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INTRODUCTION TO

SLAB DIELECTRIC WAVEGUIDES

1. Introduction

Planar waveguides are critical elements in present day optical devices such as modulators, semi-

conductor lasers, couplers, wavelength filters, polarizers, and optical interconnects. Passive

waveguides, electro-optic components, transmitters, receivers, active waveguides, and driving

electronics can be integrated into an optical/electronics chip using planar technology, similar to

microelectronics. Optical waveguides are the fundamental elements that interconnect the vari-

ous devices of an photonic integrated circuit, just as a metallic strips make interconnections in

an electronic integrated circuit. Although the operation of waveguide devices is well researched

and understood, their particular performance relies on many parameters such as geometry,

freespace wavelength, initial field distribution, material characteristics, as well as electro-optic,

acousto-optic, or other driving conditions. The device parameters must be optimized before

fabricating a well operating device. With large-scale optoelectronic circuits, accurate modeling

is predominant because of the numerous resources required to fabricate a chip. Optical waveg-

uide design relies on simulating the propagation of light signals, determining the waveguide

modes, evaluating the mode coupling, and assessing the loss and gain of the structure. Un-

like electrical current that flows through a metal strip (wire) according to Ohm’s law, optical

waves travel in the waveguide in characteristic optical modes. A mode can be defined as a

spatial distribution of optical energy in one or more dimensions that remains constant in space

perpendicularly to the direction of propagation. A mode is an eigenfunction of the Maxwell’s

equations for the waveguiding structure.

For the successful design and optimization of waveguiide-based devices, robust and reliable

numerical methods are needed in order to determine accurately the propagation characteris-

tics of their modes. For example, the determination of guided-mode characteristics in optical

waveguides comprised of lossless and/or lossy materials, results in the solution of a transcen-

dental complex equation [1]. In addition, the design of semiconductor lasers/amplifiers require

the utilization of both lossy and active (for gain) materials [2]. Recently, there has been a

lot of interest in non-Hermitian optical structures where both gain and loss are present [3, 4].
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Furthermore, in waveguiding structures, the determination of leaky-mode characteristics that

can compactly model the radiation field could be important. A practical example of this is

found in the antiresonant reflecting optical waveguides (ARROW) [5, 6]. ARROW structures

have received significant attention due to their low transmission loss, high polarization sensi-

tivity, as well as compatibility with optical fibers for telecommunications applications. The

determination of complex, in general, eigenvalues facilitates the evaluation of the correspond-

ing field distributions, power density, radiation losses, modal gain (for active waveguides) and

possibly other parameters of interest. For this reason it has been a great interest over the

last few decades to find reliable and robust techniques for calculating the zeros of an analytic

function in the complex plane. Common general numerical analysis methods that are used are

the Newton’s method (where the function’s derivative is used) and Müller’s method (where the

function’s derivative is not needed) [7–9]. However, these methods require a good estimate of

the root of the complex function which in most practical problems is not available. Further-

more, usually not even the number of zeros is known. A successful numerical method should be

able to extract all the zeros of the complex function in a domain of interest without any prior

knowledge of either their number or their approximate location.

One of the first numerical methods for the solution of complex transcendental equations is

based on the Cauchy integration method introduced by Delves and Lyness [10]. This technique

finds the number of zeros and approximates the roots of the function in a specified domain by

evaluating a polynomial with the same roots. The polynomial roots could be used as estimates

for further root improvements via iterative methods. The first applications of the approach

to multilayer planar waveguides using the transfer matrix approach [11–13] was presented by

Smith et al. [14, 15] and Anemogiannis and Glytsis (known as the argument principal method

- APM) [16]. Since then similar methods appear in the literature. Chen et al. [17] used

APM for multilayer lossy anisotropic waveguides, Kwon and Shin applied APM to isolated

roots [18, 19], and Michalski and Mustafa also utilized APM in conjunction to either transfer-

or scatter-matrix formulation and automatic differentiation [20]. These methods are based on

the numerical evaluation of the Cauchy integrals of the waveguide dispersion equation and

require the derivative of the dispersion equation that can be calculated either numerically [21]

or analytically. Some alternative methods that have been proposed in the literature are the

reflection-pole method [22, 23], the wavevector density method [23], a variational method [24],
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a method based on smooth transition between bound modes of a closed waveguide and leaky

modes of an open waveguide [25], an iterative ”downhill” method [26], and a two-dimensional

minimization [27], to mention a few. Of course the fully numerical methods based on finite

elements [28, 29] or finite differences [30, 31] should also be mentioned. These latter methods

can also be applied to three-dimensional waveguides (channel waveguides) since they represent

completely numerical solution of the Maxwell’s equations. However, they require specialized

boundary layers (such as Perfectly Matched Layers [32]) around the structure in order to treat

open dielectric waveguides.

One of the drawbacks of the APM method is the use of the derivative of the function which

makes it rather cumbersome especially when the derivative cannot be calculated analytically.

Therefore, there has been significant effort to focus on globally reliable methods that find the

zeros of a complex function without the use of its derivative. Anemogiannis et al. [33] first

proposed the ADR method which is based on an algorithm provided by Abd-ellal, Delves, and

Reid [34] (the ADR acronym was derived from their last names initials). The ADR method

uses integrals (representing function moments) on a contour enclosing a specified domain that

do not involved the derivative of the function. The ADR method requires though a double

number of integrals as compared to APM method in order to determine the coefficients of the

approximating polynomial. In addition, it has some difficulty in estimating the actual number

of zeros inside the complex-plane domain under investigation. Ying and Katz [35] proposed a

simple method to determine the exact number of zeros of an analytic function based on the its

winding number in a bounded domain. Based on Ying and Katz method Kravanja and Van

Barel [36] and Gillan et al. [37] introduced a reliable derivative-free method for determining

the roots of an analytic function in a bounded complex domain. Their method is based on

calculating similar integrals as in ADR and using orthogonal polynomial theory to estimate

the zeros of the function by solving a general eigenvalue problem. Refinement of the zeros

is achieved using the Halley/Aitken method [37]. Recently Semwal and Rastogi applied the

Gillan’s method to multilayer planar waveguides [38].

Another simple method proposed recently [39], is based on Ying and Katz [35] winding num-

ber evaluation and uses zero enclosing by evaluating only the winding number of the function

in successively shrinking rectangles until every root (function’s zero) has been surrounded by a

pre-specified dimensions corresponding rectangle in the complex plane. Then the center of each
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rectangle can serve as an estimate of the zero of the function in the complex plane. The winding

number around each shrinking rectangle is calculated by using only the phase of the function

and without any integral evaluation or derivative knowledge. Then, the Müller’s algorithm [9]

with deflation [8] is used for the iterative refinement of the root. Root bracketing by using the

winding number was also proposed by Ying and Katz [40], Dellnitz et al. [41] and Kwon and

Shin [18] but in conjuction to the Cauchy’s integrals. Furthermore, very recently Kowalczyk and

Marynowski [42] have used the winding number approach on a self-adaptive triangular-based

mesh to find the roots of an analytic function for radiation and propagation electromagnetic

problems. This approach is purely based on the successive enclosing by shrinking rectangles

of each zero (complex propagation constant) of the dispersion function of multilayer planar

waveguides and its based exclusively on the phase only of the function without using any inte-

grals or approximating polynomials. For brevity this method will be referred as Derivative-Free

Zero-Extraction by Phase-based Enclosure (DFZEPE). The DFZEPE approach is much simpler

than the adaptive Delaunay triangulation method proposed by Kowalczyk [42, 43].

In this chapter, the fundamental theory of optical modes in a waveguiding structures is

developed in order to acquire a general understanding of the nature of light propagation in an

optical waveguides. In the first part of the chapter the simple single-film planar waveguide will

be analyzed using both a ray approach as well as a fully electromagnetic approach. Then the

classification of the modes of a planar optical waveguide into TE and TM will be introduced.

Guided modes, substrate modes, radiation modes, evanescent modes, and unphysical modes

will be discussed. Then, the normalized variable will be introduced along with the cut-off

conditions. Power considerations will also be discussed. Later in the chapter, the multilayer

planar waveguides are presented in conjunction to the transfer-matrix technique. The usage of

the Finite-Differences Frequency-Domain (FDFD) method for the study of planar multilayer

waveguides is also explained with example cases. Then the graded-ndex waveguide analysis is

shown. Finally, s short review of the most useful methods for extracting complex in general

propagation constants for lossy and active waveguides will presented along with the definition of

the leaky modes which are not formal eignesolutions of the Maxwell’s equations. Some excellent

books exist on the topic on optical waveguides including [1, 13, 44–50] that may include parts

of the topics discussed in this chapter.
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2. Ray Approach for Guided Modes

The basic geometry of a dielectric slab waveguide is shown in Fig. 1. The light is confined along

the x-axis and propagates along the z-axis in the coordinate system shown. The waveguide

is assumed to be uniform along the y-axis and therefore this comprises a two-dimensional

electromagnetic problem. The basic principle behind the concept of light guiding in dielectric

waveguide is the phenomenon of total internal reflection. If light can be launched into the

film layer of the waveguide it can remain in the film, provided that the angle of incidence θ

between the film-cover and the film-substrate regions is greater than both of the corresponding

critical angles. The refractive indices of the three regions are nc, nf , and ns for cover, film,

and substrate regions, respectively while the film thickness is h and the free-space wavelength

of the light that can travel guided within this structure is λ0. Of course it is necessary that

nf > max{nc, ns} in order to guarantee that total internal reflection can occur in both film-

substrate and film-cover boundaries. The angle θ, known also as the zig-zag angle, for a specific

mode should satisfy the conditionmax{θcr,fs, θcr,fc} < θ < π/2, where θcr,fs = sin−1(ns/nf ) and

θcr,fc = sin−1(nc/nf ), are the critical angles for the film-substrate and film-cover boundaries,

respectively. Without loss of generality, in the following discussion, it is assumed that ns ≥ nc

(which is usually the most practical case). In the special case that ns = nc the waveguide is

characterized as a symmetric slab waveguide.
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Figure 1: The geometric configuration of a three-region slab dielectric waveguide.

It is well known that there is an induced phase shift upon total internal reflection at both

5



boundaries. Therefore there should be a self-consistency condition that must be satisfied in

order for the plane waves shown in the ray picture of Fig. 1 to comprise a valid solution for a

guided mode.

In order to quantify the self-consistency condition Fig. 2 will be used [47]. In this figure

two possible rays are shown along with two wavefronts the one specified by AB and the other

by DC . The wavefronts AB and DC are selected to be at an infinitesimal distance away from

the film-cover and film-substrate boundaries, respectively. This implies that the ray from point

B to point D has not suffered any total internal reflections. In contrast, the ray from point

A to point C has suffered two total internal reflections at the two boundaries. Following the

phases accumulated by points A and B of the initial wavefront as the rays move towards to

their positions C and D of the second wavefront shown, it is necessary to require that the

accumulated phase from A → C and from B → D should differ at most by 2πν where ν is an

integer. This condition will guarantee that the second wavefront will remain a valid wavefront

of the guided mode. Mathematically, the previous conditions can be written as follows

{
−k0nf(AC) + 2φp

fs + 2φp
fc

}

︸ ︷︷ ︸

phase from A → C

− {−k0nf (BD)}
︸ ︷︷ ︸

phase from B → D

= 2πν, ν = 0,±1,±2, · · · (1)

where k0 = 2π/λ0, and φp
fs and φp

fc (p = TE or TM) are the phase shifts that occur upon total

internal reflection at the film-substrate and film-cover boundaries respectively. These phase

shifts are functions of the angle θ and are given by the equations (as it was presented in the

Review of Electromagnetic Principles notes)

φ
TE

fw(θ) = tan−1







√

n2
f sin2 θ − n2

w

nf cos θ






, for TE Polarization, (2)

φ
TM

fw (θ) = tan−1







n2
f

n2
w

√

n2
f sin2 θ − n2

w

nf cos θ






, for TM Polarization, (3)

where w = c or s.

The distances (AC) and (BD) can be easily determined from the geometry shown in Fig.

2. Specifically, (AC) = h/ cos θ and (BD) = (AD) sin θ = [(OA) − (OD)] sin θ = [h tan θ −
h/ tan θ] sin θ = h[sin2 θ − cos2 θ]/ cos θ. Replacing the previous expressions in Eq. (1) and
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Figure 2: The slab waveguide geometric configuration showing two rays and and two selective wavefronts

(AB and DC). For self-consistency it is necessary that the accumulated phase from A → C and from B → D

should differ by 2πν where ν is an integer. The points A and C are assumed to be infinitesimaly before/after

the film-cover/film-substrate boundaries respectively.

changing the signs assigning only positive (or zero) values for ν the following equation is derived

2k0nfh cos θ − 2φp
fs(θ) − 2φp

fc(θ) = 2πν, ν = 0, 1, 2, · · · (4)

where p = TE or TM . Of course solution for θ of the previous equation has meaning for a guided

mode only when max{θcr,fs, θcr,fc} < θ < π/2. This equation can be solved only numerically

(using for example the bisection method). For every value of ν solutions for θp
ν (p = TE or TM

) can determined. There can be none, one, or multiple solutions depending on the parameters

of the waveguide and the free-space wavelength. A graphical representation of the solution is

shown in Fig. 3 for the example case where λ0 = 1.0µm, h = 1.2µm, nc = 1.0, nf = 2.2, and

ns = 1.5. The solutions for the zig-zag angles θp
ν can be visualized as the intersection of two

curves representing the functions f1(θ) = 2k0nfh cos θ and f2(θ) = 2φp
fs(θ)+2φp

fc(θ)+2πν (p =

TE or TM). In this particular example there are 4 TE modes (TE0, TE1, TE2, and TE3) and

4 TM modes (TM0, TM1, TM2, and TM3) that can be supported. It can be observed that the

solutions θ
TE

ν and θ
TM

ν satisfy the inequality θ
TE

ν > θ
TM

ν (for any ν) due to the larger phase shift

[φ
TE

fw(θ) < φ
TM

fw (θ), w = c or s] upon total internal reflection for the TM polarization.

In general, the solution for the zig-zag angle θ = θp
ν (where p = TE or TM ) is characteristic

of the guided mode. The associated to θp
ν electromagnetic field represents the guided mode TEν

or TMν and has a characteristic profile. The complete electromagnetic field will be determined
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Figure 3: The graphical representation of the solution of the dispersion equation 2k0hnf cos θ − 2φp
fc −

2φp
fs = 2νπ (p = TE or TM , and ν = 0, 1, · · ·). The solution for the zig-zag angle θ is shown as the

intersection of two simple curves, the f1(θ) = 2k0hnf cos θ and f2(θ) = 2φp
fc(θ) + 2φp

fs(θ) + 2νπ. For the

example case shown λ0 = 1.0µm, h = 1.2µm, nc = 1.0, nf = 2.2, and ns = 1.5. The solutions for the zig-

zag angles are θ
T E

0
= 80.5307◦, θ

T E

1
= 70.8514◦, θ

T E

2
= 60.7247◦, and θ

T E

3
= 49.9121◦ for the TE modes,

and θ
T M

0 = 79.6444◦, θ
T M

1 = 69.0254◦, and θ
T M

2 = 57.8963◦, and θ
T M

3 = 46.5355◦ for the TM modes. The

corresponding critical angles are θcr,fc = 27.0357◦ and θcr,fs = 42.9859◦.

in the next section when the full electromagnetic approach will be presented. From the angle

θp
ν, the effective refractive index of the mode can be defined as Np

ν = nf sin θp
ν . Furthermore,

the effective propagation constant is related to the effective index as βp
ν = k0N

p
ν = k0nf sin θp

ν

(p = TE or TM ).

2.1 Alternate Approach

A similar approach based on a self-consistency condition is presented in this section and is

based on the geometry shown in Fig. 1. In this ray diagram of a guided mode in the waveguide

a plane wave is associated with each ray. Specifically (neglecting polarization) the three plane
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waves, S0, S1, and S2, can be described by the following expressions

S0 = S0(x, z) = E0e
−jk0nf (x cos θ+z sin θ), (5)

S1 = S1(x, z) = E1e
−jk0nf (−x cos θ+z sin θ), (6)

S2 = S2(x, z) = E2e
−jk0nf (x cos θ+z sin θ). (7)

The plane wave S1 is produced by a reflection of S0 at the film-cover boundary. Similarly, plane

wave S2 is produced by reflection of S1 at the film-substrate boundary. These arguments can

be quantified as follows

S1(x = h, z) = rfcS0(x = h, z) ⇒ E1e
+jk0nf h cos θ = ej2φp

fcE0e
−jk0nf h cos θ, (8)

S2(x = 0, z) = rfsS1(x = h, z) ⇒ E2 = ej2φ
p
fsE1, (9)

where rfc and rfs are the reflection coefficients upon total internal reflection at the film-cover

and film-substrate interfaces, respectively, and p = TE or TM . From the last two equations it

can be deduced that

E2 = E0e
j(−2k0nf h cos θ+2φp

fs
+2φp

fc
). (10)

The last equation requires that in order for S2 to be equivalent to S0 their amplitudes must

differ by at most by 2πν, i.e.

E2 = E0e
j2πν = E0e

j(−2k0nf h cos θ+2φp
fs

+2φp
fc

), (11)

and from the last expression Eq. (4) is derived again.

3. Electromagnetic Approach for Guided Modes

The electromagnetic fields representing a mode for the slab waveguide problem (using the

coordinate axes system shown in Fig. 1) can be written in the form

~E = [Ex(x)x̂+ Ey(x)ŷ + Ez(x)ẑ] exp(−jβz), (12)

~H = [Hx(x)x̂+Hy(x)ŷ +Hz(x)ẑ] exp(−jβz), (13)

where Ew and Hw (w = x, y, z) represent the electric and magnetic field components and β is

a propagation constant. Using Maxwell equations in their differential time-harmonic form, for

a homogeneous, linear, lossless, and isotropic material, of permittivity ε and permeability µ0
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(non-magnetic) with the above field expressions results in the following sets of equations (ω is

the radial frequency)

d

dx








Ey

Hz

Hy

Ez








=













0 −jωµ0 0 0

−jωε+ j
β2

ωµ0
0 0 0

0 0 0 jωε

0 0 jωµ0 − j
β2

ωε
0




















Ey

Hz

Hy

Ez







, (14)

[

Hx

Ex

]

=








− β

ωµ0
0

0
β

ωε








[

Ey

Hy

]

. (15)

From the above equations it is straightforward to distinguish two set of field components,

the {Ey, Hx, Hz} and {Hy, Ex, Ez}, which are independent from each other due to the zeros

appearing in the matrices of Eqs. (14) and (15). These two sets can be used to define the TE-

modes solutions for {Ey, Hx, Hz}, and the TM-modes solutions for {Hy, Ex, Ez}. It is mentioned

that these two triplets of field components are independent only in the isotropic case. If the

material becomes anisotropic the zero elements are replaced by non-zero ones and all six field

components become coupled. Then a waveguide mode, usually called hybrid mode, can be

characterized by all six field components as {Ex, Ey, Ez, Hx, Hy, Hz}.
In a homogeneous, isotropic, lossless, non-magnetic, and linear material the solutions to the

Helmholtz’s equation are in the form of plane waves. For example, if solutions of the form of

Eqs. (12), (13) are sought the Helmholtz’s equation becomes

d2 ~U

dx2
+ (k2

0n
2 − β2)~U = 0, (16)

where ~U = ~E or ~H for electric of magnetic field, respectively, and n =
√
ε =

√

ε/ε0 is the

refractive index of the material (ε is the relative permittivity of the material). The solutions of

the above equation have the form

~U = ~U+ exp(−j~k+ · ~r) + ~U− exp(−j~k− · ~r), (17)

where ~U+ and ~U− are the vector amplitudes of the two plane wave solutions and ~k+ and ~k− are

their corresponding wave-vectors. The “k+/k−” terms represent the waves propagating towards
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the positive/negative x direction. By applying the above solutions to each of the three separate

regions of the slab waveguide of Fig. 1, one can write the following equations

~U =







~Uc1e
−j(kcxx+kczz) + ~Uc2e

−j(−kcxx+kczz), x > h,

~Uf1e
−j(kfxx+kfzz) + ~Uf2e

−j(−kfxx+kfzz), 0 < x < h,

~Us1e
−j(ksxx+kszz) + ~Us2e

−j(−ksxx+kszz), x < 0,

(18)

where the subscripts c, f , and s denote fields as well as wavevector components in cover, film,

and substrate, respectively. From the phase matching condition along the boundaries (x = 0

for film-substrate and x = h for film-cover) the following relation is necessary

kcz = kfz = ksz = β. (19)

At the same time the wave-vector components should satisfy the plane wave dispersion equation

of the form k2
wx + β2 = k2

0n
2
w (for w = c, f , and s). In order to warrant total internal reflection

at the film-cover and film-substrate boundaries β must satisfy the inequality k0nc ≤ k0ns <

β < k0nf . Then the x components of the wavevectors become

k2
cx = k2

0n
2
c − β2 < 0 ⇒ kcx = ±j

√

β2 − k2
0n

2
c = ±jγc, (20)

k2
fx = k2

0n
2
f − β2 > 0 ⇒ kfx = ±

√

k2
0n

2
f − β2, (21)

k2
sx = k2

0n
2
s − β2 < 0 ⇒ ksx = ±j

√

β2 − k2
0n

2
s = ±jγs, (22)

where the signs of the imaginary wave-vector components must be selected in such a way in

order to warrant exponentially decaying solutions in the cover and the substrate regions. Thus,

from the two possible solutions in the cover and the substrate regions only the exponentially

decaying one are retained. Therefore the field solutions can be summarized as

~U =







~Uce
−γc(x−h)e−jβz, x > h,

[

~Uf1e
−jkfxx + ~Uf2e

+jkfxx
]

e−jβz, 0 < x < h,

~Use
γsxe−jβz, x < 0,

(23)

The unknown constants of the above equations (field amplitudes and β) should be determined by

suitable application of the boundary conditions. The boundary conditions are the continuity of
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the tangential electric field and tangential magnetic field components at the film-cover and film-

substrate boundaries. In order to proceed with the boundary conditions and the determination

of the unknowns the two distinguished families of modes (TE and TM ) will be treated separately

since they are decoupled (in isotropic regions).

