Introduction to Geometrical Optics & Prisms

Optical Engineering

Prof. Elias N. Glytsis

School of Electrical & Computer Engineering National Technical University of Athens

Geometrical Optics

Originally from the Book: B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd Ed., J. Wiley 2007

Prof. Elias N. Glytsis, School of ECE, NTUA

Huygens's Principle (1678 AD)

Huygens's Principle and Law of Reflection

AB is a plane wave front of incident light.

The wave at *A* sends out a wavelet centered on *A* toward *D*. The wave at *B* sends out a wavelet centered on *B* toward *C*.

$$(AD) = (BC) = u\Delta t \Longrightarrow \theta_1 = \theta'_1 \Longrightarrow$$

Angle of Incidence = Angle of Reflection

Huygens's Principle and Law of Refraction

Ray 1 strikes the surface and at a time interval Δt later, Ray 2 strikes the surface.

During this time interval, the wave at A sends out a wavelet, centered at A, toward D.

From triangles ABC and ADC, we find

$$\sin \theta_1 = \frac{BC}{AC} = \frac{u_1 \Delta t}{AC}$$
$$\sin \theta_2 = \frac{AD}{AC} = \frac{u_2 \Delta t}{AC}$$

$$\frac{\sin \theta_1}{\sin \theta_2} = \frac{u_1}{u_2} = \frac{n_2}{n_1} \Longrightarrow n_1 \sin \theta_1 = n_2 \sin \theta_2$$

Fermat's Principle (1662 AD)

A ray of light in going from point A to point B will travel an optical path (*OPL*) that minimizes the *OPL*. That is, it is <u>stationary</u> with respect to variations in the *OPL*.

Optical Path Length (OPL)

Fermat's Principle (1662 AD)

Х

Fermat's Principle

$$OPL = \int_{A}^{B} n\left(ec{r}(s)
ight) ds$$

$$ec{r}=x(t)\hat{\imath}_x+y(t)\hat{\imath}_y+z(t)\hat{\imath}_z$$

$$ds = (dx^2 + dy^2 + dz^2)^{1/2} = (\dot{x}^2 + \dot{y}^2 + \dot{z}^2)^{1/2} dt$$

$$OPL = \int_{A}^{B} \underbrace{n(x, y, z) \sqrt{\dot{x}^2 + \dot{y}^2 + \dot{z}^2}}_{F(x, y, z, \dot{x}, \dot{y}, \dot{z})} dt$$

Ray-Path Equation (Eikonal)

$$rac{d}{ds}\left(nrac{dec{r}}{ds}
ight)=ec{
abla}n$$

Ray-Path Equation (Eikonal)

$$rac{d}{ds}\left(nrac{dec{r}}{ds}
ight)=ec{
abla}n_{
m s}$$

Transformation

$$t = \int ds/n$$

$$rac{d^2ec r}{dt^2} ~=~ n(ec r)ec
abla n$$

Approximate Equation

$$n_0 \frac{d^2 r}{dz^2} \simeq -n_0 \frac{k_2}{k_0} r$$

Comparison between Approximate Solutions

Better Approximation Equation

$$n_0 \left(1 - \frac{k_2}{2k_0} r^2 \right) \frac{d^2 r}{dz^2} = -n_0 \frac{k_2}{k_0} r$$

Approximate Equation

$$n_0 \frac{d^2 r}{dz^2} \simeq -n_0 \frac{k_2}{k_0} r$$

Comparison between Exact Eikonal and other Approximate Solutions

Prof. Elias N. Glytsis, School of ECE, NTUA

Example of Propagation in Graded Index Medium Inferior and Superior Mirage Phenomenon

https://upload.wikimedia.org/wikipedia/commons/thumb/5/54/Superior_and_inferior_mirage.svg/1200pxSuperior_and_inferior_mirage.svg.png?20141201143416

https://www.friendslakeshorepreserve.com/mirage.html

Example of Propagation in Graded Index Medium Inferior and Superior Mirage Phenomenon

http://www.astronomycafe.net/weird/lights/mirgal.htm

https://www.eoas.ubc.ca/courses/atsc113/sailing/met_concepts/10-met-local-conditions/10f-optical-phenomena/img-10f/10-superior-mirage.jpg

https://www.eoas.ubc.ca/courses/atsc113/sailing/met_concepts/10-met-local-conditions/10f-optical-phenomena/img-10f/10-inferior-mirage.jpg

Prof. Elias N. Glytsis, School of ECE, NTUA

Fermat's Principle and Law of Reflection

$$OPL = \int_{A}^{B} n\left(\vec{r}(s)\right) ds = n \int_{A}^{O} ds + n \int_{O}^{B} ds = n(AO) + n(BO) \Longrightarrow$$

$$\delta[OPL] = 0 \Longrightarrow n \frac{d(AO)}{dx} + n \frac{d(OB)}{dx} = 0 \Longrightarrow$$

$$\frac{d}{dx} \left(\sqrt{x^{2} + a^{2}}\right) = -\frac{d}{dx} \left(\sqrt{(d - x)^{2} + b^{2}}\right) \Longrightarrow \frac{x}{\sqrt{x^{2} + a^{2}}} = \frac{d - x}{\sqrt{(d - x)^{2} + b^{2}}} \Longrightarrow$$

$$\sin \alpha_{1} = \sin \alpha_{2} \Longrightarrow \alpha_{1} = \alpha_{2}, \text{ Law of reflection}$$

