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1 Introduction and Electromagnetic Modes Density

A blackbody is an idealized physical body that can absorb all incident electromagnetic radiation

independently of its frequency and its angle of incidence. At thermal equilibrium a blackbody

emits all absorbed radiation. The re-emitted radiation energy depends only on its temperature.

Therefore the intensity of the emitted radiation is related to the amount of energy in the

body at thermal equilibrium. The history of the development of the theory of the blackbody

radiation is very interesting since it led to the discovery of the quantum theory [1]. Josef

Stefan, Ludwig Boltzmann, Wilhelm Wien, and finally Max Planck were instrumental in the

development of the theory of blackbody radiation. A nice summary of their short biographies

and the methodologies that were used to obtain their results is presented by Crepeau [2].

Early experimental studies established that the emissivity of a blackbody is a function of

frequency and temperature. A measure of the emissivity can be the term ρ(ν, T ) which is

the density of radiation energy per unit volume per unit frequency (J/m3Hz) at an absolute

temperature T and at frequency ν. The first theoretical studies used the very successful at

that point theory of Maxwell equations for the determination of the density of electromagnetic

modes and from that the determination of ρ(ν, T ). For example, Wilhelm Wien in 1896 used a

simple model to derive the expression

ρ(ν, T ) = αν3 exp(−βν/T ) (1)

where α, β were constants. Wien used the hypothesis that radiation was emitted by molecules

which followed a Maxwellian velocity distribution and that the wavelength of radiation de-

pended only on the molecule’s velocity [2]. However, the above equation failed in the low

frequency range of the experimental data.

In June 1900 Lord Rayleigh published a model based on the modes of electromagnetic

waves in a cavity. Each mode possessed a particular frequency and could give away and take

up energy in a continuous manner. Using the standard electromagnetic theory of a cuboid

cavity resonator (see Fig. 1) with perfect conductor walls the following dispersion equation can

be easily obtained [3–5] (see Appendix A) :
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where n is the index of refraction of the medium, and a, b, and d are the dimensions of the

cavity resonator in the x, y, and z directions, and m, p, q are positive integers.
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Figure 1: Cavity box (a cuboid) for the determination of the density of electromagnetic modes.

If for simplicity it is assumed that the cavity is a cube, a = b = d then the previous equation

can be written as

m2 + p2 + q2 =
(2ν

c

)2

a2n2 =
(2νna

c

)2

. (3)

In order to count the electromagnetic modes up to frequency ν it is necessary to evaluate the

number of modes that fit in the one eighth of the sphere that is shown in Fig. 2 (since negative

values of m, p, and q. do not represent different modes - see Appendix A). Thus, the total

number of electromagnetic modes N(ν) can be determined as follows

N(ν) =
(1/8) cavity volume

volume of a mode
=

(1/8)(4/3)π(2νan/c)3

1 × 1 × 1
=

4

3
π

ν3n3a3

c3
. (4)

Due to TE and TM mode degeneracy the above number should be multiplied by a factor of 2.

Therefore, the total number of electromagnetic modes per volume, N (ν), is

N (ν) =
N(ν)

V olume = a3
=

8

3
π

ν3n3

c3
. (5)

Then the density of electromagnetic modes per frequency is

dN (ν)

dν
=

8πν2n3

c3
. (6)
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In the last equation it is assumed that the refractive index n is independent of frequency (or

freespace wavelength). Usually for all materials there is dispersion, i.e. dependence of the

refractive index on the frequency (or wavelength) of the electromagnetic radiation. In the

latter case n = n(ν) and in the above derivative over frequency this dependence must be taken

into account. Then the previous equation can be written as follows [6]

dN (ν)

dν
=

8πν2n2

(

n + ν
dn

dν

)

c3
=

8πν2n2ng

c3
. (7)

where ng = n + ν(dn/dν) = n − λ0(dn/dλ0) (where λ0 is the freespace wavelength) is the

group refractive index and is important in materials such semiconductors and fibers where the

refractive index dependence on frequency (or wavelength) can be significant. For the remainder

of this section it is assumed that the refractive index is independent of frequency (or wavelength)

for the sake of simplicity.
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Figure 2: The one eighth of the sphere in the mpq space for the determination of the number of

electromagnetic modes up to frequency ν.

2 Energy Associated with Electromagnetic Modes

Rayleigh assigned an energy kBT/2 to each electromagnetic mode (kBT/2 for the electric field

oscillation and kBT/2 for the magnetic field oscillation, where kB = 1.380649 × 10−23J/◦K is
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Boltzmann’s constant). More rigorously, the average energy of each electromagnetic mode can

be determined using Boltzmann’s statistics [7]. According to these statistics the probability

p(E) that an energy of each electromagnetic mode is between E and E + dE is given by

p(E)dE = A exp

(

−
E

kBT

)

dE, (8)

where A is a normalization constant that can be easily found from the normalization of p(E)

in order to represent a probability density function. Therefore, the constant A is given by

∫
∞

0

p(E)dE = 1 =⇒ A =
1

∫
∞

0

exp(−E/kBT )dE

=
1

kBT
. (9)

Then, the average energy of each electromagnetic mode can be determined from

〈E〉 =

∫
∞

0

Ep(E)dE =

∫
∞

0

E
1

kBT
exp

(

−
E

kBT

)

dE = kBT. (10)

Using Eq. (6) and the average energy of Eq. (10) the electromagnetic energy density per unit

frequency ρ(ν, T ) becomes

ρ(ν, T ) =
dN (ν)

dν
〈E〉 =

8πν2n3

c3
kBT. (11)

The last equation is known as the Rayleigh-Jeans distribution of a blackbody radiation and

fails dramatically in the ultraviolet part of the spectrum (historically referred as the “ultraviolet

catastrophe”). This can be seen in the Rayleigh-Jeans curve of Fig. 3.

Planck used purely thermodynamic entropy arguments to derive an improved equation for

Wien’s distribution law shown in Eq. (1). His derived equation was of the form [2]

ρ(ν, T ) =
Cν3

exp(βν/T ) − 1
. (12)

It has been suggested that Planck discovered his famous constant (h) in the evening of October

7, 1900 [1]. Planck had taken into account some additional experimental data by Heinrich

Reubens and Ferdinand Kurlbaum as well as Wien’s formula and he deduced in his Eq. (12),

an expression that “fitted” all the available experimental data. His formula was the now known

as the blackbody radiation formula given by

ρ(ν, T ) =
8πν2n3

c3

hν

exp(hν/kBT )− 1
, (13)
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where h = 6.62607015 × 10−34Joule · sec is known as Planck’s constant. The above expression

reduces to Wien’s formula for high frequencies (i.e. hν/kBT � 1) and to Rayleigh-Jeans

formula for low frequencies (i.e. hν/kBT � 1). An example of Planck’s radiation formula

is shown in Fig. 3 along with Rayleigh-Jeans and Wien’s approximations for a blackbody of

absolute temperature T = 6000◦K.

