$\Theta\epsilon\mu\alpha$ 1

Figure 1: System of an achromat doublet lens. The input and output planes are shown.

(α) $\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} 0.9653 & 4.6160 \, mm \\ -0.0100 \, mm^{-1} & 0.9881 \end{pmatrix}$ (β)

 $B_{eq} = 0 \longrightarrow x = 292.1623 \, mm$ real image, inverted $A_{eq} = m = -1.9554$

$$x = 292.1623 mm$$

 $m = -1.9554$

 (γ)

$$p = \frac{D}{C} = -98.8436 \, mm$$

$$q = -\frac{A}{C} = 96.5616 \, mm$$

$$r = v = \frac{D-1}{C} = 1.1876 \, mm$$

$$s = w = \frac{1-A}{C} = -3.4696, mm$$

$$f_1 = \frac{1}{C} = -100.0312 \, mm$$

$$f_2 = -\frac{1}{C} = +100.0312 \, mm$$

 (δ)

$$s = 151.1876 mm$$
, $s' = 295.6319 mm$, $x = 292.1623 mm$ and $m = -\frac{s'}{s} = -1.9554$

Figure 2: Ray diagram of the system of the achromat doublet lens. The distances shown are not in scale.

 $\Theta\epsilon\mu\alpha$ 2

Figure 3: The LED measurement setup.

 (α)

$$\begin{split} I_1(\theta_1) &= 0.1488 \, lm/sr, \\ I_2(\theta_2) &= 0.2739 \, lm/sr, \\ I_3(\theta_3) &= 0.3892 \, lm/sr. \end{split}$$

 (β)

 $\begin{array}{rcl} L_1 &=& 0.1511 \, lm/sr \; mm^2, \\ L_2 &=& 1.0582 \, lm/sr \; mm^2, \\ L_3 &=& 0.4142 \, lm/sr \; mm^2. \end{array}$

 $\Theta\epsilon\mu\alpha$ 3

Figure 4: Newton rings setup.

 (α)

$$R = 500.265 \,\mathrm{mm} = 0.500265 \,\mathrm{m}$$

 (β)

$$n' = 1.33136$$

 $\Theta\epsilon\mu\alpha$ 4

Figure 5: Interference pattern recorder at the screen size as function of x.

 (α)

$$\lambda_0 \simeq 559.3 \,\mathrm{nm}$$

 (β)

 $s\simeq 29.375\,\mu{\rm m}$

Figure 6: Schematic of the two-slit interference setup.