3.1 TE Guided Modes

As it was explained in the previous section the TE mode solutions include the field triplet

{Ey, Hx, Hz}. Then the electric field described in Eq. (23) can written in the form

~E = ŷ







Ece
−γc(x−h)e−jβz, x ≥ h,

[
Ef1e

−jkfxx + Ef2e
+jkfxx

]
e−jβz, 0 ≤ x ≤ h,

Ese
γsxe−jβz, x ≤ 0,

(24)

The magnetic field components can be determined from Maxwell’s equations,Hx = (1/jωµ0)(dEy/dz)

and Hz = −(1/jωµ0)(dEy/dx), and are given by

Hx = − β

ωµ0







Ece
−γc(x−h)e−jβz, x ≥ h,

[
Ef1e

−jkfxx + Ef2e
+jkfxx

]
e−jβz, 0 ≤ x ≤ h,

Ese
γsxe−jβz, x ≤ 0,

(25)

and by

Hz =
1

ωµ0







−jγcEce
−γc(x−h)e−jβz, x ≥ h,

[
kfxEf1e

−jkfxx − kfxEf2e
+jkfxx

]
e−jβz, 0 ≤ x ≤ h,

jγsEse
γsxe−jβz, x ≤ 0.

(26)

Using the continuity of the tangential electric and magnetic field components across the

film-cover [Ey(x = h+) = Ey(x = h−) and Hz(x = h+) = Hz(x = h−)] and film-substrate

boundaries [Ey(x = 0+) = Ey(x = 0−) and Hz(x = 0+) = Hz(x = 0−)] the following system of

equations is formed









−1 e−jkfxh e+jkfxh 0

jγc kfxe
−jkfxh −kfxe

+jkfxh 0

0 1 1 −1

0 kfx −kfx −jγs









︸ ︷︷ ︸

ÃTE(β2)









Ec

Ef1

Ef2

Es









=









0

0

0

0









. (27)
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In order to have nontrivial solutions of the previous equation it is necessary that the determinant

of ÃTE be set to zero. After some manipulations the following dispersion equation is derived

det{ÃTE(β2)} = 0 =⇒ tan(kfxh) =

γs

kfx
+

γc

kfx

1 − γs

kfx

γc

kfx

. (28)

A graphical representation of Eq. (28) is shown in Fig. 4. There can be none, one, or multiple

solutions depending on the waveguide parameters and the free-space wavelength. For this

particular example (the waveguide parameters are given in the figure caption) there 4 TE and

4 TM solutions. This example case is the same with the one used for the graphical representation

of Eq. (4).
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s
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f
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f
2
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Figure 4: A graphical representation of the solution of Eq. (28) for TE modes. The functions f1 and f2 are

given by f1(N) = tan(kfxh) and f2(N) = [(γs/kfx) + (γc/kfx)]/[1− (γcγs/k2

fx)], where kfx = k0(n
2

f − N2)1/2,

γc = k0(N
2 − n2

c)
1/2, γs = k0(N

2 − n2
s)

1/2, and N is the effective index. The case parameters are nc = 1,

nf = 2.2, ns = 1.5, h = 1.2µm, and λ0 = 1.0µm. The points along the effective index axis where f1 is

discontinuous and infinite are given by N(m) = [n2

f − ((2m + 1)/4)2(λ0/h)2]1/2 (m = 0, 1, · · ·). Similarly

f2 becomes infinite and discontinuous at N = [(n4

f − n2
sn

2
c)/(2n2

f − n2
c − n2

s)]
1/2. In the case of TM modes

the solution of Eq. (34) is also shown. In the latter case f1 remains the same but f2 becomes f2(N) =

[(n2

f/n2
s)(γs/kfx) + (n2

f/n2
c)(γc/kfx)]/[1 − (n4

f/n2
cn

2
s)(γcγs/k2

fx)]. In the TM case f2 becomes discontinuous at

N being the solution of (1 − a2)N4 + (2n2

fa2 − n2

s − n2

c)N
2 + (n2

cn
2

s − n4

fa2) = 0, that lies in the interval

ns < N < nf (where a = n2
sn

2
c/n4

f).
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It is straightforward to show that the last equation is equivalent to Eq. (4) (for p = TE). It

is worth mentioning that the dispersion equation is actually a function of β2 (or N2) and not

of just β (or N). This implies that if βν is a solution of Eq. (28) then −βν is also a solution

that corresponds to the same mode propagating backwards (along the −z axis). If βν satisfies

Eq. (28) then the matrix ÃTE becomes singular and correspondingly the boundary conditions

contained in Eq. (27) become dependent. This fact provides the flexibility of selecting a free

parameter and then solve for the electric field amplitudes Ec, Ef1, Ef2, and Es as functions of

this parameter. It is a simple task to perform this procedure and find that Ec = E0 cos(kfxh−
φ

TE

fs ), Ef1 = (E0/2) exp(+jφ
TE

fs ), Ef2 = (E0/2) exp(−jφTE

fs ), and Es = E0 cos φ
TE

fs where E0

is the free parameter and φ
TE

fs = tan−1(γs/kfx). The amplitude E0 is the free parameter and

can also be determined if information is known about the power that the mode carries. It is

mentioned that all amplitudes are calculated for β = βν and therefore are characteristic of the

TEν mode. Then the final form of the electric field of the TEν mode is given by

~Eν = ŷEyν(x)e
−jβνz = ŷE0







cos(kfxh − φ
TE

fs ) e−γc(x−h)

cos(kfxx− φ
TE

fs )

cos φ
TE

fs eγsx







e−jβνz

(x ≥ h),

(0 ≤ x ≤ h),

(x ≤ 0),

(29)

where for simplicity the subscript ν, which is characteristic of the TEν mode, has been omitted

from E0, kfx, γc, γs and φ
TE

fs . The term Eyν(x) denotes the characteristic profile of the TEν

mode. Example TEν mode electric field patterns are shown in Fig. 5 where the effective index

solutions are also included. It can be observed that the number of zero-crossings of the electric

field profile for TEν mode is ν.

3.2 TM Guided Modes

The TM mode solutions include the field triplet {Hy, Ex, Ez}. Then the magnetic field repre-

sented in Eqs. (23) can written in the form

~H = ŷ







Hce
−γc(x−h)e−jβz, x ≥ h,

[
Hf1e

−jkfxx +Hf2e
+jkfxx

]
e−jβz, 0 ≤ x ≤ h,

Hse
γsxe−jβz, x ≤ 0,

(30)

The electric field components of the TM guided mode can be easily determined from Maxwell’s

equations, i.e. Ex = −(1/jωε)(dHy/dz) and Ez = (1/jωε)(dHy/dx), and are given by

14
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Figure 5: The normalized electric field profiles, Eyν(x), for TEν modes (ν = 0, 1, 2,and 3). The slab

waveguide parameters are nc = 1, nf = 2.2, ns = 1.5, h = 1.2µm, and λ0 = 1.0µm. The vertical lines indicate

the film-substrate and film-cover boundaries. The effective indices are also shown on the top of each plot.

Ex =
β

ωε0







1

n2
c

Hce
−γc(x−h)e−jβz, x > h,

1

n2
f

[
Hf1e

−jkfxx +Hf2e
+jkfxx

]
e−jβz, 0 < x < h,

1

n2
s

Hse
γsxe−jβz, x < 0,

(31)

and by

Ez =
1

ωε0







+j
γc

n2
c

Hce
−γc(x−h)e−jβz, x ≥ h,

[

kfx

n2
f

Hf1e
−jkfxx − kfx

n2
f

Hf2e
+jkfxx

]

e−jβz, 0 ≤ x ≤ h,

−j γs

n2
s

Hse
γsxe−jβz, x ≤ 0.

(32)

Using the continuity of the tangential electric and magnetic field components across the
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film-cover [Hy(x = h+) = Hy(x = h−) and Ez(x = h+) = Ez(x = h−)] and film-substrate

boundaries [Hy(x = 0+) = Hy(x = 0−) and Ez(x = 0+) = Ez(x = 0−)] the following system of

equations is formed












−1 e−jkfxh e+jkfxh 0

−j γc

n2
c

−kfx

n2
f

e−jkfxh kfx

n2
f

e+jkfxh 0

0 1 1 −1

0 −kfx

n2
f

kfx

n2
f

j
γs

n2
s












︸ ︷︷ ︸

ÃTM (β2)









Hc

Hf1

Hf2

Hs









=









0

0

0

0









. (33)

In order to have nontrivial solutions of the previous equation it is necessary that the determinant

of ÃTM be set to zero. After some manipulations, similar to the TE polarization case, the

following dispersion equation is derived

det{ÃTM(β2)} = 0 =⇒ tan(kfxh) =

n2
f

n2
s

γs

kfx
+
n2

f

n2
c

γc

kfx

1 −
n4

f

n2
sn

2
c

γcγs

k2
fx

. (34)

It is straightforward to show again that the last equation is equivalent to Eq. (4) (for p = TM).

A graphical representation of Eq. (34) is also shown in Fig. 4. Similarly to the TE polarization

case a solution ±βν of Eq. (34) corresponds to the ±z-axis propagating mode (assuming that

k0ns < βν < k0nf ). If βν satisfies Eq. (34) then the matrix ÃTM becomes singular and

correspondingly the boundary conditions contained in Eq. (33) become dependent. This provide

the flexibility of selecting a free parameter and then solve for the magnetic field amplitudes Hc,

Hf1, Hf2, and Hs as functions of this parameter. It is a simple task to perform this procedure

and find that Hc = H0 cos(kfxh−φTM

fs ), Hf1 = (H0/2) exp(+jφ
TM

fs ), Hf2 = (H0/2) exp(−jφTM

fs ),

and Hs = H0 cos φ
TM

fs where H0 is the free parameter and φ
TM

fs = tan−1[n2
fγs/(n

2
skfx)]. The

amplitude H0 is the free parameter and can also be determined if information about the power

that the mode carries is known. It is mentioned that all amplitudes are calculated for β = βν

and therefore are characteristic of the TMν mode. Then the final form of the magnetic field of
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the TMν mode is given by

~Hν = ŷHyν(x)e
−jβνz = ŷH0







cos(kfxh− φ
TM

fs ) e−γc(x−h)

cos(kfxx− φ
TM

fs )

cosφ
TM

fs eγsx







e−jβνz

(x ≥ h),

(0 ≤ x ≤ h),

(x ≤ 0),

(35)

where for simplicity the subscript ν, which is characteristic of the TMν mode, has been omitted

from H0, kfx, γc, γs and φ
TM

fs . The term Hyν(x) denotes the profile of the TMν mode. Example

TMν mode electric field patterns are shown in Fig. 6 where the effective index solutions are

also shown. Again it is observed that the number of zero-crossings of the magnetic field profile

for TMν mode is ν.
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Figure 6: The normalized magnetic field profiles, Hyν(x), for TMν modes (ν = 0, 1, 2, and 3). The slab

waveguide parameters are nc = 1, nf = 2.2, ns = 1.5, h = 1.2µm, and λ0 = 1.0µm. The vertical lines indicate

the film-substrate and film-cover boundaries. The effective indices are also shown on the top of each plot.
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4. Substrate Modes

In the previous sections solutions for guided modes were determined. This was based on the

assumption that k0ns < β < k0nf (or equivalently ns < N < nf ) in order to guarantee

that total internal reflection occurs across the film-cover and film-substrate boundaries. When

k0nc < β < k0ns (or nc < N < ns) then the electromagnetic field in the substrate region is

propagating instead of evanescent. The modes that have this property are called substrate

modes and radiate power into the substrate as they propagate. For guided modes the solutions

for β (or N) were discretized. In the case of the substrate modes the solutions for β form a

continuum. Thus, any β in the interval k0nc < β < k0ns can be a solution for a substrate mode.

It is straightforward to determine the electromagnetic field that correspond to a substrate mode.

The electric or magnetic field of a TE or TM substrate mode can be written as

~U = U(x, z)ŷ = ŷ







Uce
−γc(x−h)e−jβz, x ≥ h,

[
Uf1e

−jkfxx + Uf2e
+jkfxx

]
e−jβz, 0 ≤ x ≤ h,

[
Us1e

−jksxx + Us2e
+jksxx

]
e−jβz, x ≤ 0,

(36)

where U = Ey for TE substrate modes and U = Hy for TM substrate modes, and ksx =

(k2
0n

2
s − β2)1/2 > 0 for the range of β that is valid for substrate modes. Using the continuity of

the tangential electric and magnetic field components 4 equations can be specified. However, the

number of unknowns is six, i.e. Uc, Uf1, Uf2, Us1, Us2, and β. Therefore, there is some flexibility

in satisfying the boundary conditions. For example, any β in the interval k0nc < β < k0ns can

satisfy the boundary conditions. After some manipulations of the resulting boundary conditions

it can be shown that the electric field of a TE substrate mode is given by

~Eβ = ŷEyβ(x)e−jβz = (37)

ŷE0







cos φ
TE

fc e−γc(x−h)

cos[kfx(x− h) + φ
TE

fc ]

cos(kfxh− φ
TE

fc ) cos(ksxx) +
kfx

ksx

sin(kfxh− φ
TE

fc ) sin(ksxx)







e−jβνz

(x ≥ h),

(0 ≤ x ≤ h),

(x ≤ 0),
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where E0 is a free parameter, Eyβ(x) is the substrate TE mode profile, and φ
TE

fc = tan−1(γc/kfx).

Similarly the magnetic field for a TM substrate mode is given by

~Hβ = ŷHyβ(x)e−jβz = (38)

ŷH0







cosφ
TM

fc e−γc(x−h)

cos[kfx(x− h) + φ
TM

fc ]

cos(kfxh− φ
TM

fc ) cos(ksxx) +
kfx/n

2
f

ksx/n2
s

sin(kfxh− φ
TM

fc ) sin(ksxx)







e−jβνz

(x ≥ h),

(0 ≤ x ≤ h),

(x ≤ 0),

whereH0 is a free parameter, Hyβ(x) is the substrate TM mode profile, and φ
TM

fc = tan−1(γcn
2
f/kfxn

2
c).

Sample normalized electric/magnetic field profiles for TE/TM substrate modes are shown in

Fig. 7.
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Figure 7: The normalized electric/magnetic Eyβ(x)/Hyβ(x) field profiles for TE/TM substrate modes. The

slab waveguide parameters are nc = 1, nf = 2.2, ns = 1.5, h = 1.2µm, and λ0 = 1.0µm. The vertical lines

indicate the film-substrate and film-cover boundaries. The effective indices (selected arbitrarily in the interval

nc = 1 < N < 1.5 = ns) are also shown on the top of each plot.
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5. Radiation Modes

When 0 < β < k0nc (or equivalently 0 < N < nc) then the field in all three regions (cover,

film, and substrate) is propagating. The modes that have this property are called radiation

modes and radiate power into both the cover and the substrate regions as they propagate. As

in the case of the substrate modes, the solutions for β form a continuum and for the radiation

modes. Thus, any β in the interval 0 < β < k0nc can be a solution for a radiation mode. It

is straightforward to determine the electromagnetic field of a radiation mode. The electric or

magnetic field of a TE or TM radiation mode can be written as

~U = U(x, z)ŷ = ŷ







[
Uc1e

−jkcx(x−h) + Uc2e
+jkcx(x−h)

]
e−jβz, x ≥ h,

[
Uf1e

−jkfxx + Uf2e
+jkfxx

]
e−jβz, 0 ≤ x ≤ h,

[
Us1e

−jksxx + Us2e
+jksxx

]
e−jβz, x ≤ 0,

(39)

where U = Ey for TE radiation modes and U = Hy for TM radiation modes, and kcx =

(k2
0n

2
c − β2)1/2 > 0 for the range of β that is valid for radiation modes. Using the continuity of

the tangential electric and magnetic field components 4 equations can be specified. However,

the number of unknowns is seven, i.e. Uc1, Uc2, Uf1, Uf2, Us1, Us2, and β. Therefore, there is

even more flexibility in satisfying the boundary conditions. For example, any β in the interval

0 < β < k0nc can satisfy the boundary conditions. After some manipulations of the resulting

boundary conditions it can be shown that the electric field of a TE radiation mode is given by

~Eβ = ŷEyβ(x)e−jβz = (40)

ŷE0







1

2

[(

1 +
kfx

kcx

)

cos[kcx(x− h) + kfxh − φ] +

(

1 − kfx

kcx

)

cos[kcx(x− h) − kfxh+ φ]

]

cos(kfxx− φ)

1

2

[(

1 +
kfx

ksx

)

cos[ksxx− φ] +

(

1 − kfx

ksx

)

cos[ksxx+ φ]

]







e−jβz

(x ≥ h),

(0 ≤ x ≤ h),

(x ≤ 0),

where E0 and φ are two free parameters. Similarly the magnetic field for a TM radiation mode
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is given by

~Hβ = ŷHyβ(x)e−jβz = (41)

ŷH0







1

2

[(

1 +
kfx/n

2
f

kcx/n2
c

)

cos[kcx(x− h) + kfxh − φ] +

(

1 −
kfx/n

2
f

kcx/n2
c

)

cos[kcx(x− h) − kfxh+ φ]

]

cos(kfxx− φ)

1

2

[(

1 +
kfx/n

2
f

ksx/n2
s

)

cos[ksxx− φ] +

(

1 −
kfx/n

2
f

ksx/n2
s

)

cos[ksxx+ φ]

]







e−jβz

(x ≥ h),

(0 ≤ x ≤ h),

(x ≤ 0),

where H0 and φ are two free parameters. Sample normalized electric/magnetic field profiles for

TE/TM radiation modes are shown in Fig. 8.

Distance x (µm)

-6 -4 -2 0 2 4 6 8

N
o

rm
a

li
z
e

d
 E

y
 

-1

-0.5

0

0.5

1
TE Radiation Mode, , N

eff
 = 0.95, φ  = 135°

Distance x (µm)

-6 -4 -2 0 2 4 6 8

N
o

rm
a

li
z
e

d
 H

y
 

-1

-0.5

0

0.5

1
TM Radiation Mode, , N

eff
 = 0.95, φ  = 135°

Distance x (µm)

-6 -4 -2 0 2 4 6 8

N
o

rm
a

li
z
e

d
 E

y
 

-1

-0.5

0

0.5

1
TE Radiation Mode, , N

eff
 = 0.95, φ  = 30°

Distance x (µm)

-6 -4 -2 0 2 4 6 8

N
o

rm
a

li
z
e

d
 H

y
 

-1

-0.5

0

0.5

1
TM Radiation Mode, , N

eff
 = 0.95, φ  = 30°

Figure 8: The normalized electric/magnetic field profiles, Eyβ(x)/Hyβ(x), for TE/TM radiation modes. The

slab waveguide parameters are nc = 1, nf = 2.2, ns = 1.5, h = 1.2µm, and λ0 = 1.0µm. The vertical lines

indicate the film-substrate and film-cover boundaries. The effective indices (arbitrarily chosen in the interval

0 < N < 1 = nc) are also shown on the top of each plot along with the choice of the free parameter φ.
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6. Unphysical Modes (or Nonphysical Modes)

When k0nf < β < ∞ (or equivalently nf < N < ∞) then the field in all three regions (cover,

film, and substrate) is comprised of evanescent terms, usually including both exponentially

increasing and exponentially decreasing terms. The modes that have this property are called

unphysical (or nonphysical) modes since there are valid solutions of the Maxwell’s equations

but they cannot be excited since they have infinite power. For this reason they are called

unphysical modes and are not usually referred to most of the textbooks. The analysis of these

modes is similar with the case of radiation modes with the exception that all field components

are comprised of both increasing and decreasing exponential terms. As in the case of the

substrate/radiation modes, their solutions for β form a continuum. Thus, any β in the interval

k0nf < β < ∞ can be a solution for an unphysical mode. It is straightforward to determine

the electromagnetic field of an unphysical mode. The electric or magnetic field of a TE or TM

unphysical mode can be written as

~U = U(x, z)ŷ = ŷ







[
Uc1e

−γc(x−h) + Uc2e
+γc(x−h)

]
e−jβz, x ≥ h,

[Uf1e
−γf x + Uf2e

+γf x] e−jβz, 0 ≤ x ≤ h,

[Us1e
−γsx + Us2e

+γsx] e−jβz, x ≤ 0,

(42)

where U = Ey for TE unphysical modes and U = Hy for TM unphysical modes, and γf =

(β2 − k2
0n

2
f )

1/2 > 0 for the range of β that is valid for unphysical modes. If one tries to find

a solution without the increasing exponentials in the cover and the substrate regions (i.e.,

for Uc2 = Us1 = 0), one ends with a dispersion equation of the form (for TE polarization)

tanh(γfh) = −[(γs/γf )+ (γc/γf )]/[1+ (γcγs/γ
2
f )] that does not have a real solution for β in the

range of the unphysical modes (a similar equation, that does not have a real solution, exists

for the TM polarization too). Therefore, it is required to retain all the terms appearing in the

above equation similarly to the radiation modes case. Using the continuity of the tangential

electric and magnetic field components 4 equations can be specified. However, the number of

unknowns is seven, i.e. Uc1, Uc2, Uf1, Uf2, Us1, Us2, and β (similar to the radiation modes case).

Therefore, there is a lot of flexibility in satisfying the boundary conditions. For example, any β

in the interval k0nf < β < ∞ can satisfy the boundary conditions. After some manipulations

of the resulting boundary conditions it can be shown that the electric field of a TE unphysical
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mode is given by

~Eβ = ŷEyβ(x)e−jβz = (43)

ŷE0







1

2

[(

1 +
γf

γc

)

cosh[γc(x− h) + γfh− φ] +

(

1 − γf

γc

)

cosh[γc(x− h) − γfh+ φ]

]

cosh(γfx− φ)

1

2

[(

1 +
γf

γs

)

cosh[γsx− φ] +

(

1 − γf

γs

)

cosh[γsx+ φ]

]







e−jβz

(x ≥ h),

(0 ≤ x ≤ h),

(x ≤ 0),

where E0 and φ are two free parameters. Similarly the magnetic field for a TM unphysical

mode is given by

~Hβ = ŷHyβ(x)e−jβz = (44)

ŷH0







1

2

[(

1 +
γf/n

2
f

γc/n2
c

)

cosh[γc(x− h) + γfh− φ] +

(

1 −
γf/n

2
f

γc/n2
c

)

cosh[γc(x− h) − γfh + φ]

]

cosh(γfx− φ)

1

2

[(

1 +
γf/n

2
f

γs/n2
s

)

cosh[γsx− φ] +

(

1 −
γf/n

2
f

γs/n2
s

)

cosh[γsx+ φ]

]







e−jβz

(x ≥ h),

(0 ≤ x ≤ h),

(x ≤ 0),

where H0 and φ are two free parameters. Sample normalized electric/magnetic field profiles for

TE/TM radiation modes are shown in Fig. 9.