Fermat's Principle and Law of Refraction

$$OPL = \int_{A}^{B} n\left(\vec{r}(s)\right) ds = n_{1} \int_{A}^{O} ds + n_{2} \int_{O}^{B} ds = n_{1}(AO) + n_{2}(BO) \Longrightarrow$$

$$\delta[OPL] = 0 \Longrightarrow n_{1} \frac{d(AO)}{dx} + n_{2} \frac{d(OB)}{dx} = 0 \Longrightarrow$$

$$n_{1} \frac{d}{dx} \left(\sqrt{x^{2} + a^{2}}\right) = -n_{2} \frac{d}{dx} \left(\sqrt{(d - x)^{2} + b^{2}}\right) \Longrightarrow n_{1} \frac{x}{\sqrt{x^{2} + a^{2}}} = n_{2} \frac{d - x}{\sqrt{(d - x)^{2} + b^{2}}} \Longrightarrow$$

$$n_{1} \sin \alpha_{1} = n_{2} \sin \beta_{1}, \quad \text{Snell's Law}$$

Fermat's Principle and Law of Reflection (maximum path)

$$\sqrt{(x-d)^2 + y^2} + \sqrt{(x+d)^2 + y^2} = 2\sqrt{b^2 + d^2} = (a-d) + (a+d) = 2a$$
$$b^2 + d^2 = a^2$$

Fermat's Principle and Law of Reflection (equal paths)

Fermat's Principle and Law of Reflection (Hyperbolical Mirror)

$$\sqrt{(x+c)^2 + y^2} - \sqrt{(x-c)^2 + y^2} = (a+c) - (c-a) = 2a$$
$$a^2 + b^2 = c^2$$

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Fermat's Principle and Law of Reflection (Parabolic Mirror)

Deviation Angle of a Dispersing Prism

Prof. Elias N. Glytsis, School of ECE, NTUA

Deviation Angle of a Dispersing Prism

Example for a BK7 Glass Prism σ =30 deg

Refractive Index Measurement of Liquids

http://cpb.iphy.ac.cn/article/2020/2027/cpb_29_4_047801/cpb_29_4_047801_f4.jpg J. Zhou et al., Chinese Physics B,vol. 29, (2020)

Prism Minimum Deviation Angle Experiment

Prof. Elias N. Glytsis, School of ECE, NTUA

Refractive Index Measurement of Water

R. H. French et al., Proc. SPIE 5377, pp. 1689-1694 (2004)

Typical Dispersion The index of refraction vs. wavelength

Prof. Elias N. Glytsis, School of ECE, NTUA

Normal Dispersion

Normal Dispersion- Cauchy Formula

$$n(\lambda) = A + \frac{B}{\lambda^2} + \frac{C}{\lambda^4} + \cdots$$

Material	Α	Β (μm²)
Fused silica	1.4580	0.00354
Borosilicate glass BK7	1.5046	0.00420
Hard crown glass K5	1.5220	0.00459
Barium crown glass BaK4	1.5690	0.00531
Barium flint glass BaF10	1.6700	0.00743
Dense flint glass SF10	1.7280	0.01342

Normal Dispersion - Sellmeier Formula

$$n^2(\lambda) = 1 + \sum_i \frac{B_i \lambda^2}{\lambda^2 - C_i}$$

Table of coefficients of Sellmeier equation							
Material	B ₁	B ₂	B ₃	C ₁	C ₂	С ₃	
borosilicate crown glass (known as <i>BK7</i>)	1.03961212	0.231792344	1.01046945	6.00069867×10⁻³μm²	2.00179144×10⁻²µm²	1.03560653×10²µm²	
sapphire (for <u>ordinary wave</u>)	1.43134930	0.65054713	5.3414021	5.2799261×10 ⁻³ µm²	1.42382647×10⁻²µm²	3.25017834×10²µm²	
sapphire (for <u>extraordinary</u> <u>wave</u>)	1.5039759	0.55069141	6.5927379	5.48041129×10⁻³μm²	1.47994281×10⁻²µm²	4.0289514×10²μm²	
<u>fused silica</u>	0.696166300	0.407942600	0.897479400	4.67914826×10⁻³µm²	1.35120631×10 ⁻² µm ²	97.9340025 μm²	

Normal Dispersion Comparison of *Cauchy* and *Sellmeier* Formulas For BK7 Glass

Prism Dispersion Properties – **BK7**

Prism Dispersion Properties – Schott N-SF11 Glass

Dispersive Prism – Dispersive Power

$$\delta_{min} = 2\sin^{-1}\left[\frac{n_p}{n_0}\sin\left(\frac{\sigma}{2}\right)\right] - \sigma$$
$$\delta_{min} \simeq \sigma\left(\frac{n_p}{n_0} - 1\right) \quad \text{for } \delta, \sigma \ll 1 \, rad$$

$$\Delta_e = \frac{\delta_{min,F} - \delta_{min,C}}{\delta_{min,D}} \Longrightarrow$$
$$\Delta_a \simeq \frac{n_F - n_C}{n_D - n_0},$$

