
L. Czerr);i-Turner HOl'lochYomdtor: 

FOCUSING 
MIRROR -

,., 
;',.,,., 

INSTRUMENT 
AX'S 

;' 
;' 

;' 

COLLIMATING 
MIRROR 

(a) 

2.<p=9,2° " O.8'333prT)
<i'2.00 

L~.1.. few +h.L gratin 9 ' p= 11-.5158° 


G r2"ti ng EqUO:tlCr): 


,<::::.1 D' 
S,1y)U + SlnQl 

e 
/ 

:: P+i' e~ == p-<.p ({'Yon) -h'3l.\~) 

Therefort:' 
) 

. ~ 0 -= -A. ( s in( p+<p) + s; i1 (p -<:p) ) 
~ '----...J 

~ c = 500 n VY) , S' 8/ 

812.~ 249:r- I') m/r~d 
fa Y lit. 1~ b nYn I~~ 

(b) 

15 rs'l..f .,3 n. M I r;)cl . tf.V' 

'2 f-. ~5 \ Y1~ I~ ca­

Elias
Text Box
Optical Engineering
Problem Set  Νο.  5 

Elias
Text Box
Problem  1:  (Czerny-Turner Monochromater)



I 

~2j Gra-+ing 'DiffYdctlon: 
,- ~.! - -'. 

<..a) no = 2.00 d = 250pm 

. I 0 

)0 :- O. 632.8 }1 YYl 9 = 20 

= 2. J:, Sine 

UJ€.. he:we 

m =1 
( 1 ) 

3.628'"
 

From Ul and (2.) i 

'" ... \' "" e'\\0 So \ l)" = ~. l = 
2L\.I 

e/== 

e I (in 6liY-)B 

1.81..3 

The 

(·s 

Elias
Text Box
Problem  2:  (Grating  Diffraction)



~o s.in 20 0 
_ "In 8-

'! 
L -",-, I-

A-

li O.G32'i? 
sin~h s.i n 20° - L 

L= -2 

~::- -:1. 

( ::: 0 

C= +1 

C ::: +2 

I)

8_2. 

G"-1 ­

8~' == 
n 

8+.1 =: 

g'l
-+2 == 

5 

36.523
0 

27. 942 0 

2.0 
0 

12.443
0 

.5.100 0 

-D 

(3) 

ALl C:\ t\gles ere measur-ed 

(c) ~\Y')2.0· - L 0.6328 ~.-1 =f>
5 

i + Sin 20<:1 =0 L ~ S ( 1 + s;i(200) ==p 
0,632.8 

L <. 10.6038 .,... ll'Y\8'>< - 10 

,/

G+ 10 - 67. 4550 

L=> 10) G;.= - 67.4-550 I 

"'-... ­

(cO 
'I

l=-2 ~ ~36. 5'2.3 
0 

L::- -1 ) 8':, ~ 2 7, ~4 2. 0 

(=0 
0 

8~~ 200 

) 



3. Fourier Transform ot a Rec+angular Aper+ure 

1t 
. - -----_._-_._-~---~..~--_.__ .. 

fT/ 
Wha+ ~ou !;"E'e .:If -tN second ·((~)cfd plane?
 

If frx)::!) in +rv. input planE' (nn1 ioccl! plan~) -tl'\o.... al- +-kL
 

l' 
b 

' (X()-= Olb ~Inc5lnc ~-r/Cl ( A~~b) 
sin (IT ;/;0( )a.b SIn, err ~b)-

Xf_ ' :if"IT IT'))f'/0. 
~t/b 

-alons x.r: 

tilong ~-f: 

Elias
Text Box
Problem  3:  (Fraunhofer  Diffraction  by  a  Rectangular  Aperture)



.., C!S> ~ t.;"2'::;~' 

~ = -
p.x

f 

"'" e ~ (f~~) ;(5') €;> 

= (2', - "'6 ~ .... 







