
Analysis  and  Applications of Optical 
Diffraction by Gratings 

Diffraction characteristics  of  general  dielectric  planar  (slab)  grat- 
ings and  surface-relief  (corrugated) gratings  are reviewed. Applica- 
tions to laser-beam  deflection,  guidance,  modulation,  coupling, 
filtering,  wave  front  reconstruction,  and  distributed  feedback  in  the 
fields of acoustooptics,  integrated  optics,  holography,  and  spectral 
analysis are  discussed.  An  exact  formulation  of  the  grating  diffrac- 
tion  problem  without approximations  (rigorous coupled-wave  the- 
ory developed  by  the  authors) is presented. The method of solution 
is in terms of state  variables  and  this is presented  in  detail.  Then, 
using  a series of fundamental assumptions,  this  rigorous theory is 
shown to reduce to the various  existing  approximate  theories  in the 
appropriate  limits. The  effects  of  these  fundamental  assumptions  in 
the approximate  theories are quantified  and discussed. 

I. INTRODUCTION 

Diffraction  of  optical electromagnetic  radiation  by peri- 
odic structures is of increasing importance in an expanding 
variety  of  engineering  applications.  Grating  diffraction is 
central in  the fields  of acoustooptics, integrated  optics, 
holography,  optical data  processing,  and  spectral  analysis. 
Applications are broad and varied and extend well  beyond 
these basic fields.  Grating  applications  include: acoustic 
wave generation,  ambiguity processing, analog-to-digital 
conversion, antennas,  associative  storage,  beam coding, 
beam  coupling, beam deflection, beam  expansion,  beam 
sampling,  beam shaping,  beam splitting,  coherent  light  gen- 
eration,  convolution processing, correlation processing, data 
processing  and optical logic, data  storage, diagnostic mea- 
surements, displays, distributed feedback, filtering,  head-up 
displays, holographic  optical elements, image amplification, 
image processing, incoherent-to-coherent  converter,  instru- 
mentation,  interferometry, lenses, mode conversion, mod- 
ulation,  monochromator,  multiport storage, multiple beam 
generation,  multiplexing,  demultiplexing,  optical testing, 
pattern  recognition, phase conjugation, pulse shaping and 
compression, Qswitching, mode  locking, resonator mirror, 
signal processing, solar concentration, spatial light  modula- 
tors, spectral analysis,  and switching. These applications are 
discussed in this paper. 
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Optical gratings may  be planar (slab)  gratings. The peri- 
odic  modulation may be in the  permittivity (or equivalently 
index  of  refraction) or in  the  conductivity (or equivalently 
absorption)  or a combination  of these. Also gratings  may be 
of  the  surface-relief (corrugated) type with periodic varia- 
tions in  the surface of a dielectric or conducting material. 
All  of these  cases  are of practical  importance. 

The  analysis of  diffraction by gratings has a long  and 
interesting  history. Since 1930, there have been over 400 
scientific papers on the  subject of grating diffraction.  Dif- 
fraction of electromagnetic waves by  spatially  periodic 
media may be analyzed by numerous .methods and with a 
wide variety of possible assumptions. The most common 
methods  of analyzing  grating diffraction are the  coupled- 
wave approach [I]-[9] and the  modal approach [IO]-[19]. 
The modal approach is sometimes referred to as the  Floquet, 
Floquet-Bloch, eigenmode, characteristic-mode, or cou- 
pled-mode approach. The coupled-wave approach is con- 
fusingly also sometimes called  coupled-mode approach. 
The  basics of  coupled-wave and modal  theories have been 
treated  in several reviews [20]-[22]. Both of these ap- 
proaches can produce exact formulations  without ap- 
proximations. In  their  full rigorous forms these formulations 
are completely equivalent [23]. They represent merely  alter- 
native  methods of representing  the  electromagnetic fields 
inside  the grating.  Starting  from  the wave equation, both 
rigorous  forms  of analysis will be developed as two aspects 
of a common  derivation. 

Starting with rigorous  theory and using a series of  funda- 
mental assumptions, these general theories are shown to 
reduce  to  the various approximate theories (two-wave 
modal theory, two-wave second-order  coupled-wave the- 
ory, multiwave coupled-wave theory, two-wave  first-order 
coupled-wave  theory (Kogelnik theory), optical  path  method 
Raman-Nath  theory, and amplitude transmittance  theory) 
in the  appropriate  limits. This is shown in  this paper. 

11 .  ANALYSIS OF FIELDS INSIDE GRATING 

A. Field  Representation 

A plane dielectric grating as depicted in Fig. 1 has a 
relative  permittivity  (dielectric constant) in  the region  from 
z = 0 to z = d given by 
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Fig. 1. Planar slanted-fringe  dielectric  grating  geometry 

a( x’) = e, + e, cos Kx’ (1 1 
where E,, is the average relative permittivity in the  grating 
region, e, is the  amplitude  of  the sinusoidal relative permit- 
tivity, + is the grating slant  angle, and K = 2r/A, where A 
is the  grating  period. The cosinusoidal form used in (1) is 
common in the  volume  holographic  grating literature. In 
the acoustooptics literature, a sinusoidal form  for (1) is 
more  common.  Using  the sinusoidal form  would alter the 
resulting equations in the following sections as well as their 
amplitude  solutions. However, the  diffracted  intensities are 
identical in either case.  For an incident  plane wave with TE 
polarization  (electric  field  perpendicular to  the plane of 
incidence) the wave equation is  

V 2 f y (  x’, z’) + k2e(  x’) Py( x’, z’) = 0 ( 2) 

where k = 2 - h  and k,,(x’,z’) is the  total  electric  field 
inside  the  grating. The fields and the  grating are unchang- 
ing in the  ydirection. The field in the  grating  region may be 
expressed in terms of “modes,”  each of  which  individually 
satisfies Maxwell’s equations. Thus the  total  field may be 
written as 

+a 
ky(x’,z’) = ky,(x’,z’). (3) 

v -  - m  

The field corresponding to a particular mode ~,P,(x’,z’), 
may be assumed to  be expressable as a product so that 
[,(x’,z’) = A,X,(x’)Z,(z’). Upon substitution of this as- 
sumed solution into  the wave equation and dividing  by 
P,(x’,z’), separation of variables in the wave equation is 
achieved. Thus the x’ part and the z‘ part must be equal to  
a constant. Letting  the constant be -.$:, the z’ equation 
becomes 

The solution  for Z , ( z ’ )  may be written 

The x’  equation  resulting  from separation of variables is 

Bx’(x‘) + [ k2e( x’) - [:] X,( x’) = 0 (6) 
dx ” 

Bx’(x’) + ( a ,  + a2cosKx’)X,(x’) - 0  (7) 
dx ” 

where a, = k2a, - [: and a2  5 k2e, .  This is the  Mathieu 
differential  equation [24].  The general solution  of  this equa- 
tion was found  by Floquet to be 

X,(  x!) = a,( x’) exp ( -j&x’) (8) 

where & is a  phase factor and @,(x’) is periodic in x’ with 
period A. That is, 

@,( x’) = @,(x’ + A) (9) 

for any x’.  Since @,(x’) is periodic, it may be expanded in a 
Fourier series as 

+OD 

@,( x’) = C,,exp (jiKx’) (10) 
i -  - w  

and so  X,(x’) may be written as 
+ w  

where 

p,; B, - iK. (1 2) 

Equation (12) is often referred to as the “Floquet condition.” 
Each modal  field, !,(x’,z’) = A,X,(x’)Z,(z’), may thus 
be expressed as 

+ w  

P,(x’,z’) = D,exp( -j(,z’) C,;exp(  -/&;x’) 
i -  -a 

(1 3) 
where 0, = A,4. Rotating  from  the  coordinate system of 
the  grating  (x’,~’) to the  coordinate system of  the boundary 
(x, z )  using 

x‘ = xsin+ + zcos+ 

z’ = -xcos+ + zsin+ (1 4) 

the  field iyp(x’,z’) becomes E,(x,z) given  by 

E,(XJ) 

+ w  
= 0, C,,exp { -j[( & - i K )  sin+ - 1, cos+]x} 

i -  - w  

.exp{ -/[&sin+ +(& - iK)cos+]z}. (1 5) 

The normalized  field  of  the  incident  plane wave is given by 

Ei,=exp(-jkl .~)=exp[-j(k, ,x+ k,z)] (16) 

where k,, = k 4 l 2  sine’, and kl, = kq/’cosB’. In the  limit 
of  zero grating  modulation (E, 4 0), the i = 0 undiffracted 
field  of each mode is phased matched to  the  incident  field 
at the z = 0 boundary. That is, 

- 

k,, = k 2 ,  (1 7) 

where k,, = ke‘L2 sin8 and 8 is the angle of  refraction  of 
the  incident wave in the second region. From (15), the 
phase-matching condition k,, = k 2 x  i s  thus 

kd l2s in8 ’  = &sin+ - €,COS+. (18) 

The total  field  inside  the  grating is represented by the sum 
of  all  of  the  individual modal  fields as 
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+ m  

E,(x,z) = c EY.(X,Z) 
Y- - m  

and so the  total  field is 
+m + m  

E,(x,z) = 0, C,;exp[-j(k,, - iKsin+)x] 
u - - m  i - - m  

.exp{-j[t.sin++(B. - iK)cos+]z}. (19) 

This is a general form for  the field E,(x,z). Both  modal and 
coupled-wave  field expansions  can be obtained  from  it. 

B. Modal Expansion and Resulting  Equation 

Recognizing, in (19), the Fourier series 
+ m  

C,;exp[jiK(xsin+ + zcos+) 
i - -m  

I -  -m 

and its equivalence to the  function Q v ( f ) ,  where l ( f )  = 
Q, ( i+x ) ,  allows  the  field  to  be  written in the  modal 
expansion form as 

+ m  

E,(x,z) = c O”C(f )  
v - - m  

-exp[ -j(k,,x + t,zsin+ + B,zcos+)]. 

(21) 

This  expansion expresses the  field inside  the  grating as a 
sum of “modes,”  each of  which satisfies Maxwell’s  equa- 
tions.  Therefore, these individual modes are similar to  the 
modes  used to describe  the  fields in waveguiding  structures 
(such as hollow metallic waveguides and  dielectric  wave- 
guides) in the sense that  the modes are independent  of 
each  other within the  region. The “modal  equation” can be 
obtained  by  substituting (11) into (7) and  performing  the 
indicated  differentiations. The result is 

and this provides  a  second  relationship  between /3,; and 6, 
[in  addition  to (18)]. Solutions  of  the  modal  equation are 
frequently presented as BUi versus [,“dispersion  diagrams.” 
See, for example,  [19]. These diagrams  can provide  consider- 
able  physical  insight into the diffraction process.  This ap- 
proach,  however, can be computationally  difficult and is  
not treated  further in this paper. 

C. Coupled- Wave  Expansions and Resulting Equations 

I) Fundamental Expansion  (Wavevector Along Boundary): 
Interchanging  the order  of  the  summations in (19), the  total 
field  inside  the grating may  be rewritten 

E,(x,z) = exp[-j(k,, - iKsin+)x] 
+ m  

I -  - m  

+ m  

. D,Cujexp{ -j[t,sin+ + ( A  - iK)cos+]z}. 
Y- - m  

(23) 

Performing  the  summation over the modes Y, the  quantity 
$(z)  may be  defined as 

+ m  

%(z) E O,C,,exp{ -j[ l ,sin+ +(& - iK)cos+]z} 
I- - m  

( 24) 
and  this is a function  of z only. The total  field is  therefore 

E,(x,z) = $(z)exp[-j(k,,-  iKsin+)x] (25) 

and this represents  the  fundamental  coupled-wave expan- 
sion  of  the  total  field  in  the grating  region. The quantity  z is 
perpendicular to  the grating  boundary. The field as ex- 
pressed by (25)  has the appearance of a sum of inhomoge- 
neous  plane waves traveling in  the x direction (along the 
boundary). These inhomogeneous  plane waves  have  wave- 
vectors  given by 

4 = ( k 2 ,  - iKs in+ ) i  

where i is the  unit vector in the  x  direction. This is shown 
as case @ in Fig. 2. The amplitudes, $(z), of these  waves 

+ m  

i -  -m 

(26) 

X 

REGION 1 REGION 2 

% €1 

INCIDENT 
WAVE 

Fig. 2 Wavevector  diagram  showing  three  possible  choices 
for wavevector  inside grating for coupled-wave  expansion of 
the total field: 0 fundamental  expansion (wavevector along 
boundary), 0 wavevector from vector  Floquet  condition, 
and @ wavevector  of  magnitude equal to undiffracted 
wavevector. 

vary in the z direction an$ thus the waves  are inhomoge- 
neous.  Alternatively,  the  $(z) values  are the amplitudes of 
the space-harmonic  components of  the  total field E,(x,z) 
that result when the  field is  expanded in a Fourier  series in 
the  periodic  direction (along  the  boundary or x  direction). 
For an  arbitrary slant  angle +, the  grating as bounded  by 
region 1 (at z = 0) and  region 3 (at z = cf) i s  periodic only 
in  the x direction since only  in  the boundary direction  (x) 
is the  relative  permittivity periodic. That is, E(X) = E(X + A’) 
for al l  x  where Af i s  the  grating  period  along  the  boundary 
given  by A’ = A/sin +. This periodicity is of key importance 
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in  the expansion of  the  total  field in terms  of  space-harmonic 
components Qz). 

Substituting  the fundamental  coupled-wave  expansion 
(25) and  the  permittivity (1) into  the wave equation (2 )  and 
using k,, = k&d2 sine and  k = 2 v / h  and  performing  the 
indicated  differentiations gives 

+ W  { - -(k&L2sin8 - iKsin+)' 
I - - w  

x$(.) + k%&) 

+-5,-,(z)exp(+jKzcos+) +y k2q  - k2E, 
2 

x$+,(z)exp(-jKzcos+) 

x e x p {  -j[(kcb/'sine - iKsin+)x]} - 0 .  (27) 

This  represents an infinite series, the sum of  which is zero. 
Each term in the series is a coefficient  multiplied by an 
exponential.  The  coefficients are functions  of z only. The x 
dependence is entirely in the  exponential  factor  of each 
term. Since the exponentials are linearly  independent,  the 
coefficient  of each  exponential  must  individually  be  equal 
to zero. Using  this fact together with the  definitions  of k 
and K, (27) reduces to the set of  coupled-wave  equations 

This is an infinite set of  second-order  coupled  difference- 
differential equations. By inspection, i t  is seen that  the 
wave  corresponding to each value of i (space harmonic 
inside  the  grating or diffracted  order  outside  of  the  grating) 
is coupled  to i ts adjacent ( i  + 1 and i - 1) space harmonics. 
There is no direct  coupling  between nonadjacent orders. 
This set of  coupled-wave  equations has no first derivative 
terms in contrast to the  coupled-wave  equations  to be 
derived  in  the next two sections. It is a nonconstant-coeffi- 
cient  differential  equation due to the presence of I in the 
coefficients of the $-,(I) and $+, (z )  terms.  The equations 
in the  form  of (28) represent a linear,  shift-variant system 
and  direct  solution  would be difficult. As will be  seen in 
the next  section, a constant-coefficient set of  coupled-wave 
equations  can  be  developed  by  a  different  selection  of  the 
wavevectors of the inhomogeneous  plane waves in the 
coupled-wave expansion. For the  special case of an un- 
slanted  grating (+ = n / 2 ,  fringes  perpendicular to the 
surface),  expressions (28) become  constant-coefficient dif- 
ferential  equations. For this limiting case, the  equations 
become  identical to the second-order  coupled-wave  equa- 
tions  of  Kong [6, eqs.  (6a) and (6b)] i f  only  two waves  are 
retained  (the i = 0 undiffracted wave and the i = +I 
fundamental  diffracted wave). 