7. Evanescent Modes

In some cases there might be a need to use waveguide modes that have a purely imaginary

propagation constant β̃, such that β̃ = ±jβ (where β > 0). In this case the waveguide field

could be written as ~U = ~U(x) exp(−jβ̃z) = ~U(x) exp(−βz), where for forward evanescent modes

the β̃ = −jβ was selected in order for the evanescent mode to decay along the propagation

direction z. Strictly speaking, the evanescent modes are not propagating since they decay along

the propagation direction. However, they are proper modal solutions of the Helmholtz wave

equation as it is applied to the slab waveguide problem. The acceptable imaginary propagation
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Figure 9: The normalized electric/magnetic field profiles, Eyβ(x)/Hyβ(x), for TE/TM unphysical modes.

The slab waveguide parameters are nc = 1, nf = 2.2, ns = 1.5, h = 1.2µm, and λ0 = 1.0µm. The vertical lines

indicate the film-substrate and film-cover boundaries. The effective indices are also shown on the top of each

plot along with the choice of the free parameter φ. For symmetry of the fields in the film layer the φ parameter

was chosen as φ = φs = γf h/2 in the bottom two plots.

constants are of the form β̃ = −jβ (for the forward evanescent modes) and β̃ = +jβ (for the

backward evanescent modes), i.e. they all lie along the imaginary β̃ axis. These evanescent

modes form a continuum. For example any value of β > 0 gives a propagation constant β̃ = −jβ
which is an acceptable solution to Maxwell equations in the slab waveguide geometry.

It is straightforward to determine the electromagnetic field of an evanescent mode. The

electric or magnetic field of a TE or TM forward propagating evanescent mode can be written

as

~U = U(x, z)ŷ = ŷ







[
Uc1e

−jk′

cx(x−h) + Uc2e
+jk′

cx(x−h)
]
e−βz, x ≥ h,

[

Uf1e
−jk′

fxx + Uf2e
+jk′

fxx
]

e−βz, 0 ≤ x ≤ h,

[
Us1e

−jk′

sxx + Us2e
+jk′

sxx
]
e−βz, x ≤ 0,

(45)

where U = Ey for TE forward evanescent modes and U = Hy for TM forward evanescent

24



modes, and k′cx = (k2
0n

2
c + β2)1/2 > 0, k′fx = (k2

0n
2
f + β2)1/2 > 0, and k′sx = (k2

0n
2
s + β2)1/2 > 0,

for the range of β that is valid for forward evanescent modes (i.e. the negative imaginary axis of

the propagation constant region). Using the continuity of the tangential electric and magnetic

field components 4 equations can be specified. However, the number of unknowns is seven, i.e.

Uc1, Uc2, Uf1, Uf2, Us1, Us2, and β. Therefore, there is even more flexibility in satisfying the

boundary conditions. For example, any β in the interval 0 < β < k0nc can satisfy the boundary

conditions. After some manipulations of the resulting boundary conditions it can be shown

that the electric field of a TE evanescent mode is given by

~Eβ = ŷEyβ(x)e−βz = (46)

ŷE0







1

2

[ (

1 +
k′fx

k′cx

)

cos[k′cx(x− h) + k′fxh− φ] +

(

1 −
k′fx

k′cx

)

cos[k′cx(x− h) − k′fxh + φ]

]

cos(k′fxx− φ)

1

2

[ (

1 +
k′fx

k′sx

)

cos[k′sxx− φ] +

(

1 −
k′fx

k′sx

)

cos[k′sxx+ φ]

]







e−βz

(x ≥ h),

(0 ≤ x ≤ h),

(x ≤ 0),

where E0 and φ are two free parameters (similar to the radiation modes). In an analogous

manner, the magnetic field for a TM forward evanescent mode is given by

~Hβ = ŷHyβ(x)e−βz = (47)

ŷH0







1

2

[(

1 +
k′fx/n

2
f

k′cx/n
2
c

)

cos[k′cx(x− h) + k′fxh − φ] +

(

1 −
k′fx/n

2
f

k′cx/n
2
c

)

cos[k′cx(x− h) − k′fxh+ φ]

]

cos(k′fxx− φ)

1

2

[(

1 +
k′fx/n

2
f

k′sx/n
2
s

)

cos[k′sxx− φ] +

(

1 −
k′fx/n

2
f

k′sx/n
2
s

)

cos[k′sxx+ φ]

]







e−βz

(x ≥ h),

(0 ≤ x ≤ h),

(x ≤ 0),

where H0 and φ are again the two free parameters. Sample normalized electric/magnetic field

profiles for TE/TM forward evanescent modes are shown in Fig. 10.

The various modes of the lossless slab waveguide problem (the example is for the single-

film layer slab waveguide but it can be easily generalized to multilayer-film slab waveguides) are

shown in the complex propagation constant (β̃ = βr+jβi) diagram in Fig. 11. The only discrete
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Figure 10: The normalized electric/magnetic field profiles, Eyβ(x)/Hyβ(x), for TE/TM forward evanescent

modes. The slab waveguide parameters are nc = 1, nf = 2.2, ns = 1.5, h = 1.2µm, and λ0 = 1.0µm. The

vertical lines indicate the film-substrate and film-cover boundaries. The effective indices are also shown on the

top of each plot along with the choice of the free parameter φ.

spectrum is of the guided modes as it can be seen. The substrate, radiation, unphysical, and

evanescent modes from a continuum. In the same diagram the leaky modes are also shown. The

leaky modes is an approximation of the radiation field by a series of discrete modes of complex

propagation constant. These leaky modes will be discussed at a later section of this chapter.

In the case of loss or gain in the film region, the guided modes will have nonzero component

of their complex propagation constant, βi < 0 for loss and βi > 0 for gain (for the forward

propagating modes and the reverse of this for the backward propagation modes).

8. Normalized Slab-Waveguide Variables

The dispersion Eq. (4) can also be written in terms of normalized variables. Such a rep-

resentation is useful for any three-region slab waveguide. The normalized parameters are the

26



5 5 5666

7 8 9 : ;

7 < 9 : ;
= >

? = >
= @

? = @
= A

? = A

B C D E F D G
H I F J K L C G I M

N F O J E F D G
H I F J K L C G I M

P
P

P
P

Q R S T U S V
W X Y Z [ \ ] ^ U _ ` R V a \

b U ^ c T U S V
W X Y Z [ \ ] ^ U _ ` R V a \

d e f g h f i j k l m e no h p q g h f i j k l m e n

Q R S T U S V
r s U X a \ ^ a X t

` R V a \

b U ^ c T U S V
r s U X a \ ^ a X t

` R V a \ Q R S T U S V
u v ] V a V

` R V a \

b U ^ c T U S V
u v ] V a V

` R V a \

Q R S T U S V
w v x \ t S U t a

` R V a \

y U V ] U t ] R X
` R V a \

b U ^ c T U S V
w v x \ t S U t a

` R V a \

z R X t ] X v v { w Y a ^ t S v {
| } ~ � � � � � � � � � � � � � � �

�
�

� �
� �
� � �

Figure 11: A diagram of the various modes of a lossless slab waveguide. The guided modes (forward or

backward) from a discrete spectrum while the radiation, substrate, and evanescent modes (forward or backward

form a continuum spectrum. The unphysical mode solutions have also a continuum spectrum (forward or

backward). The leaky modes are not exactly formal modes but they represent some form of normalization of

the radiation spectrum (forward or backward).

normalized frequency, V , the normalized effective propagation constant (or normalized effective

index), b, and are defined as follows

V =
2π

λ0
h
√

n2
f − n2

s, (48)

b =
N2 − n2

s

n2
f − n2

s

=
n2

f sin2 θ − n2
s

n2
f − n2

s

, (49)

a
TE

=
n2

s − n2
c

n2
f − n2

s

, (50)

a
TM

=
n4

f

n4
c

n2
s − n2

c

n2
f − n2

s

=
n4

f

n4
c

a
TE
, (51)
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where the a
TE

and a
TM

are defined as the asymmetry factors for TE and TM modes respectively.

Using these normalized variables in Eq. (4) it is straightforward to derive the following dispersion

equation for the case of TE polarization

V
√

1 − b− tan−1

{√

b

1 − b

}

− tan−1

{√

b+ a
TE

1 − b

}

= νπ, ν = 0, 1, · · · . (52)

A similar normalized dispersion equation can not be done for the TM modes. It can be shown

that by defining the normalized variables, b
TM

= (n2
f/qn

2
s)[(N

2 − n2
s)/(n

2
f − n2

s)] and q =

(N2/n2
f )+(N2/n2

s)−1, the resulting normalized dispersion equation for the TM modes is given

by

V
√
q
nf

ns

√

1 − b
TM

− tan−1

{√

b
TM

1 − b
TM

}

− tan−1

{√

b
TM

+ a
TM

(1 − b
TM
d)

1 − b
TM

}

= νπ, (53)

where ν = 0, 1, · · · and d = [1− (ns/nf )
2][1− (nc/nf )

2]. It is obvious that the above normalized

equation is not completely normalized since the ratios ns/nf , nc/nf , and ns, nf , are necessary

for the evaluation of b
TM

. However, if nf − ns ' 0 then the normalized dispersion equation for

the TM modes becomes similar to the one for the TE modes if the corresponding to the TM

modes asymmetry factor, a
TM

, is used.

Solving Eq. (52) for various values of the normalized frequency, V , of the asymmetry factor,

a (a
TE

or a
TM

), and of ν, normalized diagrams such the one shown in Fig. 12 can be generated.

These are exact for TE modes and only approximately correct for TM modes as it was explained

above. Measuring from the diagram the value(s) of bν, for given V and a, the effective index of

the TEν mode(s) (and approximately for TMν mode(s) with a = a
TM

) can be determined as

Nν = [n2
s + bν(n

2
f − n2

s)]
1/2.

9. Cutoff Conditions

When the effective index of a guided mode becomes smaller than the substrate refractive index

(Nν < ns) then the mode starts radiating into the substrate and becomes a substrate mode as

it was discussed in the previous sections. The condition Nν = ns (or equivalently βν = k0ns)

represents a critical condition below which the guided field is cut-off and from guided mode

becomes a substrate (or in general radiation) mode. Equivalently, this occurs when the zig-zag

angle θ becomes equal to the critical angle at the film-substrate interface, θcr,fs (it is reminded
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Figure 12: The normalized propagation constant b versus normalized frequency V for four selected asymmetry

factors (a = 0, 1, 10, and 106) for the first 5 modes (ν = 0, 1, 2, 3, and 4). A small segment for ν = 5 and a = 0

is shown on the right bottom corner of the diagram.

that nc < ns < nf ). Then, Eq. (4) becomes

k0h
√

n2
f − n2

s − tan−1(
√

aw) = νπ, w = TE, TM. (54)

The last equation is a cutoff condition and can be solved for one parameter retaining the others

constant. For example, if it solved with respect to the waveguide thickness, h, the cutoff

thicknesses can be determined as follows

h
TE

cut,ν =
νπ + tan−1(

√
a

TE
)

k0

√

n2
f − n2

s

, (55)

h
TM

cut,ν =
νπ + tan−1(

√
a

TM
)

k0

√

n2
f − n2

s

, (56)

where a
TE

and a
TM

are the asymmetry factors for TE and TM polarization respectively and

are defined in Eqs. (50) and (51). It is interesting to notice that for symmetric waveguides,

a
TE

= a
TM

= 0 the cutoff thicknesses for the lowest order mode (ν = 0) are zero. I.e., for

symmetric waveguides, any film thickness, independently of how small it is, can support the
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lowest order modes TE0 and TM0. In Fig. 13 the effective index of various modes is shown as a

function of the film layer thickness. From these plots the cutoff thicknesses are the points from

which each of the βν curves starts.
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Figure 13: The effective index variation as a function of the waveguide film thickness. The slab waveguide

parameters are shown on the top of each plot. It is mentioned that the effective indices of up to the tenth TE

or TM are included.

If Eq. (54) is solved with respect to the free-space wavelength or frequency the following
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cutoff wavelengths and frequencies can be defined for each mode and polarization

λ
TE

0,cut,ν =
2πh

√

n2
f − n2

s

νπ + tan−1(
√

a
TE

)
, (57)

λ
TM

0,cut,ν =
2πh

√

n2
f − n2

s

νπ + tan−1(
√

a
TM

)
, (58)

(59)

ω
TE

cut,ν = c
νπ + tan−1(

√
a

TE
)

h
√

n2
f − n2

s

, (60)

ω
TM

cut,ν = c
νπ + tan−1(

√
a

TM
)

h
√

n2
f − n2

s

. (61)

It is evident again that for symmetric waveguides the cutoff wavelength is infinite and the

corresponding cutoff frequencies are zero for the zero order modes. An example ω− β diagram

is shown in Fig. 14 where the cutoff frequencies can be shown for the first five TE and TM

modes. The waveguide parameters are included in the figure caption.
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Figure 14: A sample ω − β diagram for a three layer slab waveguide with nc = 1.0, nf = 2.2, ns = 1.5, and

h = 1µm for both TE and TM polarizations.
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10. Power Considerations

In order to determine the time-average power that each mode can carry along the propagation

direction z, it is necessary to evaluate the z-component of the time-average Poynting vector

and integrate it over the xy-plane. Then, the power carried by the ν-th mode can be express

as

P =

∫ +∞

−∞

∫ +∞

−∞

1

2
Re{ ~E × ~H∗} · ẑdxdy, (62)

where the integration is over the entire xy plane. However, in slab waveguides, there is no

y-dependence, and therefore the integration over the y-axis should give infinite power! As a

result in slab waveguides the power per unit y length is of interest and the previous equation

is written as

P =

∫ +∞

−∞

1

2
Re

{

~E × ~H∗
}

· ẑdx =

=

∫ 0

−∞

1

2
Re{ ~E × ~H∗} · ẑdx

︸ ︷︷ ︸

Ps

+

∫ h

0

1

2
Re{ ~E × ~H∗} · ẑdx

︸ ︷︷ ︸

Pf

+

∫ +∞

h

1

2
Re{ ~E × ~H∗} · ẑdx

︸ ︷︷ ︸

Pc

,(63)

where it is implied that P is expressed in Watts/per unit y length and the integral has been

separated in three parts Ps, Pf , and Pc each representing the power per unit y length in each

of the three waveguide regions, substrate, film, and cover, respectively. The x-component of

the average Poynting vector should be zero since no power is propagating in the x-direction for

guided modes.

10.1 TE Modes

Using the field Eqs. (29) and (25) in the case of TE modes the Poynting vector can be written

as (1/2)Re{−EyH
∗
x} and the resulting power components become

Ps =
N

TE

ν

4

√
ε0
µ0

|E0|2
cos2(φ

TE

fs )

γs
, (64)

Pf =
N

TE

ν

4

√
ε0
µ0

|E0|2
[

h+
sin(2kfxh− 2φ

TE

fs ) + sin(2φ
TE

fs )

2kfx

]

, (65)

Pc =
N

TE

ν

4

√
ε0
µ0

|E0|2
cos2(kfxh − φ

TE

fs )

γc
, (66)
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P =
N

TE

ν

4

√
ε0
µ0

|E0|2
[

h +
1

γs
+

1

γc

]

=
N

TE

ν

4

√
ε0
µ0

|E0|2h
TE

eff,ν, (67)

where h
TE

eff,ν is the effective thickness of the TEν mode and P = Ps + Pf + Pc. It is reminded

that φ
TE

fs = tan−1(γs/kfx). It is interesting to specify the percentage of power being carried by

the TEν mode in each of the three regions. Specifically, from the above equations the following

ratios can be defined

Ps

P
=

1

h
TE

eff,ν

cos2(φ
TE

fs )

γs
, (68)

Pf

P
=

1

h
TE

eff,ν

[

h+
sin(2kfxh − 2φ

TE

fs ) + sin(2φ
TE

fs )

2kfx

]

, (69)

Pc

P
=

1

h
TE

eff,ν

cos2(kfxh− φ
TE

fs )

γc
. (70)

For example, the dependence of h
TE

eff,ν, and of Ps/P , Pf/P , and Pc/P of the film thickness h is

shown in Figs. 15 and 16 for the first 10 modes of a slab waveguide.
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Figure 15: A sample heff,ν versus film thickness diagram for a three layer slab waveguide with nc = 1.0,

nf = 1.56, ns = 1.45, and h = 1µm for both TE and TM polarizations. The effective thicknesses of the first 10

TE and TM modes are shown.

It is straightforward to show that the average Poynting vector along the x-direction is

Px = (1/2)Re{EyH
∗
z }. Specifically, using Eqs. (29) and (26) it is easy to show that Px = 0 as

it is expected for guided modes.
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Figure 16: The power percentages in the cover, film and substrate regions as a function of the waveguide

film thickness. The slab waveguide parameters are shown on the top of each plot. It is mentioned that the first

ten TE and TM modes are included.

10.2 TM Modes

Using the field Eqs. (35) and (31) in the case of TM modes the Poynting vector can be written

as (1/2)Re{ExH
∗
y} and the resulting power components become

Ps =
N

TM

ν

4

√
µ0

ε0
|H0|2

cos2(φ
TM

fs )

n2
sγs

, (71)

Pf =
N

TM

ν

4

√
µ0

ε0
|H0|2

1

n2
f

[

h+
sin(2kfxh− 2φ

TM

fs ) + sin(2φ
TM

fs )

2kfx

]

, (72)

Pc =
N

TM

ν

4

√
µ0

ε0
|H0|2

cos2(kfxh− φ
TM

fs )

n2
cγc

, (73)

P =
N

TM

ν

4

√
µ0

ε0
|H0|2

1

n2
f

[

h+
1

qsγs
+

1

qcγc

]

=
N

TM

ν

4

√
µ0

ε0
|H0|2

1

n2
f

h
TM

eff,ν, (74)
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where h
TM

eff,ν is the effective thickness of the TMν mode and P = Ps + Pf + Pc, and qc =

(N
TM

ν )2/n2
c + (N

TM

ν )2/n2
f − 1, qs = (N

TM

ν )2/n2
s + (N

TM

ν )2/n2
f − 1. It is reminded that in this

case φ
TM

fs = tan−1[(γs/n
2
s)/(kfx/n

2
f )]. It is interesting to specify the percentage of power being

carried by the TMν mode in each of the three regions. Specifically, from the above equations

the following ratios can be defined

Ps

P
=

n2
f

h
TM

eff,ν

cos2(φ
TM

fs )

n2
sγs

, (75)

Pf

P
=

n2
f

h
TM

eff,ν

1

n2
f

[

h+
sin(2kfxh − 2φ

TM

fs ) + sin(2φ
TM

fs )

2kfx

]

, (76)

Pc

P
=

n2
f

h
TM

eff,ν

cos2(kfxh− φ
TM

fs )

n2
cγc

. (77)

For example, the dependence of h
TM

eff,ν, and of Ps/P , Pf/P , and Pc/P of the film thickness

h is shown in Figs. 15 and 16 for the first 10 modes of a slab waveguide. Similar to the TE

modes, it is straightforward to show that the average Poynting vector along the x-direction is

Px = (1/2)Re{−EzH
∗
y}. Specifically, using Eqs. (35) and (32) it is easy to show that Px = 0 as

it is expected for guided modes.
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11. Multi-Layered Slab Waveguides

Multi-layered slab waveguides are of practical interest since they represent realizable semicon-

ductor waveguides that are used in semiconductor lasers. Furthermore, even dielectric waveg-

uides of more than a single film region are used. An example is the case that a buffer layer

may be needed to be inserted between the film region and metallic electrodes that are used

in electro-optic applications. Also, many times from a fabrication point of view, the resulting

waveguides end up with a refractive index profile that is of graded (smooth) variation instead of

step (abrupt) variation. Examples of such waveguides are the ones fabricated via ion-exchange,

ion-bombardment, or metal-in-diffusion techniques. In latter cases the graded-index waveguides

can be approximated by an arbitrary number of layers of constant index thus approximating

the smoothly varying refractive index. This technique can also be used to characterized fabri-

cated waveguides. For example, if the mode propagation constants can be measured (which is

feasible through a prism-coupling method) the parameters of the fabricated waveguide can be

determined by an inverse problem to the one that determines the propagation constants. For

all these reasons, the extension of the three region slab waveguide to the general multi-layered

case is presented here.

A general multi-layered slab waveguide is shown in Fig. 17. The waveguide is comprised of

N film regions (of refractive index ni and thickness hi), in addition to the cover and substrate

regions, of refractive indices, nc and ns, respectively. The x = 0 is now selected at the cover-film

layer #1 boundary and its direction is towards the substrate. This direction is opposite of the

one used in Fig. 1. This is chosen since it matches the coordinate system that was utilized in

the computer program that was pre-written to these notes in order to implement the procedure

for the multi-layered slab waveguide. All the basic equations are the same with the only care

needed in the selection of the signs of the exponential terms of the evanescent waves in cover

and substrate regions.

The approach to determine the modes (TE or TM) in the case of a multi-layered slab

waveguide is conceptually identical with the one that was followed in Secs. 3.1 and 3.2. For

example, if the TE modes should be determined, then the unknown electric field amplitude

coefficients are Ec, E11, E12, · · · , Ei1, Ei2, · · · , EN1, EN2, Es, as well as the propagation

constant βν . Therefore the number of unknowns is 2(N + 1) excluding βν. The number of
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Figure 17: A general multilayered slab waveguide. The waveguide is comprised of N layers, with refractive

indices, ni, and layer thicknesses, hi (i = 1, 2, · · · , N). The cover (x < 0) has a refractive index of nc, whereas

the substrate (x >
∑N

1
hi) has a refractive index of ns.

equations that can be derived from the boundary conditions are 2(N + 1). The boundary

conditions result in a matrix equation similar to Eq. (27) but of dimension 2(N +1)×2(N +1).

The determinant of the coefficient matrix is the dispersion equation and solutions of this in the

interval k0ns < βν < k0 maxi{ni} determine the propagation constants βν. However, in this

section the Transfer Matrix technique as described in Ref. [11–13] will be presented.