AΣKHΣH 4 : (Edge Diffraction)

Figure 1: Case (a) with an incident plane wave

(a) The diffraction from the edge will follow the Fresnel diffraction assumptions in order to

use the theory of the Cornu spiral with the Fresnel integrals. Since the incident wave is a

plane wave p = ∞ and q = 60 cm. The wavelength of the incident plane wave is λ0 = 589nm.

Let’s assume the random point z0 along the z-axis in Fig. 1. Then, assume the s-axis such

as s = z − z0. Therefore the origin of s is the point z = z0. From the Fresnel integral the

field at z0 is given by

E(z0) = C
∫

∞

0

exp [ − j
k

2
(z − z0)

2
1

q
]dz,

= C
∫

∞

−z0

exp [ − j
k

2
s2

1

q
]ds,

where C is a constant. Defining the normalized variable u = s(2/λ0q)
1/2 as in the book we

can write the field at point z0 in the form

E(z0) =
Eu
√

2

[

[0.5 − C(−u0)] − j[0.5− S(−u0)]
]

,

I(z0)

Iu
=

1

2

[

[0.5 − C(−u0)]
2 + [0.5 − S(−u0)]

2
]

,
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where Eu and Iu is the unobstructed amplitude and intensity while C(u) and S(u) the

standard Fresnel integrals and u0 = z0(2/λ0q)
1/2.

Now for z0 = z1 = 1mm ⇒ u1 = z1(2/λ0q)
1/2 = 1.6822 and C(−u1) = −0.3277 and

S(−u1) = −0.5666 which results in I(z1)/Iu = 0.9114.

Similarly, for z0 = z2 = −2mm ⇒ u2 = z2(2/λ0q)
1/2 = −3.3643 and C(−u2) = +0.4159

and S(−u2) = +0.4570 which results in I(z2)/Iu = 0.0045.

Figure 2: Case (b) with an incident spherical (actually cylindrical) wave emerging from point A

(b) The case of the icident light coming through a slit at point A the main difference is that

we have to take into account the relative wavefront that arrives at he edge’s plane. According

to the theory, the s0 = z′

0
distance on the edge plane corresponding to z0 at the screen plane

are related (from similar triangles) by the following equation

z′

0

z0

=
p

p + q
,

where it is evident that for p → ∞, z′

0
→ z0. Then, assume the s-axis such as s = z − z′

0
as

before. Therefore the origin of s is the point z = z′

0
. From the Fresnel integral the field at

z0 is given by

E(z0) = C
∫

∞

0

exp
[
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k

2
(z − z′

0
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dz,
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= C
∫
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exp
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k

2
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1

q

)]

ds,

where C is a constant. Defining the normalized variable u = s[(2/λ0)(1/p + 1/q)]1/2 as in

the book we can write the field at point z0 in the form

E(z0) =
Eu
√

2

[

[0.5 − C(−u0)] − j[0.5− S(−u0)]
]

,

I(z0)

Iu

=
1

2

[

[0.5 − C(−u0)]
2 + [0.5 − S(−u0)]

2
]

,

where Eu and Iu is the unobstructed amplitude and intensity while C(u) and S(u) the

standard Fresnel integrals and u0 = z′

0
[(2/λ0)(1/p + 1/q)]1/2

Now for z0 = z1 = 1mm (p = 60 cm and q = 120 cm), z′

1
= z1[p/(p + q)] = 1/3mm

⇒ u1 = z′

1
[(2/λ0)(1/p + 1/q)]1/2 = 0.9712 and C(−u1) = −0.7786 and S(−u1) = −0.4095

which results in I(z1)/Iu = 1.2310.

Similarly, for z0 = z2 = −2mm, (p = 60 cm and q = 120 cm), z′

2
= z2[p/(p + q)] =

−2/3mm ⇒ u2 = z′

2
(2/λ0q)

1/2 = −1.9424 and C(−u2) = +0.4319 and S(−u2) = +0.3536

which results in I(z2)/Iu = 0.0130.
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Spherical Wave

Plane Wave

Figure 3: Plot of the intensity pattern I/Iu as a function of the screen distance z for a Spherical wave
(blue) and a plane wave (green)
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