Introduction to Geometrical Optics \& Prisms

Optical Engineering

Prof. Elias N. Glytsis

School of Electrical \& Computer Engineering National Technical University of Athens

Geometrical Optics

$$
\lim _{\lambda \rightarrow 0}\{\text { Wave Optics }\}=\text { Geometrical Optics }
$$

Huygens's Principle (1678 AD)

Huygens's Principle and Law of Reflection

$A B$ is a plane wave front of incident light.

The wave at A sends out a wavelet centered on A toward D.
The wave at B sends out a wavelet centered on B toward C.
$(A D)=(B C)=u \Delta t \Longrightarrow \theta_{1}=\theta_{1}^{\prime} \Longrightarrow$
Angle of Incidence $=$ Angle of Reflection

[^0]
Huygens's Principle and Law of Refraction

Ray 1 strikes the surface and at a time interval Δt later, Ray 2 strikes the surface.

During this time interval, the wave at A sends out a wavelet, centered at A, toward D.

From triangles $A B C$ and $A D C$, we find

$$
\begin{aligned}
\sin \theta_{1} & =\frac{B C}{A C}=\frac{u_{1} \Delta t}{A C} \\
\sin \theta_{2} & ==\frac{A D}{A C}=\frac{u_{2} \Delta t}{A C}
\end{aligned}
$$

$$
\frac{\sin \theta_{1}}{\sin \theta_{2}}=\frac{u_{1}}{u_{2}}=\frac{n_{2}}{n_{1}} \Longrightarrow n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}
$$

Fermat's Principle (1662 AD)

A ray of light in going from point A to point B will travel an optical path (OPL) that minimizes the OPL. That is, it is stationary with respect to variations in the $O P L$.

Law of Reflection
(Hero - least distance)

Law of Refraction
(Fermat - least time)

Optical Path Length (OPL)

R. A. Serway and J. W. Jewett, Physics for Scientists \& Engineers, $6^{\text {th }}$ Ed.,Thomson_Brooks/Cole, 2004

Fermat's Principle (1662 AD)

Euler-Lagrange Equations

$\frac{\partial F}{\partial x}-\frac{d}{d t}\left(\frac{\partial F}{\partial \dot{x}}\right)=0 \Longrightarrow \frac{d}{d s}\left(n \frac{d x}{d s}\right)=\frac{\partial n}{\partial x}$
$\frac{\partial F}{\partial y}-\frac{d}{d t}\left(\frac{\partial F}{\partial \dot{y}}\right)=0 \Longrightarrow \frac{d}{d s}\left(n \frac{d y}{d s}\right)=\frac{\partial n}{\partial y}$
$\frac{\partial F}{\partial z}-\frac{d}{d t}\left(\frac{\partial F}{\partial \dot{z}}\right)=0 \Longrightarrow \frac{d}{d s}\left(n \frac{d z}{d s}\right)=\frac{\partial n}{\partial z}$

Fermat's Principle

$$
\begin{gathered}
O P L=\int_{A}^{B} n(\vec{r}(s)) d s \\
\vec{r}=x(t) \hat{z}_{x}+y(t) \hat{\imath}_{y}+z(t) \hat{z}_{z} \\
d s=\left(d x^{2}+d y^{2}+d z^{2}\right)^{1 / 2}=\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)^{1 / 2} d t \\
O P L=\int_{A}^{B} \underbrace{n(x, y, z) \sqrt{\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}}}_{F(x, y, z, \dot{x}, \dot{y}, \dot{z})} d t
\end{gathered}
$$

Ray-Path Equation (Eikonal)

$$
\frac{d}{d s}\left(n \frac{d \vec{r}}{d s}\right)=\vec{\nabla} n
$$

Propagation in Lens-Like Medium

Ray-Path Equation (Eikonal)

$$
\frac{d}{d s}\left(n \frac{d \vec{r}}{d s}\right)=\vec{\nabla} n
$$

Approximate Equation

$$
n_{0} \frac{d^{2} r}{d z^{2}} \simeq-n_{0} \frac{k_{2}}{k_{0}} r
$$

Transformation

$$
t=\int d s / n
$$

$$
\frac{d^{2} \vec{r}}{d t^{2}}=n(\vec{r}) \vec{\nabla} n
$$

Propagation in Lens-Like Medium

Approximate Equation

$$
n_{0} \frac{d^{2} r}{d z^{2}} \simeq-n_{0} \frac{k_{2}}{k_{0}} r
$$

Propagation in Lens-Like Medium

Comparison between Approximate Solutions

Better Approximation Equation

$$
n_{0}\left(1-\frac{k_{2}}{2 k_{0}} r^{2}\right) \frac{d^{2} r}{d z^{2}}=-n_{0} \frac{k_{2}}{k_{0}} r
$$

