01/04/2024

Image Formation Fundamentals

Optical Engineering

Prof. Elias N. Glytsis

School of Electrical & Computer Engineering National Technical University of Athens

Imaging

Imaging Limitations

- Scattering
- Aberrations
- Diffraction

F. L. Pedrotti and L. S. Pedrotti, Introduction to Optics, 2nd Ed., Prentice Hall, 1993.

Example Optical Systems

https://www.jirehdesign.com/images/tmc_eye_illustrations/eyeAnatomyCamera.jpg

Perfect Imaging Using Reflective Surfaces (Cartesian Reflecting Surfaces)

Prof. Elias N. Glytsis, School of ECE, NTUA

Cartesian Reflecting Surfaces

Cartesian Reflecting Surfaces

Cartesian Reflecting Surfaces

Parabolic Mirror

Perfect Imaging Using Refractive Surfaces (Cartesian Refracting Surfaces)

- 1. Each ray will travel in least time (Fermat).
- 2. All rays will take the same time (Isochronous).
- 3. Equal time implies equal *nd* (optical path length)

Perfect Imaging Using Refractive Surfaces Cartesian Ovoids – Real Image

Perfect Imaging Using Refractive Surfaces Cartesian Ovoids – Virtual Image

Perfect Imaging Using Refractive Surfaces Cartesian Refracting Surfaces Examples

 $s_o = 5 \text{ cm}, s_1 = 10 \text{ cm}, n_1 = 1, n_2 = 1.5$ $4 \frac{4}{9} \frac{4$

Real Image

Virtual Image

Reflection at a Spherical Mirror

Reflection at a Spherical Mirror

Reflection at a Spherical Mirror

$$m = \frac{h'}{h} = -\frac{s'}{s},$$

Sign Conventions (light propagation from left to right)

Spherical Mirrors (Light from Left-to-Right)							
R	s	\mathbf{s}'					
R > 0	s > 0	s' > 0					
(convex)	real (left of V)	real (left of V)					
R < 0	s < 0	s' < 0					
(concave)	virtual (right of V)	virtual (right of V)					
Magnification	m > 0 (upright)	m < 0 (inverted)					
	$m = \frac{h'}{h} = -\frac{s'}{s}$						
Paraxial Equation	$\frac{1}{s} + \frac{1}{s'} =$	$\frac{2}{R} = \frac{1}{f}$					

Image Formation by Spherical Mirrors

Real images in a concave mirror

A mirror can produce a real image, provided that it is a concave mirror. In this experiment, we use an incandescent lamp as the object, whose image we project onto a vertical white screen. There is a horizontal baffle between the lamp and the screen so that light from the lamp doesn't fall directly on the screen. Due to Aberrations, this cheap mirror is not a good approximation to a parabola, so using its whole area would produce a very distorted image. For that reason, we use a stop (a sheet of black paper) with a small hole to reduce the mirror area. The photo at top left shows a side view, and a schematic lies below. The middle photo was taken from above the mirror, looking towards the lamp and screen. A larger version of this photo is shown at right. In this version, the top half of the photo has been brightened, while the bottom half has been darkened, to show better the details of the lamp and to make it more obvious that the image is inverted. Note that rays of light really do meet at the position of this image, which is why we call it a real image.

An incandescent lamp is the object. Its (real) image is projected on a screen via a concave mirror.

http://www.animations.physics.unsw.edu.au/jw/light/mirrors-and-images.htm

Spherical Mirrors

Convex

Concave

www.animations.physics.unsw.edu.au

http://www.animations.physics.unsw.edu.au/jw/light/mirrors-and-images.htm

Convex Spherical Mirrors Applications

Refraction at a Spherical Interface

 $n_{1} \sin \theta_{1} = n_{2} \sin \theta_{2} \Longrightarrow n_{1} \theta_{1} \simeq n_{2} \theta_{2} \Longrightarrow$ $n_{1}(\alpha_{1} - \phi) = n_{2}(\alpha_{2} - \phi) \Longrightarrow$ $n_{1}\left(\frac{h}{s} - \frac{h}{R}\right) = n_{2}\left(\frac{h}{s'} - \frac{h}{R}\right) \Longrightarrow$ $\frac{n_{1}}{s} - \frac{n_{2}}{s'} = \frac{n_{1} - n_{2}}{R} \Longrightarrow$ $\frac{n_{1}}{s} + \frac{n_{2}}{s'} = \frac{n_{2} - n_{1}}{R}, \quad \text{(with sign convention)}$

