$\Theta\epsilon\mu\alpha$  1

 $(\alpha)$ 

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} \frac{2}{n} - 1 & \frac{2R}{n} \\ \frac{2(1-n)}{nR} & \frac{2}{n} - 1 \end{pmatrix}$$
$$f_2 = -\frac{1}{C} = \frac{1}{2} \frac{n}{n-1} R$$



Figure 1: Focal length of the dielectric sphere as a function of the sphere radius for two refractive indices n = 1.50 and n = 2.50.

 $(\beta)$ 

$$r = v = \frac{D-1}{C} = R = +10.0 \, cm$$
  

$$s = w = \frac{1-A}{C} = -R = -10.0 \, cm$$
  

$$p = \frac{D}{C} = \frac{R(2-n)}{2(1-n)} = -5.0 \, cm$$
  

$$q = -\frac{A}{C} = -\frac{R(2-n)}{2(1-n)} = +5.0 \, cm$$
  

$$f_1 = \frac{1}{C} = -15.0 \, cm$$
  

$$f_2 = -\frac{1}{C} = +15.0 \, cm$$



Figure 2: Normalized Focal length  $(f_2/R)$  of the dielectric sphere as a function of the refractive index  $(1 < n \le 5)$ 

<u>Note</u>: The principal and nodal points  $H_1$ ,  $H_2$ ,  $N_1$ , and  $N_2$  all coincide with the center of the sphere.

 $(\gamma)$ 

 $B_{eq} = 0 \longrightarrow x = 16.25 \, cm$  real image, inverted  $A_{eq} = m = -0.75$ 

 $(\delta)$ 

$$s = 35.0 \, cm$$
  $s' = 26.25 \, cm$ , and  $m = -\frac{s'}{s} = -0.75$ 

 $\Theta\epsilon\mu\alpha$  2

 $(\alpha)$ 

Shortest Distance = 
$$z_n = 172.4138 \ cm$$
,  
Longest Distance =  $z_f = 238.0952 \ cm$ ,  
Depth of Field =  $DoF = 65.6814 \ cm$ ,  
For  $s = H = \frac{f^2}{c} \frac{1}{fnumber} = 1250 \ cm$ ,  
 $z_n = 625 \ cm$ , and  $z_f = \infty$ .

 $(\beta)$ 

Shortest Distance =  $z_n = 189.3939 \, cm$ ,



Figure 3: Ray diagram using the cardinal points of the dielectric (glass) sphere.

Longest Distance =  $z_f = 211.8644 cm$ , Depth of Field = DoF = 22.4705 cm, For  $s = H = \frac{f^2}{c} \frac{1}{fnumber} = 3571.4 cm$ ,  $z_n = 1785.7 cm$ , and  $z_f = \infty$ .





Figure 4: Normalized Transmittance of Fabry-Perot as a function of its thickness  $d_0$ .

 $(\alpha)$ 

$$\Delta d = \frac{\lambda_0}{2} = 0.3164\,\mu m.$$

 $(\beta)$ 

$$\Delta \nu_{FSR} = 15 \times 10^9 \, Hz = 15 \, GHz$$
$$\Delta \lambda_{FSR} = 0.20021792 \times 10^{-10} \, m = 0.20021792 \, \text{\AA}.$$

 $(\gamma)$ 

$$m_{max} \simeq 31605.$$

 $(\delta)$ 

$$F = 7.5034,$$
  
 $R = r^2 = 0.4892825.$ 

 $(\epsilon)$ 

$$\Delta \lambda_{min} = 4.6533 \times 10^{-12} \, m = 4.6533 \times 10^{-2} \text{\AA},$$
$$\mathcal{R} = 1.35989 \times 10^5.$$

 $\Theta\epsilon\mu\alpha$  4

 $(\alpha)$ 

$$I(x) = I_0 \frac{\sin^2 \left[k\frac{s}{2}\frac{x}{L}\right]}{\left[k\frac{s}{2}\frac{x}{L}\right]^2} \frac{\sin^2 \left[4k\frac{d}{2}\frac{x}{L}\right]}{\sin^2 \left[k\frac{d}{2}\frac{x}{L}\right]}$$

 $\begin{array}{lll} \text{diffraction} & : & x_{min} = m\lambda_0 \frac{L}{s} & m \in Z, m \neq 0\\ \text{interference}(\text{main peaks}) & : & x_{max} = m'\lambda_0 \frac{L}{d} & m' \in Z\\ \text{interference} & : & x_{min} = \frac{m_1}{4}\lambda_0 \frac{L}{d} & m_1 \in Z \text{ and } m_1 \neq 4m' \end{array}$ 

 $(\beta)$ 

diffraction nulls : 
$$x_m = m\lambda_0 100000 \ (\mu m) = m10 \ (cm), \quad m \in \mathbb{Z}, m \neq 0$$
  
interference nulls :  $x_{m'} = m'\lambda_0 \frac{500000}{60} \ (\mu m) = m'\frac{5}{6} \ (cm), \quad m' \in \mathbb{Z}$  and  $m' \neq 4m$   
1st main peak :  $I/I_0 = 16$ ,  
2nd main peak :  $I/I_0 = 16 \times 0.6839$ ,  
3rd main peak :  $I/I_0 = 16 \times 0.1710$ ,  
zero of fifth main peak :  $\frac{s}{d} = \frac{1}{5}$ .



Figure 5: Normalized single-slit diffraction term as a function of the normalized distance  $(x/\lambda_0)/(L/s)$ .



Figure 6: Normalized 4-slit interference term as a function of the normalized distance  $(x/\lambda_0)/(L/d)$ .



Figure 7: Normalized combined diffraction-interference term as a function of the normalized distance  $(x/\lambda_0)/(L/d)$ .



Figure 8: Normalized combined diffraction-interference term as a function of the normalized distance  $(x/\lambda_0)/(L/d)$  for  $\lambda_0 = 1 \,\mu\text{m}$ ,  $s = \lambda_0$ ,  $d = 5\lambda_0$ , and  $L = 500000\lambda_0$ . It is obvious that the fifth main maximum is zeroed due to the s/d = 1/5.