2) Expansion with Wavevector from  Vector Noguet Con- 
dition: A new  function  of S,(z) may be  defined as 

$ ( z )  $(z)exp[  +j(k2, - iKcos+)r] (29) 

so that E,(x,z) may be expressed as 
+ W  

F,,(x,z) = S,(z)exp( - j [ ( k 2 ,  - iKsin+)x 
1 - - 0 3  

+( k,, - ~Kcos+)z]}  ( 30) 

or in vector  notation 
+ W  

E , ( x , r )  = $(z)exp[- j(E2 - i q : ? ]  (31) 

where 1, would be the  wavevector  of  the  refracted inci- 
dent wave in the absence of  grating  modulation. This form 
of  the  total  field in the  grating  region is  more  useful  than 
(25) since this form leads to constant-coefficient  coupled- 
wave differential equations  for general slanted gratings. 
This form  of  the coupled-wave  expansion (31) expresses the 
total  field as the sum of  inhomogeneous  plane waves 
having wavevectors  given by  the  vector  Floquet  condition 

3. = X, - X .  (32) 

This  choice  of wavevectors is shown as  case 0 in Fig. 2. 
The  x component  of ifj is equal to k,, - iKsin+ as i s  
required  by phase matching. The expansion (31) has great 
intuitive appeal. The incident  homogeneous  plane wave 
may be  visualized as being  divided  into many diffracted 
inhomogeneous  plane waves that have directions  given  by 
(32), the  vector Floquet condition for an unbounded  peri- 
odic medium. The  phase fronts of  the inhomogeneous 
plane waves i = -1 to i = + 2  are depicted in Fig. 3 to- 
gether with  the corresponding  vector  Floquet condition. 
The i = 0 inhomogeneous  plane wave corresponds to the 

I -  -a 

\ a /% 

Fig. 3. Visualization of inhomogeneous plane waves  (space- 
harmonic components) inside the grating  according to the 
vector Floquet condition (shown in inset). 
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refracted  incident wave. In this  and  the  other expansions, 
the  diffracted  inhomogeneous plane waves form an inter- 
ference pattern  with  the  incident wave that has a  periodic- 
ity A and slant  angle + that are the same as the  grating 
producing  the  diffraction. However, (31) is only another 
one  of many  possible  valid expansions for  the field inside 
the grating. Other expansions  can be  equally  valid.  Follow- 
ing  the procedure  of  the  previous  section  and  substituting 
the coupled-wave  expansion (30) and  the permittivity  into 
the wave  equation,  performing  the  indicated  differentia- 
tions,  and  setting  the  coefficient  of each exwnential eaual 

1 cf$(z )  .2 [ E , ,  ( 2 r 2  d 2  
I -  - -  

A x2 x A dz 
(ro)’/2sin8 

i ~ i n + ) ~ ] ” ~ d $ ( ~ )  
--- -- 

where 2 is the  unit vector in the z direction. This is shown 
as case 0 in Fig. 2. The x component  of Ci is obviously 
equal to k , ,  - iKsin+ as required  by phase matching. The 
choice  of (37) forces the  wavevector  magnitudes to be 
equal to k 2  where k 2  = k2L2 is the  magnitude  of  the 
refracted  wavevector in region 2 in the absence of grating 
modulation. This  choice has been used in approximate 
treatments  together with neglecting  higher  order waves  [26] 
and  neglecting second  derivatives  of the amplitudes [27]. 
Following  the procedure of  the previous  sections  and sub- 
stituting  the  coupled-wave expansion (36) into the wave 
equation leads to the set of  coupled-wave equations 

to zero gives the set of coupled-wave  equations 

where  the  quantity m has been  defined as 

2A( E,,)~” 

X m -  cos ( 8  - +) 

These rigorous  coupled-wave  equations are constant-coeffi- 
cient  differential equations  representing a linear, shift- 
invariant system, Using state variable  methods from linear 
systems  analysis [25], a solution may be obtained in terms of 
the eigenvalues  and  eigenvectors of  the  coefficient  matrix 
of  the set of differential  equations. The quantity m may 
have any value in general. For the case when m is an 
integer, (34) represents the  mth Bragg condition. However, 
the analysis presented in this paper in no way depends on 
the Bragg condition  being satisfied. It applies to an arbitrary 
angle of  incidence and an arbitrary  wavelength. Only  if  the 
angle of incidence  and  wavelength are such that m is an 
integer  does Bragg incidence  occur. 

3) Expansion with  Wavevector  of  Magnitude Equal to 
Pndiffracted  Wavevector: Still another  amplitude  function 
% ( z )  may be  defined as 

$ ( z )  = $(z)exp( + j [  k;  - ( k 2 x  - iK,)2]1/ZI) (35) 

so that E,( x ,  z)  may  be expressed as 
+OD 

E , ( x , z )  = $(z)exp( - j [ ( k 2 ,  - iKsin+)x 
i -  -m 

+ [ k $  - ( k 2 ,  - ~ K c o s + ) ~ ] ~ ’ ~ z ) .  (36) 

This form  of  the coupled-wave  equations also expresses the 
total  field as a sum of inhomogeneous  plane waves. In this 
case, the wavevectors are given by 

q = ( k 2 , -  iKsin+)f+[k:-(k,,-  iKcos+)] 2 1/2 f 

(37) 

These coupled-wave  equations are nonconstant-coefficient 
differential equations. Unlike  the  coupled-wave  equations 
(33), these are not straightforwardly  solvable in this  form. 

D. Rigorous  Nature  and  Equivalence  of Expansions 

The total  field E,(x,z)  inside  the  grating  produced  by  a 
TE-polarized incident plane wave is given by (19). This 
equation has been rigorously  derived (without approxima- 
tions). The total  field has been rewritten as a sum over  the 
modes v (modal expansion) as (21) and as sums  over the 
space-harmonic  components i (coupled-wave expansions) 
as (25),  (30), and (36). All four of these expansions are 
completely  rigorous. Since they are all developed without 
any  approximations  from  the same equation, these  expan- 
sions are completely equivalent. They represent  merely 
alternative  mathematical  representations  of the  total  field 
inside  the  grating. Associated with each expansion is a 
different physical  perspective  of the  total  field inside  the 
grating.  However, these different  physical  views are also 
equivalent  and each is just an alternative  representation  of 
the same total  field.  One is no more or no less correct  than 
the others. 

In the  modal representation (21), the  fields  inside the 
grating are expanded in terms of  the  allowable modes of 
the  periodic  medium. The fields are visualized as wave- 
guide modes in the grating  region. In the  modal approach, 
the  total  electric  field is expressed as a  weighted summa- 
tion over  all  possible modes.  The summation  includes both 
forward-  and backward-propagating modes.  The backward- 
propagating  modes are due to  diffraction  in  the  grating 
volume  (when  the grating  fringes are slanted) and  due to 
reflections at the z = d boundary. Each individual  vth  mode 
satisfies the wave  equation  (and  thus  Maxwell’s  equations) 
and may be either evanescent  or propagating. These modes 
in the  grating are similar to modes in a  waveguide. Each 
mode satisfies the wave equation  by  itself  and it may be 
either  cutoff  or propagating. Each mode ( v )  consists of an 
infinite  number  of space harmonics (13 and  each mode 
propagates through  the  medium  without change.  The  space 
harmonics  may  be  viewed as arising  from  the Fourier  expan- 
sion of  the  periodic  function @,(i). 

In the  coupled-wave  representation [(25),  (30),  (36)], the 
field inside  the  modulated  medium is expanded in terms of 
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Table1 Three Possible  Electric  Field  Expansions  and the Resulting Coupled-Wave 
Equations for TE Polarization and  Sinusdidal Permittivity 

- 

Field Expansion  Resulting Coupled-Wave Equations 

+ - exp(j2nr-)Sj-, €1 cos + 
x2 A 

+ - exp(- j2n~-)S;+~ = 0 €1 Cos + 
h2 A 

.. 

.exp[ - j( k 2z - iK,)z] 

the space harmonic  components ( i )  of the field  in  the 
periodic structure. These  space harmonics  inside  the  grating 
are phase matched  to  diffracted orders  (either  propagating 
or evanescent)  outside  of  the  grating. Unlike  the  individual 
modal  fields ( v ) ,  the  individual  space-harmonic  fields ( i )  do 
not satisfy the wave equation. The  sum of all the space 
harmonic  fields,  of course,  does  satisfy the wave equation. 
However,  the space-harmonic fields cannot exist alone. The 
partial  space-harmonic  fields may be  visualized as inhomo- 
geneous  plane waves (plane waves with a  varying  am- 
plitude  along  the planar  phase front). These inhomoge- 
neous  plane waves  are not  independent  and  they  couple 
energy  back  and forth  between each other in the  mod- 
ulated  medium. The coupled-wave expansions together with 
the  resulting sets of coupled-wave  equations are sum- 
marized in Table 1. 

In an  overly  simplified manner, the  diffraction process is  
sometimes  interpreted as 1) the incident wave is refracted 
into  the grating  medium at z = 0, 2) the  refracted  plane 
wave in the  grating is diffracted into an infinite set ( i )  of 
plane waves (or  “coupled waves”) propagating toward  the 
z = d boundary,  and 3) the waves inside  the  grating are 
phase  matched into propagating  (and evanescent)  waves in 
the  third region. This picture  somewhat agrees with simple 
physical intuition about  the process of  diffraction by  a 
volume grating.  However,  this  sequential  interpretation is  
misleading in many ways.  For example, the  backward-dif- 
fracted waves in region 1 are not  predicted in this  interpre- 
tation.  Obviously,  the total electromagnetic  problem  of  the 
diffraction  by  the grating  must  be solved, as is done in 
this paper. Even though it is tempting  to  think  of  the 
space-harmonic  fields as simple waves in the  grating,  this is  
a very incomplete  view. 

The  coupled-wave or space-harmonic  expansion  of  the 
total  field,  however, is  quite natural since the  inhomoge- 
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neous  plane waves ( i )  that  result are phased matched to the 
forward-diffracted and  backward-diffracted  plane waves that 
are so obvious  experimentally. The modal  fields (Y), on the 
other hand,  all  partially  contribute to each observed dif- 
fracted  order  and  thus  their  individual  significance is not 
obvious.  Beyond  the appeal of  the  coupled-wave  approach 
based on practical  device  operation,  the  more persuasive 
argument  for i ts use is the ease with  which solutions may 
be  obtained. It is shown in Section IV that  the  constant- 
coefficient  form  of the  coupled-wave  equations can be 
solved in a  straightforward manner in terms  of the eigenval- 
ues and  eigenvectors  of  the  differential  equation  coefficient 
matrix. This is accomplished without numerical  instabilities 
using  readily  available standard eigenvalue/eigenvector 
programs. 

E. Other  Grating Cases 

To  clarify  the  mathematical  and  physical  concepts  in- 
volved, the analysis presented in this paper is being  re- 
stricted to 1) lossless dielectric phase  gratings, 2) sinusoidal 
permittivity  profile, 3) TE-incident  polarization, 4) the  grat- 
ing vector R lying  in the  plane of incidence,  and 5) slanted 
gratings (0 < + G n/2). With the  exception  of  the last re- 
striction,  these are not essential  assumptions for  the analy- 
sis. Relaxing  these  restrictions  produces  a  more  complicated 
formulation, but  the basic physical  principles are the same. 

Gratings with a  periodic  modulation in their  conductivity 
(producing  optical absorption) have been analyzed using 
rigorous  coupled-wave  theory [28]. The  presence of TM 
polarization in the  incident wave  results in a  vector 
wave-equation  description  of  the  field  inside  the  grating 
rather  than  a scalar wave-equation  description (2). The 
coupled-wave expansion in this case produces a more  com- 
plicated set of coupled-wave  equations.  However, these 
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equations  can also  be solved  using  the  state-variables 
method described in Section IV. The rigorous  coupled-wave 
equations  for  this case and  their  solution are described in 
[29]. If the  grating  vector does not  lie  in  the plane of 
incidence, the TE and T M  polarizations  become  coupled 
and  can no longer  be  treated separately and  independently. 
Since the  diffracted wavevectors lie  on the surface of a 
cone (rather  than in a plane), this case is sometimes  re- 
ferred to as conical  diffraction. Due to the coupling be- 
tween  the TE and TM polarizations,  this  situation  requires  a 
three-dimensional  vector  treatment. Rigorous coupled-wave 
equations  for  this  three-dimensional  vector case have been 
developed  and  solved  using  the state-variables approach [9]. 
Rather  than  constructing  and  solving two relatively  com- 
plicated vector-wave  equations, i t  is  more  convenient  and 
straightforward in this case to solve Maxwell’s  equations 
directly. This  approach  produces  four sets of  first-order 
coupled-wave  equations.  However,  even  though  more 
complicated, these equations are in a form  that can be 
solved  directly  by  the methods  of  Section IV. 

Because the rigorous  coupled-wave  approach is based on 
the Fourier  expansion  [of @,(i)] into space-harmonic  com- 
ponents  of  the  total field, a truly  periodic  grating (an 
infinite number  of  periods) is required. The coupled-wave 
approach  may  be  applied in the angular limit as the  slanted 
fringes  of  a  general  grating  approach  being  parallel to the 
surface (+ approaches  zero) [30]. However,  for exact paral- 
lelism  with  the surface (+ = 0), the  grating is  no longer 
strictly  periodic  and  a  continuum  of  solutions is possible 
depending  on  the number  of  periods,  the  starting  condi- 
tions,  and the  ending  conditions  of  the grating. This pure 
reflection  grating case can  be  analyzed without approxima- 
tion using  a  rigorous  chain-matrix  method  of analysis.  This 
is discussed in [31]. Alternatively,  the  pure  reflection  grating 
case (+ = 0) can  be analyzed using  the  modal formulation 
~ 9 1 .  

Ill. DIFFRACTED  ORDERS OUTSIDE OF GRATING 

A. Phase Matching  and  Grating Equations 

Obtaining an  accurate representation of  the  total  field 
inside  the  grating is an  essential first step in describing  the 
diffraction  by  the grating.  However,  possibly  the  most  obvi- 
ous  feature of grating  diffraction is the  multiple backward- 
and  forward-propagating  diffracted orders that  typically ex- 
ist outside  of  the grating as shown in Fig.  4. The total 
electric  field in region 1 is the sum of  the  incident and the 
backward-traveling waves.  The normalized  total  electric 
field in region 1 may be expressed as 

m 
El = exp( -jEl . f )  + ~ , e x p (  -jElj. f )  (39) 

where R,  is the normalized  amplitude of the i t h  reflected 
wave in region 1 with wavevector El;. Likewise, the  normal- 
ized  total  electric  field  in region  3 is 

i - - m  

m 
f3 = exp [ - jE3;(  f - df)] (40) 

where is the normalized  amplitude  of  the i th transmitted 
wave in region 3 with wavevector Z3;. Each i th  field in 
region 1 and  3  must be  phase matched to  the i th space 
harmonic  field (inhomogeneous  plane wave) inside the 

I -  - m  

Fd-i 
Fig. 4. Planar grating  diffraction geometry  showing  back- 
ward-diffracted and forward-diffracted  propagating  waves. 

grating. Thus the x components of the wavevectors of  the 
i t h  wave  (regions 1 and 3) and the x component  of  the 
wavevector of  the i th  space harmonic field (region 2) must 
be the same.  That is, 

- k ,f= I . .  ,f= k , ; .  ,f 
1; 

- 
(41 1 

where klj  = k ( e , ) l / ’  and k,; = k(eIII)1/2. Evaluating  this ex- 
pression gives the “grating  equation”  for  the  backward-dif- 
fracted waves 

n, sin 8,’ = n, sin 8’ - i( X/A) sin + (42) 

and  the  forward-diffracted waves 

n3 sin 8’’ = n, sine’ - i(A/A)  sin+ (43) 

where n, and n3 are the  indices of refraction of regions 1 
and 3, respectively,  and are given by n, = (e,)’/’ and n3 = 
(elll)1/2. The angles of  diffraction  of  the propagating dif- 
fracted  orders are given by these relationships. Each i t h  
space-harmonic field inside  the  grating  produces  a  corre- 
sponding ith  f ield  in regions 1 and 3. 

B. Propagating and Evanescent Waves 

In the homogeneous  regions (1 and 3) the backward- and 
forward-diffracted waves  have  wavevectors and  magnitudes 

lIljl = lill and l E 3 ; 1  = lE31. (44) 

Knowing  the  total amplitudes and the x components of  the 
diffracted wavevectors from phase-matching  requirements, 
the z components are then  determined to be 

= [ k: -( k ,  sin8 - iKsin+) ] 2 1/2 
(45) 

and 
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= [ k: - (k2s in8  - iKsin+) 2 ] 1 / 2  . (46) 

These quantities are either  positive real (propagating wave) 
or negative  imaginary (evanescent  wave) in region 3, or 
negative  real  (propagating wave)  or positive  imaginary 
(evanescent wave) in region 1. Whether  the i th  field in 
region 1 or 3 is propagating or cut off may be visualized as 
shown  in Fig. 5 .  The  wavevectors in regions 1 and 3 have 

i 

Fig. 5. Wavevector diagram showing phase matching of 
space-harmonic components of total field inside the grating 
with propagating backward-diffracted orders (region 1) and 
forward-diffracted orders  (region 3). For - 1  < i < +4, prop- 
agating diffracted orders  exist,  whereas for i < - 2  and i > 
+5 ,  the waves  are  evanescent  (cut off) outside the grating. 

magnitudes k, and k , ,  respectively. Semicircles with these 
radii are shown in the  figure. The allowed wavevectors in 
these  regions  must be phased matched to the  boundary 
components of  the space-harmonic  component  fields in- 
side the grating. This is  shown  by  the  horizontal dashed 
lines in the figure. For the  incident wave of wavevector El 
and  the slanted  grating with grating  vector K, the i = -1 to 
+ 4  waves exist as propagating  diffracted orders in regions 1 
and 3.  For i Q -2  and i 2 +5, the waves  are  evanescent 
(cutoff). 