Prof. Elias N. Glytsis, School of ECE, NTUA

Refraction at a Spherical Interface

Paraxial Equation

 $\frac{n_1}{s} + \frac{n_2}{s'} = \frac{n_2 - n_1}{p}$

Refraction at a Spherical Interface

 $n_1 < n_2$

s

R

h'

 \boldsymbol{h}

m =

 $n_1 s$

 $n_2 s$

Lenses Types

Thin Lens Equation (derivation)

$$\begin{aligned} \frac{n_1}{s} + \frac{n_2}{s''} &= \frac{n_2 - n_1}{R_1}, \\ \frac{n_2}{-(s'' - d)} + \frac{n_3}{s'} &= \frac{n_3 - n_2}{R_2} \Longrightarrow \\ \hline \frac{n_1}{s} + \frac{n_3}{s'} &= \frac{n_2 - n_1}{R_1} + \frac{n_3 - n_2}{R_2}, \\ \hline \frac{1}{s} + \frac{1}{s'} &= \frac{n_2 - n_1}{n_1} \left(\frac{1}{R_1} - \frac{1}{R_2}\right) = \frac{1}{f} \end{aligned}$$

Thin Lens Equation

Conventional Converging Lens

Conventional Diverging Lens

Surrounding medium of the same index n₁

Surrounding medium of the different index n_1 (left) and n_3 (right)

$$\frac{n_1}{s} + \frac{n_3}{s'} = \frac{n_2 - n_1}{R_1} - \frac{n_2 - n_3}{R_2}$$
$$\frac{1}{f_1} = \frac{1}{n_1} \left(\frac{n_2 - n_1}{R_1} - \frac{n_2 - n_3}{R_2} \right)$$
$$\frac{1}{f_2} = \frac{1}{n_3} \left(\frac{n_2 - n_1}{R_1} - \frac{n_2 - n_3}{R_2} \right)$$

Thin Lenses

Thin Lens Imaging (positive lens)

Prof. Elias N. Glytsis, School of ECE, NTUA

Thin Lens Imaging (negative lens)

Image is always virtual, upright, and reduced

Negative Thin Lens

http://hyperphysics.phy-astr.gsu.edu/hbase/geoopt/raydiag.html

Thin Lens Imaging

Thin Lens Imaging

Positive Lenses								
Lens Type	\mathbf{R}_1	\mathbf{R}_2	s	\mathbf{s}'	m	f		
Biconvex	+	_	+	±	Ŧ	+		
Plano-Convex	∞	_	+	±	Ŧ	+		
Convex-Plano	+	∞	+	±	Ŧ	+		
Positive Meniscus	+	+	+	±	Ŧ	+		
$(R_1 < R_2)$								
Comment				\mathbf{s}'	m			
$ \text{if} \ s>2f$				+	_			
				+	_			
				_	+			
Negative Lenses								
Lens Type	\mathbf{R}_1	\mathbf{R}_2	s	\mathbf{s}'	m	f		
Biconcave	_	+	+	_	+	_		
Plano-Concave	∞	+	+	_	+	_		
Concave-Plano	_	∞	+	_	+	_		
Negative Meniscus	_	_	+	_	+	_		
$(R_1 < R_2)$								