Having obtained his formula Planck was concerned to discover its physical basis. It was hard

to argue about the density of electromagnetic modes determination. Therefore, he focused

on the average energy per electromagnetic mode. After discussions he had with Boltzmann

regarding the number of ways of distributing discrete equal energy values among a number of

molecules, Planck made the hypothesis that electromagnetic energy at frequency ν could only

appear as a multiple of the step size hν which was a quantum of energy (later it was called

photon). I.e., the energy of the electromagnetic modes could be of the form Ei = ihν where

i = 0, 1, 2, · · · ). Energies between ihν and (i + 1)hν do not occur. Then he used Boltzmann’s

statistics to compute the average energy of an electromagnetic mode. If E0, E1, E2, . . . , are the

allowed energies then according to Boltzmann’s statistics the probability of an electromagnetic

mode to have an energy Ei is

p(Ei) = A exp

(

−
Ei

kBT

)

, (14)

and the normalization constant A is given by

∞∑

i=0

p(Ei) = 1 =⇒ A =
1

∞∑

i=0

exp(−Ei/kBT )

= 1 − exp

(

−
hν

kBT

)

. (15)

Then the average energy 〈E〉 of an electromagnetic mode can be determined as follows

〈E〉 = A
∞∑

i=0

Ei exp

(

−
Ei

kBT

)

= A
[
1hνe−hν/kB T + 2hνe−2hν/kBT + · · ·

]
=

= A
hν exp(−hν/kBT )

[1 − exp(−hν/kBT )]2
=

hν

exp(hν/kBT )− 1
. (16)

Using the above calculation of the average energy of an electromagnetic mode the Planck’s

formula can be rewritten with the physical meaning of each of its terms

ρ(ν, T ) =
8πν2n3

c3
︸ ︷︷ ︸

Number of em modes
per volume per frequency

photon energy
︷ ︸︸ ︷

hν
1

exp(hν/kBT )− 1
︸ ︷︷ ︸

Number of photons/mode

. (17)
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10-15 Blackbody Radiation, T = 6000 °K

Planck

Rayleigh-Jeans

Wien

Figure 3: Blackbody radiation for T = 6000◦ K. The initial theories by Rayleigh-Jeans and Wien
are also shown for comparison.

Later Planck used the energy discretization of the quantum oscillator, i.e. Ei = [(1/2) + i]hν

(i = 0, 1, 2, · · · ). Therefore, he introduced what is known today as the zero point energy, which

is the lowest energy of a quantum oscillator. This lowest energy can not be zero due to the

Heisenberg’s uncertainty principle. In this case the average energy of an electromagnetic mode

can be calculated in a similar manner as in Eq. (16) and is given by

〈E〉 =
hν

2
+

hν

exp(hν/kBT ) − 1
, (18)

However, in the above equation, the zero point energy hν/2 term causes increase to the radiation

density ρ(ν, T ) to infinity, and should not be used for the blackbody radiation energy density

[8–14]. One simplistic approach to explain the absence of the zero energy term is that the

photons that are either emitted or absorbed by the blackbody radiator are related to transitions

between energy states Ei − Ei′ = (i − i′)hν = `hν (where ` = 0, 1, 2, · · · ), and consequently

the initial assumption of Planck should be used as in Eq. (16). As a general comment, the zero

point energy, i. e. the vacuum energy is one of the still controversial issues of modern physics.

The density of electromagnetic modes can also be expressed per wavelength (freespace) and is

given by
dN (λ0)

dλ0
= −

8πn3

λ4
0

, (19)
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and the corresponding density of electromagnetic radiation of a blackbody per wavelength

(freespace) is

ρ(λ0, T ) =
8πn3

λ4
0

hc/λ0

exp(hc/λ0kBT ) − 1
. (20)

3 Blackbody Radiated Power, Radiance, and Exitance

Frequently in the literature the blackbody radiation formula is expressed in terms of the radiant

exitance (or radiant emittance) of the blackbody (in units of power/area = W/m2). The radiant

exitance expresses the total power emitted by a source in a hemisphere (towards the direction

of emission) per unit area of the source. The Poynting vector expresses the power per unit area

of the electromagnetic radiation. Therefore, the Poynting vector is given by Pavg = (1/2Z)|E|2

where E is the electric field amplitude of the electromagnetic wave, and Z =
√

µ0/n2ε0 = Z0/n

(where Z0 is the freespace wave impedance) is the intrinsic impedance of the non-magnetic

homogeneous isotropic medium in which the electromagnetic radiation propagates. The energy

density of the electromagnetic radiation is given by wem = (1/2)n2ε0|E|2. Therefore, Pavg =

(c/n)wem. However, the energy density between ν and ν + dν (or equivalently between λ0 and

λ0 + dλ0) is dwem = ρ(ν, T )dν = ρ(λ0, T )dλ0 and then the power per unit area (between ν and

ν + dν or equivalently between λ0 and λ0 + dλ0) dPavg can be determined as follows

dPavg =
8πn2ν2

c2

hν

exp(hν/kBT )− 1
dν = Pavg,νdν, (21)

dPavg =
8πn2c

λ4
0

hc/λ0

exp(hc/λ0kBT )− 1
dλ0 = Pavg,λ0

dλ0. (22)

The radiance L (in W/m2sr where sr = steradian, is discussed in the Radiometry and

Photometry chapter) of a radiant source (such as a blackbody radiator) is defined as L =

d2P/dA⊥/dΩ where d2P is the differential electromagnetic power that is emitted by the source

in a specified direction, dA⊥ is the differential source area element perpendicular to the specified

direction of propagation, and dΩ is the differential solid angle inside which the differential

power is propagated in the specified direction [15]. A blackbody emits radiation equally in all

directions and consequently it seems similarly bright from any direction observed. This means

that its radiance L is constant and independent of the observation angle. Such a source is

called Lambertian [15]. Therefore, a blackbody is always a Lambertian source. Integrating the
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blackbody radiance all over the solid angles it can be easily shown that
∫

Ω
LdΩ = L

∫

Ω
dΩ =

4πL =
∫

(d2P/dA⊥) = Pavg . Then the spectral radiance, dLs of a blackbody radiator between

ν and ν + dν or λ0 and λ0 + dλ0 can be expressed as follows

dLs =
dPavg

4π
=

2n2ν2

c2

hν

exp(hν/kBT )− 1
dν = Ls,νdν, and (23)

dLs =
dPavg

4π
=

2n2c

λ4
0

hc/λ0

exp(hc/λ0kBT )− 1
dλ0 = Ls,λ0

dλ0. (24)

From radiometry [15] it can be easily determined that the radiance L and the radiant exi-

tance (emittance) M (W/m2) of a blackbody (or a Lambertian source in general) can be related

from the equation M = Lπ. This is straightforward to show since M =
∫

Ω
[d2P/(dAsdΩ)]dΩ =

∫

Ω
L cos θdΩ =

∫ π/2

θ=0

∫ 2π

φ=0
L cos θ sin θdθdφ = Lπ (where dAs = dA⊥/ cos θ and dΩ = sin θdθdφ).