Abbe number:
$$V = \frac{1}{\Delta}$$

Freespace Wavelength,	Characterization	Crown Glass Refractive
λ ₀ (nm)		Index
486.1	F, blue (H dark line)	$n_F = 1.5286$
589.2	D, yellow (Na dark line)	<i>n</i> _D = 1.5230
656.3	C , red (H dark line)	<i>n_c</i> = 1.5205

Dispersive Prism – Dispersive Power

https://upload.wikimedia.org/wikipedia/commons/thumb/3/30/Abbe_number_calc ulation.svg/1024px-Abbe_number_calculation.svg.png

Prof. Elias N. Glytsis, School of ECE, NTUA

Dispersive Prism – Dispersive Power

An Abbe diagram, also known as 'the glass veil', plots the Abbe number against refractive index for a range of different glasses (red dots). Glasses are classified using the Schott Glass letter-number code to reflect their composition and position on the diagram.

https://en.wikipedia.org/wiki/Abbe_number#:~:text=In%20optics%20and%20lens%20design,of%20V%20indicating%20low%20dispersion.

Dispersive Prisms

Dispersive Power / Abbe's number

Fraunhofer line	Color	Wavelength (nm)	Spectacle Crown	Extra-dense Flint	
			Refractive index		
F	Blue (hydrogen)	486.1	1.5293	1.7378	
D	Yellow (sodium)	589.3	1.5230	1.7200	
С	Red (hydrogen)	656.3	1.5204	1.7130	
$(n_p - 1)$			v value		
$v = \frac{(n_F - n_C)}{(n_F - n_C)}$ = Abbe's number		59	29		

http://hyperphysics.phy-astr.gsu.edu/hbase/geoopt/imggo/disper2.gif

Doublet for Chromatic Aberration

Achromat Doublets

http://hyperphysics.phy-astr.gsu.edu/hbase/geoopt/aber2.html#c2 Prof. Elias N. Glytsis, School of ECE, NTUA

<u>Penta prism</u> can deviate an incident beam without inverting or reversing to 90°. The deviation angle of 90° is independent of any rotation of the prism about an axis parallel to the line of intersection of the two reflecting faces. It is commonly used in Plumb Level, Surveying, Alignment, Rangefinding and Optical Tooling.

Beamsplitting Penta prism: By adding a wedge and with partial refractive coating on surfaces S1, it can be used as a beamsplitter. It is often used in Plumb Level, Surveying, Alignment, Rangefinding and Optical Tooling.

https://www.edmundoptics.eu/resources/application-notes/optics/introduction-to-optical-prisms/

<u>Right angle prism</u> is deviating or deflecting a beam of light with 90 or 180°. It is often used in telescope, periscope and other optical system.

Dove prism has two applications. The main application is used as a rotator. It can rotate an image but without deviating the beam. And when the prism is rotated about the input parallel ray through some angle, the image rotates through twice that angle. It is very important that the application must be used with parallel or collimated beam and the large square reflective surface should be kept very clean. Another application is used as a retroreflector. For this application it perform as a right-angle prism.

Roof prism (Amici) is combined with a right angle prism and a totally internally reflecting *roof and they* are attached by them largest square surfaces. It can invert and reverse an image, also, deflect the image 90°. Therefore, it is often used in terrestrial telescopes, viewing systems and rangefinders.

Brewster angle

D₁

Corner Cube Prism: It has three mutually perpendicular surfaces and a hypotenuse face. Light entering through the hypotenuse is reflected by each of the three surfaces in turn and will emerge through the hypotenuse face parallel to the entering beam regardless of the orientation the incident beam. For its special performance, it is often used to the distance measurement, optical signal process and laser interferometer.

http://www.toptica.com/fileadmin/Editors_English/03_products/09_wavemeters_photonicals/02_photonicals/Ana morphic-Prism-Pair.jpg

Anamorphic Prisms: These two prisms can expand or contract the beam in one direction without any changes in the other direction. By adjusting the angles among the incident beam and two prisms, the shape of the beam can be changed. It is very easy to turn elliptical bean into circular beam.

The **Penta Prism** will deviate the beam by 90° without affecting the orientation of the image. It has the valuable property of being a constant-deviation prism, in that it deviates the line-of-sight by 90° regardless of its orientation to the line-of-sight. Note that two of its surfaces must be silvered. These prisms are often used as end reflectors in small rangefinders

The <u>**Rhomboid Prism</u>** displaces the line of sight without producing any angular deviation or changes in the orientation of the image.</u>

Porro-Abbe Prism

Figure 4.25 Porro prism system (second type) (a) indicating the erection of an inverted image. This system is shown made from two prisms in (a) and from three prisms in (b).

W. J. Smith, Modern Optical Engineering, 3rd Ed. McGraw-Hill, 2000

Porro Prism

- Right angle prism
- Oriented to deviate light by 180 degrees