Example Lenses

Example Imaging with Convex Lenses

Image by a convex lens for object placed at different distance from it

http://www.ekshiksha.org.in/eContent-Show.do?documentId=56

Example Imaging with Convex Lenses

Virtual image formed by the convex lens

http://www.ekshiksha.org.in/eContent-Show.do?documentId=56

Magnifying Glass

Example Imaging with Concave Lenses

http://philschatz.com/physics-book/contents/m42470.html

Optics of the Human Eye

http://fourier.eng.hmc.edu/e180/lectures/eye/node5.html

$$\frac{1}{s} + \frac{1}{s'} = \frac{1}{f} \Longrightarrow f = \frac{s's}{s+s'} \qquad s' \simeq 17 \, mm$$
Optics of the Human Eye

The relaxed eye has an approximate optical power of **60 diopters (D)** (ie, its focal length is 16.7 mm in air), with the corneal power being about 40 D, or two thirds of the total power. Due to orderly arrangement of collagen fibrils in the cornea, it is highly transparent with transmission above 95% in the spectral range of 400-900 nm. The refractive index of the cornea is n≈1.3765±0.0005. The amount of light reaching the retina is regulated by the pupil size, which can vary between 1.5 mm and 8 mm. The anterior chamber of the eye, which is located between the cornea and lens capsule, is filled with a clear liquid—the aqueous humor having a refractive index n≈1.3335. The crystalline lens of the eye, located behind the iris, is composed of specialized crystalline proteins with refractive index of n=1.40-**1.42**. The lens is about 4 mm in thickness and 10 mm in diameter and is enclosed in a tough, thin (5-15 mm), transparent collagenous capsule. In the relaxed eye, the lens has a power of about 20 D, while in the fully accommodated state, it can temporarily increase to 33 D. The vitreous humor—a transparent jelly-like substance filling the large cavity posterior to the lens and anterior to the retina—has a refractive index n≈1.335.

https://www.aao.org/munnerlyn-laser-surgery-center/optical-properties-of-eye

P. Artal, "Optics of the eye and its impact in vision: a tutorial," Adv. Opt. Photon., vol. 6, pp. 340–367, Sep 2014.

Prof. Elias N. Glytsis, School of ECE, NTUA

Optics of the Human Eye

Near-Sighted Eye (Myopia) - Correction

Too far for near-sighted eye to focus

Far-Sighted Eye (Hyperopia/Presbyopia) - Correction

Astigmatic Eye - Correction

http://www.visionexcellence.com.au/WP1/wp-content/uploads/2013/05/astigmatism.jpg

Matrix Approach for Paraxial Rays

Translation Matrix

Spherical Refraction Matrix

Combining ABCD Matrices

$$\begin{bmatrix} y_{N} \\ \alpha_{N} \end{bmatrix} = \begin{bmatrix} A_{N} & B_{N} \\ C_{N} & D_{N} \end{bmatrix} \begin{bmatrix} y_{N-1} \\ \alpha_{N-1} \end{bmatrix} = \begin{bmatrix} A_{N} & B_{N} \\ C_{N} & D_{N} \end{bmatrix} \begin{bmatrix} A_{N-1} & B_{N-1} \\ C_{N-1} & D_{N-1} \end{bmatrix} \begin{bmatrix} y_{0} \\ \alpha_{0} \end{bmatrix} = \begin{bmatrix} A_{N} & B_{N} \\ C_{N} & D_{N} \end{bmatrix} \begin{bmatrix} A_{N-1} & B_{N-1} \\ C_{N-1} & D_{N-1} \end{bmatrix} \cdots \begin{bmatrix} A_{1} & B_{1} \\ C_{1} & D_{1} \end{bmatrix} \begin{bmatrix} y_{0} \\ \alpha_{0} \end{bmatrix} = \begin{bmatrix} \prod_{i=1}^{N} \tilde{M}_{N+1-i} \end{bmatrix} \begin{bmatrix} y_{0} \\ \alpha_{0} \end{bmatrix} = \tilde{M}_{total} \begin{bmatrix} y_{0} \\ \alpha_{0} \end{bmatrix},$$