11.1 TE Guided Modes

As in the case of the three-layer slab waveguide, the TE modes are characterized by the elec-

tromagnetic fields {Ey, Hx, Hz}. Using the first two of Eqs. (14) and the first of Eqs. (15) the

following equations can be written for a region of refractive index n

d

dx

[
Ey

Hz

]

=





0 −jωµ0

−jωε+ j
β2

ωµ0
0





[
Ey

Hz

]

, (78)

Hx = − β

ωµ0
Ey. (79)
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The solution of Ey in each region can be summarized as follows

~E = ŷ







Ece
γcxe−jβz, x ≤ 0,

[
Ei1e

−jkxi(x−Di) + Ei2e
+jkxi(x−Di)

]
e−jβz, Di ≤ x ≤ Di+1,

Ese
−γs(x−DN+1)e−jβz, x ≥ DN+1,

(80)

where the distances Di are given by

Di =
i−1∑

`=1

h`, with D1 = 0, i = 1, 2, · · · , N, (81)

and γc = (β2 − k2
0n

2
c)

1/2, γs = (β2 − k2
0n

2
s)

1/2, kxi = (k2
0n

2
i − β2)1/2 (i = 1, 2, · · · , N), and

Ec, Es, and Ei1, Ei2 the unknown amplitude constants. The tangential magnetic field can be

determined from Eqs. (78) and is given by

Hz =
1

−jωµ0







γcEce
γcxe−jβz, x ≤ 0,

[
−jkxiEi1e

−jkxi(x−Di) + jkxiEi2e
+jkxi(x−Di)

]
e−jβz, Di ≤ x ≤ Di+1,

−γsEse
−γs(x−DN+1)e−jβz, x ≥ DN+1.

(82)

The next step is to use the boundary conditions at x = 0, D2, · · · , DN+1 for continuity of Ey

and Hz. The resulting equations are written in the following form

[
1 1

−jkx1 jkx1

][
E11

E12

]

=

[
1
γc

]

Ec, at x = 0, (83)

At the boundary between the i−th and the (i + 1)−th layer the following equations can be

derived

[
e−jkxihi e+jkxihi

−jkxie
−jkxihi jkxie

+jkxihi

] [
Ei1

Ei2

]

=

[
1 1

−jkx,i+1 jkx,i+1

][
Ei+1,1

Ei+1,2

]

, at x = Di+1,

(84)

whereas at the last boundary at x = DN+1 =
∑N

`=1 h` the following equations are derived

[
e−jkxN hN e+jkxN hN

−jkxNe
−jkxN hN jkxNe

+jkxN hN

] [
EN1

EN2

]

=

[
1

−γs

]

Es, at x = DN+1. (85)

Now Eq. (83) can be written as

[
E11

E12

]

=
1

2jkx1

[
jkx1 −1
jkx1 1

]

︸ ︷︷ ︸

M̃1,0

[
1
γc

]

Ec, (86)
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defining the transfer matrix M̃1,0 between regions 0 (cover) and 1 (first film layer). Some special

care should be taken in the case that kx1 = 0 [in this case the electric field solution in region

1 is linear, i.e. Ey1(x) = E1,2(x − D1) + E1,1] and M̃1,0 becomes the unity matrix. Boundary

condition expressed in Eq. (84) can be written as

[
Ei+1,1

Ei+1,2

]

=
1

2







e−jkxihi

(

1 +
kxi

kx,i+1

)

e+jkxihi

(

1 − kxi

kx,i+1

)

e−jkxihi

(

1 − kxi

kx,i+1

)

e+jkxihi

(

1 +
kxi

kx,i+1

)







︸ ︷︷ ︸

M̃i+1,i

[
Ei1

Ei2

]

, (87)

thus defining the transfer matrix M̃i+1,i between i−th and (i+1)-th regions. As a special case,

when kxi = 0 [the electric field solution in region i is linear, i.e. Eyi(x) = Ei,2(x − Di) + Ei,1]

and the matrix M̃i+1,i becomes

M̃i+1,i =
1

2






1 hi −
1

jkx,i+1

1 hi +
1

jkx,i+1




 . (88)

Another special case is when kx,i+1 = 0 [the electric field solution in region i+ 1 is linear, i.e.

Ey,i+1(x) = Ei+1,2(x−Di+1) + Ei+1,1] and the matrix M̃i+1,i becomes

M̃i+1,i =
1

2

[
e−jkxihi e+jkxihi

−jkxie
−jkxihi +jkxie

+jkxihi

]

. (89)

Finally, Eq. (85) can be written as

[
1

−γs

]

Es =

[
e−jkxN hN e+jkxN hN

−jkxNe
−jkxN hN jkxNe

+jkxN hN

]

︸ ︷︷ ︸

M̃N+1,N

[
EN1

EN2

]

, (90)

thus, defining the last transfer matrix M̃N+1,N between regions N and substrate. In the case

that kxN = 0 [the electric field solution in region N is linear, i.e. Ey,N (x) = EN,2(x−DN)+EN,1]

and the matrix M̃N+1,N becomes

M̃N+1,N =
1

2

[
1 hi

0 1

]

. (91)

Using the previous equations all amplitudes Ei1 and Ei2 can be eliminated as follows

[
1

−γs

]

Es = M̃N+1,NM̃N,N−1 · · · M̃2,1M̃1,0
︸ ︷︷ ︸

M̃

[
1
γc

]

Ec =

[
m11 m12

m21 m22

][
1
γc

]

Ec. (92)
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In the previous equation M̃ =
∏N

`=0 M̃N+1−`,N−` is the total transfer matrix between the cover

and the substrate regions. Equation (92) results in
[
m11 +m12γc −1
m21 +m22γc γs

]

︸ ︷︷ ︸

ÃTE(β2)

[
Ec

Es

]

= 0 =⇒ det
{

ÃTE(β2)
}

= 0, (93)

and equivalently

det
{

ÃTE(β2)
}

= 0 ⇒ γsm11 + γcm22 + γcγsm12 +m21 = 0. (94)

Solutions, βν, of the last equation for k0ns < βν < k0 maxi{ni} specify the TEν modes. Using

Eqs. (86)-(90) all the unknown amplitude coefficients can be determined using a free parameter

(for example Es or Ec). For an example multi-layered waveguide (for N = 3) the corresponding

TE modes electric field profiles are shown in Fig. 18.
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Figure 18: The TEν (ν = 0, 1) modes electric field profiles of a sample multi-layered waveguide are shown.

The waveguide is comprised of three film layers and its paramaters are nc = 1.45, n1 = 1.56, n2 = 1.45,

n3 = 1.56, ns = 1.45, λ0 = 1.0µm, h1 = 0.75µm, h2 = 0.5µm, and h3 = 0.75µm. The effective indices

NTE
ν = βν/k0 are shown on each plot. The dashed lines specify the boundaries between differing regions.

11.2 TM Guided Modes

As in the case of the three-layer slab waveguide, the TM modes are characterized by the

electromagnetic fields {Hy, Ex, Ez}. Using the last two of Eqs. (14) and the second of Eqs. (15)

the following equations can be written for a region of refractive index n

d

dx

[
Hy

Ez

]

=





0 jωε

jωµ0 − j
β2

ωε
0





[
Hy

Ez

]

, (95)
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Ex =
β

ωε
Hy . (96)

The solution of Hy in each region can be summarized as follows

~H = ŷ







Hce
γcxe−jβz, x ≤ 0,

[
Hi1e

−jkxi(x−Di) +Hi2e
+jkxi(x−Di)

]
e−jβz, Di ≤ x ≤ Di+1,

Hse
−γs(x−DN+1)e−jβz, x ≥ DN+1,

(97)

where the distances Di are given by Eq. (81), and Hc, Hs, and Hi1, Hi2 the unknown amplitude

constants. The tangential magnetic field can be determined from Eqs. (95) and is given by

Ez =
1

jωε0







γc

n2
c

Hce
γcxe−jβz, x ≤ 0,

[

−j kxi

n2
i

Hi1e
−jkxi(x−Di) + j

kxi

n2
i

Hi2e
+jkxi(x−Di)

]

e−jβz, Di ≤ x ≤ Di+1,

− γs

n2
s

Hse
−γs(x−DN+1)e−jβz, x ≥ DN+1.

(98)

At the boundary between the i−th and the (i + 1)−th layer the boundary conditions can be

written as




e−jkxihi e+jkxihi

j
kxi

n2
i

e−jkxihi −j kxi

n2
i

e+jkxihi





[
Hi1

Hi2

]

=





1 1

j
kx,i+1

n2
i+1

−j kx,i+1

n2
i+1





[
Hi+1,1

Hi+1,2

]

, at x = Di+1.

(99)

The last equation is the analogous of Eq. (84) with the difference that kxi → −kxi/n
2
i and sim-

ilarly for kx,i+1 whereas those terms appear as amplitude terms. The same replacement is valid

for the equations analogous to Eqs. (83), (85) where γc → −γc/n
2
c and γs → −γs/n

2
s whereas

they appear as amplitude terms. Consequently it is not necessary to repeat the procedure for

the TM modes. For example the dispersion equation can be written as

det
{

ÃTM(β2)
}

= 0 ⇒ − γs

n2
s

m11 −
γc

n2
c

m22 +
γc

n2
c

γs

n2
s

m12 +m21 = 0. (100)

The matrix elements mij (i, j = 1, 2) can be determined in the same manner as for the

TE modes with the replacements made previously for the terms that appear as amplitude

terms (not inside exponentials or sines and cosines). For an example multi-layered waveguide

(for N = 3) the corresponding TM modes magnetic field profiles are shown in Fig. 19.
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Figure 19: The TMν (ν = 0, 1) modes magnetic field profiles of a sample multi-layered waveguide are

shown. The waveguide is comprised of three film layers and its paramaters are nc = 1.45, n1 = 1.56, n2 = 1.45,

n3 = 1.56, ns = 1.45, λ0 = 1.0µm, h1 = 0.75µm, h2 = 0.5µm, and h3 = 0.75µm. The effective indices

NTE
ν = βν/k0 are shown on each plot. The dashed lines specify the boundaries between differing regions.

11.3 TE and TM Guided Modes using Chen’s Approach

In this section the transfer matrix technique as used by Chen et al. [17] for the study of

multilayer planar waveguides is shortly summarized. For the TE modes the field components

for a region of refractive index n can be related by Eq. (78). The solution of Ey in each region

can be summarized as follows

~E = ŷ







Ece
γcxe−jβz, x ≤ 0,

{

Ei1 cos [kxi(x−Di)] + Ei2 sin [kxi(x−Di)]
}

e−jβz, Di ≤ x ≤ Di+1,

Ese
−γs(x−DN+1)e−jβz, x ≥ DN+1,

(101)

where the distances Di are given as before by Di =
∑i−1

`=1 h`, with D1 = 0, i = 1, 2, · · · , N , and

γc = (β2 − k2
0n

2
c)

1/2, γs = (β2 − k2
0n

2
s)

1/2, kxi = (k2
0n

2
i − β2)1/2 (i = 1, 2, · · · , N), and Ec, Es,

and Ei1, Ei2 the unknown amplitude constants. The tangential magnetic field Hz can easily be

determined from Eqs. (78) and (101). Using the continuity of the tangential field components

across the layer boundaries it is straightforward to relate the tangential fields (Eyi, dEyi/dx) =

(Ui, Vi) where i = 0, 1, · · · , N with (U0, V0) the tangential fields at the cover/layer-1 interface

(Ui, Vi) the tanglential fields at the layer-i/layer-(i+ 1) interface, and (UN , VN ) the tangential

fields at the layer-N/substrate interface. It can be shown [13, 17] that
[
U0

V0

]

= M̃1M̃2 · · · M̃N−1M̃N
︸ ︷︷ ︸

M̃

[
UN

VN

]

=

[
m11 m21

m21 m22

] [
UN

VN

]

. (102)
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In the previous equation M̃ is the total transfer matrix between the cover and the substrate

regions where

M̃i =




cos(kxihi) −sin(kxihi)

kxi

kxi sin(kxihi) cos(kxihi)



 if kxi 6= 0, (103)

M̃i =

[
1 −hi

0 1

]

, if kxi = 0, (104)

where i = 1, 2, · · · , N . For nontrivial solutions of Eq. (102) the following dispersion equation

can be easily derived

FTE(β) = γsm22 + γcm11 − γcγsm12 −m21 = 0. (105)

In the case of the TM modes the tangential fields are [Hyi, (1/n
2
i )dHyi/dx] = (Ui, Vi) with

i = 0, 1, 2, · · · , N similar to the TE case. With these tangential fields, it is straightforward to

show that the dispersion equation can be derived by a simple replacement of kxi → +kxi/n
2
i

(only in amplitude terms of the previous equations and not inside phase terms), γs → +γs/n
2
s,

and γc → +γc/n
2
c . For completeness in the case of kxi = 0 (linear field solution inside layer-i)

the element −hi of matrix M̃i appearing in Eq. (104) is replaced by −n2
ihi. Then the resulting

dispersion equation is

FTM(β) =
γs

n2
s

m11 +
γc

n2
c

m22 −
γc

n2
c

γs

n2
s

m12 −m21 = 0. (106)

It is worth mentioning that both functions FTE and FTM are actually functions of β2 which

implies that if +β satisfies Eq. (105) or (106) so is −β which corresponds to the backward in

z propagating mode.
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12. Finite-Difference Frequency-Domain Method

In section the finite-difference frequency-domain (FDFD) method will be applied to the analysis

of general isotropic slab waveguides. The wave Helmholtz’s equations can be written in the

following vector form

∇2 ~E + ~∇
[
~∇ε
ε

· ~E
]

+ k2
0ε
~E = 0, (107)

∇2 ~H +

[
~∇ε
ε

]

×
(

~∇× ~H
)

+ k2
0ε
~H = 0, (108)

where ε is the relative permittivity of the region. In the case of TE modes solutions the electric

field is of the form ~E = ŷEy(x) exp(−jβz) and Eq. (107) can be simplified in the form

d2Ey

dx2
+

[
k2

0n
2(x) − β2

]
Ey = 0, (109)

since the ~∇ε term is along the x direction whereas ~E is along the y direction, and n2(x) =

ε(x). Similarly, in the case of TM modes solutions, the magnetic field is of the form ~H =

ŷHy(x) exp(−jβz) and Eq. (108) can be simplified in the form

d2Hy

dx2
− 1

n2(x)

dn2(x)

dx

dHy

dx
+

[
k2

0n
2(x)− β2

]
Hy = 0, or (110)

n2(x)
d

dx

(
1

n2(x)

dHy

dx

)

+
[
k2

0n
2(x)− β2

]
Hy = 0, (111)

where for the TM case the corresponding equation is more complicated than the TE one.

In the finite-difference frequency-domain (FDFD) method the derivatives are approximated

using central differences. For example, if U = Ey or Hy, U can be expanded into a Taylor series

around a point x. These leads to the following equations

U(x+ ∆x) ' U(x) +
dU

dx

∆x

1!
+
d2U

dx2

(∆x)2

2!
+
d3U

dx3

(∆x)3

3!
+
d4U

dx4

(∆x)4

4!
, (112)

U(x −∆x) ' U(x) − dU

dx

∆x

1!
+
d2U

dx2

(∆x)2

2!
− d3U

dx3

(∆x)3

3!
+
d4U

dx4

(∆x)4

4!
, (113)

and adding the last two equations the following equation can be derived

U(x+ ∆x) + U(x− ∆x) = 2U(x) +
d2U

dx2
(∆x)2 +O[(∆x)4], (114)

where the O[(∆x)4] is the term that depends on the forth power of ∆x and can be neglected if

∆x is small (i.e. |∆x| � 1). Now the discretization along the x axis is considered. For example
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the continuous x axis is replaced by the points xi = j∆x where (i = 0, 1, · · · ,M,M +1). Then

if x = xi, x+ ∆x = xi+1, and x−∆x = xi−1, U(xi) = Ui, U(xi+1) = Ui+1, and U(xi−1) = Ui−1,

and n2(xi) = n2
i . The geometry is summarized in Fig. 20.
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Figure 20: The one dimensional (along the x axis) computational window for the application of the finite-

difference frequency-domain (FDFD) in general slab waveguides. It is assumed a multi-layered slab waveguide

without thus affecting the generality of the method. The top and bottom lines comprise either electric or

magnetic walls (for TE and TM modes respectively) where the electric or magnetic fields are forced to zero.

The distances dc and ds adjust the total width of the computational window. The grid along the x axis is

comprised of points xi, i = 1, 2, · · · , M .

Then from the last equation the second derivative can be approximated (central differences)

as follows
d2U

dx2
=
Ui−1 − 2Ui + Ui+1

(∆x)2
. (115)

Using the approximation for the second derivative in Eq. (109) it can be transformed in the

following discretized form

Ui−1 − 2Ui + Ui+1

(∆x)2
+ k2

0n
2
iUi = β2Ui, i = 0, 1, · · · ,M + 1. (116)
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It is straightforward to make the transformation X = k0x and re-write the previous equation

in the form
Ui−1 − 2Ui + Ui+1

(∆X)2
+ n2

iUi = N2Ui, i = 0, 1, · · · ,M + 1. (117)

where ∆X = k0∆x and N = β/k0 is the effective index. Applying the last equation for all points

xi and forcing the field to be zero at the upper and lower electric walls (i.e, U0 = UM+1 = 0 it

is straightforward to form the following system of equations












a1 b 0 . . . 0 0
b a2 b 0 . . . 0

0 b a3 b . . .
...

...
...

...
. . .

...
...

0 . . . . . . b aM−1 b
0 . . . . . . 0 b aM























U1

U2
...
...

UM−1

UM












= N2












U1

U2
...
...

UM−1

UM












, (118)

where the coefficients ai = n2
i − [2/(∆X)2] for i = 1, 2, · · · ,M and b = 1/(∆X)2. The last

equation is an eigenvalue/eigenvector equation of the form Av = λv. The eigenvalues of interest

are the ones for which ns < N < max{n(x)} and the corresponding eigenvectors are the

ones that specify the profile of the mode. The above matrix is a tridiagonal matrix which is

characteristic of the one-dimensional finite-difference implementation.

In order to apply the same approach for the case of TM polarization, Eq. (111), the

more complicated first term has to be expressed in discretized form. Following the procedure

explained in Ref. [51] it can be shown that

n2(x)
d

dx

(
1

n2(x)

dU

dx

)

=
1

(∆X)2

2n2
i

n2
i+1 + n2

i

(Ui+1 − Ui) −
1

(∆X)2

2n2
i

n2
i + n2

i−1

(Ui − Ui−1). (119)

Inserting the last approximation into Eq. (111) the following discretized wave equation is ob-

tained

1

(∆X)2

2n2
i

n2
i + n2

i−1

Ui−1 +

[

n2
i −

1

(∆X)2

(
2n2

i

n2
i+1 + n2

i

+
2n2

i

n2
i + n2

i−1

)]

Ui

+
1

(∆X)2

2n2
i

n2
i+1 + n2

i

Ui+1 = N2Ui, i = 1, 2, · · · ,M. (120)

Writing the set of equations for each i (i = 1, 2, · · · ,M) the following eigenvalue/eigenvector
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problem can be formed












a1 c1 0 . . . 0 0
b2 a2 c2 0 . . . 0

0 b3 a3 c3 . . .
...

...
...

...
. . .

...
...

0 . . . . . . bM−1 aM−1 cM−1

0 . . . . . . 0 bM aM























U1

U2
...
...

UM−1

UM












= N2












U1

U2
...
...

UM−1

UM












, (121)

where now the matrix elements are given by

ai = n2
i −

1

(∆X)2

(
2n2

i

n2
i+1 + n2

i

+
2n2

i

n2
i + n2

i−1

)

, (i = 1, 2, · · · ,M), (122)

bi =
1

(∆X)2

2n2
i

n2
i + n2

i−1

, (i = 1, 2, · · · ,M) (123)

ci =
1

(∆X)2

2n2
i

n2
i+1 + n2

i

, (i = 1, 2, · · · ,M). (124)

An example case is presented next. A simple three-region slab waveguide is selected from

semiconductor materials. The parameters are nc = 1.0, nf = 3.4, ns = 3.1, h = 1.0µm, and

the freespace wavelength is λ0 = 1.3µm. The distances from the electric walls are dc = 0.5µm

and ds = 1.0µm. The grid spacing ∆x is selected as fraction of the freespace wavelength, i.e.,

∆x = λ0/L where L an integer. The waveguide with these parameters supports two TE and

two TM modes. The results are summarized in Table 1. It is mentioned that the important

parameter for convergence is the number of grid points per minimum wavelength as this is

measured inside the material. Therefore, for the example case here the minimum wavelength is

inside the film region λmin = λ0/3.4. Consequently, the smallest ∆x from the table corresponds

to λ0/200 = λmin/58.8, i.e. in the denser grid results shown there are at least 58 grid points

per minimum wavelength. The resulting profiles of the supported modes that can be extracted

as the corresponding eigenvectors from Eqs. (118), (121), are shown in Fig. 21.

12.1 FDFD Method Based on Yee’s Cell

In this section the Yee’s cell [52] is going to be utilized for the determination of the effective

propagation constants (effective indices) and the corresponding field profiles for both TE and

TM modes for multilayered isotropic slab waveguides. The approach described by Rumpf [53]

will be applied appropriately modified in this case. It is assumed that all the materials are

non-magnetic (µr ' 1).
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Table 1: Effective Indices Calculated by FDFD

TE Modes TM Modes

∆x NTE
0 NTE

1 NTM
0 NTM

1

λ0/20 3.3585913 3.2362825 3.3518412 3.2129633

λ0/40 3.3579455 3.2333453 3.3515178 3.2109972

λ0/60 3.3578155 3.2327610 3.3514548 3.2106177

λ0/80 3.3577736 3.2325729 3.3514346 3.2104963

λ0/100 3.3577538 3.2324843 3.3514251 3.2104392

λ0/120 3.3577424 3.2324333 3.3514196 3.2104064

λ0/150 3.3577336 3.2323938 3.3514154 3.2103809

λ0/200 3.3577268 3.2323632 3.3514215 3.2103612

Exact 3.3577180 3.2323308 3.3514080 3.2103532
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Figure 21: Example electric and magnetic field profiles determined by the FDFD method. This is a case

of a slab waveguide of nc = 1.0, nf = 3.4, ns = 3.1, h = 1.0µm, and λ0 = 1.3µm. The computational window

distances dc = 0.5µm and ds = 1.0µm were used. In these plots the x-axis matches the one used in Fig. 1. The

value of ∆x = λ0/200 is used in these plots. The values of the effective indices are given in Table 1.

