Fourier Optics

Optical Engineering

Prof. Elias N. Glytsis

School of Electrical & Computer Engineering National Technical University of Athens

Linear Systems

$$x(t) \longrightarrow h(t) \longleftarrow H(f) \longrightarrow y(t)$$

$$y(t) = \int_{-\infty}^{\infty} h(\tau) x(t-\tau) d\tau$$
$$Y(f) = H(f) X(f)$$

Fourier Transforms

$$f(x) = \int_{-\infty}^{+\infty} F(u)e^{-j2\pi ux}du$$
$$F(u) = \int_{-\infty}^{+\infty} f(x)e^{+j2\pi ux}dx$$

Convolution

$$f(x) * g(x) = \int_{-\infty}^{+\infty} f(x')g(x - x')dx'$$

1-D Fourier Transform Properties

Function $f(x)$	Fourier Transform $F(u)$
f(x) + g(x)	F(u) + G(u)
f(ax)	(1/ a)F(u/a)
(1/ a)f(x/a)	F(au)
f(x-a)	$e^{+j2\pi au}F(u)$
$e^{-j2\pi ax}f(x)$	F(u-a)
f((x-a)/b)	$ b F(bu)e^{+j2\pi au}$
df/dx	$-j2\pi uF(u)$
$j2\pi x f(x)$	dF/du
f(x) * g(x)	F(u)G(u)
f(x)g(x)	F(u) * G(u)
$f^*(x)$	$F^*(-u)$
$f^*(-x)$	$F^*(u)$
f(-x)	F(-u)
F(x)	f(-u)
F(-x)	f(u)

Ξ

Fourier Transforms

Basic 1-D Fourier Transform Pairs		
Function $f(x)$	Fourier Transform $F(u)$	
$\operatorname{rect}(x) = \begin{cases} 1 & \text{for } x < 1/2 \\ 0 & \text{for } x > 1/2 \end{cases}$	$\operatorname{sinc}(u) = \sin(\pi u)/(\pi u)$	
$\operatorname{tri}(x) = \begin{cases} 1 - x & \text{for } x < 1\\ 0 & \text{for } x > 1 \end{cases}$	$\operatorname{sinc}^2(u) = \sin^2(\pi u) / (\pi u)^2$	
$e^{-\pi x^2}$	$e^{-\pi u^2}$	
$\delta(x)$	1	
$\delta(x-a)$	$e^{+j2\pi a u}$	
$e^{-j2\pi ax}$	$\delta(u-a)$	
$\cos(2\pi ax)$	$(1/2)[\delta(u+a) + \delta(u-a)]$	
$\sin(2\pi ax)$	$(1/2j)[\delta(u+a) - \delta(u-a)]$	
$\operatorname{comb}(x) = \sum_{n=-\infty}^{\infty} \delta(x-n)$	$\operatorname{comb}(u) = \sum_{n=-\infty}^{\infty} \delta(u-n)$	

2-D Fourier Transforms

$$f(x,y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} F(u,v) e^{-j2\pi(ux+vy)} du dv$$

$$F(u,v) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) e^{+j2\pi(ux+vy)} dx dy$$

2-D Convolution

$$f(x,y) * g(x,y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x',y')g(x-x',y-y')dx'dy'$$

2-D Fourier Transforms

2-D Fourier Transform Properties		
Function $f(x, y)$	Fourier Transform $F(u, v)$	
f(x,y) + g(x,y)	F(u,v) + G(u,v)	
f(ax, by)	(1/ a b)F(u/a,v/b)	
(1/ a)f(x/a)	F(au)	
f(x-a, y-b)	$e^{+j2\pi(au+bv)}F(u)$	
$e^{-j2\pi(ax+by)}f(x,y)$	F(u-a, v-b)	
f(x,y)g(x,y)	F(u,v) * *G(u,v)	
$f(x,y) \ast \ast g(x,y)$	F(u,v)G(u,v)	
$f^*(x,y)$	$F^*(-u,-v)$	
$f^*(-x,-y)$	$F^*(u,v)$	
f(-x,-y)	F(-u,-v)	

2-D Fourier Transforms

Basic 2-D Fourier Transform Pairs		
Function $f(x)$	Fourier Transform $F(u)$	
$\operatorname{rect}(x,y) = \operatorname{rect}(x)\operatorname{rect}(y)$	$\operatorname{sinc}(u, v) = \operatorname{sinc}(u)\operatorname{sinc}(v) = \frac{\sin(\pi u)}{\pi u} \frac{\sin(\pi v)}{\pi v}$	
$\operatorname{tri}(x, y) = \operatorname{tri}(x)\operatorname{tri}(y)$ $e^{-\pi(x^2+y^2)}$	$\operatorname{sinc}^{2}(u, v) = \operatorname{sinc}^{2}(u)\operatorname{sinc}^{2}(v)$ $e^{-\pi(u^{2}+v^{2})}$	
$\delta(x,y)$	1	
$\delta(x-a,y-b) \ e^{-j2\pi(ax+by)}$	$e^{+j2\pi a a}e^{+j2\pi b b}$ $\delta(u-a,v-b)$	
$\cos(2\pi(ax+by))$	$(1/2)[\delta(u+a,v+b) + \delta(u-a,v-b)]$	
$\sin(2\pi(ax+by))$	$(1/2j)[\delta(u+a,v+b) - \delta(u-a,v-b)]$	
$\operatorname{comb}(x, y) = \operatorname{comb}(x) \operatorname{comb}(y)$	$\operatorname{comb}(u, v) = \operatorname{comb}(u) \operatorname{comb}(v)$	

Thin Lens Transmittance Function

Prof. Elias N. Glytsis, School of ECE, NTUA

Thin Lens Fourier Transforming Property

Spatial Filtering in the Fourier Plane

Spatial filtering with a cross-grating as the object

Image of original wire grid with dust (left) Diffraction pattern of grid (center) Image of wire grid; dust particles removed by spatial filtering (right)

Spatial Filtering in the Fourier Plane

Image is filtered from a mask that has opaque regions in the places where the grid effect is

Image is filtered from a mask that permits only high spatial frequencies – thus shows enhances edges

Image is filtered from a mask that permits only low spatial frequencies – thus edges become blurred

Cryptographic Spatial Filters

Prof. Elias N. Glytsis, School of ECE, NTUA

Fourier Transform Hologram

Fourier Transform Hologram - Playback

Van der Lugt Correlator

Van der Lugt Convolver

Van der Lugt Correlator

