΩ. The differential element dAs⊥ corresponds to the projected emitting area in the

direction specified by the azimuthal angle φ and the polar angle θ.

where Ω is the solid angle by which the extended source area is subtended from the center

of dA. The irradiance at the infinitesimal area dA′ can be determined as follows

dE(θ) =
d2Φ′

dA′
=

LdΩ′dAs cos θ

dA′
= L

dA′ cos θ

R′2

dAs cos θ

dA′
= L

dAs

R2
cos4 θ, (9)
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source in a polar diagram.

where in the last equation the relation R′ = R/ cos θ was utilized. Assuming again that

the extended source is Lambertian and of dimensions much smaller than the distance R the

irradiance at the plane in the direction of θ is given by

E(θ) =

∫

As

L
dAs

R2
cos4 θ = L

∫

As

dAs

R2
cos4 θ ' LΩcos4 θ = E0 cos4 θ. (10)

The last equation is known as the irradiance cosine-fourth-power fall-off. Therefore, the

irradiance of an extended Lambertian source falls more abruptly than the irradiance of a

point source [that is falling with cosine-third-power as it is shown in Eq. (3)]. The fall-off is

shown in Fig. 4 where the simple cosine fall-off is also shown as a reference along with the

fall-off of a point source. Due to the Lambertian properties of the extended source and its

small dimensions (compared to R) the irradiance is independent of the azimuthal angle φ.

1.5. Conservation Laws for Radiance/Luminance

Now let’s consider an infinitesimal beam propagating inside a lossless isotropic and homo-

geneous medium as shown in Fig. 8. The beam is intersecting two fictitious infinitesimal
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Figure 7: An extended light source emitting radiation in front of a planar surface.

surfaces dA1 and dA2 as shown. The areas are tilted with their normals forming angles of

θ1 and θ2 with respect to the ray direction, respectively. Since the areas are infinitesimal

there is no significant difference in radiance L1 among rays diverging from any point of dA1

and the radiance L2 among rays converging to any point of dA2 [2,3]. The radiant/luminous

infinitesimal power (flux) d2Φ1 of the beam leaving from surface dA1 is given by

d2Φ1 = L1dA1 cos θ1dΩ1 = L1dA1 cos θ1

(

dA2 cos θ2

R2

)

= L1

dA1dA2 cos θ1 cos θ2

R2
. (11)

Similarly, the radiant/luminous infinitesimal power d2Φ2 of the beam leaving from surface

dA2 is given by

d2Φ2 = L2dA2 cos θ2dΩ2 = L2dA2 cos θ2

(

dA1 cos θ1

R2

)

= L2

dA2dA1 cos θ2 cos θ1

R2
. (12)

However, due to the lossless medium the power should be conserved. Therefore, d2Φ1 = d2Φ2

and from the last two equations it is implied that

L1 = L2. (13)

Because there was not any restriction imposed on the areas dA1 and dA2 of the beam and

their centers C1 and C2 Eq. (13) must apply to any pair of points along the beam assuming

a lossless, isotropic and homogeneous medium. This property is called radiance/luminance

invariance or radiance/luminance conservation [2, 3].
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Figure 9: An infinitesimal beam carrying radiant/luminous flux refracting at the interface between
two lossless isotropic and homogeneous media of refractive indices n1 and n2 respectively. The beam

is crossing an infinitesimal surface dA at the boundary between the two media.

Next, the radiance conservation should be considered in the case that the beam is re-

fracting at an interface between two different lossless isotropic and homogeneous media. The

situation is depicted in Fig. 9. An infinitesimal area dA of the beam is shown on the smooth
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boundary surface S between the two media [2]. Using the same arguments as previously the

infinitesimal power incident on the area dA of the boundary is given by

d2Φ1 = L1dA cos θ1dΩ1 = L1dA cos θ1 sin θ1dθ1dφ, (14)

where L1 is the radiance/luminance from the side of dA facing medium of refractive index

n1 and φ is the azimuthal angle on the tangential plane to the boundary at the position of

dA. Similarly, the power that is refracting into the medium of refractive index n2 is given by

d2Φ2 = L2dA cos θ2dΩ2 = L2dA cos θ2 sin θ2dθ2dφ, (15)

where L2 is the radiance/luminance from the side of dA facing medium of refractive index

n2. If it is assumed that the power reflection coefficient at the boundary is ρ (for the angle

of incidence θ1) then the relation between d2Φ1 and d2Φ2 should be

d2Φ2 = (1 − ρ)d2Φ1 =⇒

L2dA cos θ2 sin θ2dθ2dφ = (1 − ρ)L1dA cos θ1 sin θ1dθ1dφ =⇒

L2 cos θ2 sin θ2dθ2 = (1 − ρ)L1 cos θ1 sin θ1dθ1. (16)