Example of Combining ABCD Matrices – Thick lens

Significance of A, B, C, and D Elements

Prof. Elias N. Glytsis, School of ECE, NTUA

Significance of A, B, C, and D Elements

$\left[egin{array}{c} y_f \ lpha_f \end{array} ight] = \left $	$\begin{bmatrix} A \\ C \end{bmatrix}$	$\begin{bmatrix} B \\ D \end{bmatrix}$	$\left[\begin{array}{c}y_i\\\alpha_i\end{array}\right]$
--	--	--	---

- D = 0: In this case $\alpha_f = Cy_i$, and if y_i is fixed, then all output rays have the same slope with respect to the optical axis. I.e. all rays leaving the object from y_i , at any slope, exit parallel (with slope α_f) from the output plane of the optical system. In this case the input plane coincides with the *First Focal Plane* of the optical system.
- A = 0: In this case $y_f = B\alpha_i$, and if α_i is fixed, then all output rays pass from the same point y_f in the output plane independently of their height at the input plane. In this case the output plane coincides with the *Second Focal Plane* of the optical system.
- B = 0: In this case $y_f = Ay_i$, and if y_i is fixed, then all output rays pass from the same point y_f in the output plane independently of their slope at the input plane. These points are called object and image points and the optical system is an *Imaging System*. In addition, $A = y_f/y_i$ is the transverse magnification of the optical system.
- C = 0: In this case $\alpha_f = D\alpha_i$, and if α_i is fixed, then all output rays exit with the same slope α_f at the output plane independently of their heights at the input plane. The input and output planes form what is called as a *Telescopic System*. In addition, $D = \alpha_f / \alpha_i$ is the angular magnification of the optical system.

Cardinal Points and Planes

https://www.youtube.com/watch?v=Wq0eMr_Lib0

Principal Planes and Cardinal Points of an Optical System

Cardinal Points Location

F. L. Pedrotti, L. M. Pedrotti, and L. S. Pedrotti , Introduction to Optics, 3rd Ed., Pearson-Prentice Hall, 2007.

Principal Planes and Cardinal Points of an Optical System

54

Principal Planes of a Converging Lens System

Principal Planes of a Thin Lens, a Thick Lens and a Complex Lens

Prof. Elias N. Glytsis, School of ECE, NTUA

Principal Planes and Cardinal Points

similar orthogonal triangles $O'OF_1$ and F_1H_1A and the H_2BF_2 and F_2II'

$$\begin{array}{rcl} \displaystyle \frac{h}{s-f_1} &=& \displaystyle \frac{h'}{f_1}, \\ \\ \displaystyle \frac{h}{f_2} &=& \displaystyle \frac{h'}{s'-f_2}, \\ \end{array} & \mbox{resulting in} \\ \displaystyle \frac{f_1}{s} + \displaystyle \frac{f_2}{s'} &=& 1. \end{array}$$

Prof. Elias N. Glytsis, School of ECE, NTUA

Principal Planes and Cardinal Points

Prof. Elias N. Glytsis, School of ECE, NTUA

General Purpose Imaging Lens System Nikon 50mm (51.6mm) Nikkor-H f/2 Auto lens (on sale January 1964) Distances are in millimeters

https://www.kenrockwell.com/nikon/images1/50mm-f2/50mm-f2-KEN_4011.jpg

Example Imaging with Nikon 50mm (51.6mm) Nikkor-H f/2 Auto lens (on sale January 1964)

In this example a real optical lens is used for imaging. The lens is shown in the figure where the cardinal points are also denoted. An object, O, is placed at a distance $L_O = 100$ mm in front of the front lens surface (from vertex V1) of the Nikkor-H auto 50mm f/2 photographic lens. It is sought to calculate the location of the image, I, with respect to the rear surface of the rear lens (distance L_I), as well as its magnification.

