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Problem 1 (Reflected and Transmitted Powers): [0%] 
Sellmeier's formula expresses the dependence of the refractive index of a material n(λ) as a function of the 
freespace wavelength.  For your convenience Sellmeier's formula is given below along with a table of the 
related constants B and C, for 3 separate materials (sapphire crystal is anisotropic and both the ordinary and the 
extraordinary indices are included). 

 
Table of coefficients of Sellmeier equation 

Material B1 B2 B3 C1 C2 C3 

borosilicate crown 
glass 
(known as BK7) 

1.03961212 0.231792344 1.01046945 6.00069867×10−3µm2  2.00179144×10−2µm2  1.03560653×102µm2  

sapphire 
(for ordinary 
wave) 

1.43134930 0.65054713 5.3414021 5.2799261×10−3µm2  1.42382647×10−2µm2  3.25017834×102µm2  

sapphire 
(for extraordinary 
wave) 

1.5039759 0.55069141 6.5927379 5.48041129×10−3µm2  1.47994281×10−2µm2  4.0289514×102µm2  

fused 
silica(quartz)  0.696166300 0.407942600 0.897479400 4.67914826×10−3µm2  1.35120631×10−2µm2  97.9340025 µm2  

 
For this problem assume that light from a monochromator is incident at an angle θ (from air) on a planar and 
smooth surface of quartz (fused silica).  The polarization of the incident wave could be either TE or TM.  
(a)  The freespace wavelength of the incident wave is 633nm.  Give the graphical representation of the 
reflection and transmission coefficients, as well as the percentages of the reflected and transmitted powers as 
functions of the angle of incidence (0 ≤ θ ≤ 90deg) for both polarizations.  (You could use the program 
fresnel_equations.m – matlab – that is provided in the course webpage).  
(b)  In this case the angle of incidence is constant and equal to θ = 30deg.  Give the graphical representation of 
the reflection and transmission coefficients, as well as the percentages of the reflected and transmitted powers 
as functions of the freespace wavelength (0.1μm ≤ λ ≤ 2.0μm) for both polarizations.   
 
Problem 2 (Interference Filter): [0%] 
In some application it is desired to use a one-half wavelength thick interference filter (d = λ/2 ή d = (2m+1) λ/2 
where m is an integer) to scan the wavelength range of wavelengths around λ0. The interference filter is 
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specified to operate at λs where λs > λ0.  The half wavelength layer in the interference filter has an index of 
refraction of n.  Calculate the angular tuning rate of the filter (the change in resonant wavelength for a change 
in angle) at λ0. If the interference filter is designed for λs = 520nm and has n=1.4, calculate these quantities for 
the argon laser wavelength 514.5nm. 
 

                                                                     
 
Problem 3 (Fabry-Perot Interference Filter): [0%] 
A beam of white light (which has a continuous spectrum between 400nm to 700nm) is incident at an angle of 45 
deg on  to a set of parallel glass plates between a thin air layer of thickness of 0.001cm.  The reflected light is 
passing through a prism spectrometer.  How many and which dark lines are seen in the spectrum? 
 
Problem 4 (Fabry-Perot Interference Filter): [0%] 
A Fabry-Perot interferometer is comprised of a transparent plate of refractive index n = 4.50 and thickness 2cm.  
The parallel surfaces of the plate have a power reflectivity of (r2) 90%.  If this interferometer is used in the 
range of freespace wavelength of 546nm determine (a) the highest order bright fringe (largest value of integer 
m), (b) the ration Tmax/Tmin, and (c) the resolving power of the interferometer.  
 
Problem 5 (Newton’s Rings): [0%] 
Newton rings are being formed between a plano-convex lens and a flat planar optical surface as it is shown in 
the following figure.  The fringes are formed due to interference between the partially reflected beams 1 and 2 
as it is indicated in the figure.  If the diameter of the 10th bright ring is 7.89mm when the freespace wavelength 
of the incident light is 546.1nm determine the radius of curvature R of the spherical surface of the lens.  What is 
its focal distance if the refractive index of the lens is n = 1.50? 
 