From Snell’s law it is straightforward to show that n1 cos θ1dθ1 = n2 cos θ2dθ2. Using the

Snell’s law the last equation results in

L2

n2

2

= (1 − ρ)
L1

n2

1

, (17)

where Eq. (17) represents the radiance/luminance conservation via an interface. In case that

the reflections can be neglected (as it was done in the section of blackbody radiation) then

L1/n
2

1
= L2/n

2

2
. Of course if n1 = n2 Eq. (17) coincides to Eq. (13) (ρ = 0, since there is no

refractive index change).
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2. Basics of Photometry

Photometry is the radiometry that is associated with the visible and near visible part of

the electromagnetic spectrum. Therefore, photometry is associated with the response of the

human eye to light. In order to set the ground for photometry it is necessary to examine

the response of the human eye to visible light. A simple diagram of the human eye is shown

in Fig. 10. Light passes through the cornea, the iris, the eye lens, the aqueous humour,

the vitrous humour and falls on the light sensitive retina (which constitutes the human

photodetector). The retina contains two types of photoreceptors the cone cells and the rod

cells. These photoreceptors convert the absorbed photon energy into electrochemical signals

that through the optic nerve are transferred to the back of the human brain which performs

the necessary processing to implement the sense of vision. The cone cells are primarily

responsible for the day vision (which means good illumination conditions) while the rod

cells are mainly responsible for the night vision (which means poor illumination conditions).

The cone-based vision is called photopic vision while the rod-based vision is called scotopic

vision. There is also an intermediate regime referred as mesopic vision in which both rod and

cone cells operate and there is not a clear distinction between the role of cone and rod cells.

A simple diagram of these vision regimes is shown in Fig. 11 (from Ref. [4]). In practice

photopic vision is distinguished from scotopic vision by the luminance range in which it

functions. Photopic vision usually prevails for luminances of about 3 cd/m2 or higher and

scotopic vision prevails for luminances of about 0.003 cd/m2 or lower [5]. The mesopic vision

regime is in between, i.e. for luminances between 0.003 cd/m2 to 3 cd/m2. However, as it

implied from Fig. 11 these boundaries are fuzzy and depend on the individual. The more

sensitive rod cells require at least 5-14 photons to respond at very low luminance values

(they become insensitive when the luminance drops to about 10−6 cd/m2). Cones on the

other hand require about 100-1000 photons before they respond [5]. By comparison, four or

more photons are necessary to induce a reaction in the fine silver halide grains of high-speed

photographic film. Therefore, human eye rod cells have a detectivity that compares well

to that of photographic film. On the other hand, CCD arrays can have a sensitivity to

about 1 photon/pixel/second distributed over the surface of a sensor having 1 million active

pixels [6].

The rod cells are sensitive to a wider section of the visible spectrum. The cone cells

are divided into three main types: (a) The red-type (R-type) cone cells (or equivalently

long wavelength L-cone cells) which are more sensitive in the red-green part of the visible

spectrum; (b) the green-type (G-type) cone cells (or equivalently medium wavelength M-

cone cells) which are more sensitive in the green-blue part of the visible spectrum; and finally
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Figure 10: A diagram of the human eye with its photoreceptors (three types of cones and rods).

(from url-link: http://www.blueconemonochromacy.org/how-the-eye-functions/ ).
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Figure 11: Approximate ranges of vision regimes (slightly modified from Ref. [4]).

(c) the blue-type (B-type) cone cells (or equivalently short wavelength S-cone cells) which

are more sensitive in the blue-violet part of the visible spectrum. The rod and cone cells

spectral sensitivity is revealed in their absorption characteristics in the visible spectrum and

is shown in Fig. 12. The rod cells are more abundant in the retina and their peak density

is at an angle from the central vision region (fovea centralis) while the cone cells are fewer

and they are mostly concentrated in the central region of the retina. The fovea centralis

is a narrow portion of the retina, about 1.5mm in diameter, in which the cone cells cones

density is the highest. The cone and rod cell densities are shown in Fig. 13. Observe the
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region of the optic nerve where there are no cone or rod cells (which is referred as the blind

spot). There are approximately 100 millions rod cells and 7 millions cone cells on the average

human eye [5]. The relative densities of the cone cells varies also depending on the cone cell

type. The relative ratio of red-type, green-type, and blue-type cone cells is approximately

32:16:1 for the average human eye [5]. This means that there are many more red-type and

green-type cone cells than blue-type cone cells.