Consequently dM = πdL = Mν(ν)dν = Mλ0
(λ0)dλ0 = Mλ(λ)dλ, where Mν , Mλ0

, and Mλ are

the spectral exitances in W/m2/Hz, W/m2/m (in freespace wavelength) and W/m2/m (inside

medium wavelength), respectively. In addition, c = λ0ν and c/n = λν = (λ0/n)ν. For example,

the radiant spectral exitance (power/unit area/frequency = W/m2/Hz) of a blackbody radiator

is given by:

Mν(ν) =
2πn2ν2

c2

hν

exp(hν/kBT ) − 1
, (25)

while the same spectral exitance expressed per wavelength (in freespace or in medium) interval

(power/unit area/wavelength = W/m2/m) is given by

Mλ0
=

2πn2c

λ4
0

hc/λ0

exp(hc/λ0kBT )− 1
, (26)

Mλ =
2πc

n2λ4

hc/λ

exp(hc/λnkBT ) − 1
. (27)

Integrating the above equations over all frequencies (or wavelengths) the radiant exitance M of

a blackbody radiator at temperature T can be determined. This is known as Stefan’s law and

is expressed by the following equation

M =

∫
∞

0

Mλ0
dλ0 =

( 2π5k4
B

15h3c2

)

n2T 4 = σn2T 4 (28)

where σ = 5.670374419×10−8 W/m2 ◦K−4 = Stefan-Boltzmann constant (usually the refractive

index is considered that of vacuum or air, i.e. n ' 1). The maxima of the blackbody radiator

curve can be found from the solution of the equation

dMλ0
(λ0,max)

dλ0

= 0 ⇒
hc

λ0,maxkBT
= 4.965114231 ⇒ λ0,maxT = 2897.772µm◦K, (29)
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107 Blackbody Radiation T = 6000°K and Wien Displacement
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Figure 4: Blackbody radiation spectral exitance (emittance), Mλ0
(λ0), for T = 6000◦ K as a function

of freespace wavelength. The Wien’s displacement law is also shown for the same wavelength range.

The maximum of Mλ0
occurs for λ0,max = 0.483 µm.

where the last part of the above equation described how the peak of the blackbody radiation

shifts with the temperature and it is known as Wien’s displacement law. An example of Mλ0
for

T = 6000 ◦K and Wien’s displacement law are shown in Fig. 4. A similar Wien’s displacement

law can be defined for Mν . The maxima for Mν can be found by

dMν(νmax)

dν
= 0 ⇒

hνmax

kBT
= 2.82143937 ⇒

νmax

T
= 5.878926 × 1010 Hz/◦K. (30)

The derivation of Wien’s law is presented in Appendix B with the utilization of Lambert’s

function. An example of Mν for T = 6000 ◦K and Wien’s displacement law are shown in Fig. 5.

It is mentioned that the peak of Mλ0
, λ0,max, and the peak of Mν , νmax, are not related by

λ0,maxνmax = c since the corresponding spectral exitances are per unit wavelength and per unit

frequency, respectively.

3.1 Radiance Conservation

An interesting point that should be discussed is the presence of the refractive index in Eq. (28).

It is reminded that n corresponds to the refractive index (assuming no dispersion) of the medium

that exists inside the blackbody cavity (see the calculation of the density of electromagnetic

9
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10-7 Blackbody Radiation and Wien Displacement
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Figure 5: Blackbody radiation spectral exitance (emittance), Mν(ν), for T = 6000◦ K as a function of

frequency. The Wien’s displacement law is also shown for the same frequency range. The maximum of Mν

occurs for νmax = 3.52× 1014 Hz.

modes inside the cuboid cavity). However, the radiated electromagnetic energy propagates away

from the blackbody radiator. In many textbooks the refractive index is omitted from Eq. (28)

since it is assumed that the blackbody emits radiation into vacuum or into the air (where nair '

1). This is justified because of the radiance’s conservation [16, 17] between two homogeneous

media of different refractive index. Let’s consider a smooth boundary between two dielectric

media of refractive indices of n1 and n2 respectively as it is shown in Fig. 6. In this figure an

elementary beam of rays is incident from the left on a small area element dA of the smooth

boundary [16,17]. The normal on the differential element is assumed to represent the polar axis

of a coordinate system center at the middle of the differential element dA with its transverse

plane being in the tangential direction of the boundary (and therefore perpendicular to the plane

of the interface shown in Fig. 6). Since the boundary is assumed to be smooth the Snell’s law

applies for the elementary rays. Therefore, n1 sin θ1 = n2 sin θ2. Neglecting the reflection losses

(which is definitively an approximation) the power in the beam should be the same at both sides

of the boundary. I.e. d2P1 = d2P2. However, d2P1 = L1 cos θ1dAdΩ1 = L1 cos θ1dA sin θ1dθ1dφ

where φ lies in the transverse to the boundary plane. Similarly, d2P2 = L2 cos θ2dAdΩ2 =

L2 cos θ2dA sin θ2dθ2dφ. Differentiating the Snell’s law gives n1 cos θ1dθ1 = n2 cos θ2dθ2. In
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order to satisfy the power conservation the following holds

d2P1 = L1 cos θ1dA sin θ1 dθ1dφ = d2P2 = L2 cos θ2dA sin θ2 dθ2dφ =⇒

L1 = L2
cos θ2 dθ2

cos θ1 dθ1

sin θ2

sin θ1

= L2
n2

1

n2
2

=⇒

L1

n2
1

=
L2

n2
2

= L0 ⇐⇒
M1

n2
1

=
M2

n2
2

= M0, (31)

where L0 and M0 are the radiance and exitance in vacuum respectively. Therefore, returning

to Eq. (28) it is now obvious that Mi = n2
i M0 where M0 = σT 4. This might imply that if

ni > 1 the exitance radiated from a dielectric medium into air could be larger than M0. This

is not the case since some of the energy emitted within the medium of refractive index ni

is reflected back into the emitting medium at the medium-air interface due to total internal

reflection of the radiation (from Snell’s law the maximum angle that is refracted into the air is

θmax = sin−1(1/ni) which is the critical angle). Therefore only radiation within a cone of apex

angle θmax Is refracted into air (neglecting reflection losses). The radiated power for an area

dA (see Fig. 6) in the accepted cone can be determined as

dP =

∫ 2π

0

∫ θmax

0

LidA cos θ sin θdφdθ = 2πLidA
sin2 θmax

2

= πLidA
1

n2
i

=
Mi

n2
i

dA = M0dA,

and consequently the total power (per unit area) emitted by a blackbody radiator does not

depend on the refractive index of the medium. Of course, in this analysis all reflections where

neglected. Some discussion about taking into account the reflections is presented in Refs. [17,18].