 
 
 
 
 
 
 
 



Problem 6 (Antireflection Layer): [25%] 
In this problem the scope is to design an anti-reflective layer between two materials with refractive indices n1 
and n2 respectively.  The incident plane wave has a freespace wavelength of λd and is incident at an angle θ1 as 
it is evident from the figure below.  From the electromagnetic analysis of this problem (using the transmission 
line theory), it is straightforward to determine the reflection coefficient Γ (of the wave that is reflected by the 
combination of the anti-reflective layer and the region of refractive index n2) which is given by the following 
equations (for ΤΕ and ΤΜ polarization and angle of incidence θ1): 

 
In the above equations Ζi correspond to the wave impedances of the media involved (i = 1, 2, c, where c 
corresponds to the anti-reflective layer of thickness dc).  The angles θi correspond to the propagation angles 
inside each material.  For the numerical implementation assume that λd = 500nm (design wavelength), n1 = 1.0, 
and n2 = 2.0. 
(a) Initially tackle the design of the anti-reflective layer for normal incidence, i.e. for θ1 = 0 deg.  Determine the 
minimum thickness dc as well as the refractive index nc of the anti-reflective layer.  Make a graphical 
representation of the reflected power as a function of the freespace wavelength in the range 300nm ≤ λ0 ≤ 
700nm when the anti-reflective layer was designed for λd.  Furthermore, make a graphical representation of the 
reflected power as a function of the angle of incidence θ1 (-90deg ≤ θ1 ≤ +90deg) when the designed 
wavelength is used. 
(b) Now tackle the design of the anti-reflective for an angle of incidence θ1 = 45 deg.  Determine the minimum 
thickness dc as well as the refractive index nc of the anti-reflective layer for either TE or TM polarization. Make 
a graphical representation of the reflected power as a function of the freespace wavelength in the range 300nm 
≤ λ0 ≤ 700nm when the anti-reflective layer was designed for λd (separate for each polarization).  Furthermore, 
make a graphical representation of the reflected power as a function of the angle of incidence θ1 (-90deg ≤ θ1 ≤ 
+90deg) for both polarizations when the designed was done for TE polarization and correspondingly when the 
designed was done for TM polarization. 

 
 
 
 



Problem 7 (Lloyd’s Mirror): [20%] 
Lloyd’s mirror is a setup that interference can be observed similarly to the Young’s experiment.  In the setup 
shown in the figure below rays are emanating from the monochromatic point source S and interfere at point A 
either coming propagating directly to A from the source or via reflection from the mirror.  Assume that the 
surrounding medium is air. 
(a) Determine an equation in the xyz coordinate system that defines the positions of the interference (fringe) 
maxima and an equation for the corresponding minima in the space of wave interference of the source S.  The 
equations should have the form f(x,y,z) = 0.   
(b) Determine in the xz plane (y=0) the loci of points where the maxima and the minima of the interference are 
observed.  For the numerical implementation assume that D = 5μm and λ=1μm.  Make a graphical 
representation of the loci for -20μm < z < 20μm and 0μm < x < 15μm. 
(c) If z = L = 20μm determine (numerically according to the date of (b)) the first 5 maxima (constructive 
interference) and the first 5 minima (destructive interference) at the plane z=L (with y=0).  Compare the exact 
numerical values with their approximate ones.  
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Problem 8 (Spherical and Plane Wave Interference): [20%] 
A spherical wave and a plane wave of the same freespace wavelength interfere in freespace.  The spherical 
wave emanates from the origin (0,0,0) of the coordinate system and has the form Esw =  (E0/r) exp (-𝑗𝑘0r) where 
𝑘0 is the wavenumber of freespace and r = (x2+y2+z2)1/2.  The plane wave has a wavevector of 𝑘�⃗ =
 𝑘0(𝑐𝑜𝑠𝜃 𝚤�̂� +  𝑠𝑖𝑛𝜃 𝚤�̂�) and has the form Epw = E0 exp [-𝑗𝑘0(xcosθ + 𝑦𝑠𝑖𝑛𝜃)].   It is assumed that the 
polarization of both waves are collinear in order to avoid vectorial considerations.  
(a) [10%] Determine an equation, in the xyz coordinate system, that defines the positions of the interference 
(fringe) maxima and an equation for the corresponding minima. The equations should have the form f(x,y,z) = 
0.   
(b) [20%] Determine in the xy plane (z = 0) the loci of the points where the maxima and the minima of the 
interference are observed.  For the numerical implementation assume that the freespace wavelength is λ0=1μm.  
Make a graphical representation of the loci for -20μm < x < 20μm and -20μm < y < 20μm.  Determine the loci 
for several values of the optical path difference.  
(c) [10%] Determine (numerically, using the data of (b)) along the line x = 20μm (z=0) the points where 
maxima occur (constructive interference) and where minima occur (destructive interference) along the y 
direction (use the parameters you have selected in (b)). 

