$\Theta \epsilon \mu \alpha \quad 1$
(α)

$$
\begin{aligned}
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) & =\left(\begin{array}{cc}
\frac{2}{n}-1 & \frac{2 R}{n} \\
\frac{2(1-n)}{n R} & \frac{2}{n}-1
\end{array}\right) \\
f_{2} & =-\frac{1}{C}=\frac{1}{2} \frac{n}{n-1} R
\end{aligned}
$$

Figure 1: Focal length of the dielectric sphere as a function of the sphere radius for two refractive indices $n=1.50$ and $n=2.50$.
(β)

$$
\begin{aligned}
r=v & =\frac{D-1}{C}=R=+10.0 \mathrm{~cm} \\
s=w & =\frac{1-A}{C}=-R=-10.0 \mathrm{~cm} \\
p & =\frac{D}{C}=\frac{R(2-n)}{2(1-n)}=-5.0 \mathrm{~cm} \\
q & =-\frac{A}{C}=-\frac{R(2-n)}{2(1-n)}=+5.0 \mathrm{~cm} \\
f_{1} & =\frac{1}{C}=-15.0 \mathrm{~cm} \\
f_{2} & =-\frac{1}{C}=+15.0 \mathrm{~cm}
\end{aligned}
$$

Figure 2: Normalized Focal length $\left(f_{2} / R\right)$ of the dielectric sphere as a function of the refractive index $(1<n \leq 5)$

Note: The principal and nodal points H_{1}, H_{2}, N_{1}, and N_{2} all coincide with the center of the sphere.
(γ)

$$
B_{e q}=0 \longrightarrow x=16.25 \mathrm{~cm} \quad \text { real image, inverted } \quad A_{e q}=m=-0.75
$$

($\delta)$

$$
s=35.0 \mathrm{~cm} \quad s^{\prime}=26.25 \mathrm{~cm}, \quad \text { and } m=-\frac{s^{\prime}}{s}=-0.75
$$

$\underline{\Theta \epsilon \mu \alpha \quad 2}$
(α)

$$
\begin{aligned}
\text { Shortest Distance } & =z_{n}=172.4138 \mathrm{~cm}, \\
\text { Longest Distance } & =z_{f}=238.0952 \mathrm{~cm}, \\
\text { Depth of Field } & =D o F=65.6814 \mathrm{~cm}, \\
\text { For } s=H= & \frac{f^{2}}{c} \frac{1}{\text { fnumber }}=1250 \mathrm{~cm}, \\
& z_{n}=625 \mathrm{~cm}, \text { and } z_{f}=\infty .
\end{aligned}
$$

(β)

$$
\text { Shortest Distance }=z_{n}=189.3939 \mathrm{~cm},
$$

Figure 3: Ray diagram using the cardinal points of the dielectric (glass) sphere.

$$
\begin{aligned}
\text { Longest Distance }= & z_{f}=211.8644 \mathrm{~cm} \\
\text { Depth of Field }= & D o F=22.4705 \mathrm{~cm} \\
\text { For } s=H= & \frac{f^{2}}{c} \frac{1}{\text { fnumber }}=3571.4 \mathrm{~cm} \\
& z_{n}=1785.7 \mathrm{~cm}, \text { and } z_{f}=\infty .
\end{aligned}
$$

Figure 4: Normalized Transmittance of Fabry-Perot as a function of its thickness d_{0}.
(α)

$$
\Delta d=\frac{\lambda_{0}}{2}=0.3164 \mu m
$$

(β)

$$
\begin{aligned}
\Delta \nu_{F S R} & =15 \times 10^{9} \mathrm{~Hz}=15 \mathrm{GHz} \\
\Delta \lambda_{F S R} & =0.20021792 \times 10^{-10} \mathrm{~m}=0.20021792 \AA .
\end{aligned}
$$

(γ)

$$
m_{\max } \simeq 31605
$$

($\delta)$

$$
\begin{aligned}
F & =7.5034 \\
R=r^{2} & =0.4892825
\end{aligned}
$$

(ϵ

$$
\begin{aligned}
\Delta \lambda_{\min } & =4.6533 \times 10^{-12} \mathrm{~m}=4.6533 \times 10^{-2} \AA, \\
\mathcal{R} & =1.35989 \times 10^{5} .
\end{aligned}
$$

$\Theta \epsilon \mu \alpha 4$
(α)

$$
\begin{aligned}
I(x)=I_{0} & \frac{\sin ^{2}\left[k \frac{s}{2} \frac{x}{L}\right]}{\left[k \frac{s}{2} \frac{x}{L}\right]^{2}} \frac{\sin ^{2}\left[4 k \frac{d}{2} \frac{x}{L}\right]}{\sin ^{2}\left[k \frac{d}{2} \frac{x}{L}\right]} \\
\text { diffraction } & : x_{\min }=m \lambda_{0} \frac{L}{s} \quad m \in Z, m \neq 0 \\
\text { interference(main peaks) } & : x_{\max }=m^{\prime} \lambda_{0} \frac{L}{d} \quad m^{\prime} \in Z \\
\text { interference } & : x_{\text {min }}=\frac{m_{1}}{4} \lambda_{0} \frac{L}{d} \quad m_{1} \in Z \text { and } m_{1} \neq 4 m^{\prime}
\end{aligned}
$$

(β)

$$
\begin{aligned}
\text { diffraction nulls } & : x_{m}=m \lambda_{0} 100000(\mu m)=m 10(\mathrm{~cm}), \quad m \in Z, m \neq 0 \\
\text { interference nulls } & : x_{m^{\prime}}=m^{\prime} \lambda_{0} \frac{500000}{60}(\mu m)=m^{\prime} \frac{5}{6}(\mathrm{~cm}), \quad m^{\prime} \in Z \text { and } m^{\prime} \neq 4 m \\
\text { 1st main peak } & : I / I_{0}=16, \\
\text { 2nd main peak } & : I / I_{0}=16 \times 0.6839, \\
\text { 3rd main peak } & : I / I_{0}=16 \times 0.1710, \\
\text { zero of fifth main peak } & : \frac{s}{d}=\frac{1}{5} .
\end{aligned}
$$

Figure 5: Normalized single-slit diffraction term as a function of the normalized distance $\left(x / \lambda_{0}\right) /(L / s)$.

Figure 6: Normalized 4-slit interference term as a function of the normalized distance $\left(x / \lambda_{0}\right) /(L / d)$.

Figure 7: Normalized combined diffraction-interference term as a function of the normalized distance $\left(x / \lambda_{0}\right) /(L / d)$.

Figure 8: Normalized combined diffraction-interference term as a function of the normalized distance $\left(x / \lambda_{0}\right) /(L / d)$ for $\lambda_{0}=1 \mu \mathrm{~m}, s=\lambda_{0}, d=5 \lambda_{0}$, and $L=500000 \lambda_{0}$. It is obvious that the fifth main maximum is zeroed due to the $s / d=1 / 5$.