4 Thermal Radiation Basics

The blackbody is an ideal radiator. The basics properties of blackbody radiation are: (a) The

radiation emitted by a blackbody is isotropic, homogeneous and unpolarized, i.e. the radiation

is completely diffused (b) The blackbody radiation at a given wavelength (or frequency) depends

only on the temperature; (c) A blackbody emits more radiation than any other object at the

same temperature. Therefore, blackbody radiation represents the upper limit to the amount

of radiation that a real body may emit at a given temperature. Since a blackbody radiator is

simultaneously a perfect absorber and a perfect emitter, it cab used as a reference to compare

11
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Figure 6: Radiance conservation at a smooth boundary between two homogeneous dielectric media with

refractive indices n1 and n2 respectively.

the radiative properties of real surfaces. At any given freespace wavelength λ0, the emissivity

ε(λ0, T ), is defined as the ratio of the actual emitted radiant exitance (or radiance) M̃λ0
(or

L̃λ0
) over the emitted radiant exitance of a blackbody Mλ0

(or Lλ0
),

ε(λ0, T ) =
M̃λ0

(λ0, T )

Mλ0
(λ0, T )

=
L̃λ0

(λ0, T )

Lλ0
(λ0, T )

. (32)

Of course Eq. (32) holds only for Lambertian emitters where M = Lπ (and L is direction

independent) as it was mentioned earlier. Usually emissivity of a real object is defined using

the ratio of radiances and not the exitances. This is because in real objects the radiation depends

not only on the wavelength and temperature but also on the direction of emission. Therefore,

the most elemental emissivity of a real object is expressed by the spectral directional emissivity,

ε(λ0, T, θ, φ), where θ and φ are the polar and azimuthal angles that specify the direction [19].

When the radiance is integrated over the hemisphere of emission the spectral hemispherical

emissivity, ε(λ0, T ), is defined using the ratio of exitances as in Eq. (32) [19].

Emissivity is a measure of how strongly a body radiates at a given wavelength, temperature,

and direction. For simplicity, from now on in this chapter the spectral hemispherical emissivity is

referred as simple emissivity. Emissivity ranges between zero and one for all real substances (0 ≤

ε(λ0, T ) ≤ 1). A gray body (and diffused body so its radiation does not depend on direction) is

defined as a substance whose emissivity is independent of wavelength, i.e. ε(λ0, T ) = ε(T ). In
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the atmosphere, clouds and gases have emissivities that could vary significantly with wavelength

due to various absorption lines. On the other hand the ocean surface has near unit emissivity

in the visible regions of the spectrum and resembles a blackbody.

For a body in local thermodynamic equilibrium the amount of thermal energy emitted must

be equal to the energy absorbed. Otherwise the body would heat up or cool down in time,

contrary to the assumption of equilibrium. As a result of this it can be said that materials

that are strong absorbers at a given wavelength are also strong emitters at that wavelength.

Similarly weak absorbers are weak emitters.

All bodies are constantly bombarded by electromagnetic radiation. When radiation is in-

cident in slab of a semi-transparent material, as shown in Fig. 7, the fraction of the incident

radiation that is reflected is called reflectivity, R, the fraction of the incident radiation that

is transmitted is called transmissivity, T , and the fraction of the incident radiation that is

absorbed is called absorptivity, A. Of course the reflectivity can be complicated depending on

the incident angle and can be characterized either as specular (mirror-like) or diffused (equally

reflected in all backward directions. The R, T , and T are assumed to be the average quantities

for all directions and wavelengths of the incident radiation [19].

Figure 7: The incident, M̃inc, reflected, M̃refl = RM̃inc, transmitted, M̃tran = TM̃inc, and absorbed,

M̃abs = AM̃inc, powers respectively, by a semi-transparent homogeneous material slab. The R, T , and
A, represent the reflectivity, transmissivity, and absorptivity, of the material, respectively.

The conservation of energy requires that R, T , and A obey the equation:

R + T + A = 1. (33)
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For ideal blackbodies the reflected and transmitted powers are zero, i.e., R = T = 0 and

consequently A = 1. For opaque materials T = 0 and therefore R+A = 1. For semi-transparent

materials like gases the reflectivity is absent, R = 0, and consequently T + A = 1.

4.1 Kirchoff’s Law

Consider a small body of surface area S, temperature T , emissivity ε, and absorptivity A that

is fully contained in a large isothermal volume of the same temperature T as shown in Fig.

8 [19]. The large isothermal volume can be considered a blackbody cavity and the body of

surface S is too small and therefore can not affect the status of the large blackbody enclosure.

The radiation incident on the small body is Minc = σT 4 according to Stefan-Boltzmann law.

Figure 8: A small body of temperature T , surface area S, emissivity ε, and absorptivity A is inside

a large isothermal enclosure of temperature T also.

The radiation absorbed by the small body is Mabs = AMinc = AσT 4. On the other hand, the

radiation emitted by the small body is Memit = εMinc = εσT 4. Considering thermodynamic

equilibrium for the small body the the absorbed and the emitted radiation should be equal.

Consequently, AσT 4 = εσT 4, which results in what is known as the Kirchhoff’s law:

ε(T ) = A(T ), (34)

where both the emissivity as well as the absorptivity are average values over all wavelengths, and

directions. In general, the Kirchhoff’s law can be generalized as ε(λ0, T, θ, φ) = A(λ0, T, θ, φ).
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4.2 Color Temperature

Blackbody radiation is also used to establish a color scale as a function of the absolute tem-

perature. The color temperature of a light source is the temperature of a blackbody with the

closest spectral distribution with the source. However, color temperature is strictly defined

for blackbody radiators since the spectral response of a blackbody is completely defined by

its temperature. Real sources though do not emit blackbody spectrums. In this case it was

proposed to use the Correlated Color Temperature (CCT) [20, 21]. The correlated color tem-

perature (CCT) is defined as a measure of light source color appearance by considering the

proximity of the light source’s chromaticity coordinates to the blackbody locus. Therefore, the