Approximate Equation

$$
n_{0} \frac{d^{2} r}{d z^{2}} \simeq-n_{0} \frac{k_{2}}{k_{0}} r
$$

Propagation in Lens-Like Medium

Comparison between Exact Eikonal and other Approximate Solutions

Exact Eikonal Equation

$\frac{d}{d s}\left(n \frac{d \vec{r}}{d s}\right)=\vec{\nabla} n$

Approximate Equation

$$
n_{0} \frac{d^{2} r}{d z^{2}} \simeq-n_{0} \frac{k_{2}}{k_{0}} r
$$

Better Approximation

$$
n_{0}\left(1-\frac{k_{2}}{2 k_{0}} r^{2}\right) \frac{d^{2} r}{d z^{2}}=-n_{0} \frac{k_{2}}{k_{0}} r
$$

Example of Propagation in Graded Index Medium

Inferior and Superior Mirage Phenomenon

https://upload.wikimedia.org/wikipedia/commons/thumb/5/54/Superior_and_inferior_mirage.svg/1200pxSuperior_and_inferior_mirage.svg.png?20141201143416

https://www.friendslakeshorepreserve.com/mirage.html

Example of Propagation in Graded Index Medium
 Inferior and Superior Mirage Phenomenon

http://www.astronomycafe.net/weird/lights/mirgal.htm

https://www.eoas.ubc.ca/courses/atsc113/sailing/met_concepts/10-met-local-conditions/10f-optical-phenomena/img-10f/10-superior-mirage.jpg

https://www.eoas.ubc.ca/courses/atsc113/sailing/met_concepts/10-met-local-conditions/10f-optical-phenomena/img-10f/10-inferior-mirage.jpg

Fermat's Principle and Law of Reflection

$$
\begin{aligned}
O P L & =\int_{A}^{B} n(\vec{r}(s)) d s=n \int_{A}^{O} d s+n \int_{O}^{B} d s=n(A O)+n(B O) \Longrightarrow \\
\delta[O P L] & =0 \Longrightarrow n \frac{d(A O)}{d x}+n \frac{d(O B)}{d x}=0 \Longrightarrow
\end{aligned}
$$

$$
\frac{d}{d x}\left(\sqrt{x^{2}+a^{2}}\right)=-\frac{d}{d x}\left(\sqrt{(d-x)^{2}+b^{2}}\right) \Longrightarrow \frac{x}{\sqrt{x^{2}+a^{2}}}=\frac{d-x}{\sqrt{(d-x)^{2}+b^{2}}} \Rightarrow
$$

$$
\sin \alpha_{1}=\sin \alpha_{2} \Rightarrow \alpha_{1}=\alpha_{2}, \quad \text { Law of reflection }
$$

Fermat's Principle and Law of Refraction

Fermat's Principle and Law of Reflection (maximum path)

$$
\begin{aligned}
\sqrt{(x-d)^{2}+y^{2}}+\sqrt{(x+d)^{2}+y^{2}} & =2 \sqrt{b^{2}+d^{2}}=(\mathrm{a}-d)+(\mathrm{a}+d)=2 \mathrm{a} \\
b^{2}+d^{2} & =\mathrm{a}^{2}
\end{aligned}
$$

Fermat's Principle and Law of Reflection (equal paths)

$$
\begin{aligned}
\sqrt{(x-d)^{2}+y^{2}}+\sqrt{(x+d)^{2}+y^{2}} & =2 \sqrt{b^{2}+d^{2}}=(\mathrm{a}-d)+(\mathrm{a}+d)=2 \mathrm{a} \\
b^{2}+d^{2} & =\mathrm{a}^{2}
\end{aligned}
$$

$$
(A C)+(C B)=(A P)+(P B)
$$

Fermat's Principle and Law of Reflection (Hyperbolical Mirror)

$$
\begin{aligned}
\sqrt{(x+c)^{2}+y^{2}}-\sqrt{(x-c)^{2}+y^{2}} & =(a+c)-(c-a)=2 a \\
a^{2}+b^{2} & =c^{2}
\end{aligned}
$$

$$
\frac{x^{2}}{\mathrm{a}^{2}}-\frac{y^{2}}{b^{2}}=1
$$

$$
(P B)-(P A)=(C B)-(C A)=2 \mathrm{a}
$$

Fermat's Principle and Law of Reflection (Parabolic Mirror)

Deviation Angle of a Dispersing Prism

$$
\alpha_{1}=\beta_{2}=\sin ^{-1}\left[\frac{n_{p}}{n_{0}}\left(\sin \frac{\sigma}{2}\right)\right]
$$