Figure 12: Normalized human photoreceptor absorbances for different wavelengths of light. (from
url-link: https://en.wikipedia.org/wiki/Photoreceptor cell ).

2.1. Human Eye Response and Its Luminous Efficiency

The human eye is a photodetector that converts radiant energy (photons) into electrochemi-

cal signals that are processed by the human brain. As it was discussed previously, both cone

cells and rod cells comprised the human photodetectors. The sensitivity of these cells was

shown in Fig. 12. All these cells produce as an output a brightness and a color response.

However, the response of the human eye is not determined by a physical measurement but

by the sensation of brightness and colors that a human perceives to various light conditions.

In order to measure the spectral sensation of the human eye a matching method was em-

ployed [5]. More specifically, a predetermined reference light of a specific wavelength was

utilized in order for the luminous power Φv of a test light of arbitrary wavelength to match

the sensation of the reference light. By measuring the radiant power Φe of the test light in

the match conditions the luminous and the radiant powers can be related via the equation

Φv = KΦe, (18)

13



Figure 13: The density of photoreceptors (cones and rods) of the human eye. (from url-link:

https://en.wikipedia.org/wiki/Photoreceptor cell ).

where K is a measure of the brightness sensation per unit radiant power and could be defined

as the responsivity of the human eye. There are several methods to make the matching of

the test light to the reference light [5]. However, the most common and practical is the flicker

method. In this method a reference light of wavelength λref and a test light of wavelength

λtest are alternating into the visual field of an individual and the perceived color could flicker.

There is a frequency of alternating the two colors for which a flickering is observed in the

perceived color when the brightness of the two lights differ. In this regime the brightness of

the test light can be varied until there is no flickering in the perceived color by the alternation

of the two colors in the visual field of the individual under test. For the setting where the

flickering disappears the two lights are perceived to be matched. Based on this and similar

techniques the value of K in Eq. (18) was determined. The K is called the luminous efficacy

of radiation and is wavelength dependent K(λ0). If Km is the maximum value of K(λ0) then

K(λ0) = KmV (λ0) where V (λ0) is called luminous efficiency. Then the following equations

14



can be written

K(λ0) = KmV (λ0), (19)

K ′(λ0) = K ′

mV ′(λ0), (20)

where the non-primed variables correspond to photopic vision conditions and the primed

variables to scotopic vision conditions respectively.

The standard photopic (or scotopic) luminous efficiency function V (λ0) [7, 8] (or V ′(λ0)

[9]) is based on a curious combination of measurement data from several sources and obtained

by several methods. These luminous efficiencies are shown as functions of the freespace

wavelength in Fig. 14. The uncertainty surrounding these functions (initially for V (λ0)) is

illustrated by the fact that the values from the different studies that were averaged to define

it diverged by as much as a factor of ten in the violet [7,10]. The standard luminous efficiency

function V (λ0) seriously underestimates sensitivity at short wavelengths. The constants Km

and K ′

m of Eqs. (19) and (20) have been set equal to 683 lm/W and 1700 lm/W , respectively.

The maximum of the V (λ0) luminous efficiency occurs at λ0 = 555µm, while the maximum

of V ′(λ0) occurs at λ0 = 507µm. Therefore, 683 lm were set equal to one Watt of radiant

power at the freespace wavelength of λ0 = 555µm. Since, the initial data of luminous

efficiency were published by CIE in 1924 there have been several improvements. However,

for the purposes of this introductory material not any other curves will be described. The

interest reader may refer to Refs. [5, 11] for additional information.

Equations (19) and (20) can be generalized for the conversion of the radiant power of a

light source into luminous power. If Φe(λ0) is the spectral radiant power of a light source

then its luminous power is given by

Φv = 683(lm/W )

∫

λ0

Φe(λ0)V (λ0)dλ0, Photopic Vision, (21)

Φv = 1700(lm/W )

∫

λ0

Φe(λ0)V
′(λ0)dλ0, Scotopic Vision, (22)

where the integral is over all the spectrum of the light source. For monochromatic sources

(as they are nearly most of the lasers) Φe(λ0) = P0δ(λ0 − λ0L) and Φv = κP0V (λ0L), where

λ0L is the wavelength of the monochromatic source and P0 its corresponding power. The

parameter κ = 683 lm/W or 1700 lm/W for the photopic regime or the scotopic regime,

respectively.