C. Bragg Condition 

The mth Bragg condition occurs if the  wavelength  and 
angle of  the  incident wave satisfy the  relationship m = 
~ A ( E ~ ) ~ / ~ C O S ( ~ ’  - +) where rn is an integer. For this case, 
the  diffraction  efficiency is generally  (but not always) maxi- 
mized  for  the i th  diffracted order, where i = m. For the 
case shown  in Fig. 3, the  incidence is near the  second Bragg 
angle.  Therefore, m = 2. In this  situation, i t  is expected  that 
the i = +2 diffracted order will be  maximized  compared to 
other possible angles of  the  incident wave.  The m = 2 
Bragg condition may be  visualized in terms of  the vector 
Floquet  conditions as the magnitude  of the i = +2 wave- 
vector  being  equal to the  magnitude  of  the i = 0 (undif- 
fracted)  wavevector, )u21 = IuoI. Thus C2 and So form an 

isosceles triangle.  Alternatively,  the i = + 2 inhomogeneous 
plane wave constructed with the  vector  Floquet condition 
has i ts “wavelength”  equal to A / ( E ~ ) ’ / ~ ,  the  wavelength  of 
the  incident wave in region  2 in the absence of  grating 
modulation. This view  of  the Bragg condition is intuitively 
appealing.  Further  illustration of this view is given in Fig. 6. 
Fig. qa) shows first Bragg incidence ( m  = 1) for an incident 
short  wavelength. Fig. qb) illustrates the same  case for a 
longer  wavelength  and  the  corresponding larger  Bragg  an- 
gle. Fig. qc) depicts  second Bragg incidence ( m  = 2) for  the 
same grating. 

\ \  

(c) 
Fig. 6. Visualization of diffraction at the Bragg condition. 
(a) Incidence at  first ( r n  = 1 )  Bragg  angle  (short  wavelength). 
(b) Incidence at  first  Bragg  angle (long wavelength). (c) 
Incidence at  second ( r n  = 2) Bragg angle. 

Iv. ANALYSIS OF AMPLITUDES OF DIFFRACTED ORDERS 

A. Statespace Representation of Coupled- Wave Equations 

The  rigorous  coupled-wave  equations as given  by (33) 
represent a set of second-order  linear  differential  equations 
with constant  coefficients.  Using  the  methods  of  linear 
systems  analysis  [25] this  differential  equation  description  of 
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this  continuous system may be transformed into a state- 
space description  and a solution  obtained directly. By defin- 
ing  the state  variables as 

the  infinite set of second-order differential equations (33) 
are transformed into two infinite sets of first-order differen- 
tial  equations 

( 49) 

Equations (49) and (50)  are the state equations correspond- 
ing to the  rigorous coupled-wave equations (33).  These 
constituent state equations may be written in matrix form 
as 

r - -  

4 , - 2  

0 0 0 0 0  s, .1 

4 ,O 
0 0 0 0 0  $,-1 

0 0 0 0 0  

... 0 0 0 0 0  

0 0 0 0 0  

b-,  a 0 0 0 
a b-, a 0 0 

* *  0 a b o a  0 
0 0 a b , a  

0 0 O a b ,  

where a = -2n2q/A2, 4 = 4n2i( i  - m)/A2, and ci - 
j4r[(eo)1/2cos 8/A - icos +/A]. This equation may be rep- 
resented  concisely as S = AS where S and S are the  column 
vectors in (51) and A is the  coefficient matrix. 

B. Solution for Space- Harmonic  Components 

Since the  constituent state equations (49) and (50)  are 
homogeneous equations, they correspond to unforced state 
equations. State equations that are linear  differential equa- 
tions  with constant  coefficients such as these, may be 
solved  for  closed-form expressions for  the state  variables. In 
this case, only  the homogeneous solution is necessary as 
there are no driving terms in these equations. The homoge- 

be  determined  from  the boundary  conditions. The solution 
for  the wave  amplitudes  (the “output equation” in linear 
systems terminology) is $(I) = $, i (z ) .  The quantity w ~ , ~ ,  
is an  element  of an eigenvector and X, is an eigenvalue. 
These needed eigenvalues and eigenvectors are determined 
from  the  coefficient matrix A. Although A is an infinite 
matrix, results may be obtained in practice to an arbitrary 
level  of accuracy with a truncated matrix. Each of  the  four 
submatrices is truncated to n X n. As the integer n in- 
creases, the  calculated results rapidly converge to  the exact 
results. The quantity n corresponds to  the  total  number of 
space harmonics  retained in the analysis.  This in turn means 
that  the analysis includes n diffracted waves in region 1 and 
n diffracted waves in region 3. To put the  four submatrices 
into standard form, the integers i and m are replaced with 
the  new integers p and q that run  from 1 to n. For example, 
if  an odd number  of waves  are retained symmetrically about 
i = 0 (the  undiffracted wave) in the analysis, then p = i + 
( n  + 1)/2 and q = m + ( n  + 1)/2.  The 2n solutions may 
then  be expressed 

2 n  

s t . p ( z )  = C C Cr,gWC,p;r,qexp(’r,qz)  (53) 
r-1 q-1 

for C= 1, 2 and p = 1 to n. The  eigenvalues X,, are 

1 0 0 0 0  

0 1 0 0 0  
... 0 0 1 0 0 ~ ~  

0 0 0 1 0  

0 0 0 0 1  

c- 2 0 0 0 0  
0 c-1 0 0 0  

... 0 0 c , o o .  
0 0 o c , o  
0 0 O O C ,  

determined  by  solving  the  determinantal  equation 

IA - X,,! 0 (54) 

where I i s  the  unit matrix. The eigenvector corresponding 
to a particular eigenvalue X,, is determined by  substituting 
2n  expressions (C- 1, 2, and p = 1 to n)  for St,p of  the 
form St,p = B,,,,,exp(A,,) into  the state equation (SI), 
performing  the  indicated  differentiations, and then sol- 
ving  for each  element of  the eigenvector as w~,,.~,, = 
Bt,mr,.,/Bl,l;r,, using Cramer’s rule and  thus expressing  each 
element as a ratio  of determinants. The  eigenvalues and 
eigenvectors  for a matrix are typically  calculated  numeri- 
cally  using a computer  library program [32]. 

neous solutions are 
+ m  

C. Boundary Conditions 

S,i(z) = C Cmw,irneXP(hrnz) (52) The amplitudes  of  the  fields in regions 1 and 3 must be 
m- -m such that  the  electromagnetic boundary conditions  from 

for C= 1,2. The  coefficients C,,, are unknown constants to Maxwell’s  equations are  satisfied  at the two grating 
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boundaries (I = 0 and z = d). The fields (39) and (40) in 
regions 1 and 3 are phased matched to the field  in  the 
grating (31). Using  the phase-matching  conditions (41) and 
the  requirements on the wavevectors in regions 1 and 3 as 
given  by (45) and (a), the  total  fields in regions 1 and 3, 
(39) and (40) may  be rewritten 

= exp { -j[ k,(sinO’x +  COS^'^)]} 
00 

+ R,exp[-j((k2sin8-  iKsin+)x 
I -  - m  

-[&: - ( k 2 s i n 8 -   i K ~ i n + ) ~ ] l / ~ z ) ]  (55) 

and 

E3 = Texp(  - j ( (k2sin8 - iKsin+)x 
00 

I -  - m  

+ [ k :  -(&,sine-  iKsin+)2]1/2(z- 4)). (56) 

Electromagnetic  boundary  conditions  require  that the 
tangential  electric  and  tangential  magnetic  fields be con- 
tinuous across the two boundaries (z = 0 and z = d). For 
the TE polarization treated here, the electric field  only has a 
component in the y direction and so i t  is the  tangential 
electric  field  directly. The magnetic field intensity,  however, 
must’be  obtained  through the  Maxwell  equation v X E =  
- aB/at. The  tangential  component  of H is in the  x  direc- 
t ion and is given by H, = (- j /wp)aE,,/Bz. For each  value 
of i ,  the  four  quantities to be matched and the  resulting 
boundary  conditions are as follows: 

1) Tangential E at z = 0: 

a;, + R; = S , ( O ) .  (57) 

2)  Tangential H at z = 0: 

j[ k: -( k ,  sin8 - i K ~ i n + ) ~ ] ’ / ~ (  Ri  - 4,) 

I-- dsi(o) j(k,cos8 - iKcos+)S,(O). (58) 
dz 

3) Tangential E at z = d 
T;= $(d)exp[- j(k2cos8 - iKcos+)d]. (59) 

4) Tangential H at z = d 

- j [ k :  - (&,s ine-  iKsin+)]  2 1/2 T, 

E [a - j ( k 2 c o s 8  - iKcos+)$(d) 
dz 1 

D. Solution  for  Diffracted  Amplitudes 

If n values of i are retained in the analysis, then there will 
be n forward-diffracted waves (n values of 7J and n back- 
ward-diffracted waves (n values of R i ) .  Correspondingly, 
there will  be  2n  unknown values of C,. This is because the 
coefficient  matrix in (51) is a 2n X 2n matrix  and  therefore 
has 2n  eigenvalues  and  thus  there are 2n  unknown values 
of C,. Also this may be viewed as being due to the n 
coupled-wave equations, each being a second-order dif- 
ferential  equation,  and  thus  there are 2n roots  or  eigenval- 

ues and 2n  unknown constants C, to  be  determined  from 
the  boundary  conditions.  Therefore,  the  total  number of 
unknowns is  4n.  Substituting S,(z), as given by (45) and 
(50), into  the equations  for  the  boundary  conditions 
(57)-(60) produces  4n linear  equations  containing  the 4n 
unknowns.  An  efficient procedure to solve  these equations 
is  t o  eliminate R ;  and T from these equations  and to solve 
the  resulting 2n  equations  for  the 2n values of C,,, using a 
technique such as Gauss elimination  with  the maximum 
pivot strategy [33]. Then the n values of R;  and n values of 
T may be  determined  from (57)  and (59), respectively. If k,; 
and k,; are real, then R;  and T, are the  amplitudes of 
propagating  diffracted waves. If k,,  and k,, are imaginary, 
then R i  and are the  boundary  amplitudes  of evanescent 
waves. 

E. Diffraction Efficiency 

Having  calculated  the  field  amplitudes R, and q, the 
diffraction  problem is essentially solved. However,  the 
quantity  commonly measured in grating diffraction experi- 
ments i s  the  diffraction efficiency. For any given  propa- 
gating  diffracted order i, the  diffraction  efficiency is the 
diffracted  power  divided by the incident  power. Experimen- 
tally, the  diffraction  efficiency is clearly  defined due to the 
finite extent of the  light beams involved.  Analytically, the 
incident and diffracted waves  have all been  treated as 
infinite plane waves. However,  due to  the extremely large 
widths of these beams in comparison to a  wavelength  of 
the  light,  the  plane wave model is very  accurate. Neverthe- 
less, in making  power measurements, the beams  are clearly 
not  infinite.  Diffracted  power is measured in the  laboratory 
on  the  diffracted beams after  they have propagated away 
from  the  grating and have become  spatially separated. If all 
of  the  diffracted waves were infinite plane waves, they 
would all be present at  each point  in space and inter- 
ference  effects would occur,  complicating  the  interpreta- 
‘tion  of  diffraction efficiency. Therefore, the  diffraction ef- 
ficiency here is defined  corresponding to the  experimental 
case of spatially separated  beams and  thus  interference 
effects are neglected. This corresponds to using  the spa- 
tially averaged Poynting  vector. The neglect  of  interference 
effects  and  the use of  the  spatially averaged Poynting  vector 
have been discussed in detail  by Russell  [34]. 

The diffraction  efficiency for the experimental case is 
defined as diffracted  power  of a particular  order  divided  by 
the  input  power. In the above formulation,  the  incident 
plane wave amplitude was normalized to unity. Thus the 
diffraction  efficiencies in regions 1 and 3 are 

DEli = Re { ( E , ;  f)/( Elo . f)} R,Rt  

= Re 1 - sine’ - iXs in+/ (~ , ) ’ /~A]  ) [ 
2 1/2  

/cos 8 ’} Ri  R t  

and 

DE,; = Re { ( E , ,  . f)/( El . 2 ) )  TT;* 

= Re{{(ell,/e,) -[sine’ - i~s in+ / (e , )1 /2h ]~ )~ ’~  

/cos 8 f }  s;T;*. (62) 
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The  real  part of  the  ratio  of  the propagation  constants 
occurs when  the time-average power-flow density is ob- 
tained  by  taking  the real part of  the complex  Poynting 
vector. For an  unslanted  grating (#I - n/2) with  the same 
medium  on  both sides (e, = elll), the real part  of the  ratio  of 
the  propagation constants is just  the usual ratio  of  the 
cosine of  the  diffraction angle  for  the i th  diffracted wave to 
the cosine of  the incidence angle. 

Using  the spatially averaged Poynting  vector  definitions 
of  diffraction  efficiency [(61) and (62)], power is conserved 
among  the  propagating  diffracted orders.  This is true regard- 
less of the  number  of orders ( i )  retained  and the inaccu- 
racies in the  diffracted  amplitudes  that  result  from  the 
truncation. Thus for  a phase grating  the sum of all of  the 
efficiencies  for  the  propagating waves is unity. That is, 

( DE,; + DE,;) = 1. ( 63) 
i 

F. Example Results 

Using  the approach  described in the  preceding sections, 
i t  is  possible to calculate  rigorously  the  fundamental  and 
higher  order  forward- and backward-diffracted wave ampli- 
tudes  and  diffraction efficiencies. Example diffraction  ef- 
ficiency results  for  incidence at the first Bragg angle ( m  = 1) 
are shown in Fig. 7 for  a  “transmission”  grating  (fundamen- 
tal  diffracted order  that satisfies the Bragg condition is 
forward  diffracted)  and in Fig. 8 for  a  “reflection”  grating 
(fundamental  diffracted  order  that satisfies the Bragg condi- 
t ion is backward  diffracted). A more  detailed  discussion  of 
the  terminology “transmission”  and  “reflection” gratings is 
given in Section V-I. Diffraction efficiencies  for both TE and 
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Fig. 7. Rigorously  calculated diffraction efficiencies of for- 
ward-diffracted waves  for a “transmission” dielectric + = 
120’ slanted grating for both TE and TM polarizations. The 
average permittivity inside  and  outside the grating is the 
same (e, = eo  = el,, = 2.25).  The  grating modulation is el/eo 
= 0.1x) and the angle  of  incidence 8’  = 4 2 O  is  at the first 
Bragg angle ( m  = 1). The diffraction efficiencies  for all dif- 
fracted waves not shown are  less than 1 percent. 
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Fig. 8. Rigorously  calculated diffraction efficiencies  of for- 
ward- and backward-diffracted waves  for a “reflection” di- 
electric + = 150’  slanted  grating  for both TE and TM polari- 
zations. The average permittivity inside  and  outside the 
grating is the same (el = eo = ell, = 2.25).  The  grating mod- 
ulation is 0.330 and the angle  of incidence 8’  = 20’ is  at the 
first  Bragg angle ( m  = 1). The diffraction efficiencies  for all 
diffracted waves not shown are  less than 1 percent. 

TM polarization are presented. For simplicity,  the average 
permittivity is  the same in all 3 regions ( E ,  = E,, = Ell, = 2.25). 

For the “transmission”  grating  shown in Fig. 7, the grating 
slant  angle is + = 120’ (angle from z axis to grating  vector). 
The  angle of  incidence is 0’  = 42’ and  this is the first Bragg 
angle ( m  = 1). The corresponding i = +I diffracted  order 
is in region 3 and thus is a  forward-diffracted  order  (“trans- 
mission”  grating). The grating modulation is E , / E ~  = 0.120. 
In Fig. 7, the powers in the i = 0, + I ,  and +2 forward-dif- 
fracted  orders are shown. The i d -1 and i 2 +5 fields in 
both regions 1 and 3 are evanescent (cut off). The i = + 3  
and +4 forward-diffracted waves and all of  the  backward- 
diffracted waves  have efficiencies of less than 1 percent and 
are not  shown  on  the graph. In the  rigorous  coupled-wave 
analysis performed,  the  space-harmonic  fields  from i = - 4  
to i = + 5  were  retained to achieve convergence in the 
normalized  field amplitudes to one  part in IO6.  Conserva- 
tion  of  power among  the beams (63) was accurate to one 
part in IO1* independently  of  the  number  of orders retained 
in the analysis. As the thickness d of  the grating is in- 
creased, the  power  in  the TM-polarized i = + I  and +2 
diffracted waves is initially less than  that  for  the  TE-polarized 
diffracted waves  because of  the  reduced coupling for  the 
TM compared to the TE polarization. For the  appropriate 
thickness, the i = + I  diffraction  efficiency approaches 100 
percent  for both polarizations. 