Deviation Angle of a Dispersing Prism

Example for a BK7 Glass Prism $\sigma=30$ deg

Refractive Index Measurement of Liquids

Prism Minimum Deviation Angle Experiment

R. H. French et al., Proc. SPIE 5377, pp. 1689-1694 (2004)

$$
\begin{aligned}
& \delta_{\min }=2 \sin ^{-1}\left[\frac{n_{p}}{n_{0}} \sin \left(\frac{\sigma}{2}\right)\right]-\sigma \\
& \delta_{\min } \simeq \sigma\left(\frac{n_{p}}{n_{0}}-1\right) \quad \text { for } \delta, \sigma \ll 1 \mathrm{rad}
\end{aligned}
$$

http://cpb.iphy.ac.cn/article/2020/2027/cpb_29_4_047801/cpb_29_4_047801_f4.jpg
J. Zhou et al., Chinese Physics B,vol. 29, (2020)

Refractive Index Measurement of Water

R. H. French et al., Proc. SPIE 5377, pp. 1689-1694 (2004)

Typical Dispersion

The index of refraction vs. wavelength

http://1.bp.blogspot.com/-kcHWNW81dI4/UR_qgF5B9dI/AAAAAAAACNg/h5oijsP_gTs/s640/figure+3.png

Normal Dispersion

Normal Dispersion- Cauchy Formula

$$
n(\lambda)=A+\frac{B}{\lambda^{2}}+\frac{C}{\lambda^{4}}+\cdots
$$

Material	A	B $\left(\mu \mathrm{m}^{2}\right)$
Fused silica	1.4580	0.00354
Borosilicate glass BK7	1.5046	0.00420
Hard crown glass K5	1.5220	0.00459
Barium crown glass BaK4	1.5690	0.00531
Barium flint glass BaF10	1.6700	0.00743
Dense flint glass SF10	1.7280	0.01342

Normal Dispersion-Sellmeier Formula

$$
n^{2}(\lambda)=1+\sum_{i} \frac{B_{i} \lambda^{2}}{\lambda^{2}-C_{i}}
$$

Table of coefficients of Sellmeier equation

Material	$\mathbf{B}_{\mathbf{1}}$	$\mathbf{B}_{\mathbf{2}}$	$\mathbf{B}_{\mathbf{3}}$	$\mathbf{C}_{\mathbf{1}}$	$\mathbf{C}_{\mathbf{2}}$	$\mathbf{C}_{\mathbf{3}}$
$\frac{\text { borosilicate crown }}{$ glass (known as BK7) }	1.03961212	0.231792344	1.01046945	$6.00069867 \times 10^{-3} \mu \mathrm{~m}^{2}$	$2.00179144 \times 10^{-2} \mu \mathrm{~m}^{2}$	$1.03560653 \times 10^{2} \mu \mathrm{~m}^{2}$
sapphire (for ordinary wave)	1.43134930	0.65054713	5.3414021	$5.2799261 \times 10^{-3} \mu \mathrm{~m}^{2}$	$1.42382647 \times 10^{-2} \mu \mathrm{~m}^{2}$	$3.25017834 \times 10^{2} \mu \mathrm{~m}^{2}$
sapphire (for extraordinary $\underline{\text { wave) }}$	1.5039759	0.55069141	6.5927379	$5.48041129 \times 10^{-3} \mu \mathrm{~m}^{2}$	$1.47994281 \times 10^{-2} \mu \mathrm{~m}^{2}$	$4.0289514 \times 10^{2} \mu \mathrm{~m}^{2}$
$\frac{\text { fused silica }}{\underline{4}}$	0.696166300	0.407942600	0.897479400	$4.67914826 \times 10^{-3} \mu \mathrm{~m}^{2}$	$1.35120631 \times 10^{-2} \mu \mathrm{~m}^{2}$	$97.9340025 \mu \mathrm{~m}^{2}$

Normal Dispersion
 Comparison of Cauchy and Sellmeier Formulas
 For BK7 Glass

Prism Dispersion Properties - BK7

Prism Dispersion Properties - Schott N-SF11 Glass

Dispersive Prism - Dispersive Power

$$
\begin{aligned}
& \delta_{\min }=2 \sin ^{-1}\left[\frac{n_{p}}{n_{0}} \sin \left(\frac{\sigma}{2}\right)\right]-\sigma \\
& \delta_{\min } \simeq \sigma\left(\frac{n_{p}}{n_{0}}-1\right) \quad \text { for } \delta, \sigma \ll 1 \mathrm{rad}
\end{aligned}
$$

$$
\begin{aligned}
\Delta_{e} & =\frac{\delta_{\min , F}-\delta_{\min , C}}{\delta_{\min , D}} \Longrightarrow \\
\Delta_{a} & \simeq \frac{n_{F}-n_{C}}{n_{D}-n_{0}}
\end{aligned}
$$

$$
\text { Abbe number: } \quad V=\frac{1}{\Delta}
$$

Freespace Wavelength, $\boldsymbol{\lambda}_{\mathbf{0}}(\mathrm{nm})$	Characterization	Crown Glass Refractive Index
486.1	F, blue (H dark line)	$n_{F}=1.5286$
589.2	D, yellow (Na dark line)	$n_{D}=1.5230$
656.3	C, red (H dark line)	$n_{C}=1.5205$