Starting from the TE modes determination, it is reminded that the non-zero field compo-

nents are (Ey, Hx, Hz) where each field component is a function of (x, z) of the form Ey(z, x) =

Ey(x) exp(−jβz) = Ey(x) exp(−jk0Nz) (as an example), where Ey(x) is the mode profile (for

the electric field - similar notation was used all over this chapter) and β, N are the effective

propagation constant and the effective refractive index of the TE mode that is sought, and
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k0 is the freespace wavenumber. Using the normalization of the magnetic field components of

the form H ′
w = −jZ0Hw (according to Rumpf [53]) where Z0 is the free space impedance, the

Maxwell’s equations can be written in the form

−∂Ey

∂z
= k0H

′
x =⇒ −∂Ey

∂z′
= H ′

x, (125)

+
∂Ey

∂x
= k0H

′
z =⇒ +

∂Ey

∂x′
= H ′

z, (126)

−∂H
′
z

∂x
+
∂H ′

x

∂z
= k0εr(x)Ey =⇒ −∂H

′
z

∂x′
+
∂H ′

x

∂z′
= εr(x

′)Ey, (127)

where x′ = k0x and z′ = k0z are normalized coordinates.

At this point the space domain discretization is done according to Yee’s scheme as shown

in Fig. 22. The fields are discretized in the coordinate system shown as Ey(zi, xj) = Ei,j
y taking

into account the staggering between various field components.

−
Ei+1,j

y − Ei,j
y

∆z′
= H ′

x
i+1/2,j

=⇒ jNEj
y = H ′

x
j
e−jN∆z′/2, (128)

Ei,j+1
y − Ei,j

y

∆x′
= H ′

z
i,j+1/2

=⇒
Ej+1

y − Ej
y

∆x′
= H ′

z
j+1/2

, (129)

−H
′
z
i,j+1/2 −H ′

z
i,j−1/2

∆x′
+
H ′

x
i+1/2,j −H ′

x
i−1/2,j

∆z′
= εjrE

i,j
y =⇒

−H
′
z
j+1/2 −H ′

z
j−1/2

∆x′
− jNH ′

x
j

= εjrE
j
y . (130)

When ∆z′ → 0 the 2D Yee’s grid collapses to the compact 1D Yee’s cell as it is shown also in the

right column (b figures) of Fig. 22. Therefore, the positions of Ej
y and H ′

x
j coincide (these field

components become collocated) while the H ′
z
j+1/2 are shifted by ∆x′/2 (forming a staggered

1D grid). Now let’s define the vectors Ẽy = [E1
y , E

2
y , · · · , EM

y ]T , H̃ ′
x = [H ′

x
1, H ′

x
2, · · · , H ′

x
M ]T ,

and H̃ ′
z = [H ′

z
1+1/2, H ′

z
2+1/2, · · · , H ′

z
M+1/2]T . Now let’s define the difference operators according

to Rumpf [53] as follows

D̃E
x′ =












−1 1 0 . . . 0 0
0 −1 1 0 . . . 0

0 0 −1 1 . . .
...

...
...

...
. . .

. . .
...

0 . . . . . . 0 −1 1
0 . . . . . . 0 0 −1












, D̃H
x′ =












1 0 0 . . . 0 0
−1 1 0 0 . . . 0

0 −1 1 0 . . .
...

...
...

...
. . .

. . .
...

0 . . . . . . −1 1 0
0 . . . . . . 0 −1 1












. (131)
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Figure 22: A 2D Yee’s cell and its 1D compact counterpart as it applies to the geometry of the slab waveguide

for both TE (top) and TM (bottom) modes. The point (zi, xj) is represented as (i, j).
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Using the previous definitions, equations (128–130) can be written in the following matrix form:

jNẼy = H̃ ′
x, (132)

1

∆x′
D̃E

x′Ẽy = H̃ ′
z , (133)

− 1

∆x′
D̃H

x′ H̃ ′
z − jNH̃ ′

x = ε̃rẼy. (134)

where ε̃r is a diagonal matrix that contains the relative permittivity, i.e. ε̃jr = εr(xj). Eliminat-

ing the magnetic field components from the last equations it is straightforward to obtain the

following eigenvalue/eigenvector equation
{

ε̃r +
1

(∆x′)2
D̃H

x′ D̃E
x′

}

Ẽy = N2Ẽy, (135)

where N , and Ẽy are the eigenvalues and the corresponding eigenvectors (electric field profiles)

of the TE modes, respectively.

Observing Eq. (130) there might be a dilemma of what relative permittivity to use especially

in the case that the node is at an abrupt permittivity discontinuity. The only thing that is

certain is that Ey electric field is continuous at the permittivity discontinuity boundary. Based

on this, the following Taylor expansions can be made:

Dy(x+ ∆x) = Dy(x) + ∆x
∂Dy

∂x
= εr(x)Ey(x) + ∆x

∂Dy

∂x
,

Dy(x− ∆x) = Dy(x) − ∆x
∂Dy

∂x
= εr(x)Ey(x) − ∆x

∂Dy

∂x
.

Adding up the last two equations the following could be obtained

εr(x)Ey(x) =
1

2
[Dy(x+ ∆x) +Dy(x− ∆x)] =

=
1

2
[ε(x+ ∆x)Ey(x+ ∆x) + εr(x−∆x)Ey(x− ∆x)] =

=
1

2
[ε(x+ ∆x) + εr(x−∆x)]Ey(x),

where the continuity of Ey was utilized, i.e. Ey(x+ ∆x) = Ey(x− ∆x) = Ey(x) for ∆x being

small. The previous averaging should be inserted into the eigenvalue/eigenvector equation (135)

in the form of changing the relative permittivity of the boundary nodes as

εjr =
1

2

[
εj−1
r + εj+1

r

]
. (136)

As an example case, the same single film layer semiconductor waveguide that was presented

in the previous section is used . This three-region slab waveguide has the parameters nc = 1.0,
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nf = 3.4, ns = 3.1, h = 1.0µm, and the freespace wavelength is λ0 = 1.3µm. The distances

from the electric walls are dc = 0.5µm and ds = 1.0µm. The results for the effective indices of

the two supported TE modes are shown in Table 2 and are compared to the previous solutions

of the Helmholtz equation with the collocated fields. It is observed that with any of the three

methods the results are very close. The bottom half of the table shows the error which is defined

as Error(%) = 100[Nexact − N(∆x)]/Nexact. It is observed that the Yee’s cell with averaging

at the boundary nodes gives slightly better results for the practical case of λ0/80 ' λmin/20

where λmin = λ0/nf .

In the case of TM modes the non-zero field components are (Hy, Ex, Ez) where again each

field component is of the form Hy(z, x) = Hy(x) exp(−jβz) = Hy(x) exp(−jk0Nz) (as an

example), where Hy(x) is the mode profile (for the magnetic field) and β, N are the effective

propagation constant and the effective refractive index of the TM mode that is sought, and k0

is the freespace wavenumber. Using again the normalization of the magnetic field components

of the form H ′
w = −jZ0Hw the Maxwell’s equations can be written in the form

−
∂H ′

y

∂z
= k0εrEx =⇒ −

∂H ′
y

∂z′
= εrEx, (137)

∂H ′
y

∂x
= k0εrEz =⇒

∂H ′
y

∂x′
= εrEz, (138)

∂Ex

∂z
− ∂Ez

∂x
= k0H

′
y =⇒ ∂Ex

∂z′
− ∂Ez

∂x′
= H ′

y, (139)

where x′ = k0x and z′ = k0z are normalized coordinates.

At this point the space domain discretization is done according to Yee’s scheme as shown in

Fig. 22. The fields are discretized in the coordinate system shown as H ′
y(zi, xj) = H ′

y
i,j taking

into account the staggering between various field components.

−
H ′

y
i,j −H ′

y
i−1,j

∆z′
= εi−1/2,j

r Ex
i−1/2,j =⇒ jNH ′

y
j

= εjrxxEx
je+jN∆z′/2, (140)

H ′
y
i,j −H ′

y
i,j−1

∆x′
= εi,j−1/2

r Ez
i,j−1/2 =⇒

H ′
y
j −H ′

y
j−1

∆x′
= εj−1/2

rzz Ez
j−1/2, (141)

−Ex
i+1/2,j − Ex

i−1/2,j

∆z′
+
Ez

i,j+1/2 − Ez
i,j−1/2

∆x′
= H ′

y
i,j

=⇒

−jNEx
j − Ez

j+1/2 − Ez
j−1/2

∆x′
= H ′

y
j
, (142)

where εjrxx = εr(xj) and ε
j−1/2
rzz = εr(xj−1/2). When ∆z′ → 0 the 2D Yee’s grid collapses to the

compact 1D Yee’s cell as it is shown also in the right column (b figures) of Fig. 22. Therefore,
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Table 2: Effective Indices (of TE Modes) Calculated by FDFD either using Helmholtz Equation

(collocated fields) or using Yee’s Cell (staggered fields)

TE Modes

Helmholtz Yee’s Cell Yee’s Cell

No Averaging Averaging

∆x NTE
0 NTE

1 NTE
0 NTE

1 NTE
0 NTE

1

λ0/20 3.3585913 3.2362825 3.3585914 3.2362911 3.3570617 3.2310872

λ0/40 3.3579455 3.2333453 3.3579314 3.2332928 3.3575479 3.2319896

λ0/60 3.3578155 3.2327610 3.3578157 3.2327737 3.3576393 3.2321748

λ0/80 3.3577736 3.2325729 3.3577720 3.2325782 3.3576744 3.2322471

λ0/100 3.3577538 3.2324843 3.3577531 3.2324938 3.3576897 3.2322788

λ0/120 3.3577424 3.2324333 3.3577426 3.2324471 3.3576981 3.2322964

λ0/150 3.3577336 3.2323938 3.3577338 3.2324078 3.3577053 3.2323113

λ0/200 3.3577268 3.2323632 3.3577268 3.2323769 3.3577109 3.2323231

λ0/500 3.3577193 3.2323297 3.3577195 3.2323443 3.3577169 3.2323357

λ0/750 3.3577185 3.2323262 3.3577187 3.2323409 3.3577176 3.2323371

λ0/1000 3.3577183 3.2323250 3.3577184 3.2323397 3.3577178 3.2323376

Exact 3.3577180 3.2323308 3.3577180 3.2323308 3.3577180 3.2323308

TE Modes

Helmholtz Yee’s Cell Yee’s Cell

No Averaging Averaging

∆x NTE
0 NTE

1 NTE
0 NTE

1 NTE
0 NTE

1

Error (%) Error (%) Error (%) Error (%) Error (%) Error (%)

λ0/20 −0.0260 −0.1223 −0.0260 −0.1225 0.0195 0.0385

λ0/40 −0.0068 −0.0314 −0.0064 −0.0298 0.0051 0.0106

λ0/60 −0.0029 −0.0133 −0.0029 −0.0137 0.0023 0.0048

λ0/80 −0.0017 −0.0075 −0.0016 −0.0077 0.0013 0.0026

λ0/100 −0.0011 −0.0047 −0.0010 −0.0050 0.0008 0.0016

λ0/120 −0.0007 −0.0032 −0.0007 −0.0036 0.0006 0.0011

λ0/150 −0.0005 −0.0019 −0.0005 −0.0024 0.0004 0.0006

λ0/200 −0.0003 −0.0010 −0.0003 −0.0014 0.0002 0.0002

λ0/500 0.0000 0.0000 0.0000 −0.0004 0.0000 −0.0002

λ0/750 0.0000 0.0001 0.0000 −0.0003 0.0000 −0.0002

λ0/1000 0.0000 0.0002 0.0000 −0.0003 0.0000 −0.0002
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the positions of H ′
y
j and Ex

j coincide (these field components become collocated) while the

Ez
j−1/2 are shifted by −∆x′/2 (forming a staggered 1D grid). Now let’s define the vectors H̃ ′

y =

[H ′
y
1, H ′

y
2, · · · , H ′

y
M ]T , Ẽx = [Ex

1, Ex
2, · · · , Ex

M ]T , and Ẽz = [Ez
1−1/2, Ez

2−1/2, · · · , Ez
M−1/2]T .

Using the previous definitions, equations (140–142) can be written in the following matrix form:

jNH̃ ′
y = ε̃rxxẼx, (143)

1

∆x′
D̃H

x′ H̃ ′
y = ε̃rzzẼz, (144)

−jNẼx −
1

∆x′
D̃E

x′Ẽz = H̃ ′
y. (145)

where ε̃rxx and ε̃rzz are diagonal matrices that contain the relative permittivity, i.e. ε̃jrxx = εr(xj)

and ε̃jrzz = εr(xj+1/2). Eliminating the electric field components from the last equations it is

straightforward to obtain the following eigenvalue/eigenvector equation,
{

ε̃rxx +
1

(∆x′)2
ε̃rxxD̃

E
x′ ε̃−1

rzz D̃
H
x′

}

H̃y = N2H̃y, (146)

whereN , and H̃y are the eigenvalues and the corresponding eigenvectors (magnetic field profiles)

of the TM modes, respectively.

Observing Eq. (140) there might be a dilemma of what relative permittivity to use especially

in the case that the node is at an abrupt permittivity discontinuity (similarly to the TE mode

case). The only thing that is certain in this case, is that Dx electric displacement field is

continuous across the permittivity boundary (since there are no free charges). Based on this,

the following Taylor expansions can be made:

Dx(x+ ∆x)

εr(x+ ∆x)
= Ex(x+ ∆x) = Ex(x) + ∆x

∂Ex

∂x
,

Dx(x−∆x)

εr(x−∆x)
= Ex(x− ∆x) = Ex(x) − ∆x

∂Ex

∂x
.

The last two equations can be manipulated as following in order to obtain the most appropriate

expression for the relative permittivity that will be used in Eq. (140).

1

2

[
Dx(x+ ∆x)

εr(x+ ∆x)
+
Dx(x− ∆x)

εr(x− ∆x)

]

= Ex(x),

Dx(x)
1

2

[
1

εr(x+ ∆x)
+

1

εr(x− ∆x)

]

= Ex(x),

Dx(x)

εr,eq(x)
= Ex(x),

Dx(x) = εr,eq(x)Ex(x),

where εr,eq(x) =

{
1

2

[
1

εr(x+ ∆x)
+

1

εr(x− ∆x)

]}−1

.
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where used of the boundary condition Dx(x+ ∆x) = Dx(x− ∆x) = Dx(x) when ∆x is small.

The above averaging (harmonic average) should be inserted into the eigenvalue/eigenvector

equation (146) in the form of changing the relative permittivity of the boundary nodes of ε̃r as

εjrxx =

{
1

2

[
1

εj−1
rxx

+
1

εj+1
rxx

]}−1

. (147)

Using the same example as before the above procedure is implemented for the determination

of the TM modes. The results are tabulated in Table 3. Again it is observed that the Yee’s

cell with the harmonic averaging gives slightly better results than the solution of Helmholtz’s

equation using the Kawano scheme described in the previous subsection. The Yee’s cell without

the averaging performs consistently worse than the other two schemes.

12.1.1. Average-Scheme Modification for Arbitrary Boundary Location

The previously presented average scheme for the FDFD method for slab waveguides is valid

only for the special case where the permittivity discontinuity plane boundary passes through an

electric field node (Ey node for TE modes) [Eq. (136)] or a magnetic field node (Hy node for TM

modes) [Eq. (147)]. In this section let’s consider the case that the permittivity discontinuity

boundary crosses a Yee’s cell at an arbitrary location. This is shown schematically for the case

of TE and TM modes in Figs. 23a and 23b, respectively.
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Table 3: Effective Indices (of TM Modes) Calculated by FDFD either using Helmholtz Equation

(collocated fields) or using Yee’s Cell (staggered fields)

TM Modes

Helmholtz Yee’s Cell Yee’s Cell

Kawano [51] No Averaging Averaging

∆x NTM
0 NTM

1 NTM
0 NTM

1 NTM
0 NTM

1

λ0/20 3.3518412 3.2129633 3.3496125 3.2041094 3.3512255 3.2110965

λ0/40 3.3515178 3.2109972 3.3504428 3.2067131 3.3513622 3.2105083

λ0/60 3.3514548 3.2106177 3.3507380 3.2077721 3.3513869 3.2104143

λ0/80 3.3514346 3.2104963 3.3509033 3.2083858 3.3513963 3.2103793

λ0/100 3.3514251 3.2104392 3.3509982 3.2087442 3.3514004 3.2103641

λ0/120 3.3514196 3.2104064 3.3510631 3.2089916 3.3514026 3.2103558

λ0/150 3.3514154 3.2103809 3.3511305 3.2092505 3.3514045 3.2103487

λ0/200 3.3514215 3.2103612 3.3511995 3.2095179 3.3514060 3.2103430

λ0/500 3.3514086 3.2103396 3.3513237 3.2100031 3.3514076 3.2103368

λ0/750 3.3514082 3.2103373 3.3513516 3.2101129 3.3514078 3.2103361

λ0/1000 3.3514081 3.2103364 3.3513656 3.2101682 3.3514078 3.2103358

Exact 3.3514080 3.2103532 3.3514080 3.2103532 3.3514080 3.2103532

TM Modes

Helmholtz Yee’s Cell Yee’s Cell

Kawano [51] No Averaging Averaging

∆x NTM
0 NTM

1 NTM
0 NTM

1 NTM
0 NTM

1

Error (%) Error (%) Error (%) Error (%) Error (%) Error (%)

λ0/20 −0.0129 −0.0813 0.0536 0.1945 0.0054 −0.0232

λ0/40 −0.0033 −0.0201 0.0297 0.1134 0.0014 −0.0048

λ0/60 −0.0014 −0.0082 0.0200 0.0804 0.0006 −0.0019

λ0/80 −0.0008 −0.0045 0.0153 0.0613 0.0003 −0.0008

λ0/100 −0.0005 −0.0027 0.0124 0.0501 0.0002 −0.0003

λ0/120 −0.0003 −0.0017 0.0103 0.0424 0.0002 −0.0001

λ0/150 −0.0002 −0.0009 0.0083 0.0343 0.0001 0.0001

λ0/200 −0.0004 −0.0002 0.0063 0.0260 0.0001 0.0003

λ0/500 0.0000 0.0004 0.0025 0.0109 0.0000 0.0005

λ0/750 0.0000 0.0005 0.0017 0.0075 0.0000 0.0005

λ0/1000 0.0000 0.0005 0.0013 0.0058 0.0000 0.0005
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Figure 23: (a) A 2D Yee’s cell as it applies to the geometry of the slab waveguide for for TE modes. The

point (zi, xj) is represented as (i, j). The location of the boundary is shown with dashed-dotted line. It is

assumed that the grid size along the z direction tends to zero (∆z → 0). For the sake of simplicity the magnetic

fields and the grid lengths are shown as unprimed. (b) Same as (a) but for the case of TM modes.

In order to determine the averaging scheme in this case the procedure developed by Hwang

and Cangellaris [54] will be utilized. For the TE modes, let’s apply the Ampere’s law (in time-

harmonic form) in its integral form, for the area S specified by the cell centered at the Ei,j
y and

the contour C defined by the perimeter of the cell (see Fig. 23a).

jω

∫∫

S

~D · ~dS =

∮

C

~H · ~d` =⇒

jωε0

∫ xj+∆x/2

xj−∆x/2

∫ zi+∆z/2

zi−∆z/2

εr(x)Ey(z, x)dxdz =

∮

C

[Hxdx+Hzdz] =⇒

jωε0

∫ xj+∆x/2

xj−∆x/2

εr(x)E
j
y(x)dx[e

−jk0Nzi∆z] = −
(
Hj+1/2

z −Hj−1/2
z

)
[e−jk0Nzi∆z] −

Hj
x[−jk0N∆ze−jk0Nzi ]∆x =⇒

jωε0

∫ xj+∆x/2

xj−∆x/2

εr(x)E
j
y(x)dx = −

(
Hj+1/2

z −Hj−1/2
z

)
−Hj

x[−jk0N ]∆x =⇒

jωε0 [Fε1 + (1 − F )ε2]E
j
y∆x = −

(
Hj+1/2

z −Hj−1/2
z

)
−Hj

x[−jk0N ]∆x =⇒

[Fε1 + (1 − F )ε2]E
j
y = εjr,effE

j
y = −H

′
z
j+1/2 −H ′

z
j−1/2

∆x′
− jNH ′

x
j
, (148)

where the last equation is the same with Eq. (130) with ej
r replaced by εjr,eff . In the above

derivation of the RHS integral with respect to x variable the continuity of the Ey (tangential
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to the boundary) component was used. Therefore, in this arbitrary location of the permittivity

discontinuity boundary the corresponding averaging is expressed by the following equation

[which is the generalized form Eq. (136)],

εjr,eff = [Fε1 + (1 − F )ε2] = εjr =
[
Fεj−1

r + (1 − F )εj+1
r

]
. (149)

The above equation reduces to the Eq. (136) in the case that the boundary passes from the Ei,j
y

node since in this case F = 1/2. Since the materials are non-magnetic no averaging is needed

for the other equations since the relative permeability is everywhere unity.

Now let’s examine the case of the TM modes. Again the Ampere’s law (in time-harmonic

form) will be used. Assume the cell that is centered at the point of E
i−1/2,j
x and is perpendicular

to the xz-plane and apply again the Ampere’s law as it was done previously. The following can

be easily shown (where in this case S the area of the cell of size ∆z×Ly with Ly a unit length

in the y direction and C its perimeter)

jω

∫∫

S

~D · ~dS =

∮

C

~H · ~d` =⇒

jω

∫

Ly

∫ zi+∆z/2

zi−∆z/2

εr(x)Ex(x, z)dydz =

∮

C

Hydy =⇒

jωε0

∫ zi+∆z/2

zi−∆z/2

εr(x)Ex(x)e
−jk0NzdzLy =

(
Hi−1,j

y −Hi,j
y

)
Ly = Hj

ye
−jk0Nzijk0N∆zLy =⇒

jωε0εr(x)Ex(x)

(
e−jk0Nz

−jk0N

)∣
∣
∣
∣

zi+∆z/2

zi−∆z/2

= Hj
ye

−jk0Nzijk0N∆z =⇒

jωε0εr(x)Ex(x) = jk0NH
j
y =⇒

εr(x)Ex(x) = jNH ′
y
j
. (150)

The last equation is similar to Eq. (140). However, due to the existence of the permittivity

boundary there is some ambiguity in the selection of the term εr(x)Ex(x). For example the

surface S in Ampere’s law can be any surface that ends up on the contour C . Therefore x

could be selected anywhere in the cell. For this reason it is reasonable to assume that since Dx

is continuous at the permittivity boundary to take an average value of Ex(x) and an effective

relative permittivity term. The weighted average of the the electric field at the center of this
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cell is

Ej
x = FEx(x

−
b ) + (1 − F )Ex(x

+
b ) = Dj

x

[
F

εr1
+

1 − F

εr2

]

=
Dj

x

εjr,eff

where

εr,eff =

[
F

εr1
+

1 − F

εr2

]−1

= εjrxx, (151)

and xb is the position of the permittivity discontinuity boundary while Dj
x is the approximately

constant electric flux density within the cell used. The same result can be obtained if the cell

centered at Hi,j
y is used and the Faraday’s law is used with S the area of the cell (∆x×∆z) and

contour C the perimeter of the cell. The above defined effective permittivity is the generalization

of the average permittivity defined in Eq. (147). Of course these two expressions coincide in

the case of the permittivity boundary passing through the Hi,j
y node (F = 1/2).