For the  “reflection” grating  shown in Fig. 8, the grating 
slant  angle is #I = 150’ and  the angle of incidence is 8’ = 
20’. The incident wave is  thus at the first Bragg angle 
( m  = 1). The  corresponding i = +I  diffracted  order  that 
satisfies the Bragg condition is in region 1 and  thus is a 
backward-diffracted  order  (”reflection” grating).  The grat- 
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ing modulation is E ~ / E ~  = 0.330. In Fig. 8, the  powers in the 
i = -1,O, and + I  forward-diffracted orders and  the i = + I  
backward-diffracted orders are shown. The i < - 3  and 
i 2 + 2  fields in  both regions 1 and 3 are evanescent (cut 
off). The i = + 2  forward-diffracted wave  and the i = -2, 
-1, and 0 backward-diffracted waves  have efficiencies  of 
less than 1 percent  and are not  shown on the  graph.  Again 
the i = - 4  through i = +5 fields were  retained in  the 
rigorous  coupled-wave analysis and  the same level  of accu- 
racy  was obtained as before. With increasing  grating thick- 
ness the  diffraction  efficiency for TM polarization again lags 
that  for  the TE polarization  due to the  reduced coupling  in 
the  TM case. The i = +I  backward  (reflected) diffraction 
efficiencies increase approximately  monotonically to about 
85 percent.  The i = + I  forward-  (transmitted)  diffracted 
orders  (that do  not satisfy the Bragg condition) are observed 
to  be over 30 percent  for some  thicknesses.  The amplitudes 
of  the i = + I  forward-  and  backward-diffracted waves  can- 
not  both  be calculated if a  first-order  theory  (neglecting 
second  derivatives  of  the field amplitudes) is  used. In these 
theories, the i = + I  forward-diffracted  amplitudes would 
erroneously  be set equal to zero.  The  various approximate 
theories  and  their  implications are discussed in the  next 
section. 

V. APPROXIMATE DIFFRACTION THEORIES 

A.  Introduction 

The vast majority  of  the papers on grating diffraction 
theory have dealt with approximate  theories. There  are a 
large number  of possible  approximations  and  assumptions 
that  can  be  made. These generally  lead to enormous  sim- 
plification in the analyses. In some cases, these simplifica- 
tions  allow  analytic solutions to  be obtained. A number of 
famous  analytic expressions occur  for special limiting cases. 

In this  section,  a large number  of  planar  grating  diffrac- 
t ion theories are classified in terms of  the  fundamental 
assumptions: 1) neglect  of  higher  order waves, 2) neglect  of 
second  derivatives of  the  field amplitudes, 3)- neglect of 
boundary  effects, 4) neglect  of  dephasing from  the Bragg 
condition, 5) the small grating modulation approximation, 
and 6) the  short-wavelength  approximation. In  addition  to 
these  assumptions,  a  number  of  other  approximations such 
as normal  incidence and unslanted  gratings may  also be 
made.  However, in this  section, only  the fundamental as- 
sumptions  enumerated above are treated. Thus all of  the 
approximate  theories are presented in their general form 
allowing  for arbitrary angle of  incidence (e’), arbitrary grat- 
ing slant  angle (+), and  arbitrary  grating period (A) .  The 
various further reductions can then be easily formulated, if 
desired, from these  general forms  of  the  approximate theo- 
ries. 

In region 1 of Fig. 4, backward-traveling waves  exist. In 
general, these waves  are produced  both  by  diffraction  from 
within  the grating  volume  and  by  boundary  effects  (diffrac- 
t ion and reflection  from  the  periodic boundaries at z = 0 
and z = d). These physical processes produce a spectrum of 
plane waves traveling  back  into  region 1 (z < 0). For the 
general  planar  grating  of Fig. 4, neglecting  the second 
derivatives of  the  field amplitudes in the wave equation 
reduces the  number  of waves in the analysis from 2n  
to n. The bulk diffracted orders are retained  and  the 
boundary-produced waves  are eliminated. Thus for  a  planar 

grating, the  neglect  of second  derivatives  and  the  neglect  of 
boundary effects are absolutely linked together.  When these 
assumptions are  made, the  resulting  first-order  coupled- 
wave analyses  have the  amplitude  of  the  diffracted waves 
calculated inside the  modulated  region.  Then  the  am- 
plitudes T, of  the ’forward-diffracted output waves  are ob- 
tained (approximately)  by  arguing  that  they are equal to 
S,(d), the space harmonic field  amplitude at a distance d 
from  the  input surface z = 0. Likewise,  for  those values of i 
that represent  backward-diffracted waves, the  amplitudes 
R j  are estimated to be S,(O). However, in  the physical 
problem  being analyzed, there are no boundaries at z = 0 
and z = d. These  planes just represent reference  locations. 
There are no  reflected or diffracted waves resulting  from 
these  planes and thus  there are no physical  boundaries at 
these  locations! Thus the assumptions of  neglecting  the 
second  derivatives  of field amplitudes and neglecting 
boundary  effects have transformed  the  problem into  a 
filled-space  problem (a grating filling all space) with imag- 
inary  boundaries at z = 0 and z = d that are used only  to 
obtain an approximate  mathematical formulation  of  the 
problem. The  first-order  theory approaches are not capable 
of  solving  the  problem  of general planar slab grating 
bounded  by  two media  different  from  the  grating  medium. 
These two  linked assumptions, therefore,  unmistakably im- 
ply  the filled-space  problem. After the  filled-space  problem 
is solved, then i t  is assumed that  the  grating  terminates at 
z = 0 and z = d and, as a result,  that T, = S,(d) for the 
forward-diffracted waves and R j  = $(O) for  the  backward- 
diffracted waves.  This is  obviously only an approximation to 
the actual situation: 

Another consequence  of  neglecting  second  derivatives is 
the  exclusion  of some propagating waves. In first-order 
theory, only  half of the waves  can be  retained - in  the 
analysis.  That is, only one set of i values (as opposed to  two 
sets) is included. For a general slanted  grating, some of 
these waves  may be  forward-diffracted  and some of  them 
may be  backward-diffracted. From (30), i f  k, ,  - iK cos+ is  
positive,  the wave is forward-diffracted  and if negative, it i s  
backward-diffracted. For forward-diffracted waves, the 
boundary  condition used  must  be S,(O) = 0. For backward- 
diffracted waves, the  appropriate  boundary condition is 
$(d) = 0. The  second set of waves  (set of i values) is phase 
matched  to these  waves.  This  second  set of waves is, of 
course,  neglected in any first-order analysis. For the exam- 
ple  depicted in Fig. 5 ,  the  backward-diffracted waves for 
-1 < i < + 4  would all be  neglected in first-order  theory. 
The diffraction efficiencies  of these backward-diffracted 
waves are arbitrarily set equal to zero. For the case of a 
slanted-fringe  grating,  the  power in the  neglected phase- 
matched waves has been  shown to be  very significant in 
some cases [8]. Thus the errors introduced  by  using  first- 
order  theory can be  particularly  significant  for slant  angles 
away from + = 0 and + = ~ / 2 .  

Still  another  consequence  of  neglecting second deriva- 
tives is the  exclusion  of evanescent  waves from  the analysis. 
In first-order  theory,  the  filled-space  nature  of  the  grating 
being analyzed, causes one  complete set of  diffracted orders 
( i )  to exist inside  the grating,  since all of  the S,(z)’s exist 
there. These calculated values of $(z)  may  have wavevec- 
tors with components  either in  the + z  or -z  directions. 
However,  many  of  the wavevectors of  the S,(z)’s cannot  be 
phased  matched to plane waves outside  of the grating 
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PLANAR GRATING MFFRACTIW THEORY  HIERARCHY 

Fig. 9. interrelationships  between various planar grating diffraction theories in terms of 
fundamental  approximations. 

(regions 1 and 3). This  may be seen from Fig.  5.  For this 
example, the values -I < i 4 + 4  correspond to propagat- 
ing  plane waves in regions 1 and 3.  The  values i 4 -2 and 
i 2 +5 correspond to evanescent  waves in region 1 and 3. 
However, in first-order analysis (without second  derivatives) 
all values of  i are treated as representing propagating waves. 
This is obviously  not true.  Nevertheless, diffraction  ef- 
ficiencies  can  be calculated for these  evanescent  waves as 
though they  were propagating. These predicted  efficiencies 
are clearly incorrect since they  should be zero. If  the  grating 
period is much larger than a wavelength ( A  > A), then 
there will be a large number of  propagating waves and the 
effect  of  excluding evanescent  waves would be reduced, 

Therefore, i t  is concluded  that all first-order theories 
inherently  contain: 1) the approximate method  for calculat- 
ing  diffracted amplitudes described above, 2) neglect of 
phase-matched diffracted waves, and 3) neglect of evanes- 
cent waves. 

A depiction  of various  planar grating diifraction theories 
and their  interrelationships in terms of fundamental as- 
sumptions is shown in Fig. 9. Most  of  the  literature on 
planar  grating  diffraction theory can be connected with a 
particular  block in this diagram. 

B. Two-Wave  Modal Theory 

If  only  the zero- and first-order waves (i = 0,l) are re- 
tained  and  all  higher order waves  are  neglected, a two-wave 
regime is  being assumed.  There  are actually a total  of  four 
waves in this analysis  since there are two more phases 
matched to these. Modal  theory solutions in the  two-wave 
regime were  first  obtained  by Bergstein and Kermisch [I41 
with more  recent results being  contributed  by Lederer and 
Langbein [35] and Russell  [21]. In this approach, the stan- 
dard modal expansion (21) is used to represent the fields in 

the grating. However, in the  two-wave case only  the first 
two Fourier components ( i  = 0,I) of  the  periodic  function 
mrn(F) are retained in the analysis (20). Comparison of 
two-wave  modal  theory  with exact rigorous theory [8] has 
shown that  this  can  be  valid near  Bragg incidence i n  reflec- 
tion gratings (backward-diffracted waves dominate). Com- 
parison  data are shown in [8, fig. 91. 

C. Two-  Wave Secondorder Coupled Wave  Theory 

Two-wave second-order coupled-wave  theory and 
two-wave  modal  theory represent exactly the same ap- 
proximation.  Both representations include second deriva- 
tives of  field amplitudes and boundary effects. Both the- 
ories  retain  only  the  transmitted wave ( i  = 0) and the 
fundamental  diffracted wave ( i  = I) and  their phased 
matched waves and neglect higher  order waves.  This ap- 
proximate  theory has been used by  Kong [6]. Additional 
approximations in this  theory have been made by Kessler 
and Kowarschik [36]-[38] and  by Jaaskelainen et al. [39].  The 
two governing equations may be  obtained  directly  from  the 
rigorous  coi.pled-wave equations (33) by keeping only terms 
in So and S, and  neglecting all other  field amplitudes. The 
resulting two equations from (33)  are 

I &So(.) 2(~,)~’~cosO dS,(z)  E, 

2s’ dz2 J r A  dz ~2 
+ - % ( z )  = 0 

(64) 

Kong [6] has presented analytical solutions  for  the  two-wave 
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second-order  coupled-wave  theory expressed in the  form  of 
two  transmission and two reflection  coefficients  for  the 
unslanted-fringe planar slab  grating. 

D. Multiwave  Coupled Wave  Theory 

Multiwave first-order  coupled-wave  theory may  also be 
developed  directly  from  the rigorous coupled-wave equa- 
tions (33). In this approach, higher order waves  are retained 
(hence  “multiwave”). The second derivatives of  the  field 
amplitudes (and  thus  boundary effects) are neglected. The 
resulting  multiwave coupled-wave  equations from (33) are 

For the case of  the unslanted transmission grating (+ = r/2) 
and normal  incidence ( 8  = 0,rn = 0), the  multiwave COU- 

pled-wave equations  first appeared in a  1936  paper by 
Raman and  Nath [40] for a sinusoidal (rather than 
cosinusoidal) grating. This  paper (401  was the  fourth in a 
series of  five papers by Raman and  Nath [40]-[44] on  the 
diffraction  of  light  by sound waves.  The first  three papers 
[41]-[43] form  the basis of  the “Raman-Nath theory” de- 
scribed  below. This simplified  multiwave coupled-wave 
equation was referred to by  Nath [45] as being  due to Nath 
[ 4 6 ] .  in this 1936 paper, Nath [46] obtained a  very slowly 
converging series solution  for  the  multiwave coupled-wave 
difference-differential equations. An alternative series solu- 
t ion was later  presented by Berry  [47l.  This  series solution is 
in terms of Bessel functions and is also  very slowly converg- 
ing.  Numerical  solutions  of  the  multiwave coupled-wave 
equations (also for  acoustooptic  interaction studies)  have 
been  obtained  by  Klein  and Cook [3]. 

The multiwave coupled-wave  equations have been gen- 
eralized to  include loss and gratings of arbitrary non- 
sinusoidal profile  by Magnusson and Gaylord [7]. In that 
paper, numerical  solutions  were obtained  for  unslanted 
transmission gratings using a Runge-Kutta algorithm  to 
solve  the  first-order system of coupled-wave equations. 
Diffraction  efficiency results for sinusoidal,  square-wave, 
and  sawtooth phase  gratings  at  first,  second, and  third 
Bragg incidence are presented there. 

Comparison of  diffraction  efficiency results from  multi- 
wave  first-order  coupled-wave  theory with exact rigorous 
theory has shown that  this  theory  without second deriva- 
tives gives good results in transmission gratings (forward- 
diffraction waves dominate) when  the  grating  modulation is 
small. Comparison data are shown in [8, figs.  7 and 81. 

E. Two- Wave First-Order Coupled Wave  Theory 

If higher  order waves (i # 0,l) and second derivatives of 
field  amplitudes (and thus boundary effects)  are both ne- 
glected, the  rigorous coupled-wave equations (33) reduce 
to two-wave  first-order coupled-wave theory. For general 
slanted gratings at arbitrary incidence  the two governing 
equations are 

cos9 - 
A ( e,)”’ 

Two-wave  first-order  coupled-wave  theory was applied to 
acoustooptics by Phariseau [2]. It was first applied to ho- 
lography  by  Kogelnik [4]. His  thorough 1969  paper  [4] is 
now very widely referenced. As a  result, this  theory is 
commonly  called “Kogelnik theory” and  this is noted in Fig. 
9. The substantial recognition received by Kogelnik‘s  paper 
[4] is due in part to the comprehensive coverage of 1) 
phase, absorption, and mixed gratings; 2) on-Bragg and 
off-Bragg incidence; 3) pure transmission (+ = n/2), pure 
reflection (+ = 0), and general slanted fringe gratings; and 
4) both TE-mode and TM-mode  polarization. 

From (30), i f  k ,  cos8 - Kcos+ is positive, the single 
diffracted wave in this analysis is forward-diffracted  and  the 
grating is called a  transmission grating. If k ,  cos 8 - Kcos+ 
is negative, the single diffracted wave is backward-dif- 
fracted  and  the  grating is called a reflection grating. For the 
forward-diffracted case, the boundary condition used is 
&(O) = 0. in the  backward-diffracted case, the boundary 
condition used is &(d) = 0. Due  to  the first-order nature of 
this theory, some phase-matched waves will be neglected. 
In the transmission grating case, for example, the two 
backward-traveling waves (that are  phase matched to the 
zero-order  transmitted wave and the fundamental dif- 
fracted wave)  are neglected. 

For the special case of a phase grating with unslanted 
fringes (+ = n/2) and incidence at the first Bragg angle 
(rn 5 I), the first-order diffracted  amplitude  from (67) and 
(68) is  given  by (21, [4] 

where z is  the distance into  the  grating at which  the 
amplitude is determined. This well-known expression pre- 
dicts a diffraction  efficiency (D€ = $(d)y(d) for  this 
case) that is sinusoidal in modulation and has a maximum 
value of  1 0 0  percent. Although the  two-wave first-order 
coupled-wave  theory neglects higher order diffracted waves 
and second  derivations of  field amplitudes (and thus also 
boundary effects), it nevertheless contains many of  the 
basic features of the  diffraction process in an extended 
grating. This theory has been successfully extended to 
numerous  other cases including  finite beams [a], [49], finite 
and nonplanar gratings [50]-[52], and  attenuated gratings 
[38],  [53]-[55]. When  grating  diffraction is described by  the 
two-wave result, (69), i t  is often referred to  as “Bragg 
regime” diffraction.  Incidence at the Bragg angle is essential 
in “Bragg regime” diffraction whereas in “Raman-Nath 
regime” diffraction described below  it is not. Criteria for 
“Bragg regime” behavior are given in [56] and [57]. 

