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For σ = 20deg, n0 = 1.0, and np = 2.0 the angle of deviation δ versus the angle of

incidence α1 is shown in the next figure.
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For σ = 25deg, n0 = 1.0, and np = 2.5 the angle of deviation δ versus the angle of

incidence α1 is shown in the next figure.
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It is observed that in this case a1 does not start from zero. The reason for this is

that α2 should be less than the critical angle θcr = sin−1(n0/np). Therefore, α2 = σ − β1 =

σ−sin−1(n0 sinα1/np) < θcr. From this it can be found that α1 > sin−1((np/n0) sin(σ−θcr)).

For the values of the parameters given it can be determined that α1 > 3.5565deg.
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Figure 1: A Cartesian ovoid of refractive index ni is shown in a surrounding medium of refractive index
no (no < ni). Every ray from the point object O ends up in the point image I. The function of the ovoid is
P (x, y) = 0. The distances so and si are the object and image distances from the ovoid’s left vertex.

(a) The basic equation of the Cartesian ovoid (as discussed in class) is the following

no

√

x2 + y2 + ni

√

(so + si − x)2 + y2 = noso + nisi = A, (1)

where so and si the object and image distances as shown in Fig. 1. In order for the shape

shown to be valid the refractive index of the ovoid should be larger than the refractive index

of the surrounding region, i.e. ni > no. Therefore, the analysis below is valid only if ni > no.

The vertex points V1 and V2 are the points of the ovoid for y = 0. These points can be

determined by setting y = 0 in the previous equation which results in the following

no|x| + ni|so + si − x| = A, (2)

which has the following solutions

x = s0, for 0 < x < so + si (3)

x =
A + ni(so + si)

no + ni
= so +

2ni

no + ni
si, for so + si < x < ∞. (4)
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The first of the previous equations [Eq. (3)] shows the position of V1 and the second [Eq. (4)]

shows the position of V2. For the values of the parameters s0 = 5cm, and si = 10, 15, 20 cm,

no = 1.0, and ni = 1.50 the values of V2, as measured from x = 0, (where the object O is)

are 17, 23, and 29 cm, respectively.

(b) In order to find the equation of the ovoid, P (x, y) = 0, Eq. (1) must be solved. This

equation can be transformed by moving one square root to the right hand side and raising to

the second power both sides twice. Then the square roots are eliminated and a polynomial

form is obtained

a1y
4 + b1(x)y2 + c1(x) = 0, with (5)

a1 = (n2

o − n2

i )
2,

b1(x) = 2
[

A2 + B(x)
]

(n2

o − n2

i ) − 4An2

o,

c1(x) =
[

A2 + B(x)
]

2 − 4A2n2

ox
2,

A = noso + nisi,

B(x) = n2

ox
2 + n2

i (so + si − x)2.

The solutions to Eq. (5) are

y1(x) = ±






−b1(x) +
√

b1(x)2 − 4a1c1(x)

2a1







1/2

, (6)

y2(x) = ±






−b1(x) −
√

b1(x)2 − 4a1c1(x)

2a1







1/2

. (7)

The negative solutions show that the ovoid is symmetric with respect to the x-axis. From the

two solutions the smaller in absolute value is the one that specifies the ovoid that is seeked

(no(OS) + ni(IS) = noso + nisi). I.e. the solution for y(x) that satisfies P (x, y(x)) = 0 is

the |y(x)| = min{|y1(x)|, |y2(x)|}. The resulting ovoids for the parameters s0 = 5cm, and

si = 10, 15, 20 cm are shown in Fig. 2a.

(c) In order to find the maximum angle of rays emanating from O and incident on the

refractive surface of the ovoid P (x, y) = 0, it is necessary to find the tangent from point O,

OS, to the ovoid surface. This is schematically shown in Fig. 3. The angle φ of the tangent
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Figure 2: The three generated Cartesian ovoids are shown for the parameters no = 1.0, ni = 1.5,
so = 5 cm and si = 10, 15, and 20 cm. Just for information the other solution that corresponds to the
larger root of Eq. (5) is also shown in Fig. 2b along with the smaller solutions in the same scale. The
second (larger) solution is not accepted from a physical point of view. It corresponds to the solution of
no(OS) − ni(IS) = −(noso + nisi). These ovoids are known in the literature as Cartesian ovoids.