The situation for the mesopic vision regime is quite more complicated and there is not

a standard luminous efficiency curve as the ones shown in Fig. 14 for photopic and scotopic

regimes. However, some recent proposals [12, 13, 14] have been published in the literature

15



Freespace Wavelength, λ
0
 (nm)

350 400 450 500 550 600 650 700 750

L
u

m
in

o
u

s
 E

ff
ic

ie
n

c
y
, 
V

(λ
0
)

0

0.2

0.4

0.6

0.8

1
Photopic

Scotopic

Figure 14: Luminous efficiency curve under good illumination conditions (photopic) and poor

illumination conditions (scotopic).

regarding this issue. Based on Ref. [13] the mesopic luminous efficiency, Vmes,m(λ0), can be

defined from the following equation

M(m)Vmes,m(λ0) = mV (λ0) + (1 − m)V ′(λ0), (23)

where m is the adaptation coefficient which according to Ref. [13] can be determined from

the photopic adaptation luminance and spectral characteristics of the visual adaptation field,

M(m) is a normalization function such as the mesopic luminous efficiency Vmes,m(λ0) can

have a maximum of unity. This mesopic luminous efficiency should be used for the mesopic

vision regime where the luminance is approximately between 0.003 cd/m2 and 3 cd/m2. For

m = 1 the mesopic luminous efficiency becomes the photopic one, V (λ0), while for m = 0

it becomes the scotopic one, V ′(λ0). The spectral mesopic luminous efficiencies for various

values of the adaptation coefficient m are shown in Fig. 15.

The maximum mesopic luminous efficacy Kmes,m can be determined from the following

equation [13]

Kmes,m =
683

Vmes,m(λ0 = λ0,p)
, lm/W, (24)

where λ0,p = 555nm, i.e. the peak wavelength of the photopic luminous efficiency. The values

of the normalization function M(m) and of the maximum mesopic luminous efficacy Kmes,m
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Figure 15: Mesopic luminous efficiency curves for various values of the adaptation coefficient.

The m = 1 corresponds to photopic luminous efficiency and the m = 0 corresponds to the scotopic
luminous efficiency.

are shown as functions of the adaptation coefficient m in Figs. 16 and 17, respectively. It

can be observed that the maximum mesopic efficacy for m = 1 is 683 lm/W and for m = 0 is

1700 lm/W respectively, as expected for the photopic and scotopic vision regimes. Finally,

the resulting luminous power of a light source in the mesopic regime can be determined by

Φv = Kmes,m(lm/W )

∫

λ0

Φe(λ0)Vmes,m(λ0)dλ0, Mesopic Vision. (25)

3. Colorimetry Basics

Colorimetry is the field of science and technology that deals with the assessment, quantifica-

tion, and measurement of color as it is perceived by the human eye. Therefore, in colorimetry,

subjective color descriptions are replaced by objective numerical values. The foundations

of colorimetry were set in the early nineteenth century with the work of Young, Helmholtz

and Maxwell, who recognized the principles of additive and subtractive color mixing, and

proposed the trichromatic nature of human color vision. The trichromatic theory is based on

the three types of photoreceptors of the human retina and their response to various stimuli.

The trichromatic theory is based on the experimental result that almost any color can be
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Figure 16: The normalization function M(m) as a function of the adaptation coefficient m.
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Figure 17: The maximum mesopic efficacy Kmes(m) (in lm/W ) as a function of the adaptation

coefficient m.
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reproduced by appropriate mixing of three primary colors (red, green and blue). Most of

today’s color TV’s, computer monitors, color photography, etc. are based on the trichromatic

theory [5]. Another competing theory is the opponent-color theory which was proposed by

E. Hering in 1878 [5]. This is again based on three types of photoreceptors which respond

to red-green, yellow-blue, and white-black opponencies (the previous pairs form the oppo-

nent colors) and that any color that is observed by the human eye depends on the response

of these opponent-color photoreceptors. In the remainder of this introductory material the

trichromatic theory will be followed which is the prevailing one for the time being. The

colorimetry as a science has been formalized in 1931 when the International Commission for

Illumination (Commission Internationale de l’ Eclairage, CIE) has standardized the mea-

surement of color by means of color-matching functions and the corresponding chromaticity

diagram [15].