 
 
 
 

Problem 9 (Young’s Double Slit Experiment): [10%] 
White spatially coherent light (380nm-780nm) is sent through two slits in a Young’s Double Slit Experiment 
setup.  The separation between the slits is 0.5mm and the observation screen is 50cm away from the slits.  
There is a hole in the screen at a point 1mm away from the central line. 
(a) [5%] Which wavelengths will be absent in the light coming from the hole? 
(b) [5%] Which wavelengths will have strong intensity in the light coming from the hole? 

 
 
Problem 10 (Three-Plane-Wave Interference): [25%] 
Three coherent plane waves of the same frequency interfere inside a homogeneous, isotropic, and linear 
medium. This problem is based on information included in journal paper: J. L. Stay and T. K. 
Gaylord,``Three-beam-interference lithography: contrast and crystallography,'' Appl. Opt., vol. 47, no. 18, 
pp. 3221-3230, Jun. 20, 2008. 
The wavevectors of the three plane waves are 𝑘�⃗ 𝑖 (where i = 1,2,3).  For example, one plane wave is shown in 
the figure below.  Every plane wave can be written in the following phasor form:  

𝛦�⃗ 𝑖 =  𝐸𝑖�̂�𝑖exp [−𝑗�𝑘�⃗ 𝑖 ∙ 𝑟 + 𝜑0𝑖�], 
where 𝑟 is the position vector, 𝐸𝑖 is the amplitude of plane wave i (assume that are real numbers), 𝜑0𝑖 is a 
phase, and �̂�𝑖 is the polarization vector of plane wave i (assume that these vectors are real so all plane waves are 
linearly polarized). 
(a) [8%] Find the intensity, 𝛪(𝑥,𝑦, 𝑧) = |𝛦�⃗ |2, which results from the interference of the three plane waves in 
space (x,y,z). 



(b) [8%] From question (a) is obvious that the interference is characterized by three terms that correspond to the 
interference of the plane waves every two. Specifically, there is one term that corresponds to the interference of 
𝑘�⃗ 1 with 𝑘�⃗ 2, a second terms which corresponds to the interference of 𝑘�⃗ 1 with 𝑘�⃗ 3, and a third term that 
corresponds to the interference of 𝑘�⃗ 2 with 𝑘�⃗ 3.  Find the equations for the maximum interference of each of 
these three terms. Show that the equation of the third term could result from the equations of the first two.  
Therefore, the maximum total interference of the three plane waves is comprised from lines that are the 
intersections of the equations (which are planes) of the maximum interference of the two terms discussed 
previously.  If it is desired these lines to be parallel to the z axis what would be the condition that the three 
wavevectors should satisfy? 
(c) [9%] Now assume that the three plane waves are interfering in air (n = 1) and they have the following 
parameters (k0 = 2π/λ0, and λ0 =  1μm): 
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,  𝜑01 =  𝜑02 =  𝜑03 = 0. 
Make a graphical representation (with the help of MatLab or equivalent software) of the intensity Ι in the xy 
plane.  You could utilize the Matlab function surface(x,y,Ι), shading interp for the colored representation of 
the intensity in the xy plane.  Calculate numerically the visibility of the fringes produced, V = 
(Imax−Imin)/(Imax+Imin) as well as the angles θi and φi of the three plane waves and verify that their polarizations 
are compatible with plane waves.  

 
 
 
 
 
Note:  For all the problems that you use some kind of software (such as MatLab or others) it is mandatory 
(in order to gain full credit for the corresponding problem) to include in your answers a printout of the code that 
you have written and used.  