F. Optical Path Method 

The optical  path  length  method was first  applied to 
grating  diffraction  by Raman and Nath [41],  [42].  Later it was 
used by  Klein  and Cook [3] and Syms and Solymar (581 to 
treat  slanted  and  unslanted lossless  gratings for a  general 
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angle of incidence. In this approach, the  permittivity  mod- 
ulation E, (and  thus  the refractive index  modulation) is  
assumed to be small. As a  consequence, i t  is postulated  that 
the small variation of refractive index in the  grating does 
not alter the straight-line  directions  of  the rays but  that it 
does alter the phase of  the  light. Thus the  optical  path 
length  (index  of  refraction  multiplied  by  the  propagation 
distance) varies for  different  directions through the grating. 
In addition, i t  is  assumed that  the wavelength of  the  light is 
very small compared to a period  of  the  grating (X A). 
This is equivalent to assuming that  the waves inside the 
grating are homogeneous  plane waves on a local basis. 
Using X/A 1 ,  the  multiwave coupled-wave equations 
(66) reduce to  

+x[S,+l(z) + $ - , ( z ) ]  = 0. (70) 

These optical  path  method  differential equations allow  for 
a general angle of incidence and grating slant  angle. How- 
ever, the  grating  modulation must be small. 

These equations have been generalized for a variety of 
grating  profiles  by Syms and Solymar [58].  For a sinusoidal 
grating  with  unslanted fringes, (70) may be solved to  yield 

si( z )  = ( - j) ‘ exp (jinz tan e/A) I, 
AE, sin ( nz tan e/A) 

X(E,)’/’sin@ 1 
(77 1 

subject to  the boundary conditions So(0) = 1 and S,(O) = 0 
( i  # 0) where /; is an integer-order Bessel function  of  the 
first  kind. I t  predicts  maximum values of DE,, = 33.8 per- 
cent, DE, = 23.6 percent, DE+3 = 18.8  percent, and so 
forth. 

G. Raman-Nath Theory 

The theory  of Raman and Nath [41]-[44]  may also be 
obtained  directly  from  the rigorous coupled-wave equa- 
tions.  If second derivatives of  the  field amplitudes and 
dephasing from  the Bragg condition are both neglected; the 
rigorous  coupled-wave equations (33) reduce to the 
Raman-Nath diffraction equations 

.- ‘tZz’ + $[$+l(z) + $-1(~) ]=0 (72) 

where a general angle of  incidence and  grating slant  angle 
have been retained. The $ term in (33) has been neglected. 
For the i th  diffracted order, this term is zero for  the mth 
Bragg incidence (34) where i = m. For an arbitrary angle of 
incidence, each diffracted order will be dephased by vary- 
ing amounts from their  corresponding Bragg conditions. 
This, in turn, reduces the synchronism between  the input 
wave and  that  diffracted order. The result is less coupling 
from  the  input  to that ‘order.  The  Raman-Nath theory 
therefore, treats all  diffracted orders as though  the Bragg 
conditions  for  all  of  them were simultaneously satisfied. 

For the important case of an unslanted fringe transmis- 
sion grating (+ = n/2), (72) takes the  form  of a recurrence 

relation satisfied by Bessel functions. The solution is  

for  boundary  conditions So(O) = 1 and $(O) = 0 (i # 0). 
Equation (73) is the famous Bessel function expression of 
Raman and  Nath.  When  grating  diffracting behavior may be 
approximated  by (73), i t  is referred to as “Raman-Nath 
regime”  diffraction. This  result, (73),  has been extensively 
used to predict  the  light  intensities  diffracted  by sound 
waves [47l, [59]. Criteria for “Raman-Nath regime” diffrac- 
tion are given in [57] and [60]. Raman-Nath theory has been 
extended to  describe nonsinusoidal phase gratings [61]-[63]. 

H. Amplitude Transmittance  Theory 

For  gratings, the amplitude transmittance approach is 
closely  related to  Raman-Nath diffraction theory. The am- 
plitude transmittance approach is widely used in optics [MI, 
[65] and may be applied to slabs, lenses,  apertures, and 
general  two-dimensional objects as well as gratings.  The 
amplitude  transmittance is defined as the  ratio  of  the  field 
amplitude over the  output  plane to the  field  amplitude 
incident on the input plane.  The amplitude transmittance 
function in general is complex. I t  may be applied to gratings 
wi th unslanted fringes. Both  amplitude gratings [MI-[68] 
and phase gratings [62]-[67]  have been treated in the  litera- 
ture  using  the  amplitude transmittance approach. 

For  a  phase grating with  periodicity in the x direction, 
the  amplitude transmittance function is  

( 74) 

where z is  the grating thickness and n(x) = [ E ( X ) ] ~ / ~  is the 
periodic  refractive index. Since the transmittance function is  
also periodic in x, it may be expanded in a complex Fourier 
series. Further, because the exponentials in this series  are in 
the  form  of  an expansion of  the  diffracted  plane waves, 
then  the Fourier coefficients are the  diffracted wave ampli- 
tudes. The Fourier series expansion may thus  be  written 

T(X,Z) = C $ ( z ) e x p ( j i ~ x )  (75) 

where $ represents the amplitude of  the ith diffracted 
order. By definition,  the  coefficients  of  the Fourier  series 
may be calculated  from 

I 

( 76) 

Thus the  diffracted amplitudes may be  determined directly, 
knowing &(X), by integrating (76). Results for sinusoidal, 
square-wave, sawtooth, triangular, and rectangular refrac- 
tive-index  profiles are given in [62]. 

For the  unslanted-fringe (co)sinusoidal-permittivity trans- 
mission grating, the corresponding index of  refraction is  

n( x) = [e( = ( E ~  + E, cos Kx)”’  (77) 

which may be expanded in a  Fourier cosine series as 

[ E (  = [e(  x>]’o/’ + [e( x ) ] y ’  COS (hKx) (78) 
m 

h-1 
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with Fourier  harmonic  amplitudes  given  by 

The average value  of  the  refractive  index may be expressed 
concisely as 

no( x )  = [ E (  x)]; / ’  = (2/W)(E, + El)1/2E(S,42) (80) 
where E({,n/2) is the  complete  elliptic  integral  of  the 
second kind and { ~ E , / ( E ~  + E,). Clearly, the case of a 
sinusoidal  permittivity (or dielectric  constant)  being  treated 
throughout this paper is  not  the same as a sinusoidal 
refractive-index  grating. The index of  reflection correspond- 
ing  to sinusoidal permittivity has higher spatial frequency 
harmonics (h > 1) in addition  to  a fundamental  sinusoidal 
component (h = 1) as represented  by (78). However,  for 
the case of  sufficiently small  modulation, a sinusoidal  per- 
mittivity produces  nearly a sinusoidal  index of refraction. In 
the  limit  of small modulation (E, approaches zero),  (79) and 
(80) yield 

[ E (  x)]; / ’  = Eo 

[ E (  X ) ] : / *  = ~,/2( E,)’” (82) 

This analysis is important in that it  now allows the 
Raman-Nath  theory  and  amplitude  transmittance  theory to 
be  interrelated. The result is that  although (76)  was ob- 
tained  using  the  amplitude transmittance approach, i t  is 
also a  solution  of  the Raman-Nath difference-differential 
equation (72) for unslanted gratings in the  limit  of small 
modulation. This  may  be shown  by  direct  substitution  of Si 
as given  by (76) into the Raman-Nath diffraction  equation 
(72). Thus for a cosinusoidal  refractive-index  profile,  the 
integral (76) when evaluated gives the Bessel function result 
(73). This  may be accomplished  using  the identity 

+a 

exp(-jbcosa)  (-j)‘I;(b)exp(jia) ( 8 4 )  
i -  -a 

and  the  orthogonality relationship 

exp(jCKx)  exp( - j i K x )  dx = 8,; (85) 
1 A  

where is the Kronecker  delta. Therefore, as depicted in 
Fig. 9, i t  has been  shown that Raman-Nath theory  and 
amplitude transmittance  theory are equivalent in the  limit 
of small  grating  modulation. This is true in general for 
unslanted  gratings regardless of  the  grating profile (square- 
wave, sawtooth, etc.).  Likewise, the  optical  path  method 
reduces to  the amplitude  transmittance  theory  for angles of 
incidence  that are small with respect to the  grating  fringes. 

1. Validity of Approximate Theories 

In general, both backward-diffracted  orders and forward- 
diffracted orders are produced  when a wave is  incident 
upon a  grating. This tends to make the  terminology  “reflec- 
tion”  grating and  “transmission”  grating seem imprecise, 
since  the  grating both “reflects”  and  “transmits”  diffracted 
orders.  However,  the distinction  between  reflection and 
transmission  gratings can  be quantified. The diffracted  order 
( i )  that  satisfies  (or most nearly satisfies) the Bragg condi- 

t ion (34) is used to determine  whether  the  grating is acting 
as a  reflection grating or a transmission  grating. The Bragg 
condition represents, on a local basis, the  condition for 
constructive  interference  of  the  individual  contributions to 
a  diffracted  wavefront.  When  the Bragg condition is  satis- 
fied,  the  diffracted wave  may be visualized as having  equal 
angles  of  incidence  and  diffraction (or “reflection”) with 
respect to  the grating  fringes. If the  diffracted  order  whose 
integer  value  of i is equal to (or most  nearly  equal  to)  the 
value of m calculated  from  the Bragg condition i s  in region 
1, the  grating is exhibiting  reflection  grating  behavior.  Simi- 
larly, i f  the wave  that satisfies  (or most  nearly satisfies) the 
Bragg condition is in region 3, the  grating is exhibiting 
transmission  grating  behavior.  Obviously, a single  grating 
might act as reflection grating  for  one angle of  incidence 
and as a transmission  grating  for  another angle of  inci- 
dence. 

For the  basic  planar  grating case, a comparison  of  diffrac- 
tion  efficiency results from exact rigorous  theory  and from 
approximate  theories has been made in [8] for  incident TE 
polarization and in [29] for  incident T M  polarization. This 
has been  done for  a series of angles of  incidence  and slant 
angles so that both reflection  and  transmission  behavior 
were  produced. For TE polarization, if the  grating behaves 
as a transmission grating, higher  order waves need to  be 
included in the analysis to  obtain accurate  results. How- 
ever,  second  derivatives and boundary  effects may be ne- 
glected.  Conversely,  for TE polarization, if the  grating  be- 
haves as a reflection grating,  second derivatives  and 
boundary  effects need to be included  for accurate  resups 
and higher  order waves  may be neglected. For an incident 
plane wave of  TM polarization,  the  situation is  more com- 
plicated.  Unlike  the case for TE polarization  where  there is 
direct  coupling  only  between adjacent orders [ i  i s  coupled 
to i - 1 and i + 1 as shown by (28), (33), or (38)], for TM 
polarization  there is direct  coupling  between all orders (as 
shown  by [29, eq. (13)]).  This  makes the  inclusion  of  higher 
order waves  necessary for  reflection as well as for transmis- 
sion gratings when  the  incident wave is  TM polarized. As in 
the case of TE polarization, second derivatives  and  boundary 
effects are needed  for accurate  results when  the  primary 
diffracted order is  a  backward-diffracted  order  (reflection 
grating). For a  transmission  grating  and TM polarization, 
second  derivatives  and  boundary  effects can generally be 
neglected.  However, i f  a major  low-order wave is at or just 
above  or  just below  cutoff, the diffraction analysis requires 
both higher  order waves and second derivatives  together 
with boundary  effects  to give  accurate  results for both TE 
and TM polarizations  and  for  both  reflection and  transmis- 
sion gratings (e.g.,  see [29, fig. I]). The complicated  diffrac- 
t ion behavior near a cutoff  condition is  generally  referred to 
as a  Wood’s  anomaly [69]. These  cases can, of course, be 
treated without any approximation  using  the  rigorous  cou- 
pled-wave  theory  described in this paper. 

For  an unslanted  fringe  transmission  grating, Raman-Nath 
regime  diffraction occurs when  the  diffraction  efficiency 
[from (73)] is  given  by 

DE; = jf(27) (86) 

where 7 is the grating  strength parameter given  by 7 = 
n~,d/2X(~,)~/*cos B for TE polarization  and  by y = 
nqdcos 28/2X(~,)’~’cosB  for T M  polarization. The occur- 
rence  (or  lack of occurrence)  of Raman-Nath regime dif- 
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fraction as given  by (86) may be  determined  using  a  number 
of  different  criteria [ a ]  depending on the  application  of  the 
grating.  The  practical  criteria  and  their  interpretations are: 1) 
Zero-Order Beam Criterion-the  undiffracted  (zero-order) 
diffraction  efficiency is predicted  by (86) to  within some 
specified  limit; 2) First-Order Beam Criterion-the  funda- 
mental  (first-order) diffraction  efficiency is  predicted  by (86) 
to  within some  specified  limit;  and 3) Composite  Criterion 
-all  diffracted orders  simultaneously have diffraction  ef- 
ficiencies  predicted  by (86) to  within some limit. Each of 
these  criteria is evaluated in [a]. It is shown  there  that each 
of these  criteria is met to  within  I-percent  diffraction  ef- 
ficiency  when  the  condition 

Q’Y c 1 

is satisfied. Q‘ is a  grating parameter given  by Q’ = Qcos 8 
= 2nhd(~,,)’/~A~cos8. This condition was originally used 
by Extermann and  Wannier [70] and later in the  form Q’y < 
n2/8  by  Willard [71]. 

For a  transmission  grating,  the Bragg regime  (or  two-wave 
regime)  occurs when  the  diffraction  efficiency  [from (69)] is 
given by 

DE, = sit? y (88) 

for  the single  fundamental  diffracted  order.  Correspond- 
ingly,  the  transmitted  (zero-order) wave has a  diffraction 
efficiency  given  by cos’ y .  The occurrence (or lack of occur- 
rence) of Bragg regime  diffraction as given  by (88) may be 
determined  by using a number  of  different  criteria [56] 
depending  on  the application. The practical  criteria  include 
the  Zero-Order Beam Criterion  and  First-Order Beam Crite 
rion defined as before except that  the  deviation is with 
respect to (88). The other  criteria  and  their  interpretations 
are: Two-Wave  Criterion-the sum .of the  diffraction  ef- 
ficiencies associated with all higher  order waves is less than 
some  specified  limit;  and  Composite  Criteria-all  three 
criteria are met  to  within some specified limit. Each of these 
criteria is evaluated in [%I. Those evaluations  showed  that 
each of these  criteria is met  to  within  I-percent  diffraction 
efficiency  when  the  condition 

p 3 Q‘/2y 2 10 

is satisfied. For TE polarization p = 2X2/A2e,, and TM  polari- 
zation p = 2X2/A2e, cos28. The regime parameter p was 
first used by  Nath [45]. It is now clear that  this parameter 
determines  the Bragg diffraction  regime  boundary. 

J. “Thin” and ”Thick” Gratings [57] 

The terminology  “thin” and ”thick” gratings is widely 
used in the  literature. The  meanings of these  phrases  may 
be  distinguished  either in terms of  the diffraction regime or 
in terms of  the angular/wavelength  selectivity.  Both types 
of  definitions are implied in the  literature. They are fre- 
quently used on an interchangeable basis even though they 
are  based on different physical  concepts  and give  rise to 
different mathematical  definitions. 

A “thin”  grating may  be described as a grating  that 
produces  Raman-Nath  regime  diffraction. In this case, the 
multiple  forward-diffracted orders ideally have efficiencies 
DE; given  by (86). As described in the  previous  section,  this 
occurs when Q’y Q 1. From this  condition, it is apparent 
that Raman-Nath  regime diffraction behavior will be ob- 

served  for  any  value  of y (proportional to grating  modula- 
t ion E,) if Q’ is sufficiently  small. This has led to  the 
incomplete  popular  condition  of Q’ < 1 for  describing 
“thin” gratings [3]. 

A “thin” grating may alternatively  be  described as a 
grating  exhibiting relatively little angular  and  wavelength 
selectivity. As the  incident wave is dephased (either in 
angle  of  incidence or in wavelength) from  the Bragg condi- 
tion,  the  diffraction  efficiency generally decreases.  The an- 
gular  range or wavelength range for  which  the  diffraction 
efficiency decreases to half of i ts on-Bragg  angle value is 
determined  by  the thickness of  the grating (d) expressed as 
a  number  of grating  periods. For a  “thin” grating  this 
number may  be reasonably chosen to be 

d/A IO. (90) 

Gratings  having angular and  wavelength  selectivities with 
full  widths at half maxima wider  than  that  for  d/A = 10 
may be  considered to be “thin” gratings. This definition 
does not accurately  predict  the diffraction regime. It has the 
desirable  feature  that  the  governing parameter (d/A) is 
directly  proportional  to  the grating  thickness  and  thus “thin” 
and  “thick” have direct  physical  interpretations. 