3.1. RGB Color Space

In a trichromatic color mixing system color matching functions need to be determined. These

are the relative weights of the three primary colors to be used. According to CIE [15,16] the

color matching functions were determined using the following three monochromatic primary

colors: λR = 700.0nm for R (red), λG = 546.1nm for G (green), and λB = 435.8nm for B

(blue). In addition, as a basic stimulus was considered the white color. The relative amounts

of the three primary colors that reproduced the basic white color was 1.0000:4.5907:0.0601

for R, G, and B respectively when photometric units are used. In other words a 1.0000 +

4.5907+0.0601 = 5.6508 lumens of white light can be matched by 1.0000 lumen of R, 4.5907

lumens of G, and 0.0601 lumens of B. In order to establish the color matching functions the

measurement system was based on the setup shown in Fig. 18. A test monochromatic light

illuminates the test field area. A human observer is able to “make” the two lights appear

identical in the comparison field are (color matching) by adjusting the relative intensities

of the red (R), green (G), and blue (B) light (the three primaries used). The three color-

matching functions are obtained from a series of such matches, in which the human observer

sets the intensities of the three primary lights required to match a series of monochromatic

lights across the visible spectrum [4]. In case that the monochromatic color can not be

matched with the use of the three primaries in the comparison field area, some primary color

is added into the test field area by activating some primaries in the test area. This is the

case that the relative intensity weighting of the corresponding primary is considered to be

negative.

Let [F ] the stimulus of a given color [5]. The stimuli of the three primaries are defined

as [R], [G], and [B] for red, green, and blue primaries, respectively. Assume the [F (λ0)] is
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Figure 18: The color matching measurement procedure. A monochromatic test light illuminates

the test field. The test light is matched using combination of the three primaries [red (R), green
(G), blue (B)] in the comparision field according to the human observer that adjusts the weights

of the three primaries. In some cases usage of primaries in the test field is required for matching
the test color. This is the case of negative weighting factor of a primary.

the stimulus of the test monochromatic color shown in Fig. 18. Then according to Ref. [5]

the following equation can be written

[F (λ0)] = r̄(λ0)[R] + ḡ(λ0)[G] + b̄(λ0)[B], (26)

where r̄(λ0), ḡ(λ0), b̄(λ0) are defined as the color matching coefficients at wavelength λ0. The

equality sign of Eq. (26) means that there is a visual match (for the human eye) of the test

light (at λ0) with the linear mixture of the [R], [G], and [B] primaries. In addition, it is

assumed that the Grassmann empirical rules of analogy and addition are followed [5]. These

are related to the relative intensities of the primaries of Fig. 18. The values of these color

matching coefficients are shown in Fig. 19 as functions of the freespace wavelength λ0 of the

test color [15].

Equation (26) can be viewed as a vector equation in three dimensional vector space

spanned by [R], [G] and [B] primaries [5]. The three-dimensional space so constructed is

used for the geometrical expression of colors and is called a color space. Any color [F ] can

be located in the color space at the point defined by the matching amounts of [R], [G] and

[B], i.e., [F ] = R[R] + G[G] + B[B]. The R, G, B, matching amounts are defined as the
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tristimulus values of stimulus (color) [F ]. For a light source with power spectrum P (λ0) the

R, G, and B tristimulus values can be obtained by the following equations

R = k

∫

λ0

r̄(λ0)P (λ0)dλ0,

G = k

∫

λ0

ḡ(λ0)P (λ0)dλ0,

B = k

∫

λ0

b̄(λ0)P (λ0)dλ0,

(27)

where k is a constant to make R, G, and B dimensionless. The intersection (r, g, b) of the

vector [F ] and the unit plane R+G+B = 1 is commonly used to express color [F ] according

to the following equations

r =
R

R + G + B
,

g =
G

R + G + B
,

b =
B

R + G + B
,

(28)

where the r, g, b are defined as the rgb chromaticity coordinates. Since r + g + b = 1 only

the two out of the three are necessary to define the color [F ] (for example r and g can be

used). A diagram showing only the r and g (or any two of the r, g, b) is called chromaticity

diagram. Such a diagram for r and g is shown in Fig. 21. The chromaticity coordinates of

color [F ] correspond to a point inside chromaticity diagram. The chromaticity coordinates

for monochromatic light are called spectral chromaticity coordinates and correspond to the

contour of the chromaticity diagram of Fig. 21 which also referred as spectrum locus. The

straight line connecting the left and right edges of the lobe-shaped curve forms the line of

purples. The point r = g = 1/3 = b point is the equal energy white color point. The

chromaticity coordinates of any real color are enclosed by the spectrum locus and the line

of purples.