Prof. Elias N. Glytsis, School of ECE, NTUA

Example Imaging with Nikon 50mm (51.6mm) Nikkor-H f/2 Auto lens (on sale January 1964)

$$\begin{array}{rcl} s_o &=& L_O + \left[34.1 - (51.6 - 7.3 - 38.1) \right] = L_O + 27.9 = 127.9 \, mm \Longrightarrow \\ \frac{1}{s_o} + \frac{1}{s_i} &=& \frac{1}{f} \Longrightarrow \frac{1}{127.9} + \frac{1}{s_i} = \frac{1}{51.6} \Longrightarrow s_i = 86.5 \, mm. \end{array}$$

The distance of the image from the right vertex V_2 , L_I is easily determined from s_i as follows: $L_I = s_i - (51.6 - 38.1) = 86.5 - 13.5 = 73 \text{ mm}$. Since $s_i > 0$ the image is real and inverted. The transverse magnification $m = -s_i/s_o = -86.5/127.9 = -0.676$. This example shows how with the knowledge of the cardinal points paraxial imaging can be performed very easily using appropriately the thin lens equation.

ED: Extra Low Dispersion Glass (reduce chromatic aberration) IF: Internal Focusing (movement of group of elements with respect to other groups, allows focusing on closer objects AF: Automatic Focusing (Rotating drive shaft through lens mounts moves lens with respect to camera)

Nikkor 135mm f/2.0 Ais.

http://www.pierretoscani.com/

Prof. Elias N. Glytsis, School of ECE, NTUA

Optical system of a real photographic lens (50mm f/1.8)

http://www.pierretoscani.com/

Nikkor 135mm f/2.8 Ais.

http://www.pierretoscani.com/images/echo_shortpres/

Nikkor 135mm f/2.8 Ais.

Micro-Nikkor 55mm f/2.8 Ais and AF Micro-Nikkor 55mm f/2.8

http://www.pierretoscani.com/images/echo_shortpres/

Micro-Nikkor 55mm f/2.8 Ais and AF Micro-Nikkor 55mm f/2.8

http://www.pierretoscani.com/images/echo_shortpres/

Nikkor 85mm f/2.4 s

http://www.pierretoscani.com/images/fig-focale-02a.jpg?crc=4231534395

The Fisheye-Nikkor 6 mm f/2.8

http://www.pierretoscani.com/fisheyes-(in-english).html

The Fisheye-Nikkor 6 mm f/2.8

The Fisheye-Nikkor 6 mm f/2.8.

Just out of curiosity...

The optical system of this lens is not only impressive because of its size —the effective diameter of the first two menisci are respectively 213 mm (8.4 inches) and 100 mm (4 inches), and the distance between the vertex of the front lens and the image plane is 208 mm (8.2 inches)—, but also because of the fact that the first three menisci are made of BK7 glass.

http://www.pierretoscani.com/fisheyes-(in-english).html

EXAMPLE I										
Surfac	e									
Numbe	er r	d	νd	nd			(
1	143 470	7.0	64.2	1,51680	# 01	Hikari F-BK7	0			
2	52 500	28.0	04.2	1.00000		Third E Ditt	(
3	76.400	3.8	64.2	1.51680	# 02	Hikari E-BK7				
4	31.521	21.8	0	1.00000						
5	150.000	3.0	64.2	1.51680	# 03	Hikari E-BK7				
6	17.100	16.5		1.00000						
7	-60.000	7.0	60.3	1.62041	# 04	Hikari E-SK16				
8	22.625	0.6		1.00000						
9	23.900	12.6	28.3	1.72825	# 05	Hikari E-SF10				
10	78.988	22.7		1.00000						
11	00	1.8	59.0	1.51823	# 06	Hikari E-K3 (filter)				
12	00	5.1		1.00000						
13	278.333	3.0	33.8	1.64831	# 07	Hikari E-SF2				
14	-185.420	0.1		1.00000						
15	52.030	7.0	55.4	1.53375	# 08	?				
16	-28.500	2.0	49,5	1.77250	# 09	Hikari E-LASF016				
17	-77.000	13 0_		1 .00000_						
18	45.000	8.0	59.0	1.51823	# 10	Hikari E-K3				
19	-14.400	0.6	40.8	1.79631	# 11	?				
20	-34.500	0.1		1.00000						
21	-110.000	1.0	29.5	1.71736	# 12	Hikari E-SF1				
22	35.000	3.5	64.2	1.51680	# 13	Hikari E-BK7				
23	-25.763	Bf		1.00000						