In the TM modes case there is a need to apply the Ampere’s law to another cell to generate

the equivalent of Eq. (141). In this case the cell centered at E
i,j−1/2
z is utilized with its area

being perpendicular to xz plane and its dimensions of ∆x× Ly.

jω

∫∫

S

~D · ~dS =

∮

C

~H · ~d` =⇒

jω

∫

Ly

∫ xj

xj−∆x

εr(x)Ez(x, z)dydx =

∮

C

Hydy =⇒

jωε0

∫ xj

xj−∆x

εr(x)Ez(x)e
−jk0NzdxLy =

(
Hi,j

y −Hi,j−1
y

)
Ly =

(
Hj

y −Hj−1
y

)
e−jk0NziLy =⇒

jωε0

∫ xj

xj−∆x

εr(x)Ez(x)dx =
(
Hj

y −Hj−1
y

)
=⇒

jωε0 [F1εr1 + (1 − F1)εr2]E
j−1/2
z ∆x =

(
Hj

y −Hj−1
y

)
=⇒

[F1εr1 + (1 − F1)εr2]E
j−1/2
z = εj−1/2

rzz Ej−1/2
z =

H ′
y
j −H ′

y
j−1

∆x′
, where

εr,eff = F1εr1 + (1 − F1)εr2 = εj−1/2
rzz , (152)

where the term F1 = F + 1/2 (if F ≤ 1/2). In the case that F > 1/2 then the cell which is

centered on E
i,j+1/2
z is affected. Summarizing the new effective permittivity term to be used in

Eq. (141) is given by

εr,eff =







F1εr1 + (1 − F1)εr2 = ε
j−1/2
rzz , F1 = F + 1/2, for F ≤ 1/2,

F2εr1 + (1 − F2)εr2 = ε
j+1/2
rzz , F2 = F − 1/2, for F > 1/2.

(153)
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In the case that the permittivity boundary passes through the Hi,j
y node (F = 1/2) then

εr,eff = εr1 as it was used in the previous section. I.e., in this case the relative permittivity of

Eq. (141) does not require any averaging.

When a single film layer slab waveguide is analyzed, there is always possible to select ∆x

in such a manner as to force either electric field nodes (for TE modes) or magnetic field nodes

(for TM modes) to be located exactly on the two permittivity discontinuities boundaries. This

simplifies significantly the averaging scheme which is as the one presented in the previous

section. However, when there are more film layers, in general it is not possible to have field

nodes located at all permittivity boundaries. As a comment, it can be stated, that a similar

procedure could be used in the case that magnetic materials are used. In the latter case similar

appropriate average relative permeabilities can be defined.
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13. Graded-Index Slab Waveguides

As it was mentioned earlier, waveguide fabrication techniques such as metal-in-diffusion, ion

bombardment, or ion migration result in waveguides with graded variation of the refractive

index instead of the step-index profile that was studied up to this point. An example graded-

index waveguide is shown in Fig. 24. A more general refractive index profile of a graded-index

waveguide is shown in Fig. 25. Starting from the left-hand side, there is the cover region of

refractive index nc, then there is the substrate top region that is affected by the fabrication

process, of refractive index ns(x), and finally, deep into the substrate (i.e. for large enough values

of x), is the unaffected from the fabrication process part of the substrate with refractive index

ns. After, analyzing multi-layered slab waveguides any resulting graded index profile could

potentially be approximated by a stair-step approximation and could be analyzed according to

the theory developed in Sec. 11. However, in this section a short summary of an approximate

technique will be presented, even if its utility at the present day computer era is questionable.

The method has the initials WKB (from the initials of the researchers who first proposed it,

Wentzel, Kramers, and Brillouin) and was originated in the area of quantum mechanics.

ù

ú
û

ü ý ù þ

ù

ü ý ù þ

Figure 24: An example graded-index slab waveguide with an exponential-like refractive index profile. The

dimension along the y-axis is much larger than the dimension alon the x-axis so the light confinement is along

the x direction and its propagation along the z direction.

Before presenting the basics of WKB method it is useful to start from the Maxwell’s equa-

tions once more but now assuming that ε = ε(x) for the graded-index waveguide. Assuming

that the materials are linear, nonmagnetic, and isotropic, the Helmholtz’s equation is written
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Figure 25: An example refractive index profile of a graded-index waveguide. For a mode of effective index

Neff the turning points xA and xB are shown. For a mode of effective index N ′

eff < n(x = x′

A) the turning

points are x′

A (which is at the cover/graded-index-layer boundary) and x′

B could vary within the graded-index

region.

as

~∇
(

~∇ · ~E
)

−∇2 ~E = k2
0n

2(x) ~E. (154)

In order to simplify the solution it is now assumed that TE polarized solutions are sought.

Therefore, ~E = ŷEy(x) exp(−jβz). The y polarized electric field is perpedicular to the gradient

of the relative permittivity variation, i.e. ~∇n2 · ~E = 0. Using the Gauss’s law ~∇ · ~D = 0 ⇒
~∇n2 · ~E + n2~∇ · ~E = 0 ⇒ ~∇ · ~E = 0. Consequently the divergence of the electric field is zero,

and the previous Helmholtz’s equation simplifies to the form

d2Ey

dx2
+

[
k2

0n
2(x) − β2

]
Ey(x) = 0. (155)

The last equation is a second-order ordinary differential equation with varying coefficients.

Usually, there are only very specific relative permittivity, n2(x), profiles for which analytical

solutions are feasible. For example analytical solutions can be found in the case of parabolic,

linear, and exponential profile [44]. In general, though there are no analytical solutions of this

equation. As it was mentioned earlier, one approximate approach is the WKB method. In this
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method a trial solution for Ey is selected of the form ψ = ψ0 exp[jk0S(x)]. Expanding S(x) in

the form

S(x) = S0(x) +
1

k0

S1(x) +
1

k2
0

S2(x) + · · · , (156)

results in a trial solution of the form

ψ(x) = ψ0 exp

[

jk0S0(x) + jS1(x) + j
1

k0
S2(x) + · · ·

]

, (157)

where all higher order terms can be neglected since k0 is a large number for optical frequencies.

Using the previous trial solution in Helmholtz’s equation, and retaining terms of the same order

in k0, the S0 and S1 terms are given by

S0(x) =
1

k0

∫
[
k2

0n
2(x) − β2

]1/2
dx, (158)

S1(x) =
j

2
ln

∣
∣
∣
∣

dS0

dx

∣
∣
∣
∣
, (159)

and the resulting trial solution ψ(x) has the form

Ey(x) = ψ(x) =







ψ0√
Q

exp

[

±j
∫

Qdx

]

, if [k2
0n

2(x) − β2] = Q2 > 0,

ψ0√
P

exp

[

±
∫

Pdx

]

, if [k2
0n

2(x) − β2] = −P 2 < 0.

(160)

The above solutions for the example case shown in Fig. 25 take the form [44]

Ey(x) = ψ(x) =







ψ0

2[β2 − k2
0n

2(x)]1/4
exp

[

−
∫ xA

x

[β2 − k2
0n

2(x′)]1/2dx′
]

, x < xA,

ψ0

[k2
0n

2(x)− β2]1/4
cos

[∫ x

xA

[k2
0n

2(x′) − β2]1/2dx′ − π

4

]

, xA < x < xB,

ψ0

2[β2 − k2
0n

2(x)]1/4
exp

[

−
∫ x

xB

[β2 − k2
0n

2(x′)]1/2dx′
]

, x > xB,

(161)

where the solution between the turning points is propagating and elsewhere is evanescent. The

above solution diverges when x = xA or x = xB, i.e. at the turning points. Therefore, the

above solutions are valid somewhat away from the turning points. Near the turning points

special connections formulas are necessary (see Ref. [1]) in order to describe the electric field.

However, further details of the WKB will not be pursued here. The interested reader can refer

to Refs. [1] and [44]. Instead, a simple approach developed in Ref. [45] will be presented. By
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Figure 26: A picture diagram inside a graded-index waveguide for a guided mode. The turning points at

xA and xB are shown. In addition, between x and x + dx a wavevector ~k(x) is shown where |~k(x)| = k0n(x) as

an approximation.

doing so a dispersion equation for the determination of the propagation constant β can be easily

developed.

Using the ray diagram shown in Fig. 26 it can be assumed that locally, between x and x+dx

the ray “sees” a constant refractive index of n(x). Consequently, the plane wave solution can

be used for the ray between x and x+ dx. This means that the local wavevector ~k(x) satisfies

locally the dispersion for a plane wave. Therefore,

k2
x(x) + β2 = k2

0n
2(x) = |~k(x)|2. (162)

Defining again β = k0N , whereN = Neff is the effective index of the resulting guided mode, and

using the angle θ(x) as defined in Fig. 26, it can be easily shown that θ(x) = cos−1[N/n(x)].

Of course θ(x) takes real values when n(x) > N = Neff as it can be seen in Fig. 26 when

xA < x < xB. However, when x < xA or x > xB, θ(x) takes purely imaginary values. At the

turning points θ(xA) = θ(xB) = 0, thus the ray becomes parallel to the z axis at the turning

points. For a given value of the effective index, the turning points can be evaluated by inverse

solution of the equation n(x) = N ⇒ xw = n−1(N) (w = A or B) and n−1(N) specifies the

inverse function. Using the analogous of Eq. (4) for this case, the following dispersion condition
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can be written

−2

∫ xB

xA

kx(x)dx+ φA + φB = 2νπ, ν = 0,±1,±2, · · · , (163)

where φA and φB are the phase shifts occurring at the turning points xA and xB, respectively.

These phase shifts can be determined by the use of Fresnel reflection coefficient in the limiting

case between xA − ∆x < x < xA + ∆x (and similarly for xB) where ∆x (∆x > 0) is a small

variation around xA (or xB). Using the TE polarization Fresnel coefficient for the ray going

from xA + ∆x to xA − ∆x (as seen in Fig. 26) the following can be written

r =
kx(xA + ∆x)− kx(xA −∆x)

kx(xA + ∆x) + kx(xA − ∆x)
=

1 − kx(xA − ∆x)

kx(xA + ∆x)

1 +
kx(xA −∆x)

kx(xA + ∆x)

, (164)

and using Eq. (162)

r =

1 − [n2(xA − ∆x) −N2]1/2

[n2(xA + ∆x)−N2]1/2

1 +
[n2(xA − ∆x)−N2]1/2

[n2(xA + ∆x) −N2]1/2

. (165)

At this point, it is necessary to use a Taylor series expansion for the square of the refractive

index and retain up to first-order terms. This results in the following approximations:

n2(xA − ∆x) ' n2(xA) − dn

dx
∆x = N2 − dn

dx
∆x, (166)

n2(xA + ∆x) ' n2(xA) +
dn

dx
∆x = N2 +

dn

dx
∆x. (167)

Using the previous approximations the reflection coefficient becomes

r =

1 −
{

[n2(xA − ∆x)−N2]

[n2(xA + ∆x) −N2]

}1/2

1 +

{
[n2(xA − ∆x) −N2]

[n2(xA + ∆x)−N2]

}1/2
'

1 −
{−(dn/dx)∆x

+(dn/dx)∆x

}1/2

1 +

{−(dn/dx)∆x

+(dn/dx)∆x

}1/2
=

=
1 − j

1 + j
= 1exp

(

−j π
2

)

= 1exp(jφA). (168)

Therefore, the resulting phase shift φA = −π/2. Similarly, the phase shift at turnig point xB is

also φB = −π/2. Replacing the two phase factors in Eq. (163) the dispersion equation for the

determination of the effective index for a graded index slab waveguide becomes

k0

∫ xB=n−1(N)

xA=n−1(N)

√

(n2(x′) −N2) dx′ =

(

ν +
1

2

)

π, ν = 0, 1, 2, · · · . (169)
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In the latter dispersion equation the unknown effective index N is inside the integrand as well

as in the integration limits. Of course the above equation can be solved only numerically. The

solution provides the effective index of the mode while the field profile can be approximated by

Eqs. (161) (relatively away though from the turning points).

Example 1: The first example case is comprised of a graded index slab waveguide with a

relative permittivity profile of the form

n2(x) = εs + ∆ε exp

[

−(x− x0)
2

w2
0

]

, (170)

where it is assumed that the variation is inside the substrate. For εs = 4.80, ∆ε = 0.045,

x0 = 8µm, w0 = 2µm, and λ0 = 0.6328µm, the relative permittivity variation is shown in

Fig. 27 along with a stair-step approximation by 50 layers (in the interval between x0 − 4w0 <

x < x0 + 4w0). The effective indices were determined with three methods: (a) using the multi-

layered waveguide analysis with the stair-step approximation of the profile (comprised of 50 film

layers), (b) using the finite-difference frequency-domain (FDFD) method (presented in Sec. 12),

and (c) the WKB method, i.e. the numerical solution of Eq. (169).
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Figure 27: An example graded index waveguide profile of the form n2(x) = εs +∆ε exp[−(x−x0)
2/w2

0
]. The

parameters are εs = 4.80, ∆ε = 0.045, x0 = 8µm, w0 = 2µm, and λ0 = 0.6328µm. A stair-step approximation

of the graded index profile is also shown for 50 layers of equal thickness of h = 8w0/50.

The effective indices are shown tabulated in Table 4. It can be seen that the effective indices

agree very well for all methods. The multi-layered waveguide analysis determines the solution
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Table 4: Effective Indices of Example # 1 Graded Index Waveguide

Multilayered Waveguide Finite Finite

Approximation Difference Difference WKB

TEν Number of Layers = 50 ∆x = 0.05µm ∆x = 0.025µm Approximation

Nν Nν Nν Nν

TE0 2.198894532 2.198926188 2.198925969 2.198818399

TE1 2.195047282 2.194992344 2.194991579 2.194884443

TE2 2.192239107 2.192152744 2.192151661 2.192051926

TE3 2.190896246 Not Found Not Found Not Found

TE3 which both the FDFD and the WKB methods fail to determine. For the FDFD analysis this

is due to the relatively small computational window that is used. Since TE3 is near cutoff the

evanescent tails extend well beyond the area shown in Fig. 27 and larger computational window

could be needed for the determination of this mode. The WKB approximation fails to determine

this mode since it is near cutoff and the corresponding approximations may not hold or it could

be just a numerical issue. Furthermore, the TE3 mode found by the multilayered approximation

of the graded-index profile could be a product of this discretization. The normalized electric field

profiles of the calculated TEν modes are shown in Fig. 28 when the multi-layered slab waveguide

theory is used in conjunction with the stair-step approximation of the graded refractive index

profile. Similar graphs are shown in Fig. 29 when the FDFD method is used.

Example 2: In this example the graded relative permittivity profile has the following form

n2(x) =







εs + ∆ε exp

[

− x2

w2
0

]

, if x > 0,

n2
c , if x < 0.

(171)

For εs = 4.80, ∆ε = 0.045, w0 = 4µm, and λ0 = 0.6328µm, and nc = 1.0, the relative

permittivity variation is shown in Fig. 30 along with a stair-step approximation by 40 layers (in

the interval between 0 < x < 5w0) and it is shown in Fig. 30. Again, the effective indices are

determined with three methods: (a) the multi-layered waveguide analysis with the stair-step

approximation of the profile (40 film layers), (b) using the finite-difference frequency-domain

(FDFD) method (presented in Sec. 12), and (c) the WKB method. However, for the WKB

method, some special care has to be taken since the turning point xA falls always at the cover-

67



−5 0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Distance x (µm)

N
o

rm
a
li
z
e
d

 E
y

TE
0
 (N

0

TE
 = 2.198894)

−5 0 5 10 15 20 25
−1

−0.5

0

0.5

1

Distance x (µm)

N
o

rm
a
li
z
e
d

 E
y

TE
1
 (N

1

TE
 = 2.195047)

−5 0 5 10 15 20 25
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Distance x (µm)

N
o

rm
a
li
z
e
d

 E
y

TE
2
 (N

2

TE
 = 2.192239)

−5 0 5 10 15 20 25
−1

−0.5

0

0.5

1

Distance x (µm)

N
o

rm
a
li
z
e
d

 E
y

TE
3
 (N

3

TE
 = 2.190896)

Figure 28: Normalized electric field profiles of TE0, TE1, TE2, and TE3 modes for the example # 1 graded-

index slab waveguide. The profile was calculated using the multi-layered slab waveguide theory. The vertical

dashed lines show the cover-first film layer boundary (left dashed line at x = 0) and the boundary between

the last film layer and substrate region (right dashed line). The boundaries between the film layers due to the

stair-step approximation are not shown for simplicity of the figure.

substrate boundary and this means that the phase term φA should be given by the standard

term expressing the phase shift upon total internal reflection between the graded index layer

near the edge and the cover index layer. Therefore Eq. (169) has to be modified as

k0

∫ xB=n−1(N)

xA=0

√

(n2(x′) −N2) dx′−tan−1

{[
N2 − n2(x = 0−)

n2(x = 0+) −N2

]1/2
}

−π
4

= νπ, ν = 0, 1, 2, · · · .

(172)

or equivalently

k0

∫ xB=n−1(N)

xA=0

√

(n2(x′) −N2) dx′−tan−1

{[
N2 − n2

c

εs + ∆ε−N2

]1/2
}

−π
4

= νπ, ν = 0, 1, 2, · · · .

(173)

The effective indices are shown tabulated in Table 5. It can be seen that the effective

indices agree very well for all methods. The normalized electric field profiles of the calculated
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Figure 29: Normalized electric field profiles of TE0, TE1, and TE2 modes for the example # 1 graded-index

slab waveguide. The profile was calculated using the FDFD method with ∆x = 0.025µm.
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Figure 30: Another example of a graded index waveguide profile of the form n2(x) = εs + ∆ε exp[−x2/w2
0]

for x > 0, n2(x) = n2
c for x < 0 and . The parameters are εs = 4.80, ∆ε = 0.045, nc = 1.0, w0 = 4µm,

and λ0 = 0.6328µm. A stair-step approximation of the graded index profile is also shown for 40 layers of

equal thickness of h = 5w0/40. The right plot is a zoomed version of the left in order to show the stair-step

approximation.

TEν modes are shown in Fig. 31 when the multi-layered slab waveguide theory is used in

conjunction with the stair-step approximation of the graded refractive index profile. Similar

graphs are shown in Fig. 32 when the FDFD method is used.
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Table 5: Effective Indices of Example # 2 Graded Index Waveguide

Multilayered Waveguide Finite Finite

Approximation Difference Difference WKB

TEν Number of Layers = 40 ∆x = 0.05µm ∆x = 0.025µm Approximation

Nν Nν Nν Nν

TE0 2.197868744 2.197905044 2.197877837 2.197825988

TE1 2.194253274 2.194235177 2.194204855 2.194152293

TE2 2.191721704 2.191680005 2.191658955 2.191615558
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Figure 31: Normalized electric field profiles of TE0, TE1, and TE2 modes for the example # 2 graded-index

slab waveguide. The profile was calculated using the multi-layered slab waveguide theory (using 40 layers in the

stair-step approximation). The vertical dashed lines show the cover-first film layer boundary (left dashed line at

x = 0) and the boundary between the last film layer and substrate region (right dashed line). The boundaries

between the film layers due to the stair-step approximation are not shown for simplicity of the figure.
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Figure 32: Normalized electric field profiles of TE0, TE1, and TE2 modes for the example # 2 graded-index

slab waveguide. The profile was calculated using the FDFD method with ∆x = 0.025µm.
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14. Lossy, Leaky, and Active Planar Multilayer Waveg-

uides

In this section numerical methods for determining the complex propagation constants and their

corresponding modal characteristics for planar multilayer waveguides are presented. In the

previous lossless waveguides results presented, the real propagation constants were determined

using the bisection method [8]. However, the calculation of the complex propagation constants

that they can respresent lossy, active, or leaky modes, is a lot more complicated. Initially, three

similar globally converging, and robust numerical methods for determining zeros of analytic

functions will be summarized. Then these methods are applied to the case of the planar multi-

layer waveguides. The three numerical mathematical methods are (a) the Argument Principal

Method (APM) [10], (b) the Abd-ellal, Delves, and Reid (ADR) method [34, 36, 37], and the

winding-number based on the analytic function’s phase method [35]. In all cases the methods

find good estimates of the function’s zeros which are subsequently refined using the Müller’s

iterative method [9] with deflation [8].

14.1 Basic Theory of the Principle Argument Method (APM)

The application of the argument principle method for the determination of the modes of planar

multilayer waveguides was first published by Smith et al. [14,15] and Anemogiannis and Glytsis

[16]. The argument principle method (APM) [10] relies on the generalized argument principle

theorem from complex analysis. This theorem relates the number of zeros of an analytic function

to a contour integral, and it has the form [21]

σk =
1

j2π

∮

C

zk f ′(z)

f(z)
dz =

Nz∑

i=1

ζk
i , (174)

where f(z) is an analytic function inside and on the simple closed contour C (Fig. 33a) and

on which no zeros are located. In addition, ζk
i are the i = 1, · · · , Nz zeros of f(z) inside C

raised to the k-th power. The quantity σk is their summation and f ′(z) denotes the derivative

of f(z) with respect to z. For the case that f ′(z) is not analytically given, it can be calculated

numerically via the Cauchy’s theorem [21], according to which the first derivative of a function

f(z) at the point z = z0, f
′(z0) is given by

f ′(z0) =
1

j2π

∮

D

f(z)

(z − z0)2
dz , (175)
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where D is any simple path which encloses the point z0 and f(z) is analytic inside and on D.