CCT is used as a single number to characterize the color of a light source rather than the two

chromaticity coordinates required to specify quantitatively a color. The CCT is measured in

the u-v chromaticity coordinates (see Appendix C). For example, the chromaticity coordinates

x, y of a light source can be determined from its spectrum and the color matching functions

x̄(λ0), ȳ(λ0), z̄(λ0). Then the resulting x, y chromaticity coordinates are transformed in the

u, v chromaticity coordinates [22] (Appendix C). If u(T ) and v(T ) are the u, v chromaticity

coordinates of a blackbody radiator then the CCT of the light source of interest is defined as

the temperature CCT = T
CCT

that minimizes the distance of (u, v) point from the Planckian

locus (which is the locus of blackbody radiators in the u − v diagram. I.e., T
CCT

is defined as

CCT = T
CCT

= min
T

{

d =
[
(u − u(T ))2 + (v − v(T ))2

]1/2
}

. (35)

The above equation actually finds the intersection of the normal to the Planckian locus from

point (u, v). This intersection defines CCT. Usually, on the chromaticity diagram isotemper-

ature lines are drawn by specifying the maximum possible distance acceptable ∆uv from the

Planckian locus in the u-v diagram. These lines can be easily transformed into the standard

x-y chromaticity diagram. For example, isotemperature lines with ∆uv = ±0.02 are shown

in Fig. 9a and 9b in the u-v and in the x-y diagrams, respectively. The isotemperature lines

are shown for temperatures ranging from 1515 ◦K (first isotemperature line from the right) to

24959 ◦K (first isotemperature line from the left). The temperatures were selected to differ by

10mired = 10MK−1 (micro reciprocal degrees, MK−1 = 106 K/T ) according to Ref. 23. The

details of the calculation of the isotemperature lines is presented in Appendix C.

Color temperature and correlated color temperature is a characteristic of visible light only
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Figure 9: (a) Isotemperature lines in uv chromaticity diagram for ∆uv = 0.02. The solid black
line is part of the boundary of the chromaticity space. The red line is the Planckian locus. The

temperatures (b) Isotemperature lines in xy chromaticity diagram for ∆uv = 0.02. The solid black
line is part of the boundary of the chromaticity space. The red line is the Planckian locus and the

purple line is part of the line of purples.
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and is used in various fields as in lighting, photography, publishing, manufacturing, astrophysics,

and others. Correlated color temperatures above 5000◦ K are called “cool colors”(look bluish),

while color temperatures in the range of 2700-3000◦ K are called “warm colors” (look yellowish).

For example, the sun has a typical correlated color temperature of ∼ 5780◦ K.

5 Cosmic Microwave Background Radiation (CMB)

The discovery and measurement of the Cosmic Microwave Background radiation (CMB) is

of great importance to modern cosmology since it provided critical information for the early

universe such as the amount of regular matter, dark matter, and dark energy, the age of the

universe, the flatness of the universe, the Hubble constant etc. The observation of the CMB

radiation confirmed the “Big Bang” theory and provides a picture of the young universe. At the

beginning of time the temperature of the universe was extremely high. For example, about three

minutes after the Big Bang the temperature was of the order of 109 ◦K! At these temperatures

protons, electrons and neutrons existed along with photons and they formed an opaque plasma

fog. No atoms were formed yet and photons were continuously absorbed and re-emitted but

could not escape out of the plasma. It took about 380000 years for the universe to cool down

to about 3000 ◦K. At this temperature the first hydrogen and helium atoms were formed and

the universe became transparent for the photons. This era is known in cosmology as photon

decoupling. These early photons that escape from the young universe are still traveling today

and constitute the faint CMB radiation that fills all space. Of course due to the expansion of the

universe these early photons that should obey the blackbody radiation pattern for T = 3000 ◦K

in the present time have cool down to a temperature of about T = 2.72548 ± 0.00057 ◦K [24]!

This is due to the cosmological redshift due to the expansion of the universe from the age of

380000 years to its present age of about 13.8 billion years. This observed redshift corresponds

to an expansion by a factor of about 1100 since the universe initial transparency to present

time [25]. These CMB photons is a picture of the early universe before even stars were formed!

The CMB radiation was first predicted in 1948 by Ralph Alpher and Robert Herman [26].

However, the first observation of the CMB radiation was made in 1964, by Arno Penzias and

Robert Woodrow Wilson at the Crawford Hill location of Bell Telephone Laboratories. Penzias

and Wilson used a horn antenna for radio astronomy and satellite communication experiments.

17



(a)

(b)

Figure 10: (a) The Cosmic Microwave Background as seen from the Planck satellite. Credit
to European Space Agency (ESA). The picture, was taken from url-link: https://www.esa.int/

ESA Multimedia/Images/2013/03/Planck CMB ). (b) The cosmic microwave background radiation
spectrum measured by the FIRAS instrument on the COBE satellite. This is the most precisely

measured blackbody spectrum in nature. The crosses are the measurement points and the con-
tinue line is the blackbody radiation theoretical curve for T = 2.725 ◦K. The intensity is mea-

sured in MJy/sr where 1 MJy = 106 Jy and 1 Jy = 1 Jansky = 10−26W/m2/Hz. (the pic-
ture, “By Quantum Doughnut - Own work, Public Domain” was taken from url-link: https:

//commons.wikimedia.org/w/index.php?curid=12958270 ).

In all their measurements and despite their efforts, they always measured a background mi-

crowave radiation which they could not account for. After discussing these results with re-

searchers at Princeton University (R. Dicke et al.) they realized that they had measured the

CMB radiation. They published their findings in 1965 [27] along with a theoretical paper by
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the Princeton group [28]. Penzias and Wilson were awarded the Nobel prize in Physics in 1978

for their discovery.

Since the Penzias and Wislon discovery of the CMB several much more accurate measure-

ments were performed. In 1989, NASA (National Aeronautics and Space Agency) launched the

Cosmic Background Explorer (COBE) satellite which made CMB measurements from space.

Later, NASA’s Wilkinson Microwave Anisotropy Probe (WMAP) in 2001, and ESA (European

Space Agency) Planck in 2009, satellites made much more exact measurements of the CMB

radiation. For example, the CMB radiation measurements of the most recent Planck satellite

are shown in Fig. 10a. The differences in different regions of the sky are denoted by the different

colors but the variations of the radiation temperature are of the order of 1/106 − 1/105! These

are called CMB radiation anisotropies and reveal the inhomogeneities of the early universe [25].