A “thick” grating may be  described as a  grating  that 
produces Bragg regime  diffraction. This is described by  the 
two-wave  coupled-wave theory  of  Kogelnik [4]. In this 
regime,  the  single  fundamental  forward-diffracted  order 
ideally has a  diffraction  efficiency given  by (88). Bragg 
regime  diffraction occurs when p > 10 as described in the 
previous  section. It is particularly  interesting to note  that 
this  diffraction-regime-based  definition  of  a  “thick” grating 
is independent  of grating  thickness! From (89) i t  is  apparent 
that Bragg regime diffraction behavior will occur  for any 
value of y (or e , )  if Q’ is sufficiently large.  Thus the 
incomplete  condition Q‘ > 1 is often used to define  a 
“thick” grating [3], [4]. However, if  the  criterion Of, > DE-, 
i s  added to  the  criteria for Bragg regime  behavior  listed in 
the  previous section,  then  the condition Q’ > 1 is needed 
[2], [72] in addition  to (89). 

A “thick”  grating may alternatively  be  described as a 
grating  exhibiting strong  angular  and  wavelength  selectivity. 
A relatively  small change in the angle of  incidence  from  the 
Bragg angle or a relatively small  change in the  wavelength 
at the Bragg angle  produces  significant  dephasing  and  the 
diffraction  efficiency decreases correspondingly. “Thick” 
grating  behavior may  be considered to occur when 

d/A > 10. (91 1 
This is the angular-and-wavelength-selectivity-based defini- 
tion  of a ”thick” grating. 

The definitions  of  ”thin” and “thick” gratings  may be 
concisely  summarized as follows: 

1) If  “thin” grating is intended to mean Raman-Nath 
regime  diffraction,  then  the required condition is  Q’y < 1. 

2) If  “thin” grating is  intended to mean  broad  angular 
and  wavelength selectivity,  then  the  required condition is 
d / A  < 10. 

3) If  “thick” grating is intended to mean Bragg regime 
diffraction,  then  the  required  condition is p 2 10. (If DE, > 
DE-, is also included  in  the  definition  of Bragg regime, 
Q’ > 1 is required in addition.) 

4) If  “thick” grating is intended to mean  narrow  angular 
and wavelength  selectivity,  then  the  required condition is 
d/A > 10. 
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VI. SURFACE-RELIEF GRATINGS 

A. Overview 

Only planar gratings (having planar parallel boundaries) 
have been  treated so far in this review. However, dielectric 
surface-relief (corrugated) gratings  are  also of great techno- 
logical importance. In semiconductor  distributed-feedback 
and distributed-Bragg-reflector lasers, for example, the grat- 
ings are invariably a periodic  variation in the  boundary. 
These surface-relief structures, like planar gratings,  are also 
capable of  very high  diffraction  efficiencies (approaching 
100 percent). Corrugated gratings can be rigorously analyzed 
using  coupled-wave analysis (731. This is done  by  dividing 
the surface-relief  grating into a large number  of  thin (planar) 
layers. Each thin layer is then analyzed using the state 
variables method  of solution of  the rigorous coupled-wave 
equations  for  that grating. By formulating  the  problem in a 
particular manner, i t  is shown that  the  grating layers  may be 
treated  one-at-a-time in sequence thus reducing  the 
numerical  calculations to an easily  manageable  size.  There 
are no approximations in the analysis and results  again  are 
obtainable to any arbitrary level of accuracy.  The diffraction 
efficiencies of  all orders of  both the  transmitted  and re- 
flected waves  are determined in the process. 

INCIMNT 

B. Problem  Formulation 

As before, region 1 (the input region) is a homogeneous 
dielectric with a relative permittivity  (dielectric constant) of 
E,. Likewise, region 3 is homogeneous with a relative per- 
mittivity  of E,,,. Region 2 (the grating region) consists of a 
periodic  distribution  of  both types of dielectrics. The 
boundary  between  the  dielectric and the E~,, dielectric in 
region 2 is given  by 

z =  F(x) = F(x+  A )  (92) 

where A is the  grating period. The function F(x) thus 
represents the  grating surface profile.  Unlike most methods 
for  analyzing surface-relief gratings, there are no restrictions 
on the  form  of F(x) in this analysis. Curved lines, straight 
lines, shadow regions, hidden regions,  etc.,  are all allowed. 
The total  electric  field in region 1 is  the sum of  the  incident 
and the  backward-traveling waves in exactly the same 
manner as i t  was for  the planar  grating.  The normalized 
total  electric  field in region 1 may thus be represented by 
(53). Likewise, the normalized total electric field in region 3 
is given  by (54) where d is  now  the groove depth. 

In the present analysis, the  grating  region  (region 2) is  
divided  into N thin planar grating slabs perpendicular to 
the z axis as shown in Fig. IO. Then the rigorous coupled- 
wave analysis that has been  developed for planar grating is 
applied to each slab grating. If  the  individual planar  gratings 
are sufficiently  thin, any grating  profile can be analyzed to 
an arbitrary level of accuracy.  The nth slab within region 2 
as shown in Fig. 10 will consist of a periodic  distribution  of 
E,  and E,~, dielectrics. The relative permittivity  for  the  nth 
slab grating is periodic, E,(x,z,) = E,(X + A,z,), and may 
be expanded in a Fourier  series as 

+ W  

En(x,Zn) = €1 +(E,,, - E,) C .~h,nexp( /h~x)  (93) 

where z, is the z coordinate  of  the  nth slab, h is  the 
harmonic index, K is the magnitude of  the  grating vector 

h- - m  

REGlffl 3 

fig. 10. The nth planar  grating  resulting  from  the  decom- 
position  of a surface-relief  grating into N thin planar  grat- 
ings. 

( K  = 27r/A), and are the normalized  complex  harmonic 
amplitude  coefficients  given  by 

Z h p n  = ( l / A ) / * f ( x , z , ) e x p ( - j h K x )  dx (94) 
0 

where  the  function f(x,z,) is equal to  either zero or  unity 
depending whether, for a particular value of x ,  the  grating 
relative  permittivity is e, or E,,,, respectively. 

Using  the coupled-wave equation, (31), the  total  electric 
field in the nth slab may be expressed as 

+ m  

i -  -m 

where E = Kg and i2,n is the wavevector of  the zero-order 
(i = 0) refracted wave having a magnitude of k 2 , . ,  = 
27r(~,,~)~/~/h, and is the average relative permittivity 
for  the  nth slab grating. 

Substituting E2,,(x,z) and E,(x,z,) into the wave equa- 
tion [cf. (2)], performing  the  indicated  differentiations, and 
setting  the  coefficient  of each exponential  term equal to 
zero  for  nontrivial solutions yields the rigorous coupled- 
wave  equations for  the  nth slab grating 

+ K 2 i ( m  - i)$,n(z) + k ’ (~~, ,  - E,) 

m 

* [ ah,$t-h,n(z) + E$.lr*,n$+h,n(Z)] = O. (%) 
h-1 

These coupled-wave equations are  analogous to (33). 

C. Calculational Procedure 

The dielectric surface-relief grating  diffraction  problem as 
formulated in the previous section will be solved in a 
sequence of  steps.  First, the rigorous coupled-wave equa- 
tions will be solved  for  the nth slab grating  using a  state- 
variables method  of solution. Second, electromagnetic 
boundary  conditions  (continuity of tangential € and tangen- 
tial H) will be  applied  between  region 1 and the first slab 
grating, then  between  the first and second slab  gratings, 
and so forth  and  finally  between  the Nth slab grating and 
region 3. Third,  the  resulting array of boundary condition 
equations are solved  for  the  reflected  and  transmitted  dif- 
fracted amplitudes, R ,  and T;.. From these amplitudes, the 
diffracted  efficiencies are determined directly. 

Defining state variables [cf. (43, (&)I for  the nth slab 
grating transforms the  infinite set of second-order differen- 
tial equations (96) into  two  infinite sets of first-order state 
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equations 

(97) 

- ~ ’ i ( r n  - i ) $ , j , n ( z )  - k 2 ( e , , ,  - e,) 

In matrix  form, the state equation  for  the nth slab grating 
may  be written as: 

where st,p,n = (for C= 1,2), 5 = dS/dz, and  the  ele- 
ments  of  the  four submatrices ( p  = 1 to s and 9 -ci 1 to s) 
are specified by (97) and (93) for  the nth slab grating. The 
integers p and 9 are the  row and column indices  of the 
four submatrices. The maximum value of these indicies, s, 
i s  equal to  the number  of  diffracted orders retained in  the 
analysis, The  value p = 1 corresponds to the  most  negative 
order  (value of i )  retained in the analysis and p = s corre- 
sponds to  the most  positive  order  retained. For example, i f  
an odd number of waves  are retained  symmetrically  about 
i = 0 (the  undiffracted wave) in the analysis, then p = i + 
(s + 1)/2. Equation (99) corresponds to an unforced state 
equation S = AS. As before,  the  solutions  of (99) are 

2 5  

S p ? , n ( z >  C C q ‘ , n W p ~ , q l , n e x p ( X q , , n z )  (100) 
q’-1 

where st,p,n (for C- 1,2)  has been rewritten as SP,,. with 
p’ = p + (C- 1)s.  The quantities hq,,n and w ~ . , ~ , , ~  are the 
eigenvalues  and  eigenvectors of  the matrix A. The integers 
p’ and 9’ are the  row and  column  indices  of  the  eigenvec- 
tor matrix [ w] and p’ = 1 to 2s  and 9’ = 1 to 2s. The 
quantities Cq,,, are unknown constants to be  determined 
by  the  boundary  conditions. The desired  diffracted wave 
amplitudes  for  the nth grating layer are given  by $ , n ( ~ )  = 
$ , ,n (z )  where p’ i s  chosen to correspond to the ith  dif- 
fracted wave. 

Electromagnetic  boundary  conditions  require  that the 
tangential  electric  and  tangential  magnetic  fields  be  con- 
tinuous across the boundaries  between  the slabs.  For the 
TE-mode polarization described in this paper, the  electric 
field  only has a tangential  component ( y  direction). The 
tangential  component  of H is in the x direction and from 
Maxwell’s  equations i t  is given by H, = ( - j /wp)a€, /az.  
Therefore, for  the boundary ( z  = 0) between  region 1 (the 
input region)  and the first slab I 
tion  for tangential f i s  

2s 
a;, + R;  = 

q‘-1 

Yl2 

grating, the  boundary  condi- 

C9’.lWP’.c!‘.l (101) 

and  for  tangential H is 
2 s  

/(Il; . 2)( R; - a;,) = C cq~,lwpt,qt,l[ A ~ ~ , ~  - j(ql . f)] 

(102) 

q‘*1 

where  the value of p’ is chosen to correspond to  the  ith 
wave. For the boundary  between  the nth and n + I t h  slab 
gratings ( z  = nd/N), the  boundary condition for  tangential 
€ is 

2 s  

C Cq’,nWp*,g’,nexp { [ h q J , n  - j ( 4 . n  . 211 n d / ~ }  
q“1 

2 s  

= C Cq‘,n+lWp*,q*,n+l 
q‘-1 

.exP { [ Xq’,n+l - i(%n+7 * i)] . nd/N}  (103) 

and  for  tangential H is 
2 s  

C Cq’,nWp*,q’,n[hqp,n - j(Z;,,, 
q‘-1 

* ~ X P  { [ Aq’, n - 3, n . f)] n d / ~ )  
2 5  

- - C Cq*,n+lWp’,q*,n+l[ Agt.n+l - Aq,n+1 * 211 
q’-1 

.exp { [ Xqt,n+l - j (c; ,n+l * 4 1  n d / ~ } .  (104) 

For the  boundary  between  the Nth slab grating  and  region 
3 (Z = d), the boundary condition for  tangential E i s  

2 s  

C C ~ ~ , N W ~ ~ , , # , N ~ X P  { [ h q ’ , N  - j(8ii.N. 211 d }  = 7; 
q‘-1 

(105) 
and  for  tangential H is 

2 s  

C c q w w p t , g w [ ~ q % N  - i ( 3 . N .  f)] 

* ~ X P  { [ h q r ,  N - j (  5 ,  N * 211 d }  

q’-1 

= - j (  I,; 2)  7;. (1 06) 

Equations (101)-(106) represent a  total of 2(N + 1)s equa- 
tions. There  are s unknown values  each of R; and 7; and 2s 
unknown values of Cqt,n for each  slab grating. Thus the 
total  number  of  unknowns is 2(N + l)s, the same as the 
number  of  boundary  condition equations. If s values of i 
are retained in the analysis, then  the  calculations will  yield 
s transmitted wave amplitudes (7;) and s reflected wave 
amplitudes ( R ; ) .  . 

An  efficient procedure to solve this large  system of  equa- 
tions is to use a technique  like Gauss elimination [74] 
applied successively to each boundary  starting at the z = 0 
input surface. By using  this  technique N + 1 times in se- 
quence, the s values of R;  and s values of 7; may be 
obtained in a single pass on the last step. As depicted in 
Fig. 11, the  boundary  condition  equations are written as a 
matrix  equation. The matrix is 2(N + 1)s by 2(N + 1)s  and 
consists of the  coefficients  of C,,,, (for 9’ = 1 to 2s and 
n = 1 to N), R;  (s values), and (s values). For each slab 
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n = l  2 N - 1  N 

0 

0 
I 

I 
I 

Fig. 11. Matrix-equation representation of 2 ( N  + 1)s 
boundary-condition equations, where s is the  total number 
of diffracted waves retained in the analysis. C, represents the 
column vector Cq,,,, where q’ = 1 to 2s and likewise for C, 
through C,. The reflected and  transmitted  amplitudes R, 
and are column vectors of length 5. The  product output 
vector, before manipulations, is all zeros  except  for the two 
ones that are shown. These  correspond to the normalized € 
and H values in the input wave. 

grating, the  boundary  condition  equations  for its two 
boundaries  produces  a 4s by  2s submatrix.  Starting with  the 
first ( n  = 1) slab grating  (represented  by  upper left subma- 
trix), a  technique  like Gauss elimination is applied to make 
all  of  the  elements  of  the  lower half  of  the  submatrix  equal 
to zero. This  reduces the system to 2Ns  equations. Repeat- 
ing this  procedure on the next ( n  = 2) 4s by 2s submatrix 
reduces the system to  2(N - 1)s equations. This  process is  
continued  until after N steps, only  2s equations in the 
diffracted  amplitudes R j  and T; remain. These are then 
solved  for R j  and T;. At each  step in this  sequential process, 
a new set of coefficients  of R j  are produced as shown  by 
the dashed  box in Fig. 11. After N steps,  these coefficients 
have moved  to  the  bottom  of the  matrix  and  the  final set of 
2s  equations in R j  and T, are formed. This sequential 
procedure  enormously reduces the storage and  computa- 
tional  requirements for  this  type  of  problem. At  each  step, 
only a small  4s by  2s matrix is being  treated as opposed to 
the  entire  2(N + 1)s by  2(N + 1)s matrix  where N might 
typically  be 50. 

When  the  amplitude R i  and T, are known,  then  the 
diffraction  efficiencies  (ratio  of  diffracted  intensity  to  input 
intensity)  may  be  directly  determined  from (61) and (62). 
For  lossless gratings  the input  power i s  conserved  and  thus 
the sum of  all  of  the efficiencies  for  the  propagating waves 
is unity (63). 