The path integral of Eq. (174) evaluated for k = 0 gives the number of zeros of f(z) enclosed

by contour C . Also for k = 1, · · · , Nz, the same integral produces the summations σ1, · · · , σn

which can be used to evaluate the coefficients of a polynomial S(z) of degree n, which has the

same roots, ζ1, · · · , ζNz , as the function f(z) inside C . The approximation polynomial, S(z),

can be written as

S(z) =
Nz∑

`=0

c` z
` , (176)

with cNz = 1. The coefficients ck are given via the Newton recursive formulas [55, 56]

(Nz − `) c` + σ1c`+1 + σ2c`+2 + · · · + σNz−`cNz = 0 for ` = Nz − 1, · · · , 0 . (177)

The polynomial, S(z), can be solved by well known techniques [55], which in general are more

efficient and accurate for low–degree polynomials. Therefore the maximum number of zeros

enclosed by C must be low, i.e., Nz ≤ 4, as proposed in [10, 21, 57]. Following the above

procedure, the initial difficult problem of finding the zeros of an arbitrary function, f(z), [or

the poles of f−1(z)], is transformed to the problem of finding the zeros of the polynomial, S(z),

for which a variety of reliable numerical methods exist. By suitably dividing the region where

the zeros, ζi, are located and using Eq. (174) with k = 0, the degree of S(z) can be set such

that the polynomial root-solver can be more effective.

In practice, the zeros of the polynomial S(z), ζ ′i, do not coincide with the zeros, ζi, of the

initial function f(z), due to errors introduced by the numerical evaluation of integrals of Eqs.

(174) and (175). For this reason, a further refinement must be done on the roots of S(z),

applying a zero-finding numerical method [9, 55] with initial conditions ζ ′i.

As an example case the function f(z) = e3z +2z cos z−1, from Ref. [37], is considered. The

derivative of the function is f ′(z) = 3e3z +2cos z− 2z sin z. The contour ABCD is specified in

Ref. [37] by the A, B, C , and D (see Fig. 33b caption). In order to determine the zeros of f(z)

inside the domain enclosed by ABCD the APM method is applied. Using Eq. (174) for k = 0

the number of zeros is determined to be σ0 = Nz = 6. Then the terms σk (k = 1, 2, · · ·Nz)

are calculated from Eq. (174) and are shown in Table 6. The zero estimates and the refined

by Müller’s method zeros are shown in Table 7. It is observed that the zero estimates and the

refined zeros are practically identical which means that the integrations were very accurately

performed. Furthemore, it can be observed that the σk coefficients increase in magnitude as k
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increases. Therefore, as it was mentioned previously, it is safer to apply the method in regions

that contain Nz ≤ 4 roots. In the case that Nz > 4 the initial contour can be subdivided into

smaller contours that each one contains smaller than 4 roots.

Table 6: APM σk’s of function f(z) = e3z + 2z cos z − 1 from Ref. [37].

k σk Coefficients

0 6.0000000000000 − j0.000000000000000

1 2.0467702626400 − j0.000000000000000

2 − 14.1574340854587 − j0.000000000000001

3 − 84.7999601511681 − j0.000000000000007

4 − 30.4653454987963 + j0.000000000000006

5 696.0895474735294 − j0.000000000000028

6 2527.5240087190520 + j0.000000000000123

Table 7: APM zeros estimates and refined zeros of function f(z) = e3z + 2z cos z − 1 from Ref. [37].

APM Zeros Estimates Zeros after Müller’s Refinement

−1.844233953262218 − j0.000000000000002 −1.844233953262213 + j0.000000000000000

0.000000000000019 + j0.000000000000007 0.000000000000000 − j0.000000000000000

0.530894930292922 − j1.331791876751122 0.530894930292931 − j1.331791876751121

0.530894930292921 + j1.331791876751117 0.530894930292931 + j1.331791876751121

1.414607177658184 − j3.047722062627170 1.414607177658184 − j3.047722062627173

1.414607177658189 + j3.047722062627174 1.414607177658184 + j3.047722062627173

14.2 Basic Theory of the Abd-ellal, Delves, and Reid (ADR) Method

The algorithm summarized here extracts the zeros of a complex function, f(z), without using

knowledge of the function’s derivative. The algorithm used in [10], is rather complicated since

it uses the multivalued log[f(z)] function. Another algorithm which was first presented by

Abd-ellal, Delves, and Reid, (ADR method) [34], can be applied to meromorphic functions,

i.e., complex functions that are analytic in the region enclosed by a closed contour C , except at

a finite number of points (poles) inside C . The authors in [34] describe four different algorithms

which extract both poles and zeros of a meromorphic function in a complex region, and apply

their algorithms inside the unit circle on well behaved (polynomial) functions.
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Here, the Abd-ellal et al. [34] results are adopted in order to be used for the eigenvalue

dispersion equations of optical, microwave, and semiconductor structures. In the case that the

function f(z) has Nz zeros inside the complex contour C , a polynomial can be constructed

having the same zeros as f(z). The polynomial has the form

PNz(z) = c0 + c1z + c2z
2 + · · · + cNz−1z

Nz−1 + zNz , (178)

and its coefficients, ci, (i = 0, · · · , Nz − 1), are obtained after solving the system of linear

equations [34].

Nz−1∑

j=0

cj Gr+j +Gr+Nz = 0, for r = 0, 1, 2, · · · , (Nz − 1). (179)

The Gk quantities are given as

Gk =
1

j2π

∮

C

zk

f(z)
dz , for k = 0, 1, 2, · · · , (2Nz − 1). (180)

The number of zeros Nz inside the domain enclosed by contour C (see Fig. 33a) is critical

in the above process and can be determined according to the argument principle theorem [21]

(including possible multiplicities) [35] by

Nz =
1

j2π

∮
f ′(z)

f(z)
dz =

1

j2π
∆C {ln [f(z)]} =

1

2π
∆C {arg [f(z)]} , (181)

where f ′(z) is the first derivative of f(z) and the contour C is traveled counterclockwise.

Therefore, knowing Nz from Eq. (185), the coefficients Gk (k = 0, 1, 2, · · · , 2Nz − 1) can be

calculated from Eq. (180), and then the polynomial coefficients cj (j = 0, 1, 2, · · · , Nz−1 can be

evaluated from the solution of Eq. (179). Finally, the roots of the polynomial of Eq. (178) can

be used as estimates in the Müller’s iterative procedure for the final refinement of the function’s

zeros.

An alternative method for finding the zeros estimates has been proposed by Kravanja et

al. [36] and Gillan et al. [37]. Their approach calculates the Gk coefficients as they are defined
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in Eq. (180). Then the following matrices can be defined:

H< =








G1 G2 G3 . . . GNz

G2 G3 G4 . . .
...

...
...

...
. . .

...
GNz . . . . . . . . . G2Nz








(182)

H =








G0 G1 G2 . . . GNz−1

G1 G2 G3 . . .
...

...
...

...
. . .

...
GNz−1 . . . . . . . . . G2Nz−2








(183)

The zeros of the f(z) function can be calculated by the following generalized eigenvalue problem,

(
H< − ζ ′H

)
V = 0, (184)

where ζ ′ correspond to the ζ ′1, · · · , ζ ′Nz
are the estimates of the zeros of the function, and V are

the corresponding wavefunctions of the generalized eigenvalue problem (that are not utilized

and therefore are computed).

As an example case, again the function f(z) = e3z +2z cos z−1 from Ref. [37], is considered.

The contour ABCD is specified in Ref. [37] by the A, B, C , and D (see Fig. 33b caption).

In order to determine the number of zeros of f(z) inside the domain enclosed by ABCD the

ADR method is applied. Using Eq. (185) the number of zeros is determined to be Nz = 6.

Then the coefficients Gk (k = 0, 1, · · · , 2× 6− 1) are given in Table 8. The corresponding zero

estimates, ζ ′i as solutions of the generalized eigenvalue problem [Eq. (184)] along with the final

refined by Müller’s method are shown in Table 9. It is observed that the estimates are identical

to the refined roots and they agree perfectly with the ones specified in Ref. [37]. Also it can

be observed that the Gk coefficients increase in magnitude as k increases. Therefore, it is safer

to apply the method in regions that contain Nz ≤ 4 roots. In the case that Nz > 4 the initial

contour can be subdivided into smaller contours that each one contains smaller than 4 roots as

it was proposed for APM in Sec. 14.1.

14.3 Basic Theory of the Derivative-Free Zero-Extraction by Phase-
based Enclosure Method (DFZEPE)

The idea of the zero extraction by phase-based enclosure is based on the Ying and Katz [35]

winding number evaluation of an analytic function. Assume a function f(z) (where z = x+ jy)
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Table 8: ADR Gk’s of function f(z) = e3z + 2z cos z − 1 from Ref. [37].

k Gk Coefficients

0 − 0.07519739 − j0.00000000

1 0.27503184 + j0.00000000

2 − 0.90593139 − j0.00000000

3 2.07560724 + j0.00000000

4 − 2.01447904 + j0.00000000

5 2.44932797 + j0.00000000

6 − 22.63060397 + j0.00000000

7 14.84101715 + j0.00000000

8 99.50440329 + j0.00000000

9 456.78080464 − j1.832 × 10−13

10 − 483.81132715 − j9.047 × 10−14

11 −5297.84498932 − j2.099 × 10−12

Table 9: ADR zeros estimates and refined zeros of function f(z) = e3z + 2z cos z − 1 from Ref. [37].

ADR Zeros Estimates Zeros after Müller’s Refinement

−1.844233953262213 − j0.000000000000000 −1.844233953262213 + j0.000000000000000

−0.000000000000017 − j0.000000000000032 0.000000000000000 − j0.000000000000000

0.530894930292934 − j1.331791876751112 0.530894930292930 − j1.331791876751121

0.530894930292934 + j1.331791876751058 0.530894930292931 + j1.331791876751121

1.414607177658188 − j3.047722062627168 1.414607177658184 − j3.047722062627173

1.414607177658189 + j3.047722062627171 1.414607177658184 + j3.047722062627173
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which is analytic in a bounded domain enclosed by the rectangular contour C (defined by

ABCD) shown in Fig. 33a. According to the argument principle theorem [21] the number of

zeros (including possible multiplicities), Nz, of function f(z) within the domain in the interior

of contour C is given as [35]

Nz =
1

j2π

∮
f ′(z)

f(z)
dz =

1

j2π
∆C {ln [f(z)]} =

1

2π
∆C {arg [f(z)]} , (185)

where f ′(z) is the first derivative of f(z) and the contour C is traveled counterclockwise. The

range of the argument function “arg” is in the interval (−π,+π]. For a straight section defined

by [zi, zi+1] (along the contour C) that satisfies |∆[zi,zi+1]arg[f(z)]| ≤ π the phase accumulation

is Φt|zi+1

zi = arg[f(zi+1)/f(zi)]. Therefore, the total length of the contour C can be decomposed

into linear segments satisfying the previous condition, by 4M points (M points per side of the

rectangle) such as C = ∪4M
i=1[zi, zi+1] (i = 1, 2, · · · , 4M with z1 = z4M+1). Then, Nz can be

expressed in the form [35]

Nz =
1

2π

4M∑

i=1

arg

[
f(zi+1)

f(zi)

]

=
1

2π
Φt, (186)

where Φt is the total accumulated phase along the closed contour ABCD.

The last equation, Eq. (186), is the heart of the Derivative-Free Zero-Extraction by Phase-

based Enclosure (DFZEPE) method. Assume that the size of the sub-rectangle that approxi-

mates each zero of the function in the complex plane has pre-selected dimensions wx × wy as

shown in Fig. 33a where wx � Lx = x2−x1 and wy � Ly = y2−y1. The wx and wy specify the

zeros-enclosing sub-rectangles maximum dimensions and are directly related to the accuracy

of the estimation of the function’s f(z) zeros. For well separated zeros wx and wy could be of

the order of 10−1Lx and 10−1Ly, respectively. For closely located zeros wx and wy could be

of the order of 10−6Lx and 10−6Ly or even smaller. However, it is not necessary to isolate all

roots since the Müller’s algorithm which employs deflation can detect them inside the wx ×wy

enclosing rectangle in most cases. In general though for close-spaced roots, isolation of the

roots is more reliable. Of course in the isolated roots the deflation procedure is unnecessary.

The DFZEPE algorithm is summarized in the following steps:

• Define the number of points M per segment of each rectangle or sub-rectangle for the use

of Eq. (186). This number could vary from 50-200 for functions f(z) with well-separated
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Figure 33: (a) A rectangular bounded domain in the complex plane (z = x + jy). The rectangular

contour ABCD encloses the domain where the function f(z) is analytic. The “×” correspond to
zeros (roots) of f(z) in this domain. The DFZEPE procedure encloses each root of the function by

successively shrinking sub-rectangles. The sub-rectangles of dimensions ≤ wx, wy correspond to the
final sub-rectangles that enclose each of the zeros. (b) An example case for f(z) = e3z + 2z cos z − 1

(from Ref. [37]) where the final sub-rectangles are shown for various selections of wx and wy for
visualization of the DFZEPE process. The “×” correspond to the positions of the zeros as specified in

Ref. [37]. The realistic values of wx and wy that where used for this example were wx = wy = 0.0025
but in the scale of the figure these small sub-rectangles will show like dots. The A, B, C, and D points

correspond to x1 = −2.2, x2 = 2.5, y1 = −3.5, and y2 = 4.5 as given in Ref. [37].

zeros up to 500-1000 (or even more if root isolation is sought) for functions with very

closely located zeros and/or fast phase variation. This can be done in an adaptive manner.

For example, one could start with M = M0 and then repeat the process for M = 2M0

and M = 3M0. If the results are identical (number and location of roots) then M0 is

sufficient for all phase accumulation computations. However, it’ should be pointed out

that the selection of M is strongly dependent on the selection of wx and wy. Actually,

the latter are more critical for the DFZEPE method since large wx and wy results in

crude two-dimensional bracketing of the roots and this could cause failure of the Müller’s

refinement algorithm (employing deflation which is needed if the roots are not isolated).

• Subdivide the initial rectangle ABCD into four equal sub-rectangles using the horizontal

divider segment H1mG1m = Lx and the vertical divider segment E1mF1m = Ly. Now each
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of the four equal sub-rectangles has dimensions 0.5Lx × 0.5Ly.

• Using Eq. (186) check the number of zeros within each of the newly-formed four sub-

rectangles. Check the value of the function along the sub-rectangles boundaries. In case

that |f(z)| ≤ εF (where εF is related to the computer precision and to the function behav-

ior within the complex domain of interest) move divider H1mG1m slightly to the bottom

of the midpoint in y-direction and/or divider E1mF1m slightly to the left to the midpoint

in the x direction (for each sub-rectangle). In this manner, mitigation of the boundary

proximity or even crossing to a zero is achieved. In the case of dividers movement from

the midpoints, recalculate the number of zeros of each sub-rectangle.

• In case that the number of zeros of a sub-rectangle is zero disregard it.

• If the number of zeros of a sub-rectangle is greater or equal to one continue subdividing

it while width > wx or height > wy where width ' 0.5`Lx and height ' 0.5`Ly denote

the dimensions of the sub-rectangle after ` subdivisions. For example in Fig. 33a two

subdivisions are shown to illustrate the process (see the dividers E2mF2m, H2mG2m, and

E3mF3m which represent the second-level subdivisions (` = 2). Observe that the second

subdivision process occurred only in the sub-rectangles that include zeros inside. Store the

four corners of each sub-rectangle and its Nz if Nz ≥ 1 at the end of this loop and repeat

the process for all stored sub-rectangles while the conditions width > wx or height > wy

hold.

• Use the centers of the converged sub-rectangles that enclose the zeros as the estimates of

the zeros of function f(z).

• Use these zero estimates in the Müller iterative algorithm with deflation [8] to obtain re-

finement of the function’s f(z) zeros. Store the final refined zeros. Since the Müller’s

method requires three initial starting points, if ze is the zero estimate provided by

DFZEPE’s enclosure process, the three initial points are ze and ze ± min{wx, wy}/2.

• End of the algorithm.

As an example case the function f(z) = e3z + 2z cos z − 1 from Ref. [37] is considered.

The contour ABCD is specified in Ref. [37] by the A, B, C , and D (see Fig. 33b caption).
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Figure 34: (a) The phase variation around ABCD, Φ(z) = arg[f(z)], for the function f(z) =
e3z +2z cos z−1 (from Ref. [37]) and (b) the total phase accumulation Φt(z) =

∑I
i=1 arg[f(zi+1)/f(zi)]

where I is an index such zI = z and Φt(z1) = 0. The AB, BC, CD, and DA show the phase
accumulation within each segment of the contour C. Obviously, the total accumulated phase is 6×2π

that reveals the existence of 6 zeros (Nz = 6) within the domain enclosed by C.

In order to determine the number of zeros of f(z) inside the domain enclosed by ABCD

the DFZEPE method is applied. The Φ(z) = arg[f(z)] and the accumulated phase Φt(z) =
∑I

i=1 arg[f(zi+1)/f(zi)] where I is an index such zI = z are shown in Fig. 34 for demonstration

purposes. It is obvious that the function f(z) has six zeros in the specified domain. It is also

interesting to mention that the largest phase accumulation occurs on the BC segment of the

contour. For illustration purposes the convergence of the subdivision process is shown Fig.

33b for three different selections of wx = wy = 1, 0.5, and 0.25. It can be observed how the

converged sub-rectangles enclose tigher the zeros of the function as wx and wy become smaller.

In the actual numerical test wx = wy = 0.0025, M = 250, and εF = 10−11 were selected and

the zero estimates along with the Müller’s refinement are shown in Table 10. The agreement

with the results provided by Gillan et el. [37] is perfect for the precision shown in the table.

It is worth mentioning that the number of points per contour segment, M , could be selected

81



Table 10: DFZEPE zeros estimates and refined zeros of function f(z) = e3z + 2z cos z − 1 from
Ref. [37].

DFZEPE Zeros Estimates Zeros after Müller’s Refinement

−1.844165039062500 + j0.000976562500000 −1.844233953262213 + j0.000000000000000

0.000317382812500 + j0.000260416666667 0.000000000000000 − j0.000000000000000

0.531323242187500 − j1.331054687500000 0.530894930292931 − j1.331791876751121

0.531323242187500 + j1.331054687500000 0.530894930292931 + j1.331791876751121

1.415112304687500 − j3.047851562500000 1.414607177658184 − j3.047722062627173

1.415112304687500 + j3.047851562500000 1.414607177658184 + j3.047722062627173

smaller and the wx and wy can be selected larger if it is not required that the mode indices to

be separated by different enclosing sub-rectangles. In such a case the final sub-rectangles could

enclose more than a single mode but the Müller’s algorithm with deflation can successfully

distinguish all the zeros since their number is known. This was tested for modes separated by

∆Neff,r ≤ 10−6 with wx = wy = 10−3 with success in the case of two coupled waveguides that

was reported in Ref. [38]. However, it is always safer to isolate by different enclosing rectangles

each mode (since for the case of multilayer waveguides there are no multiple zeros). Cases

where the final sub-rectangles could enclose more than a single zero could exist in problems

where there are zeros with higher than one multiplicities.

14.4 Application of APM, ADR, and DFZEPE methods to Planar

Multilayer Waveguides

A general planar multilayer waveguide is shown in Fig. 35a. The waveguide is uniform in the y

direction, while the light confinement is in the x direction, and the light propagation is in the z

direction. It is comprised of the cover region (x < 0) of refractive index nc, the substrate region

(x >
∑N

i=1 hi) of refractive index ns, and N film layers of height hi, and refractive index ni

(where i = 1, 2, · · · , N). The refractive indices could be of the form n = nR +jnI where nR > 0

and nI = 0 for lossless layers, nR > 0 and nI < 0 for lossy layers, and nR > 0 and nI > 0

or active layers. Of course this selection of signs is consistent with exp[+j(ωt− kz)] (ω is the

radial frequency and k the corresponding wavenumber) field dependences for modes traveling

in the positive z direction. The freespace wavelength is λ0 and the freespace wavenumber is

k0 = 2π/λ0. The transfer matrix technique [11–13] is used in order to find the dispersion
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equation for the guided modes of this planar waveguide. The resulting dispersion equation is

[Eqs. (105) and (106)]

F (β) = F (k0Neff ) =
γs

as

m22 +
γc

ac

m11 −
γc

ac

γs

as

m12 −m21 = 0, (187)

where ac = as = 1 for TE polarization, and ac = n2
c , as = n2

s for TM polarization and mij

(i, j = 1, 2), γs, γc are defined in Sec. 11. The electric and magnetic field phasors are of the form

A(x) exp(−jβz). The propagation constant β can be in general complex (for lossy or active

waveguides) and can be written in the form β = k0Neff = k0(Neff,r + jNeff,i) where Neff,r is

the real part and Neff,i is the imaginary part of the effective index of a mode, respectively. For

lossy waveguides and for propagation in the positive z direction Neff,r > 0 and Neff,i < 0 while

for active waveguides Neff,r > 0 and Neff,i > 0. Of course, for lossless waveguides, Neff,i = 0

for all guided modes. At the branch-cut points Neff = nc and Neff = ns it is important to

remain in the same Riemann surface when Neff (and correspondingly β) are varying in the

complex plane. This can be accomplished by selecting the sign of γc and γs in such a way in

order to satisfy the conditions Re{γc} > 0 and Re{γs} > 0 (where Re{∗} denotes real part)

that guarantee confinement within the guiding layers.
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Figure 35: (a) The geometry of a general planar multilayer waveguide. The z-axis is the propagation

axis and the x axis is the confinement axis. The i-th layer has a refractive index ni and a height of hi.
The number of layers is N . The substrate and the cover refractive indices are ns and nc, respectively.

(b) Zero search in the complex domain for guided (lossless, lossy, or active) and leaky waveguide
modes.

The case of leaky modes requires a little more attention. The leaky modes are a com-

pact representation of the radiation field of the waveguide [58, 59]. Therefore, even for lossless
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waveguides the leaky modes have complex propagation constants (with Neff,i < 0) that repre-

sent the radiation of the electromagnetic field into the substrate or into the cover or into both

regions. In order to remain in the same Riemann surface when Neff (and β) are varying in

the complex plane, the sign of γc and γs must be selected in such a way in order to satisfy the

conditions [16,20,33]: (a) Re{γc} > 0 and =m{γs} > 0 (where =m{∗} denotes imaginary part)

for confinement in the cover region and radiation into the substrate region; (b) =m{γc} > 0

and =m{γs} > 0 for radiation into both the cover and the substrate regions. These conditions

are such if ns > nc. In the case of nc > ns the roles of γs and γc as well as of substrate and

cover regions in the previous conditions are interchanged.

