Spatial & Temporal Coherence

Optical Engineering
Prof. Elias N. Glytsis

School of Electrical & Computer Engineering
National Technical University of Athens
Coherence Concept

Coherence

Incoherence

Partial Coherence
Spatial and Temporal Coherence

Coherence is a measure of the correlation between the phases measured at different (temporal and spatial) points on a wave.
Temporal Coherence is a measure of the correlation of light wave’s phase at different points along the direction of propagation – it tells us how monochromatic a source is.
Spatial Coherence is a measure of the correlation of a light wave’s phase at different points transverse to the direction of propagation - it tells us how uniform the phase of a wavefront is.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd Ed., J. Wiley 2007
Spatial and Temporal Coherence

Temporal Coherence Time, τ_c

Temporal Coherence Length, $\ell_c = c \tau_c$

Spatial Coherence Length, x_c

Coherence length x_c
Spatial and Temporal Coherence

Spatial and Temporal Coherence

Temporal Coherence; Spatial Incoherence

Spatial Coherence; Temporal Incoherence

Spatial and Temporal Incoherence

Prof. Elias N. Glytsis, School of ECE, NTUA
Temporal Coherence

Temporal Coherence Time, τ_c
Temporal Coherence Length, $\ell_c = 2d = c \tau_c$

Prof. Elias N. Glytsis, School of ECE, NTUA
Spatial Coherence

Spatial Coherence Area, $A_c = \pi d^2$
Temporal Coherence

Temporal Coherence Function (Autocorrelation)

\[G(\tau) = \int_{-\infty}^{+\infty} U^*(t)U(t + \tau)dt = \int_{-\infty}^{+\infty} U(t)U^*(t - \tau)dt \]

\[G(-\tau) = G^*(\tau) \]

Degree of Temporal Coherence

\[g(\tau) = \frac{G(\tau)}{G(0)} \quad 0 \leq |g(\tau)| \leq 1 \]

Coherence Time and Coherence Length

\[\tau_c = \int_{-\infty}^{+\infty} |g(\tau)|^2 d\tau \]

\[l_c = c\tau_c \]

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd Ed., J. Wiley 2007
Temporal Coherence

Power Spectral Density

\[
S(\nu) = \int_{-\infty}^{+\infty} G(\tau) \exp(-j2\pi \nu \tau) d\tau \\
\Delta \nu_c = \frac{\left| \int_{-\infty}^{+\infty} S(\nu) d\nu \right|^2}{\int_{-\infty}^{+\infty} |S(\nu)|^2 d\nu} = \frac{1}{\tau_c}
\]

\[
\nu = \frac{c}{\lambda_0} \implies \Delta \nu = -\frac{c}{\lambda_0^2} \Delta \lambda_0
\]

Table 11.1-2 Spectral widths of a number of light sources together with their coherence times and coherence lengths in free space.

<table>
<thead>
<tr>
<th>Source</th>
<th>(\Delta \nu_c) (Hz)</th>
<th>(\tau_c = 1/\Delta \nu_c)</th>
<th>(l_c = c\tau_c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filtered sunlight ((\lambda_o = 0.4–0.8 \ \mu m))</td>
<td>(3.74 \times 10^{14})</td>
<td>2.67 fs</td>
<td>800 nm</td>
</tr>
<tr>
<td>Light-emitting diode ((\lambda_o = 1 \ \mu m, \Delta \lambda_o = 50 \ \text{nm}))</td>
<td>(1.5 \times 10^{13})</td>
<td>67 fs</td>
<td>20 \ \mu m</td>
</tr>
<tr>
<td>Low-pressure sodium lamp</td>
<td>(5 \times 10^{11})</td>
<td>2 ps</td>
<td>600 \ \mu m</td>
</tr>
<tr>
<td>Multimode He–Ne laser ((\lambda_o = 633 \ \text{nm}))</td>
<td>(1.5 \times 10^{9})</td>
<td>0.67 ns</td>
<td>20 cm</td>
</tr>
<tr>
<td>Single-mode He–Ne laser ((\lambda_o = 633 \ \text{nm}))</td>
<td>(1 \times 10^{6})</td>
<td>1 \ \mu s</td>
<td>300 m</td>
</tr>
</tbody>
</table>

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd Ed., J. Wiley 2007

Prof. Elias N. Glytsis, School of ECE, NTUA

9
Temporal Coherence

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd Ed., J. Wiley 2007
Temporal Coherence

Power Spectral Density

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd Ed., J. Wiley 2007
Young’s Experiment to Demonstrate Spatial Coherence

Persistence of fringes as the source grows from a point source to finite size.

Prof. Elias N. Glytsis, School of ECE, NTUA
Spatial Coherence

Mutual Coherence Function

\[G(r_1, r_2, \tau) = G_{12}(\tau) = \langle U^*(\vec{r}_1, t) U(\vec{r}_2, t + \tau) \rangle \]

\[G_{11}(\tau) = \text{Self Coherence Function at } \vec{r}_1 \]

\[G_{22}(\tau) = \text{Self Coherence Function at } \vec{r}_2 \]

\[G_{12}(0) = \text{Spatial Coherence Function} \]

\[G_{11}(0) = \text{Intensity at } \vec{r}_1, I(\vec{r}_1) \]

\[G_{22}(0) = \text{Intensity at } \vec{r}_2, I(\vec{r}_1) \]

Mutual Degree of Coherence

\[g(r_1, r_2, \tau) = \frac{G(r_1, r_2, \tau)}{\sqrt{I(r_1)I(r_2)}} \]

Figure 11.1-7 Two examples of $|g(r_1, r_2, \tau)|$ as a function of the separation $|r_1 - r_2|$ and the time delay τ. In (a) the maximum correlation for a given $|r_1 - r_2|$ occurs at $\tau = 0$. In (b) the maximum correlation occurs at $|r_1 - r_2| = c\tau$.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd Ed., J. Wiley 2007

Prof. Elias N. Glytsis, School of ECE, NTUA
Spatial Coherence Function

\[G(\vec{r}_1, \vec{r}_2, 0) = G_{12}(0) = \langle U(\vec{r}_1, t)U(\vec{r}_2, t) \rangle \]

\[g(\vec{r}_1, \vec{r}_2) = \frac{G(\vec{r}_1, \vec{r}_2, 0)}{\sqrt{I(\vec{r}_1)I(\vec{r}_2)}} \]

Spatial Coherence Area, \(A_c \)

Figure 11.1-8 Two illustrative examples of the magnitude of the normalized mutual intensity as a function of \(r_1 \) in the vicinity of a fixed point \(r_2 \). The coherence area in (a) is smaller than that in (b).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd Ed., J. Wiley 2007

<table>
<thead>
<tr>
<th>Coherence area</th>
<th>Thermal source</th>
<th>Sun (500nm filter)</th>
<th>Betelgeuse (500nm filter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1mm²</td>
<td>3.68 \times 10^{-3} \text{ mm}²</td>
<td>6m²</td>
</tr>
</tbody>
</table>
Spatial Coherence

The van Cittert-Zernike Theorem states that the spatial coherence area A_c is given by:

$$A_c = \frac{D^2 \lambda^2}{\pi d^2}$$

where d is the diameter of the light source and D is the distance away.

Basically, wave-fronts smooth out as they propagate away from the source.
Spatial and Spectral Filtering to Produce Coherence Radiation

http://zeiss-campus.magnet.fsu.edu/tutorials/coherence/indexflash.html

Prof. Elias N. Glytsis, School of ECE, NTUA