D. Example Results 

Using  the  method  of  solution described in the  previous 
section, it is possible to calculate  the diffraction efficiencies 
of  dielectric surface relief gratings to an arbitrary  level of 
accuracy. The analysis contains no restrictions with respect 
to grating  profile, groove  depth, angle of incidence,  or 
wavelength. Example  results  are presented in [73] for 
sinusoidal, square-wave, triangular,  and  sawtooth gratings. 
Unlike previous  methods, large  groove depths do not cause 
numerical  instabilities. Results for  groove  depths as deep as 

four  grating periods are presented  for  all  of these grating 
profiles  in [73].  For these calculations  the input  region has a 
relative  permittivity  of el = 1.00 (air) and  the substrate a 
relative  permittivity  of elll = 2.50 (refractive  index  of 1.59). 
For the cases presented, h = h and  incidence was  at the 
first Bragg angle ( 8 ’  = 30’). With the  exception of  the 
zero-order wave, the  reflected waves had diffraction ef- 
ficiencies of less than 1 percent. The zero-order  (specularly 
reflected)  wave  generally was found  to decrease in intensity 
from  the Fresnel reflection value with increasing  groove 
depth  producing an efficient  antireflection  coating  effect 
[75].  For the sinusoidal, square-wave, and  triangular  grating 
profiles,  the  first-order  diffraction  efficiency was found  to 
reach  nearly 100 percent  for  the  properly chosen groove 
depth. For the  sawtooth gratings, however,  the  maximum 
first-order  diffraction  efficiency was only about 50 percent. 
A  result found  in this  work was: Dielectric  gratings with 
profiles  that are  expressable as even  functions are capable 
of  high (greater  than  85-percent) diffraction efficiency. Thus 
if the x = 0 origin can  be  chosen so that  the  grating profile 
f ( x )  i s  an even  function,  then large first-order diffraction 
efficiencies are possible. For grating  profiles  that  cannot be 
expressed as an even  function, such as the  sawtooth  profile, 
the  maximum  diffraction efficiencies are correspondingly 
less. Maximum  diffraction  efficiency results for several pro- 
files are given in Table 2. Notice  that  the  stairstep  grating 

Table 2 Maximum Transmitted  First-Order ( i  = + I )  Dif- 
fraction Efficiencies  for  Various Grating Profiles. (incidence i s  
at  first  Bragg angle, 0‘  = 30°, el = 1.00, and ell, = 2.50. 
Diffraction efficiencies correspond to the  value at the first 
peak  of the D€3,, versus d / A  curve.) 

profile  of even  symmetry has maximum  first-order  diffrac- 
tion  efficiency  of 89.4 percent.  However,  the same stairstep 
grating with steps shifted  producing  a  profile  of  only  odd 
symmetry has a maximum  first-order diffraction  efficiency 
of  only 67.7 or 71.8 percent  (depending o n  orientation  of 
Bragg  angle).  The  lack of even symmetry  obviously pro- 
duces  dephasing of the  fundamental  first-order  diffracted 
beam  and causes the  diffraction  efficiency  not  to reach a 
large  value.  Higher  maximum diffraction efficiencies are 
obtained with sharper, more pointed grating  profiles. Thus 
in the sequence of square-wave,  stairstep, sinusoid,  and 
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triangular  grating,  the  maximum  diffraction  efficiency stead- 
ily increases (from 88.5 to 99.0 percent). 

VII. HOLOGRAPHIC PRINCIPLES 

A. Crating  Recording 

In this  section  the  production  of  a  grating  by  the  re- 
cording  of an  interference  pattern is discussed. In  addition 
to this  holographic  method,  gratings may  also be  produced 
by  ruling [69]. Although  the  diffraction  theory is indepen- 
dent  of  how  the grating was  fabricated, the  recording  of an 
interference  pattern  (making  a  hologram) leads naturally to 
a  very large number  of  applications. Thus i t  is important to 
review  briefly  the essential  features of  the  holographic 
recording  of gratings. 

A  schematic view  of a portion  of  two equal  amplitude 
intersecting  plane waves  at  an instant of  time is depicted in 
Fig.  12. For simplicity,  the  polarization may be  taken as 
being  perpendicular  to  the page. The solid  lines represent 

fig. 12. Interference of portions  of two plane waves  at  an 
instant of time. 

phasefronts along  which  the electric field has a  maximum 
magnitude  and is pointing  out  of  the page.  The  dashed 
lines represent  phasefronts  along which  the electric field 
also has a  maximum  magnitude  but is  pointing  into  the 
page. The total  field at this  instant of  time has a  maximum 
magnitude at the locations  where two solid  lines or two 
dashed  lines  intersect. These points are shown  by  the  open 
circles  (representing  “bright” spots). At the locations  where 
a solid  line  and a dashed line  intersect,  the  total  electric 
field sums to zero  and these  are indicated  by  solid  circles 
(representing  “dark” spots). In addition, i f  a  zero field  point 
of  one wave  coincides with a  zero field  point  of  the other 
wave, the  total  field  will also be zero.  These points are also 
indicated  by  solid circles in Fig. 12. As time progresses, 
these waves move to the  upper  right  and to the  lower  right 
as indicated  by  the arrows.  The intersections,  however, 
move  horizontally  to  the right. Each horizontal row of 
“bright”  and “dark” spots smears into a bright  fringe.  Like- 
wise, each horizontal  row  of all “dark” spots  represents a 
dark  fringe.  The light and  dark  fringes form parallel planes. 
The  distance between  neighboring  light (or  dark) fringes is 
the  period  of  the interference  pattern. It is given by 

A = h/2n0 sin ( a / 2 )  (1 07) 

where no is the average refractive  index in the  medium. 
The intensity  variation in a direction perpendicular to  the 
fringes (x) is given  by 

/(x).= /,(1 + mcosKx) (1 08) 
where I ,  is the sum of  the intensities in the two beams 
( I ,  = /, + / 2 ) ,  rn is the  modulation  ratio  of  the interference 
pattern  given  by rn - 2(/,/2)1’2/(/1 + 1 2 ) ,  and  K is the 
magnitude  of  the grating  vector (K = 2n/A). 

If a  material has  some photosensitive  property,  this  peri- 
odic interference  pattern  can be recorded as a  grating. The 
exposure of the material to the  intensity  variation  could 
cause a  change in the  permittivity  (or  equivalently  refractive 
index)  and  thus  produce  a phase hologram  grating. The 
exposure might cause a change in the  conductivity  (or 
equivalently  optical absorption) and produce an absorption 
hologram  grating  or it could cause a change in the surface 
of  the  material  producing a surface-relief  hologram or the 
exposure might cause a  mixture of these effects in forming 
the grating. Fig. 13 depicts  the  hologram  grating  recording 

LJ 

(c) 
Fig. 13. Holographic recording of a grating.  (a) Interference 
pattern integrated over one or more optical periods. (b) 
Insertion of photosensitive material into interference pat- 
tern. (c) Recorded hologram  grating. 

process. The  interference  pattern  integrated over one  or 
more  optical periods is shown in Fig.  13(a). A  recording 
material  placed in the  intersection  of  the two beams is 
shown  in Fig. 13(b). For this case where  the  fringes are 
perpendicular to the surface, the  period  of  the interference 
pattern is the same inside  and  outside  the  material. If the 
interference  fringes are not normal to  the surface, they will 
bend at the surface and the  period  of  the  grating  produced 
will  differ  from  the  period  of the  interference  pattern out- 
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side of the material. The recorded  grating is schematically 
shown in Fig. 13(c). 

B. Holographic  Recording  Materials 

A  wide variety  of  photosensitive  materials exist that may 
be used for  holographic  recording  of  interference  patterns. 
These materials may  be organic  or  inorganic. The holograms 
produced may  be phase  or absorption or mixed gratings. 
The  holograms may be planar gratings  or  surface-relief 
gratings.  The diffracted  power may  be  primarily in back- 
ward-diffracted orders (such as in metallic gratings)  or pri- 
marily in forward-diffracted orders.  Extensive reviews of 
holographic  recording materials have been written [76]-[78]. 
A few  recording materials will be mentioned  here. 

Silver  halide  photographic  emulsions [79] are capable of 
recording  interference  patterns at visible  wavelengths.  After 
development, an absorption  hologram is produced. Bleach- 
ing  the developed silver allows these recordings to be 
converted to the more  efficient phase holograms.  Photore- 
sists are organic  materials  containing  photosensitizers  that 
become  soluble (positive resist) or  insoluble  (negative  re- 
sist) upon exposure to light.  Photoresist may be used in a 
photolithographic process to allow  the  “etching”  of a grat- 
ing  into another  material  or it may  be  used directly to 
produce  a surface-relief  grating in itself [MI, [81]. Dichro- 
mated  gelatin [82], [83] is a type  of  photoresist  that  when 
hardened  exhibits  a  refractive-index change but  without 
requiring  development.  Photopolymers [MI, [85] start as a 
monomer-catalyst  mixture  that  polymerizes  upon exposure 
to  produce a phase hologram. A widely used photopolymer 
is polymethyl methacrylate  (PMMA) [&I. Thermoplastic 
materials [87], [ 8 8 ]  may  be  used together with a  photocon- 
ducting layer to produce  a  charged surface that is a replica 
of  the exposure  pattern. Upon heating,  the  thermoplastic 
flows to  produce a  surface-relief  hologram.  Photochromic 
materials exhibit  optically  induced changes of  color (ab- 
sorption) upon exposure  [89],  [%].  These materials may be 
crystals, glasses, or  organic substances. Photodichroic ma- 
terials exhibit  optically  induced changes of  absorption  of se- 
lected  polarizations  of  light  [9l]-[93]. This recording  effect 
can  be produced by  the  anisotropy  of  certain  color centers 
that  occur in alkali  halide  materials such as KCI. Photo- 
refractive crystals exhibit  optically  induced  refractive-index 
changes upon exposure  [94]. Photorefractive  recording  con- 
sists of charge  migration  (due to a  combination  of  bulk 
photovoltaic  effect,  drift in an applied  and/or space  charge 
field,  and  diffusion)  followed by an electrooptic  effect 
(either  the  linear Pockels effect or the  quadratic Kerr effect). 
Electrons are photoexcited in the  bright  regions  of  the 
interference  pattern  and  migrate to the darker regions  pro- 
ducing  local space-charge fields  that cause the  index  of 
refraction to change  via  the  electrooptic  effect. Thus a  pure 
phase grating is formed.  Photorefractive  materials include 
BaTiO,  1951,  Bi,,CeO,  [%I,  Bi,,SiO,o [%I, KNbO,  [97], 
KTa,Nb,-,O, (KTN)  [98],  LiNbO,  [99]-[101], and LiTaO, 
[102]. 

C. Wavefront  Reconstruction 

The two beams that  interfere to produce  the  hologram 
grating may have  phasefronts  of  arbitrary shape as opposed 
to  the planar  phasefronts of the  plane waves depicted in 

a 

Fig. 14. Wavefront  reconstruction  from a holographic  grat- 
ing. (a) Recording a complex  grating  due to  the interference 
of a plane wave (reference beam) and a spherical wave 
(object beam). (b)  Reconstruction of the  object wave by 
illuminating the  hologram with the reference beam. (c) Re- 
construction  of the reference wave by illuminating the holo- 
gram with the  object wave. (d)  Reconstruction  of  the  con- 
jugate  of  the  object wave by illuminating the  hologram with 
the  conjugate  of  the reference wave. (e) Reconstruction  of 
the  conjugate  of  the reference wave by illuminating the 
hologram with the  conjugate  of  the  object  wave. 

Figs. 1 2  and  13. For example, the  interference  of a spherical 
wave  and  a  plane wave is  shown in Fig. 14(a). The inter- 
ference  fringes  formed in three-dimensional space in this 
case will be  paraboloids  of revolution rather  than planes. 
The  photosensitive  material records a section  through  this 
interference  pattern. For the  orientation  of  the  recording 
material  shown,  the  interference  fringes  form  ellipses at the 
surface of the material. It is common  practice to refer to 
one  of  the waves as the  object (or subject) beam and to the 
other as the reference beam.  Either  beam  can be  labeled 
either way. In this case, the  plane wave might  be  called  the 
reference  beam. 

Wavefront  reconstruction is illustrated in Fig. 1qb) and 
(c). One  of  the  two original waves  (same wavelength  and 
orientation)  illuminates  the hologram  grating. This  wave 
interacts with the  grating  and is partially  transmitted  and 
partially  diffracted as shown. The diffracted wave re- 
produces  or  reconstructs  the  other beam. Illumination  with 
the reference wave reconstructs  the  object wave  [Fig. Iqb)] .  
Likewise  illumination  with  the  object wave reconstructs  the 
reference  wave [Fig. 14(c)]. This is the basic holographic 
playback process. Only the i = +I fundamental-order dif- 
fracted wave is shown in these  diagrams. Higher  order 
forward- and backward-diffracted waves  have not  been 
included. 
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In Fig. 1qd) and (e), the same grating is  shown il- 
luminated  by  the time-reversed versions of  the  original 
waves.  These  waves  have the same  shape wavefronts but 
move  in  the  opposite directions. These  are commonly  re- 
ferred to as conjugate waves. Illumination  of  the grating 
with the  conjugate  of  the  reference beam  [Fig. I q d ) ]  pro- 
duces by  diffraction,  the  conjugate  of  the  object beam. 
Similarly, illumination  with the  conjugate  of  the  object 
beam [Fig. 14(e)] produces  the  conjugate  of the reference 
beam.  This is the basis of phase conjugation  and  this 
process is central to many of  the  applications  that will be 
discussed in the next  section. 

VIII. GRATING APPLICATIONS 

A. Perspective on  Grating  Diffraction  Applications 

Important practical  applications of grating diffraction are 
extremely  widespread in modern  optical  technology. The 
broad areas of acoustooptics,  holography,  integrated  optics, 
quantum electronics,  and spectral  analysis  are inherently 
interwoven with grating  diffraction. These practical  applica- 
tions have provided steady motivation to develop a com- 
plete rigorous  understanding  and  description  of  grating 
diffraction. The  material  developed in Sections II, I l l ,  and IV 
of  this paper is, in part, a response to this need. 

In this  section,  a  review  of some representative  grating 
diffraction  applications i s  presented.  However, it is clear 
that any such  review  cannot  be  totally  comprehensive. In 
the present case, a large number  of  representative  applica- 
tions are presented in brief. The alphabetic  ordering  of 
these  applications is indicative  of  the lack of any attempt to 
group these applications  according to significance,  chronol- 
ogy, or  broad area of application.  Likewise,  the  published 
literature  that has been  cited  for each application is merely 
representative of the  application  and these  references are 
not  intended  to  be comprehensive or chosen  according to 
significance.  A  previous  review of grating diffraction appli- 
cations  appearing in the PROCEEDINGS OF THE IEEE was 
written by Elachi  [103]. A  more  recent issue of  the PROCEED 
INGS OF THE IEEE had a special section  devoted to acousto- 
optic devices  and  applications [I@]. 

1) Acoustic  Wave  Generation: Acoustic waves of accu- 
rately known  direction of  propagation  and  wavelength can 
be  used to measure  crystal  elastic  constants, acoustic ab- 
sorption spectra, photoeleastic constants,  and other acous- 
tic  properties  of  a material. Precisely controllable  ultrasonic 
waves  can be  induced  in a material  by  the  interference  of 
two coherent laser pulses [105]-[108].  The geometry is the , 
same as that  shown in Fig. 13(a). Through  absorption  or 
stimulated  Brillouin scattering  (electrostriction) of  the laser 
pulses, an ultrasonic wave is produced  that has its wave- 
length equal to the  period  of  the  induced  grating  and 
whose direction of propagation  (wavevector) i s  along  the 
grating  vector  of  the  induced  grating.  Generally  there 
are two counterpropagating  ultrasonic waves (k R 
directions)  induced. In the case of an absorbing  medium, 
the spatially  periodic  intensity distribution (108) produces a 
periodic temperature distribution and  thermal  expansion 
1,aunches acoustic waves.  The  necessary temperature mod- 
ulation can be  produced with short laser pulses [I051 or by 
amplitude  modulating the laser light at the  sound  frequency 
desired  [I071 so that  the  interference  pattern is correspond- 

ingly  modulated at this  frequency. Monitoring  of  the  sound 
waves  may be accomplished with acoustic-wave  tranducers 
or  by  optical  diffraction  from  the acoustic-wave  grating. 
This  latter  method  will be  discussed in “Diagnostic Tech- 
niques.” 

2) Ambiguity Processing: The cross-ambiguity function 
of two one-dimensional signals  can be evaluated  using 
acoustooptic  signal  processing  techniques (1091-[112]. The 
cross-ambiguity  function may  be  expressed as the  complex 
correlation  of  one  of the signals with a frequency-shifted 
version  of  the  other signal. Correlation  processing will be 
discussed in a later  section.  Ambiguity  processing can be 
accomplished  using  three  acoustooptic  diffraction  (grating) 
cells  together with a series of  spherical  and  cylindrical 
lenses and  stops to remove  unwanted  diffraction orders. 
Two  of  the  acoustooptic cells are driven,  respectively,  by 
the  two signals  and  the third is driven  by a sinusoidal signal 
that is linearly  changing in frequency  (chirp). The output  of 
the system is a  two-dimensional  distribution  which  when 
integrated in time (such as with a  television camera) and 
bandpass filtered gives the  desired  ambiguity  function. 

3) Analog-teDigital  Conversion: Permittivity  gratings 
can be directly  induced in electrooptic  materials  through 
the use of  interdigitated  electrodes on the surface of  the 
material. Such a device is  schematically  shown in Fig. 15. A 

DIFFRACTED 

INTERDIGITATED 
ELECTRODES 

I 

Fig. 15. Electrooptic  grating  modulator.  Voltage  applied 
across interdigitated electrodes  induces a phase  grating be- 
neath  the  electrodes via the  linear  electrooptic effect. 

voltage  difference is applied  between  the two electrode 
pads. This causes  each interdigitated  electrode to have the 
opposite  polarity  of its neighbors. Thus a  periodic  electric 
field is produced in the  material  beneath  the  electrodes. 