The modes of the planar multilayer waveguide can be determined by applying either the

APM (Sec. 14.1), the ADR (Sec. 14.2), or the DFZEPE procedure (Sec. 14.3) to the function

of Eq. (187). The contours AgBgCgDg (for guided modes) and A`B`C`D` for leaky modes

are shown in Fig. 35b. The right part of A`B`C`D` domain (E`B`C`F`) contains leaky modes

radiating into the substrate region (assuming ns > nc) but confined in the cover region, while

the left part (A`E`F`D`) contains leaky modes radiating into both the substrate and the cover

regions. The guided modes of lossy waveguides will lay in the bottom part (Neff,i < 0) of the

complex plane while the guided modes of active waveguides could lay either in the top part

(Neff,i > 0) (if they experience gain) or in the bottom part (if they experience loss). Similarly,

the leaky modes will lay on the bottom half (Neff,i < 0) but for the range 0 < Neff,r <

max{nc, ns} = ns (since it is assumed that ns > nc). All these are true for forward mode

propagation (z > 0). The converged sub-rectangles (with exaggerated size) that enclose the

location of the mode effective indices are also shown in Fig. 35b which will be the result of

the DFZEPE subdivision process. The APM and ADR methods do not require any systematic

zero enclosure process since their main result is the coefficients of an approximating polynomial

or the eigenvalues of a generalized eigenvaule problem that involves orthogonal approximating

polynomials, respectively. Then the estimated by the centers of the final sub-rectangles mode

effective indices are inserted into the Müller’s refinement process (with deflation) for the final

determination of the mode complex effective indices. Similarly, the APM and ADR methods use

their approximating zeros as estimates for the Müller’s refinement process. It is true that the

approximating zeros of the APM and ADR methods are usually closer than the approximations

of the DFZEPE method but after the refinement process the final roots (modal propagation
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constants) of all methods are identical. After the effective index of each mode is determined it

is straightforward to calculate all modal field components using the transfer matrix technique

presented in Sec. 11.

Furthermore, the APM method requires the derivative of the function. The derivative could

be calculated numerically using Eq. (175) or can be determined analytically in the case of

multilayer planar waveguides [14, 17]. Defining as before β = k0Neff = k0(Neff,r + jNeff,i) the

function f(β) = F (Neff) in Eq. (187). Then the derivative with repsect to Neff of the function

is given by

dF

dNeff
=

1

as

dγs

dNeff
m22 +

γs

as

dm22

dNeff
+

1

ac

dγc

dNeff
m11 +

γc

ac

dm11

dNeff

− γs

asac

dγc

dNeff
m12 −

γc

asac

dγs

dNeff
m12 −

γcγs

acas

dm12

dNeff
− dm21

dNeff
. (188)

In the above equation the required derivatives are given by

dγc

dNeff
= k2

0

Neff

γc
, (189)

dγs

dNeff
= k2

0

Neff

γs
, (190)

dM̃

dNeff
=

N∑

i=1







dM̃i

dNeff

N∏

j=1
j 6=i

M̃j







(191)

dM̃i

dNeff
= k2

0Neff







hi sin(kxihi)

kxi

aihi cos(kxihi)

k2
xi

− ai sin(kxihi)

k3
xi

−sin(kxihi)

aikxi

− hi

ai

cos(kxihi)
hi sin(kxihi)

kxi






,(192)

where ai = 1 for TE modes and ai = n2
i for TM modes. In the special case that a kxi = 0 the

corresponding M̃i matrix is treated as constant in the previous equations and its derivative is

not needed.

14.5 Results

Only waveguide structures that have been published in the literature will be tested to demon-

strate the effectiveness of the APM, ADR, and DFZEPE methods. All these methods produced

identical results. However, in this section the results were obtained using the DFZEPE method

which is the simplest and does not require either the derivative of the function or any complex

integrations. Specifically, the following cases will tested: (a) A case of a lossless multilayer
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waveguide [11,16,17,38] where both guided and leaky modes will be determined. (b) A case of

a slightly-lossy multilayer waveguide [11, 16, 17, 38] where the guided modes and leaky modes

will be determined. (c) A case of an active waveguide [2, 38] from doped semiconductor ma-

terials where guided modes and sample leaky modes will be determined, and (d) A case of an

ARROW waveguide [17,38] where only leaky modes exist. The results of the DFZEPE method

for the effective modal indices in all cases are identical to the published results within the nu-

merical accuracy that is provided in the literature. Therefore, a deviation from the published

results in terms of a percentage difference is meaningless. All the results were calculated on an

Intel(R) Core(TM) i7-7700, 3.60GHz processor. The computation times varied from 4-20 sec

for most cases. The most time-demanding calculations were for the ARROW waveguide were

the computation times were between 160-400 sec (results of Table 14).

14.5.1. Lossless Dielectric Waveguide

This multilayer lossless waveguide was presented initially in Ref. [11]. It is comprised of 4 film

layers (N = 4) and its parameters are given in the caption of Table 11. To apply the DFZEPE

method for the guided modes the following parameters were selected: x1 = 1.501 >∼ ns, x2 =

1.659 <∼ nmax = maxi{ni}, y1 = −0.25, y2 = 0.20, wx = wy = 0.005, M = 250, and εF = 10−11

(this parameter checks the proximity of zero to contour segments and it is discussed in Sec.

14.3). The effective indices of the guided TE and TM modes are shown in Table 11. Observe

that the imaginary part of the effective index of each guided mode is zero as it is expected since

the waveguide is lossless.

In the same table are also shown the effective indices of TE and TM leaky modes that are

radiating into the substrate but are confined in the cover. For these leaky modes the parameters

of the DFZEPE method are x1 = 1.001 >∼ nc, x2 = 1.499 <∼ ns, y1 = −0.25, y2 = 0.20, wx =

wy = 0.005, M = 250, and εF = 10−11. There are five TE and five TM leaky modes that

radiate into the substrate only. If x1 = 0.001 >∼ 0 and y1 = −5.0 the DFZEPE method detects

additional leaky modes that radiate into both the substrate and the cover regions. For latter

case the DFZEPE method identified 25 additional TE and 26 additional TM leaky modes

that radiate in both cover and substrate with effective indices 0 < Neff,r < nc = 1.0 and

−5 < Neff,i < 0. Since these leaky modes have much higher losses (compare to the ones that

radiate only into the substrate) are not of much interest. However, for completeness all TE and
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Table 11: Effective indices of guided and leaky modes of a multilayer lossless waveguide from Ref. [11]
λ0 = 0.6328 µm, nc = 1.0, ns = 1.45, n1 = 1.66, n2 = 1.53, n3 = 1.60, n4 = 1.66, h1 = h2 = h3 = h4 =

0.5 µm.

Mode Neff = Neff,r + jNeff,i Mode Neff = Neff,r + jNeff,i

Guided Modes

TE0 1.62272868 + j0 TM0 1.62003132 + j0

TE1 1.60527569 + j0 TM1 1.59478848 + j0

TE2 1.55713615 + j0 TM2 1.55498069 + j0

TE3 1.50358711 + j0 TM3 1.50181780 + j0

Leaky Modes - Substrate Radiating

TE4 1.46185664 − j0.00715587 TM4 1.45153498 − j0.01192359

TE5 1.38248922 − j0.01816588 TM5 1.37066437 − j0.03014206

TE6 1.28136443 − j0.03587739 TM6 1.27373706 − j0.05679177

TE7 1.14231446 − j0.05287607 TM7 1.15731285 − j0.08757849

TE8 1.00303702 − j0.07077094 TM8 1.03695026 − j0.10307808

Leaky Modes - Substrate/Cover Radiating

TE9 0.80402477 − j0.15549191 TM9 0.96341519 − j0.165250319488834

TE10 0.49261437 − j0.33590355 TM10 0.76239325 − j0.222733601859893

TE11 0.29877905 − j0.69942867 TM11 0.46058337 − j0.370232916081077

TE12 0.25212085 − j1.00504264 TM12 0.24771086 − j0.718279099245514

TE13 0.25050946 − j4.95922057 TM13 0.18839165 − j1.013610354108087

TE14 0.24991236 − j4.79387973 TM14 0.14364341 − j1.274982619497127

TE15 0.24586267 − j4.62848156 TM15 0.12685382 − j1.524936733594305

TE16 0.24161573 − j4.45910352 TM16 0.11859313 − j1.949587977521766

TE17 0.24026651 − j4.28845411 TM17 0.11837505 − j1.753757137213375

TE18 0.23986335 − j4.12047459 TM18 0.10254993 − j2.145238444255885

TE19 0.23543581 − j3.95230034 TM19 0.10232727 − j2.720059502187552

TE20 0.23077652 − j3.77917269 TM20 0.09894013 − j2.349610858911572

TE21 0.22948257 − j3.43177029 TM21 0.09740231 − j2.546721039915246

TE22 0.22944624 − j3.60410128 TM22 0.09539809 − j3.435254140965898

TE23 0.22470439 − j3.25890969 TM23 0.09169923 − j4.123746135758958

TE24 0.22207063 − j1.26968361 TM24 0.09054857 − j2.896630870912667

TE25 0.21976462 − j2.71626746 TM25 0.08946336 − j4.796978313580165

TE26 0.21968734 − j3.07943141 TM26 0.08924637 − j3.085873731780236

TE27 0.21863277 − j2.89664559 TM27 0.08914771 − j3.271127601096534

TE28 0.21504559 − j1.94511532 TM28 0.08509431 − j3.603072946747228

TE29 0.21495125 − j2.53439786 TM29 0.08488961 − j3.964394978515887

TE30 0.21238769 − j1.74120004 TM30 0.08452455 − j3.785071780722443

TE31 0.21178594 − j1.51632839 TM31 0.08236169 − j4.640441344235671

TE32 0.21039529 − j2.14368451 TM32 0.08209538 − j4.286677523338038

TE33 0.21009037 − j2.34244177 TM33 0.08181951 − j4.464558548926473

TM34 0.08025401 − j4.956855738939457
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Figure 36: The leaky mode distribution for TE and TM modes for the Chilwell [11] waveguide
of Table 11. There are 29 TE leaky modes and 30 TM modes. The parameters for the DFZEPE

method where x1 = 0.001, x2 = 1.499, y1 = −0.25 and y2 = 0.20.

TM leaky modes (radiating into both cover and substrate) are shown in Table 11. A subset

of these leaky modes (with Neff,i > −3.70) has been published in Ref. [25]. If y1 < −5 many

more leaky modes are detected but since they all have high radiation losses may not be a good

representation of the radiation field [58,59] and therefore are not of much interest. A graphical

representation of all the leaky modes of Table 11 are shown in Fig. 36. Furthermore, the

electric field profile of the first leaky (substrate-radiating) TE (TE4) mode, and the magnetic

field profile of the first leaky (substrate-radiating) TM (TM4) mode, are shown in Fig. 37. The

radiation of these modes into the substrate is apparent. The increasing amplitude of the fields

in the substrate region denotes the radiation of the modes and is a characteristic of the leaky

mode approximation (implying that power from previous z positions of the mode is arriving at

higher points into the substrate).

14.5.2. Low-Loss Dielectric Waveguide

This is the same multilayer waveguide that was presented in the previous section (Sec. 14.5.1)

with the addition of some small loss in two of its film layers [11]. The parameters of the structure

are given in the caption of Table 12. In order to apply the DFZEPE method for the guided
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Figure 37: The electric field profile of the first leaky (substrate-radiating) TE (TE4) mode, and the
magnetic field profile of the first leaky (substrate-radiating) TM (TM4) mode, for the Chilwell [11]

waveguide of Table 11. Observe the radiation into the substrate region as well as the increasing
amplitude of the radiation field.

89



modes the same parameters with the ones used in Sec. 14.5.1 were used. The effective indices

of the guided TE and TM modes are shown also in Table 12. Observe that now all modes

have negative imaginary part of their effective index due to the lossy layers of the waveguide.

Table 12: Effective indices of guided and leaky modes of a multilayer small-loss waveguide from

Ref. [11] λ0 = 0.6328 µm, nc = 1.0, ns = 1.45, n1 = 1.66 − j1.66 × 10−4, n2 = 1.53 − j1.53 × 10−4,
n3 = 1.60, n4 = 1.66, h1 = h2 = h3 = h4 = 0.5 µm.

Mode Neff = Neff,r + jNeff,i × 10+4 Mode Neff = Neff,r + jNeff,i × 10+4

Guided Modes

TE0 1.62272868 − j0.00673727 TM0 1.62003131 − j0.00892759

TE1 1.60527569 − j1.66244285 TM1 1.59478847 − j1.65565266

TE2 1.55713612 − j0.20880097 TM2 1.55498066 − j0.23704828

TE3 1.50358696 − j0.55032495 TM3 1.50181764 − j0.42530043

Leaky Modes - Substrate Radiating

TE4 1.46185448 − j0.00726710 TM4 1.45153751 − j0.01202887

TE5 1.38249997 − j0.01827662 TM5 1.37068384 − j0.03024261

TE6 1.28137151 − j0.03596266 TM6 1.27375077 − j0.05687731

TE7 1.14233026 − j0.05299360 TM7 1.15732794 − j0.08766890

TE8 1.00303470 − j0.07087449 TM8 1.03694118 − j0.10316486

Even though for this lossy structure leaky modes were not reported in the literature, they

are included here for completeness. Specifically, the leaky modes that radiate only into the

substrate are shown in Table 12. It can be observed that the real parts of the leaky mode

effective indices are very close to the ones appearing for the lossless waveguide in Table 11.

However, their imaginary parts of their effective indices are in magnitude slightly higher since

they represent both the loss due to absorption in the lossy layers as well as the loss due to

radiation into the substrate.

14.5.3. Active Waveguide

Semiconductor materials with loss and gain are utilized for optical amplifiers or lasers. In this

example case the structure proposed by Visser et al. [2] based on InP and InGaAsP system is

analyzed using the DFZEPE method. The same case is also reported in Ref. [38]. It is comprised

of 4 film layers with either loss or gain. The structure’s parameters are defined in the caption of

Table 13. To apply the DFZEPE method for the guided modes the following parameters were
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selected: x1 = 3.17 >∼ ns, x2 = 3.59 <∼ maxi[Ree{ni}], y1 = −0.25, y2 = 0.20, wx = wy = 0.005,

M = 500, and εF = 10−11. The results are summarized in Table 13 for both TE and TM guided

modes. Observe that TE0 and TM1 modes have positive imaginary part of their effective index

which imply gain due to the active layer. These modes are mainly concentrated in the active

layer (corresponding to InGaAsP, n3 = 3.60 + j0.002, and h3 = 0.15µm). On the other hand,

TM0 mode has a negative imaginary part which imply loss (this is actually a plasmon mode

mainly concentrated at the interface between the thin metal layer (corresponds to a thin gold

layer with n1 = 0.18 − j10.2 and thickness of h1 = 0.04µm) and the second film layer (which

corresponds to InP with n2 = 3.16 − j0.0001 and h2 = 1.0µm). These modes normalized

electric and magnetic fields profiles are shown in Fig. 38.

Table 13: Effective indices of guided modes and first leaky mode of a multilayer active waveguide from

Ref. [2,38] λ0 = 1.30 µm, nc = 1.0, ns = 3.16, n1 = 0.18−j10.2, n2 = 3.16−j0.0001, n3 = 3.6+j0.002,
n4 = 3.16− j0.0001, h1 = 0.04 µm, h2 = 1.0 µm, h3 = 0.15 µm, h4 = 3 µm.

Mode Neff = Neff,r + jNeff,i × 10+4 Mode Neff = Neff,r + jNeff,i × 10+4

Guided Modes

TE0 3.28088001 + j 9.13918191 TM0 3.33449848 − j 75.18872326

TM1 3.24809848 + j 5.46307013

First Leaky Mode

TE1 3.13650356 − j376.20259075 TM2 3.13622674 − j377.75840427

For completeness a search for leaky modes into the substrate was performed. Using x1 =

1.001 >∼ nc, x2 = 3.159 <∼ ns, while retaining the rest of the parameters of DFZEPE the same

as in the case of guided modes 12 TE leaky modes and 11 TM leaky modes were determined

using the specified values of y1 and y2. All these leaky modes radiate into the substrate and

they all have negative imaginary parts of their effective indices revealing radiation loss. For

demonstration purposes, only the first leaky mode for each polarization is shown in Table 13.

14.5.4. Leaky Modes of an ARROW Waveguide

Antiresonant reflecting optical waveguides (ARROW) utilize antiresonant (multi-interference)

reflection as the guiding mechanism instead of total internal reflection [5, 6]. The structure

under investigation was also used by Chen et al. [17] and Semwal and Rastogi [38]. It is
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Figure 38: The active and lossy modes TE0, TM0, and TM1, for the Semwal [38] active waveguide

of Table 13. Observe that the active modes are confined in the active layer (TE0 and TM1), while the
lossy mode (plasmon mode) TM0 is confined in the metal-semiconductor interface. The thin metal

layer of n1 = 0.18− j10.2 and h1 = 0.04 µm is represented by the thicker dashed line on the left part
of the figures.
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comprised of N = 9 film layers with interchanging high and low refractive indices on top of a

high index substrate (silicon). The structure parameters are defined in the caption of Table 14.

Only leaky modes are supported by this structure. The DFZEPE method parameters were:

x1 = 1.4501, x2 = 1.499 <∼ maxi[Re{ni}], y1 = −0.25, y2 = 0.20, wx = 2.5×10−6, wy = 5×10−4

M = 500 − 1000, and εF = 10−4. The value of εF was much larger than previous cases since

the dispersion function reaches values of the order of 1044 in the domain of interest. Therefore,

εF represents a drop of the function of almost 48 orders. Furthermore, the large number of M

is necessary due to the large phase variation that is observed in the vertical segments of the

ABCD contour. For demonstration, the phase variation of this ARROW waveguide is shown

in Fig. 39.

Table 14: Effective indices of leaky modes of a multilayer ARROW waveguide from Ref. [38] λ0 =

0.6328 µm, nc = 1.0, ns = 3.50, n1 = 1.46, n2 = 1.50, n3 = 1.46, n4 = 1.50, n5 = 1.46, n6 = 1.50,
n7 = 1.46, n8 = 1.50, n9 = 1.46, h1 = 2.00 µm, h2 = 0.448 µm, h3 = 4.00 µm, h4 = 0.448 µm,

h5 = 2.00 µm, h6 = 0.448 µm, h7 = 4.00 µm, h8 = 0.448 µm h9 = 2.00 µm.

Mode Neff = Neff,r + jNeff,i × 10+4 Mode Neff = Neff,r + jNeff,i × 10+4

TE0 1.473925808 − j0.000000801 TM0 1.473275805 − j0.000005809

TE1 1.473697976 − j0.000017405 TM1 1.473027205 − j0.032900856

TE2 1.473696644 − j0.005452261 TM2 1.473026854 − j0.000035036

TE3 1.473459693 − j0.000001142 TM3 1.472767027 − j0.000008508

TE4 1.457920191 − j0.007106241 TM4 1.457925423 − j0.045880488

TE5 1.457791244 − j0.009053396 TM5 1.457782773 − j0.057163274

TE6 1.453780369 − j0.114698816 TM6 1.453795448 − j0.645756672

TE7 1.453045406 − j0.420121480 TM7 1.452928429 − j2.555862981

TE8 1.451864807 − j0.693651857 TM8 1.451781628 − j4.567101184

TE9 1.450269491 − j0.732515868 TM9 1.450247659 − j4.357488809

The results are summarized in Table 14 for both TE and TM guided modes. The leaky

modes of the ARROW waveguides are numerically harder to find due to the close proximity of

the zeros. In addition for the accurate computation of the accumulated phase Φt around each of

the sub-rectangles a much higher number of points per segment M was used. The accumulated

phase increases fast in the BC part of the rectangle contours while decreases fast in the DC

parts of the contours (see Fig. 39). This means that it is critical to count all of the phase

jumps in order to accurately determine the accumulated phase. This is the main reason for the
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Figure 39: (a) The phase variation around ABCD, Φ(z) = arg[f(z)], for the function of the ARROW
waveguide and x1 = 1.4501, x2 = 1.4999, y1 = 0.20, y2 = −0.25, M = 20000 and (b) the total phase

accumulation Φt(z) =
∑I

i=1 arg[f(zi+1)/f(zi)] where I is an index such zI = z and Φt(z1) = 0. The
AB, BC, CD, and DA show the phase accumulation within each segment of the contour C. Obviously,

the total accumulated phase is 10× 2π that reveals the existence of 10 leaky modes (Nz = 10) within
the domain enclosed by C. Observe the very fast variation along the vertical segments of the contour.
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Figure 40: The close in effective index leaky modes TE1 and TE2, as well TM1, and TM2, for the

ARROW waveguide [38] of Table 14. Observe that the leaky modes that closer to the substrate radiate
more and have larger(in magnitude) Neff,i.
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Figure 41: The leaky (substrate-radiating) mode distribution for TE and TM modes for the
ARROW waveguide of Table 14. There are 53 TE leaky modes and 54 TM modes (the first ten of

TE and TM are shown in the table). There are no leaky modes in the 1.5− 3.5 Neff,r interval. The
parameters for the DFZEPE method where x1 = 1.001, x2 = 3.499, y1 = −0.25 and y2 = 0.20.
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large number of points needed. From Table 14, for both polarizations, there are two clusters of

modes. One that is near 1.45 (6 leaky modes) and one around 1.47 (4 leaky modes). Because

the accumulated phase around a contour can accurately determine the number of modes the

process of finding closely spaced modes can be performed in parts of the domain by changing

appropriately the DFZEPE parameters. It is mentioned that only the 1.45 leaky mode cluster

is published in Ref. [17] and only a subset of them (3 out the 6 modes from 1.45 cluster and

1 out of 4 modes from 1.47 cluster) in Ref. [38]. However, the proposed DFZEPE method

can reliably determine all the leaky modes of the ARROW waveguide. For example, the total

number of substrate-radiating leaky modes in the interval of Neff,r from 1 − 3.5 is 53 for TE

and 54 for TM polarization, respectively. It is interesting to note that there are no leaky modes

found in the interval Neff,r ∈ (1.5−3.5). Only the first ten are given with their effective indices

in Table 14. However, the distribution of all the substrate-radiating leaky modes is shown in

Fig. 41. For illustration purposes the normalized electric and magnetic fields profiles of the

leaky modes TE1 and TE2, as well as TM1, and TM2, are shown in Fig. 40, respectively. It is

interesting to note that the modes that are closer to the substrate experience higher radiation

losses as it is naturally expected due to their proximity to the high index silicon substrate.
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