Theme 10000

Two Thin-Lenses Example

A system of two thin lenses is given as shown in Fig. 1. The left thin lens has a focal distance of $f_1 = 50 \text{ mm}$ (converging) and the right thin lens has a focal distance of $f_2 = 25 \text{ mm}$ (converging also). The two thin lenses are separated by 40 mm. An object is placed at a distance of 75 mm to the left of the left thin lens. Find the position and magnification of the final image using (a) the method of matrices, (b) the thin lens equation, and (c) the method of the cardinal points.

Two Thin-Lenses Example Method of ABCD Matrices

Prof. Elias N. Glytsis, School of ECE, NTUA
Two Thin-Lenses Example Method of Cascaded Thin Lenses

Two Thin-Lenses Example Method of Cardinal Points

Prof. Elias N. Glytsis, School of ECE, NTUA

Two Thin-Lenses Example Method of Cardinal Points

Gaussian Beams

$$w^{2}(z) = w_{0}^{2} \left[1 + \left(\frac{\lambda_{0} z}{\pi n w_{0}^{2}} \right)^{2} \right] = w_{0}^{2} \left[1 + \left(\frac{z}{z_{0}} \right)^{2} \right]$$
$$R(z) = z \left[1 + \left(\frac{\pi n w_{0}^{2}}{\lambda_{0} z} \right)^{2} \right] = z \left[1 + \left(\frac{z_{0}}{z} \right)^{2} \right]$$
$$z_{0} = \frac{\pi n w_{0}^{2}}{\lambda_{0}}$$

Prof. Elias N. Glytsis, School of ECE, NTUA

Gaussian Beams and ABCD Law

Gaussian Beams and ABCD Law Examples

Prof. Elias N. Glytsis, School of ECE, NTUA

Example: Gaussian Beams and ABCD Law Examples

$$A = 1, B = 0, C = -1/f, \text{ and } D = 1.$$

$$\frac{1}{q_2} = \frac{C + D(1/q_1)}{A + B(1/q_1)} = -\frac{1}{f} + \frac{1}{q_1} = -\frac{1}{f} - j\frac{\lambda_0}{\pi n w_{01}^2} = a + jb,$$

$$a = -1/f \text{ and } b = -\lambda_0/\pi n w_{01}^2 = -1/z_{01},$$

$$A = 1, B = L, C = 0, \text{ and } D = 1.$$

$$\frac{1}{q_3} = \frac{C + D(1/q_2)}{A + B(1/q_2)} = \frac{1/q_2}{1 + L/q_2} = \frac{a + jb}{(1 + aL) + jbL} =$$

$$= \frac{a(1 + aL) + Lb^2}{(1 + aL)^2 + L^2b^2} - j\frac{-b}{(1 + aL)^2 + L^2b^2} =$$

$$= \frac{1}{R_3} - j\frac{\lambda_0}{\pi n w_{03}^2}.$$

Prof. Elias N. Glytsis, School of ECE, NTUA

Example: Gaussian Beams and ABCD Law Examples

$$a(1+aL) + Lb^{2} = 0 \implies L = \frac{-a}{a^{2} + b^{2}} \implies L = \frac{-a}{a^{2} + b^{2}} \implies L = \frac{f}{1 + \left(\frac{f}{z_{01}}\right)^{2}}.$$
$$w_{03} = w_{01} \frac{\frac{f}{z_{01}}}{\left[1 + \left(\frac{f}{z_{01}}\right)^{2}\right]^{1/2}}.$$

Numerical Example f = 10cm 10mW He-Ne, $\lambda = 0.6328\mu m$ $w_{01} = 1cm$ $z_{01} = 496.459m \approx 0.5km$ $L \approx 10cm$ $w_{03} = 2.0143\mu m$ $P_3 \approx 78.45 \text{ kW/cm}^2$