Dispersive Prism - Dispersive Power

https://upload.wikimedia.org/wikipedia/commons/thumb/3/30/Abbe_number_calc ulation.svg/1024px-Abbe_number_calculation.svg.png

Dispersive Prism - Dispersive Power

An Abbe diagram, also known as 'the glass veil', plots the Abbe number against refractive index for a range of different glasses (red dots). Glasses are classified using the Schott Glass letter-number code to reflect their composition and position on the diagram.
https://en.wikipedia.org/wiki/Abbe_number\#:~:text=In\ optics\ and\ lens\ design,of\ V\ indicating\ low\ dispersion.

Dispersive Prisms

Dispersive Power / Abbe’s number

Fraunhofer line	Color	Wavelength (nm)	Spectacle Crown	Extra-dense Flint
			Refractive index	
		486.1	1.5293	1.7378
D	Blue (hydrogen)	589.3	1.5230	1.7200
C	Red (hydrogen)	656.3	1.7130	
$v=\frac{\left(n_{D}-1\right)}{\left(n_{F}-n_{C}\right)}$		$=$ Abbe's number	v value	
		59	29	

http://hyperphysics.phy-astr.gsu.edu/hbase/geoopt/imggo/disper2.gif

Doublet for Chromatic Aberration

Achromat Doublets

Reflective Prisms

Penta prism can deviate an incident beam without inverting or reversing to 90°. The deviation angle of 90° is independent of any rotation of the prism about an axis parallel to the line of intersection of the two reflecting faces. It is commonly used in Plumb Level, Surveying, Alignment, Rangefinding and Optical Tooling.

Beamsplitting Penta prism: By adding a wedge and with partial refractive coating on surfaces S1, it can be used as a beamsplitter. It is often used in Plumb Level, Surveying, Alignment, Rangefinding and Optical Tooling.

https://www.edmundoptics.eu/resources/application-notes/optics/introduction-to-optical-prisms/

Reflective Prisms

Right angle prism is deviating or deflecting a beam of light with 90 or 180°. It is often used in telescope, periscope and other optical system.

Dove prism has two applications. The main application is used as a rotator. It can rotate an image but without deviating the beam. And when the prism is rotated about the input parallel ray through some angle, the image rotates through twice that angle. It is very
 important that the application must be used with parallel or collimated beam and the large square reflective surface should be kept very clean. Another application is used as a retroreflector. For this application it perform as a right-angle prism.

Reflective Prisms

Roof prism (Amici) is combined with a right angle prism and a totally internally reflecting roof and they are attached by them largest square surfaces. It can invert and reverse an image, also, deflect the image 90°. Therefore, it is often used in terrestrial telescopes, viewing systems and rangefinders.

Corner Cube Prism: It has three mutually perpendicular surfaces and a hypotenuse face. Light entering through the hypotenuse is reflected by each of the three surfaces in turn and will emerge through the hypotenuse face parallel to the entering beam regardless of the orientation the incident beam. For its special performance, it is often used to the distance measurement, optical signal process and laser interferometer.

http://www.toptica.com/fileadmin/Editors_English/03_products/09_wavemeters_photonicals/02_photonicals/Ana morphic-Prism-Pair.jpg

Anamorphic Prisms: These two prisms can expand or contract the beam in one direction without any changes in the other direction. By adjusting the angles among the incident beam and two prisms, the shape of the beam can be changed. It is very easy to turn elliptical bean into circular beam.

Reflective Prisms

The Penta Prism will deviate the beam by 90° without affecting the orientation of the image. It has the valuable property of being a constant-deviation prism, in that it deviates the line-of-sight by 90° regardless of its orientation to the line-of-sight. Note that two of its surfaces must be silvered. These prisms are often used as end reflectors in small rangefinders

The Rhomboid Prism displaces the line of sight without producing any angular deviation or changes in the orientation of the image.

Porro Prism

- Right angle prism
- Oriented to deviate light by 180 degrees

[^0]: R. A. Serway and J. W. Jewett, Physics for Scientists \& Engineers, 6 ${ }^{\text {th }}$ Ed., Thomson_Brooks/Cole, 2004