can be found if the following equation is solved (ẏ = dy/dx)

tanφ =
y(x∗)

x∗
=

dy

dx

∣

∣

∣

x∗
= ẏ(x∗). (8)

In order to solve the previous equation it is necessary to find the derivative ẏ(x) for the

ovoid. This can be found by differentiating Eq. (1) with respect to the variable x keeping

y = y(x). After some algebra the equation for determining the derivative ẏ(x) at any point
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Figure 3: The same Cartesian ovoid with the incident from O beam being tangential to the ovoid. This
specifies the maximum angle φ that by refraction should pass from point I. The (x∗, y∗) denotes the point
on the ovoid that the beam is tangential. Again it is assumed that no < ni.

in the ovoid is given by

[

[(A1(x, y)− A2(x, y)]y2
]

ẏ2+ 2[A1(x, y)xyA2(x, y)(so + si − x)y]ẏ +

A1(x, y)x2 − A2(x, y)(so + si − x)2 = 0, (9)

A1(x, y) = n2

o[(so + si − x)2 + y2],

A2(x, y) = n2

i (x
2 + y2).

Then Eq. (8) can be solved graphically if f1(x) = y(x)/x and f2(x) = ẏ(x) are plotted as

functions of x. The resulting curves and intersections points are shown in Fig. 4. When the

numerical solution point (x∗, y∗) is specified the angle φ can also be calculated from Eq. (8).

The results are tabulated in Table 1.
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Figure 4: Graphical solution for determing the point for which the incident beam from O is tangential
to the ovoid. The intersection of the two curves gives the point x∗ and then y∗ can be determined from the
equation of the ovoid P (x∗, y∗) = 0.

Table 1: Results for question (c) of Cartesian Ovoid Problem

s0 (cm) si (cm) x∗ (cm) y∗ (cm) φ (deg)

5 10 8.6116 3.2925 20.9235

5 15 9.7478 4.4697 24.6331

5 20 10.7146 5.4948 27.1502



Analytical solution for tangent:

Proposed by Mr. Orfeas Voutiras (Optical Science & Engineering Class - Spring 2015)

From Eq. (8) tanφ = α = y∗/x∗. Therefore y = αx for the point (x∗, y∗) that is

tangential to ovoid. Inserting this relation into Eq. (1) the following equation is derived

(setting s0 + si = D):

√
x2 + α2x2 +

ni

n0

√

(D − x)2 + α2x2 =
n0s0 + nisi

n0

= A′. (10)

Re-arranging the above equation and squaring both sides it is straightforward to derive the

following second order polynomial equation with respect to x (setting κ = ni/n0):

(1 + α2)(κ2 − 1)x2 +
[

2A′(1 + α2)1/2 − 2Dκ2
]

x + D2κ2 − A′2 = 0. (11)

The last equation should have a single solution with respect to x in order to correspond to

the tangent to the ovoid. Therefore, the discriminant of the polynomial of Eq. (11) should

be zero. This can be expressed from the following equation:

D = 4
[

A′(1 + α2)1/2 − Dκ2
]

2 − 4(D2κ2 − A′2)(1 + α2)(κ2 − 1) = 0. (12)

Setting p = (1 + α2)1/2 the previous equation is written as

[

A′2 − (D2κ2 − A′2)(κ2 − 1)
]

p2 −
[

2A′Dκ2
]

p + D2κ2 = 0 =⇒

a1p
2 + a2p + a3 = 0 =⇒ (13)

p = (1 + α2)1/2 =
−a2 ±

√

a2
2 − 4a1a3

2a1

=⇒ α = ±
√

p2 − 1, (14)

where the root for |α| < 1 is the one that corresponds to the ovoid of interest. Using the

above analytical solutions the following results can be derived (see Table 2). It is reminded

that φ = tan−1(α).

Of course the slope does not immediately specify the point (x∗, y∗). However, this can

be found solving Eq. (9) for x∗ if y∗ = αx∗ and ẏ = α.



Table 2: Results for question (c) using the analytical approach:

s0 (cm) si (cm) α φ (deg)

5 10 0.3823357 20.92364

5 15 0.4585373 24.63322

5 20 0.5128322 27.15022
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