The CMB radiation measurements made by the Far Infrared Absolute Spectrometer (FIRAS)

of the COBE satellite are shown in Fig. 10b. The measurements are represented by the crosses

while the blackbody Planck’s radiation formula for T = 2.725 ◦K is the solid line. The CMB

radiation is the most perfect blackbody radiator ever measured.
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Appendices

A Determination of Electromagnetic Modes in Rectan-

gular Metallic Cavities

The purpose of this Appendix is to review the determination of electromagnetic modes in a

rectangular-shaped cavity which is considered to have perfectly conducting walls while the

material filling the cavity is homogeneous, linear and isotropic [3–5]. The approach that will

be presented here is rather independent from the knowledge of the solutions of rectangular

metallic waveguides solutions which is normally the traditional manner in determining the

cavity modes. The rectangular cavity with the corresponding coordinate system is shown in

Fig. ??. It is assumed that the determination of the TEmpq modes is sought, i.e., it is assumed

that Ez = 0 while all other field components Ex, Ey, Hx, Hy, Hz are in general nonzero. Every

field component satisfies the Helmholtz equation

∇2S + k2
0n

2S =
( ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

S + k2
0n

2S = 0, (A.1)

where S = Ex, Ey, Hx, Hy, Hz , k0 = ω/c = 2π/λ0 is the freespace wavenumber, and n is the

refractive index of the material inside the cavity. Because of the rectangular geometry it is

reasonable to seek solutions based on the method of separation of variables, i.e., S(x, y, z) =

X(x)Y (y)Z(z) where X(x) = A cos(kxx) + B sin(kxx), Y (y) = C cos(kyy) + D sin(kyy), and

Z(z) = E cos(kzz)+F sin(kzz), with k2
x+k2

y+k2
z = k2

0n
2. From the two curl Maxwell’s equations

∇× ~E = −jωµ0
~H, and ∇× ~H = +jωε0n

2 ~E, for the TEmpq modes the following equations are

derived:

Ex =
1

jωε0n2

(∂Hz

∂y
−

∂Hy

∂z

)

, (A.2)

Ey =
1

jωε0n2

(∂Hx

∂z
−

∂Hz

∂x

)

, (A.3)

Ez =
1

jωε0n2

(∂Hy

∂x
−

∂Hx

∂y

)

= 0, (A.4)

20



Hx = +
1

jωµ0

∂Ey

∂z
, (A.5)

Hy = −
1

jωµ0

∂Ex

∂z
, (A.6)

Hz = −
1

jωµ0

(∂Ey

∂x
−

∂Ex

∂y

)

. (A.7)

Since the cavity is surrounded by perfect conducting walls the boundary conditions on the

various field components are that the normal to the wall boundary magnetic field components

are zero as well as the tangential to the boundaries electric field components. These conditions

can be expressed by the following equations:

Hx(x = 0, y, z) = Hx(x = a, y, z) = 0, (A.8)

Hy(x, y = 0, z) = Hy(x, y = b, z) = 0, (A.9)

Hz(x, y, z = 0) = Hz(x, y, z = d) = 0, (A.10)

Ex(x, y = 0, z) = Ex(x, y = b, z) = Ex(x, y, z = 0) = Ex(x, y, z = d) = 0, (A.11)

Ey(x = 0, y, z) = Ey(x = a, y, z) = Ey(x, y, z = 0) = Ey(x, y, z = d) = 0, (A.12)

where it is reminded that for the TEmpq modes Ez = 0, ∀ x, y, z. In order to satisfy the boundary

conditions for the Hx component the X(x) = sin(kxmx) where kxm = (mπ/a) and m = 0, 1, · · · .

Similarly, for Hy to satisfy the boundary conditions the Y (y) = sin(kypy) where kyp = (pπ/b)

and p = 0, 1, · · · . Therefore, the solutions for Hx and Hy take the following form

Hx(x, y, z) = sin
(mπ

a
x
)

Y1(y)Z1(z), with
(mπ

a

)2

+ k2
y + k2

z = k2
0n

2, (A.13)

Hy(x, y, z) = X2(x) sin
(pπ

b
y
)

Z2(z), with k2
x +

(pπ

b

)2

+ k2
z = k2

0n
2. (A.14)

In order to force the Ez field component to be zero from Eq. (A.4) the following should hold

∀ x, y, z,

1

jωε0n2

{dX2

dx
sin

(pπ

b
y
)

Z2(z)
}

=
1

jωε0n2

{

sin
(mπ

a
x
)dY1

dy
Z1(z)

}

∀x, y, z. (A.15)

Using X2(x) = A2 cos(kxx) + B2 sin(kxx) and Y1(y) = C1 cos(kyy) + D1 sin(kyy) it is straight-

forward to show that B2 = 0 = D1, and kx = (mπ/a), ky = (pπ/b), and the coefficients of the

Z1(z) and Z2(z) are related in such a way that the field components Hx and Hy are expressed
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by the following equations:

Hx(x, y, z) = sin
(mπ

a
x
)

cos
(pπ

b
y
)

[E1 cos(kzz) + F1 sin(kzz)], (A.16)

Hy(x, y, z) = cos
(mπ

a
x
)

sin
(pπ

b
y
) pπ/b

mπ/a
[E1 cos(kzz) + F1 sin(kzz)], (A.17)

where, of course (mπ/a)2+(pπ/b)2+k2
z = k2

0n
2. Now in order to satisfy the boundary condition

for the Hz field component the following solution is valid

Hz(x, y, z) = H0zX3(x)Y3(y) sin
(qπ

d
z
)

. (A.18)

From the z-dependence of Hz it is implied that the Ex and Ey field components have the

following form due to Eq. (A.7)

Ex(x, y, z) = E0xX1(x)Y1(y) sin
(qπ

d
z
)

, (A.19)

Ey(x, y, z) = E0yX2(x)Y2(y) sin
(qπ

d
z
)

, (A.20)

where E0x, E0y are amplitude constants. Then applying Eqs. (A.5) and (A.6) for the Hx and

Hy components respectively, in conjunction with Eqs. (A.16). (A.17), (A.19), and (A.20), the

following conditions must be satisfied ∀ x, y, z,

sin
(mπ

a
x
)

cos
(pπ

b
y
)

[E1 cos(kzz) + F1 sin(kzz)] = +
1

jωµ0

[

E0y
qπ

d
cos

(qπ

d
z
)

X2(x)Y2(y)
]

,

cos
(mπ

a
x
)

sin
(pπ

b
y
) pπ/b

mπ/a
[E1 cos(kzz) + F1 sin(kzz)] = −

1

jωµ0

[

E0x
qπ

d
cos

(qπ

d
z
)

X1(x)Y1(y)
]

.