3.2. XYZ Color Space

In order to avoid the negative values that the r̄(λ0), ḡ(λ0),and b̄(λ0) can attain, CIE published

the x̄(λ0), ȳ(λ0), z̄(λ0) color matching functions that are greater or equal to zero for any

wavelength in the visible spectrum. The three color-matching functions x̄(λ0), ȳ(λ0), z̄(λ0)

reflect the fact that human color vision possesses trichromacy, that is, the color of any light

source can be described by just three variables similarly to the r̄(λ0), ḡ(λ0), b̄(λ0) color

matching functions. These color matching functions are dimensionless. The ȳ(λ0) color

matching function was set equal to the photopic luminous efficiency of the human eye, i.e.
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Figure 19: The r̄(λ0), ḡ(λ0), b̄(λ0) color matching functions (CIE 1931 - 2 degrees).

ȳ(λ0) = V (λ0). The CIE 1931 x̄(λ0), ȳ(λ0), z̄(λ0) color matching functions are shown in

Fig. 22 [15]. Similarly to Eq. (27) the tristimulus X, Y , Z values for a light source of power

spectrum P (λ0) can be defined as

X = k

∫

λ0

x̄(λ0)P (λ0)dλ0,

Y = k

∫

λ0

ȳ(λ0)P (λ0)dλ0,

Z = k

∫

λ0

z̄(λ0)P (λ0)dλ0,

(29)
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Figure 20: The r, g, b chromaticity coordinates of color stimulus [F ].

where k is a constant to make X, Y , and Z dimensionless. Then the corresponding xyz

chromaticity coordinates can be defined similarly to rgb by

x =
X

X + Y + Z
,

y =
Y

X + Y + Z
,

z =
Z

X + Y + Z
,

(30)

Again since x + y + z = 1 only two of the chromaticity coordinates (for example x and y)

are needed (by convention x and y). It can be shown that for the equal energy white color

the tristimulus X, Y , and Z values are related to the tristimulus R, G, and B values by a

linear transformation [5, 16]





X
Y
Z



 =





2.768892 1.751748 1.130160
1.000000 4.590700 0.060100

0 0.056508 5.594292









R
G
B



 . (31)

Because the color matching functions are the tristimulus values of monochromatic light the

above transformation holds between [x̄(λ0), ȳ(λ0), z̄(λ0)] and [r̄(λ0), ḡ(λ0), b̄(λ0)] also.

The CIE chromaticity diagram is shown in Fig. 23. The curved boundary of this shoe-

horse-type diagram corresponds to monochromatic colors. The bottom line of the shoe-horse

diagram is known as the “line of purples” and there are no real monochromatic color on this

23



(a)

(b)

Figure 21: (a) The CIE r-g chromaticity diagram (from 1931 2-deg data) where the white point has
r = g = b = 1/3 and its representative color in sRGB standard is determined by R = G = B = 1/3.

In this case the white point looks grey due to its low illumination and accordingly all other colors
in the diagram. (b) Same as (a) but with R = G = B = 1 (in sRGB standard) which corresponds

to the correctly illuminated white.

line. Any interior point of the diagram specified by the (x, y) chromaticity coordinates

represents a color that can be seen by the human eye. White light is found in near the

center of the chromaticity diagram. When white light is represented by the xw = yw = zw =
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Figure 22: The x̄(λ0), ȳ(λ0), z̄(λ0) color matching functions (CIE 1931 - 2 degrees).

1/3 point is called equal-energy-point. However, depending on the white ligth definition

other white point locations could be used (assuming the the spectral distribution of the

white light source is known). For example for standard RGB color system (sRGB) the

D65 illuminant could be used (which assumed blackbody illumination at a temperature of

T = 6504◦ K). In the latter case xw = 0.3127, yw = 0.3290 and zw = 0.3583 correspond to the

chromaticity coordinates of the white light. In Fig. 23a the (x, y) chromaticity coordinates

were transformed into R, G, B coordinates assuming that y = Y (where Y represents the

luminance of the color). In Fig. 23b the luminance was adjusted from the r, g, b values from

point to point and looks like a brighter version of Fig. 23a.
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(a)

(b)

Figure 23: (a) The CIE chromaticity diagram for X = x, Y = y, and Z = z. (b) The CIE
chromaticity diagram for X = x/wmax, Y = y/wmax, and Z = z/wmax where wmax = max{x, y, z}.
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