From the last two equations the following solutions for the Ex, Ey, Hx, Hy fields can be obtained

Hx =
E0y

jωµ0

(qπ

d

)

sin
(mπ

a
x
)

cos
(pπ

b
y
)

cos
(qπ

d
z
)

, (A.21)

Hy =
E0y

jωµ0

pπ/b

mπ/a

(qπ

d

)

cos
(mπ

a
x
)

sin
(pπ

b
y
)

cos
(qπ

d
z
)

, (A.22)

Ex = −E0y
pπ/b

mπ/a
cos

(mπ

a
x
)

sin
(pπ

b
y
)

sin
(qπ

d
z
)

, (A.23)

Ey = E0y sin
(mπ

a
x
)

cos
(pπ

b
y
)

sin
(qπ

d
z
)

. (A.24)

The last component to be determined is the Hz. Using the solutions for Ex and Ey as well as

Eq. (A.7) and Eq. (A.18) the following solution for Hz is obtained

Hz = −
E0y

jωµ0

a

mπ

[(mπ

a

)2

+
(pπ

b

)2]

cos
(mπ

a
x
)

cos
(pπ

b
y
)

sin
(qπ

d
z
)

. (A.25)
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In order to write the equations in the usual format [4,5] found in the literature the coefficient of

the Hz component can be defined as C = −(E0y/jωµ0)(a/mπ)k2
c where k2

c = (mπ/a)2+(pπ/b)2.

Using C as the free parameter in the expressions of the fields of the TEmpq mode the fields are

summarized in the following form:

TEmpq Modes :

Ex = C
jωµ0

k2
c

(pπ

b

)

cos
(mπ

a
x
)

sin
(pπ

b
y
)

sin
(qπ

d
z
)

, (A.26)

Ey = −C
jωµ0

k2
c

(mπ

a

)

sin
(mπ

a
x
)

cos
(pπ

b
y
)

sin
(qπ

d
z
)

, (A.27)

Ez = 0, (A.28)

Hx = −C
1

k2
c

(mπ

a

)(qπ

d

)

sin
(mπ

a
x
)

cos
(pπ

b
y
)

cos
(qπ

d
z
)

, (A.29)

Hy = −C
1

k2
c

(pπ

b

)(qπ

d

)

cos
(mπ

a
x
)

sin
(pπ

b
y
)

cos
(qπ

d
z
)

, (A.30)

Hz = C cos
(mπ

a
x
)

cos
(pπ

b
y
)

sin
(qπ

d
z
)

. (A.31)

In exactly similar manner the solutions of the TMmpq modes can be calculated where the

Hz = 0. These solutions are summarized next for completeness.

TMmpq Modes :

Ex = −D
1

k2
c

(mπ

a

)(qπ

d

)

cos
(mπ

a
x
)

sin
(pπ

b
y
)

sin
(qπ

d
z
)

, (A.32)

Ey = −D
1

k2
c

(pπ

b

)(qπ

d

)

sin
(mπ

a
x
)

cos
(pπ

b
y
)

sin
(qπ

d
z
)

, (A.33)

Ez = D sin
(mπ

a
x
)

sin
(pπ

b
y
)

cos
(qπ

d
z
)

, (A.34)

Hx = D
jωε0n

2

k2
c

(pπ

b

)

sin
(mπ

a
x
)

cos
(pπ

b
y
)

cos
(qπ

d
z
)

, (A.35)

Hy = −D
jωε0n

2

k2
c

(mπ

a

)

cos
(mπ

a
x
)

sin
(pπ

b
y
)

cos
(qπ

d
z
)

, (A.36)

Hz = 0. (A.37)

where now D has been selected as the free parameter coefficient. For both TEmpq and TMmpq

modes the dispersion relation and the corresponding resonance frequencies are given by the
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following equations

k2
0n

2 =
(mπ

a

)2

+
(pπ

b

)2

+
(qπ

d

)2

, (A.38)

ωmnq =
c

n

√
(mπ

a

)2

+
(pπ

b

)2

+
(qπ

d

)2

. (A.39)
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B Lambert Function

Let the function y = f(x) = xex and its inverse x = f−1(y) = W (xex). The inverse function

W (xex) = x is known as the Lambert function [29, 30]. A graphical representation of W (x) is

shown in Fig. B.1. It is straightforward to show that the function W is defined in the interval
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Figure B.1: Lambert function W (x) showing only the real branches. The solid line corresponds to

the W0(x)-branch while the dash line corresponds to W−1(x)-branch.

−1/e ≤ x ≤ ∞. In the interval −1/e ≤ x ≤ 0 there are two possible solutions that are

characterized as the branches W0 and W−1. Of course the Lambert function can be extended

into the complex domain with infinite number of branches Wk with k an integer. However,

here the interest is on the real solutions that are represented by the branches W0 and W−1.

The Lambert function is now available in several computing platforms as Maple, Mathematica,

Matlab and others. Using the Lambert function solutions to transcendental equations of some

type can be found. A general transcendental equation of the form abx = cx + d (where a > 0)

can be solved [30]. In order to solve this equation the transformation −t = bx + bd/c, can be

utilized. In this case the equation becomes,

abx = cx + d =⇒ a−t−bd/c =
c

b

(

−t −
bd

c

)

+ d = −
tc

b
=⇒
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a−t−(bd/c) = −
tc

b
=⇒ tat = −

b

c
a−(bd/c) =⇒

tet lna = −
b

c
a−(bd/c) =⇒ t(ln a)et lna = −(ln a)

b

c
a−(bd/c) =⇒

t ln a = W

(

−(ln a)
b

c
a−(bd/c)

)

=⇒

−t = −
1

ln a
W

(

−(ln a)
b

c
a−(bd/c)

)

=⇒

bx +
bd

c
= −

1

ln a
W

(

−(ln a)
b

c
a−(bd/c)

)

=⇒

x = −
d

c
−

1

b ln a
W

(

−(lna)
b

c
a−(bd/c)

)

. (B.1)

If x is replaced by x′ = −x the equation becomes a−bx′

= (−c)x′ +d and the Eq. (B.1) becomes

x′ =
d

c
+

1

b ln a
W

(

−(ln a)
b

c
a−(bd/c)

)

(B.2)

With the above information th Wien’s law can be easily verified [Eq. (29)]. The maximum

exitance can be determined from Eq. (26) taking the derivative dMλ0
/dλ0 = 0. Setting

x′ = hc/λ0kBT the derivative can be computed as dMλ0
/dλ0 = (dMλ0

/dx)(dx/dλ0) = 0 =⇒

Ax′6(5ex′

−5−x′ex′

) = 0, where A a constant. Therefore, the maximum can be found from the

solution of the transcendental equation 5ex′

− 5− x′ex′

= 0 =⇒ e−x′

= (−1/5)x′ + 1. Applying

Eq. (B.2) for a = e = exp(1), b = 1, c = 1/5, d = 1, the following solution is found:

x′

m = 5 + W0(−5e−5) = 4.965114231744276 =⇒ λ0,maxT =
kBx′

m

hc
= 2897.721µm ◦K.

Similarly, starting from Eq. (25) the maximum exitance in terms of frequency can be found

from the zero of the derivative dMν/dν = 0. Setting x′ = hν/kBT the derivative zeroes for

A(3ex′

− 3 − x′ex′

) = 0 =⇒ e−x′

= (−1/3)x′ + 1. Applying Eq. (B.2) for a = e = exp(1),

b = 1, c = 1/3, d = 1, the following solution is found:

x′

m = 3 + W0(−3e−3) = 2.821439372122079 =⇒
νmax

T
=

kBx′

m

h
= 5.878926 × 1010 Hz/◦K.
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C Isotemperature Lines Calculation

The isotemperatures lines were proposed initially by Judd [20] and they were defined in the

u-v chromaticity diagram proposed by MacAdam [31]. In this Appendix a simple method is

presented for the computation of the isotemperature lines. The u-v chromaticity coordinates

are related to the x-y chromaticity coordinates (or the X, Y , and Z tristimulus values) via the

following relations [31]:

u =
4x

−2x + 12y + 3
=

4X

X + 15Y + 3Z
, (C.1)

v =
6y

−2x + 12y + 3
=

6Y

X + 15Y + 3Z
. (C.2)

Let a point (u, v) in the u-v chromaticity coordinates diagram as shown in Fig. C.1. This point

can be represented by the position vector ~r = uı̂u + vı̂v. The locus of points that correspond to

a blackbody radiator of temperature T can easily be calculated in the x-y chromaticity diagram

starting with the computation of the X, Y , and Z tristimulus values:

X(T ) = k

∫

Mλ0
(λ0, T )x̄(λ0)dλ0,

Y (T ) = k

∫

Mλ0
(λ0, T )ȳ(λ0)dλ0,

Z(T ) = k

∫

Mλ0
(λ0, T )x̄(λ0)dλ0,

for each temperature T . The term Mλ0
(λ0, T ) is the blackbody radiant exitance [Eq, (26)],

the x̄, ȳ, z̄ are the color matching functions, and λ0 is the freespace wavelength. Then the

chromaticities coordinates x(T ) and y(T ) can be determined from x(T ) = X(T )/[X(T ) +

Y (T ) + Z(T )] and y(T ) = X(T )/[X(T ) + Y (T ) + Z(T )], respectively. Using Eqs. (C.1) and

(C.2) the values of (u(T ), v(T )) corresponding to the points of the Planckian locus can be

determined. A part of this Planckian locus is shown in Fig. C.1 by the red solid line.

The Planckian locus can be represented by the vector ~f(T ) = u(T )̂ıu + v(T )̂ıv. This is

a parametric representation of the Planckian locus via the temperature T . The normal from

point (u, v) to the Planckian locus, the isotemperature line at T , is represented by the vector

~ruv which is sought. The tangential unit vector at the intersection of the isotemperature line

with the Planckian locus is ı̂f ′ = ~f ′/|~f ′| with ~f ′ = d~f/dT . Then the tangential and the normal
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Figure C.1: Diagram used for the isotemperature line determination. The solid red line is the

Planckian locus in the u-v chromaticity diagram. The line specified by ~ruv is one isotemperature line
which is perpendicular to the Planckian locus at the CCT of light source represented by (u, v) point.

unit vectors at the intersection of the isotemperature line with the Planckian locus are given

by:

ı̂f ′ =
~f ′

|~f ′|
= auı̂u + av ı̂v, with,

au =
du(T )

dT
, and av =

dv(T )

dT
,

ı̂
~∇f

= −av ı̂u + auı̂v = −
dv(T )

dT
ı̂u +

du(T )

dT
ı̂v.

Then the isotemperature line can be described by the following expression

~ruv(T, t) = u
ISO

(T, t)̂ıu + v
ISO

(T, t)̂ıv

= u(T )̂ıu + v(T )̂ıv + ı̂
~∇f

(∆uv)t, (C.3)

where t a parameter taking values in the interval t ∈ [−1, 1] and ∆uv the maximum acceptable

distance of the chromaticity point (u, v) from the Planckian locus at temperature T (which is the

point’s correlated color temperature, CCT). The u
ISO

(T, t) and v
ISO

(T, t) are the chromaticity

coordinates of the isotemperature line of temperature T . The required derivatives du/dT and

dv/dT can be determined from the following expressions [by differentiating Eqs. (C.1) and
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(C.2)]:

u′(T ) =
du

dT
=

4X ′(T ) [X(T ) + 15Y (T ) + 3Z(T )] − 4X(T ) [X ′(T ) + 15Y ′(T ) + 3Z ′(T )]

[X(T ) + 15Y (T ) + 3Z(T )]2
,

v′(T ) =
dv

dT
=

6Y ′(T ) [X(T ) + 15Y (T ) + 3Z(T )] − 6Y (T ) [X ′(T ) + 15Y ′(T ) + 3Z ′(T )]

[X(T ) + 15Y (T ) + 3Z(T )]2
,

where the W ′(T ) (W = X, Y, Z) are calculated from the following equations:

W ′(T ) = k

∫
Mλ0

(λ0, T )

dT
w̄(λ0)dλ0,

Mλ0
(λ0, T )

dT
=

2πh2c3

λ6
0kB

1

(ehc/λ0kBT − 1)
2 ehc/λ0kBT 1

T 2
,

where w̄(λ0) (w̄ = x̄, ȳ, z̄) are the color matching functions. Then the points of the isotemper-

ature line at T can be transformed into the x-y chromaticity diagram via the Eqs. (C.1) and

(C.2) which are converted to express x and y as functions of u and v:

x =
3u

2(u − 4v + 2)
, (C.4)

y =
v

u − 4v + 2
. (C.5)

Two isotemperature lines for T = 2500 ◦K and T = 5000 ◦K, with ∆uv = 0.02 are shown

in Fig. C.2. The isotemperature lines shown in Figs. 9a and 9b are shown both in the u-v and

in the x-y coordinates. It is apparent that in the u-v diagram the isotemperature lines are

normal to the Planckian locus as expected from their definition. The temperatures selected

in Figs. 9a and 9b are according to the work of Kelly in Ref. 23 where the difference between

the isotemperature lines was selected according to the inverse temperature difference as it was

proposed initially by Priest in Ref. 32. Actually, these isotemperature lines were selected to

differ successively by 10MK−1 (microreciprocal degrees). I.e., the initial temperature was

selected to be T0 = 1515 ◦K and the rest of the temperatures were selected by the rule:

106

(
1

Ti
−

1

Ti+1

)

= 10MK−1 ,

where i = 0, 1, · · · , 62. According to this scheme the highest isotemperature line (first from

the left) is T = 19974 ◦K. A more practical problem is that given a source’s chromaticity

coordinates to determine its CCT. The interested reader should consult Refs. 21, 33–35 among

many available, for more details on this subject.
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Figure C.2: The CIE 1931 chromaticity diagram with the Planckian locus. Two sample isotemper-

ature lines are shown for temperatures 2500 ◦K and 5000 ◦K and ∆uv = ±0.02.
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