‘The period  of  the  field is equal to the  spacing between 
adjacent  electrodes  of  the same polarity.  Through  the  elec- 
trooptic  effect,  the electric field causes a corresponding 
periodic change in the  index  of  refraction  and  therefore  a 
grating is produced. The diffraction  efficiency associated 
with the various  diffracted orders, of course, depends on 
the  applied voltage. This is true  independently  of  whether 
the  diffraction  exhibits Bragg regime  behavior, Raman-Nath 
regime  behavior,  or  requires a more  complete  theory  for i t s  
description. If the crystal has 3m  point group  symmetry 
(such as lithium niobate)  and  the optic axis is  parallel to  the 
grating  vector  (perpendicular to the  interdigitated  electrode 
fingers), then  for  light  with  polarization parallel to the  optic 
axis, the  applied  field  in  the  optic axis direction causes a 
change in permittivity  of 

AE = -n&E, 

where nE is the  principal  extraordinary  refractive index, 53 
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is the linear  electrooptic  coefficient  appropriate  for  this 
direction  of propagation  and  for  this  polarization,  and €, is 
the  component  of  the electric field  along  the  optic axis.  For 
the same geometry  but with polarization  perpendicular to 
the  optic axis, the change in the  permittivity is 

A E  = - n$rq3 E, (110) 

where no i s  the ordinary  refractive  index  and r,3 is the 
electrooptic  coefficient appropriate  for  this case.  The am- 
plitude of  the grating permittivity  modulation q is ap- 
proximately  equal to he. 

A high-speed  analog-to-digital  converter  that uses the 
configuration  shown  in Fig. 15  has been  described by  Wright 
et  a/. [113].  This device is designed to operate in the 
Raman-Nath diffraction regime  and so the  diffraction ef- 
ficiencies are given  by (a). The diffracted beams illuminate 
photodetectors  which, together with threshold  detectors, 
give  an output  depending on whether  the  optical  power is 
above or below the  threshold  setting. By applying a con- 
stant  bias to  the electrodes in  addition  to the signal to be 
digitized,  a  suitable  operating  point can be obtained so that 
output  of  the device is directly a 3-bit Gray code (unit-dis- 
tance  binary  code). 

4) Antennas: Gratings can  be  used to couple beams 
from air into a dielectric  waveguide (e.g.,  slab waveguide, 
channel  waveguide, fiber waveguide) or they can be used 
to  couple  power  from  the waveguide into  the air. In  the 
latter case, power  in a guided  mode radiates  (or  ”leaks”) 
into  the space over  the  open  waveguide  structure  and  thus 
the  grating acts as an antenna 11141-[118].  These devices are 
sometimes  called leaky  wave  antennas.  This same basic 
structure  can also be an output coupler (e.g., from slab 
waveguide to optical  fiber) in integrated  optics. Input and 
output couplers are discussed in ”Beam Coupling.” 

A wave in a  dielectric  waveguide  that is  incident  upon  a 
grating generally  produces a beam traveling into the  sub- 
strate  and  a  beam  that radiates into the  region above the 
grating. For antenna  applications,  the  power in the  sub- 
strate is unwanted loss.  For this output  coupling configura- 
tion,  a symmetric  grating profile generally causes the inci- 
dent  power  to  divide about  equally  between  the two beams. 
However,  coupling  into  the radiated beam  can  be greatly 
increased by using  asymmetric  grating  profiles [115],  [116]. 
In addition, it is possible to design these high-efficiency 
asymmetric  profiles so that  they are insensitive to fabrica- 
tional tolerances [118]. 

5) Antireflection Properties: Dielectric  surface-relief 
gratings, as discussed in Section VI, can exhibit very low 
diffraction  efficiency  in  the backward-diffracted orders  [73]. 
Therefore  these gratings  can be used to give  excellent 
antireflection properties. Enger and Case [75]  have experi- 
mentally demonstrated  reflectivities  of  about 0.035 percent 
across the  visible  spectrum  for  normal  incidence on an 
etched  quartz  surface-relief  grating. Thus  these gratings 
may  be  a  durable  alternative to the  more  damage-prone 
multilayer  antireflection coatings. 

6) Associative  Storage: Holography can obviously be 
used as a  means  of  storing  information. A page of data  can 
be  stored  holographically  and  the data  can be recalled  by 
diffraction  of  the reference beam. Therefore  the system is 
acting as a  memory. Fig. 14 can be used to represent the 
memory  capabilities  of  a holographic system. In Fig.  14, the 
spherical  wave could be replaced  by a more  complicated 

wavefront  representing a two-dimensional page of  analog 
data  (an  image)  or  digital data. In Fig.  14(a), the  data page is 
recorded. In Fig. 14(b), the wavefront  corresponding to  the 
data  page is  reconstructed  by diffraction  of the  reference 
beam.  This system operated in this manner is called a direct 
or  location-addressable  memory (addresses  are the  input 
and data are the  output). 

However, as previously discussed, i t  i s  possible to il- 
luminate  the  hologram  with  the  object beam and recon- 
struct  the  reference beam as shown in Fig.  14(c).  For a 
holographic  recording  material  that is thick  in  the angular 
selectivity sense, many holograms can be  angularly multi- 
plexed in a  common volume of  the material [119],  [120]. 
Each of these  holograms is  recorded with the  reference 
beam at a  different angle of  incidence. For reconstruction, 
the reference  beam can be  positioned at an angle  corre- 
sponding  to  the  location  of the  reference beam during 
recording  of  a particular  hologram. Then, the  wavefront 
from that  particular  hologram will be  reconstructed.  Like- 
wise, as the reference beam is repositioned to a  new angle 
corresponding to another  hologram,  the  wavefront  for  that 
hologram will be reconstructed. 

in associative storage, the  holographic system  operates as 
a  content-addressable  memory. The configuration is basi- 
cally  that  shown in Fig.  14(c).  The angularly  multiplexed 
group  of holograms is illuminated  with a data  page  wave- 
front. If that  data page wavefront matches a  wavefront  that 
was used in recording  one  of  the holograms, then  the 
reference  wave  corresponding to that  hologram will be 
reconstructed. If the data  page wavefront does not match 
any of those  that  were used during recording,  then  there 
will  be  diminished  diffraction (because the  wavefront does 
not satisfy the Bragg condition everywhere at the  stored 
hologram grating). This  basic procedure can  be  used to 
search the  contents  of  the  memory in parallel [121]-[126]. If 
a  particular  reference  pattern (data  page)  occurs at one  or 
more  locations in the  memory,  this will be indicated  by  the 
diffracted reference beam(s) that are produced. Thus the 
searching is done  in parallel without  the need  for any type 
of sequential  scanning  and  the system  acts as a  content- 
addressable memory (data are the input and the addresses 
of  those data are the  output). 

7) Beam-Coded  Multiplex  Holography: In a  conceptu- 
ally  similar  manner to the way in  which holograms can be 
angularly multiplexed  in a thick  recording  medium, i t  is also 
possible to phase code  the  reference beam to achieve 
multiplexing  of holograms [127]-[130]. In angular multiplex- 
ing, the reference wave is a simple wave  (e.g., plane wave) 
and i ts angle of incidence is changed to record  different 
data pages. In beam-coded  multiplexing,  the  reference wave 
angle of incidence does not change.  instead, a complex 
wavefront  reference wave is used and  this  complex wave- 
front is changed to  record  different data pages.  This  can be 
accomplished  by  using  a  different  pseudorandom phase 
pattern in the reference beam for each recording. Then,  at 
playback,  a  particular  pseudorandom phase pattern in the 
reference  beam will cause a  particular data  page wavefront 
to  be reconstructed. A major difficulty is  that a given 
phase-coded  reference beam usually  reconstructs not  only 
the correct  wavefront, but also portions  of the  wavefronts 
from  the  other holograms  thus  producing  undesirable cross- 
talk. This  can  be minimized by  having  the  autocorrelation 
function  of each  phase pattern  approach  a  delta function 
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and each  pair-wise  cross-correlation function as small as 
possible.  Binary gold codes commonly used in spread-spec- 
trum communications have been  shown to have  these 
desirable  characteristics  for phase coding  the reference 
beams [I  301. 
8) Beam  Coupling: In integrated-  and  guided-wave 

optics, i t  is necessary to couple  light into waveguides, out 
of waveguides,  and  between waveguides. Grating  couplers 
appear to  be some of  the most versatile and  promising 
devices to accomplish this. Grating  couplers have been 
theoretically analyzed  and have been  shown to be  capable 
of  high  coupling efficiencies [116],  [118], [131]. Diffraction 
gratings  can be used to  couple  light  from air into a slab 
waveguide [132], [133]. This is schematically  shown in Fig. 
16. The  angle of incidence 0, in the cover region (air) is 
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Fig. 16. Input grating  coupler.  Light in the  cover  region (air) 
is coupled into a guided  mode of the film waveguide. 

chosen so that  the i = -1 diffracted  wave.from  the  grating 
is at a  zig-zag  angle 0, for  the  guided  mode  of  the wave- 
guide  that is to be  excited. This requires  that 

nr  sin 0, = sin 0, - iA/A (ill) 

where nr  is the index  of  refraction  of  the  film  waveguide. 
A  grating  coupler can  also  be  used to couple light  out  of 

a  slab  waveguide into  the air [IIS],  [116],  [134]. This output 
coupler  operation is essentially  the same as that  of an 
antenna (see Section 4). An output coupler is shown in the 
device  depicted  in Fig. 17 [135]. Gratings have  also been 
used in this  device  for laser feedback  and beam expansion. 

Grating couplers can  also  be  used to interconnect  dielec- 
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Fig. 17. A semiconductor  laser  that uses gratings for feed- 
back (distributed Bragg reflectors), beam expansion, and 
output coupling 11351. 

tric waveguides [136],  [137]. An  example  of a holographic 
grating  coupler used to interconnect  single-mode  fibers is 
shown  in Fig. 18  [136]. The radiation  wavefront S, from 
fiber  no. 1 is  interfered with a plane  reference wave R, and 
the  interference  pattern is recorded as hologram  no. 1 as 
shown  in Fig.  18(a).  Similarly, a  hologram  grating is  re- 
corded  with  the  radiation wavefront  from  fiber  no. 2 and  a 
plane wave. In coupling operation,  the light  from  fiber  no. 1 
is  diffracted  by hologram  no. 1 producing a plane wave. 
This wave ( R , )  is the conjugate of R, .  When R, illuminates 
hologram  no. 2, it produces  the  conjugate  wavefront 
which is the time-reversed  version of S,. This  wave launches 
the reverse-traveling  version of  the mode  that was present 
in fiber no. 2 during recording. Thus fiber-to-fiber  coupling 
has been  achieved. The  gratings produced  remain with their 
respective  fibers. If  multiple holographic  recordings are 
made with angularly separated reference beams, it is then 
possible to connect  one  waveguide to multiple waveguides. 
In  this case the  grating acts as a branching  element [138]. 
9) Beam Deflection: Through  grating diffraction  a  light 

beam  can  be  deflected  or scanned.  The grating producing 
the  diffraction can be  an acoustic wave,  an electrooptically 
induced grating, or a  holographically  recorded  grating  that 
is moved in the  incident beam. Each of these  types of 
deflectors has its own set of  characteristics  and areas of 
application. Reviews of laser-beam deflection  techniques 
have  previously appeared in the  literature [139],  [140]. 

Both bulk acoustic wave and surface acoustic wave  (SAW) 
deflectors  have  been  fabricated  and  extensively analyzed 
[141]-[15Oj. From  the  grating  equation  for  forward-dif- 
fracted waves (43), i t  is clear that  the diffraction angle of  a 
particular  diffracted  order  (usually i =' +I) can  be changed 
by varying the  period  of the  grating. In the case of  the 
acoustooptic  deflector,  the  grating  period is  given  by 

where < is the  velocity  of  the sound wave and is the 
frequency  of  the sound wave. By changing  the input 
frequency to the transducer on the  acoustooptic  material, 
the  grating  period is correspondingly  changed and the 
direction  of  diffraction altered  producing a scanning  of the 
beam.  An  integrated  optics  version  of an acoustooptic  de- 
flector is shown  in Fig. 19. In this case, the  material must be 
piezoelectric so that a voltage  applied across the  interdig- 
itated electrodes will produce an acoustic wave directly. 
(For other  materials,  a  piezoelectric  transducer must be 
bonded  to  the material in order to launch  acoustic waves 
from an input voltage signal.)  The interdigitated transducer 
will  function  efficiently if the  wavelength of the  sound 
wave produced is  equal to the  distance  between  neighbor- 
ing  interdigitated fingers  of like polarity. In this case, the 
ultrasonic  wave travels a distance  of  one  period of the  in- 
terdigitated transducer in one  temporal period  of the volt- 
age signal aRd thus  there is  a strong  constructive addition 
to  the  amplitude. of  the  sound wave as it propagates be- 
neath  the  interdigitated  electrodes. In this  situation, the 
amplitude  of  the acoustic wave launched will increase 
rapidly  with increasing  number  of  electrode  fingers used. 
However,  the  ability of the  interdigitated  electrodes to 
launch acoustic waves of  wavelengths  that do  not match 
the  period  of  the transducer  fingers  (and thus the signal 
bandwidth)  diminishes  with increasing  number  of  electrode 
fingers. Wider  bandwidths can  be obtained by using multi- 
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Fig. 18. Holographic  grating  coupler  for  single-mode  optical  fibers. (a) Recording holo- 
gram  gratings. (b) Coupling  of  light  from  one  fiber  to  the  other [136]. 
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Fig. 19. Diffraction  of  guided  optical wave by surface 
acoustic wave (SAW). 

ple  tilted surface acoustic wave interdigitated transducers. 
In this case, the transducers  have different  orientations so 
that  the acoustic wave launched by a set of electrodes will 
be at i ts first B r a g  angle ( m  = 1) with respect to  the  optical 
beam  when  the signal frequency produces an acoustic 
wavelength  that is equal to the  period  for  that particular 
interdigitated transducer. 

Electrooptically  induced refractive-index gratings can also 
be used to deflect a laser beam [151]-[154].  They  have the 
advantage of  higher speed than  the  acoustooptic devices.  A 
configuration such as that  shown in Fig.  15 is used. For this 
situation, the  period of the  grating  induced is always the 
same as the  period  of  the  interdigitated electrodes. Thus for 
a fixed angle of incidence, the angle of  diffraction  for a 
given  order is  always the same.  Thus  these "digital"  deflec- 
tors are not capable of scanning by themselves,&ut  must be 
cascaded to  produce more  than two resolvable  spots. 

A third  type  of  grating  deflector is the  holographic scanner 
[155]-[161]. In such a system, holographically  recorded grat- 
ings are moved in an  input beam. At each position the 
input beam is  diffracted to a new  location.  One  of  the 
positions  might appear as shown in Fig. 14(e). The input 
beam (plane wave) is  diffracted  producing a focused beam. 
As the  holographic plate is  moved in front  of  the input 
beam, a different  holographic  grating appears and now 

diffracts  and focuses the  light to a new  location. Using a 
series of  hologram gratings i t  is possible to scan the beam 
continuously.  Applications  include Universal Product Code 
scanners, document readers,  etc. 
IO) Beam Expansion: Gratings can be used as expanders 

for laser beams [135],  [162]. An example of this is illustrated 
in Fig.  17.  A grating  reflector inserted in the cavity of a 
semiconductor laser allows  the  width  of  the beam to  be 
expanded. The profile of the  diffracted beam depends on 
the geometry and  diffraction  efficiency  of  the grating. 

71) Beam  Sampling: Two gratings (either reflection or 
transmission) of  the same period, oriented so that  they are 
parallel to  each other can be used as a  laser-beam  sampler 
[163].  Such two-grating  rhombic beam samplers  are fre- 
quently used to obtain amplitude and phase  maps of  high- 
energy laser  beams.  The first  grating  diffracts into  the i = +1 
order a sample of  the beam.  The second grating corrects the 
ellipticity in the beam profile  introduced  by  the first grat- 
ing. For nonplanar beams, the design of  the  grating  rhomb 
beam sampler must be  optimized to reduce aberrations in 
the sampled beam. 

72) Beam Shaping: In the beam expansion application 
mentioned above, the  profile  of  the laser beam is modified 
by a grating. In a conceptually similar manner,  a  series of 
gratings can be used to shape the  profile  of a laser beam 
[I641 in an arbitrary way for  applications  where specific 
beam  profiles are required. 
73) Beam Splitting: A straightforward  application  of a 

grating is  as a beam splitter. These devices  are  used both in 
bulk  optics  and in integrated  optics  applications [165].  A 
grating  beamsplitter as i t  might be used in a dielectric 
channel waveguide is shown in Fig. 20. The incident wave 
ideally is divided  into  the i = 0 transmitted wave and the 
i = +1 diffracted wave.  The grating might, for example, be 
a planar  grating  formed  holographically  through  the  photo- 
refractive  effect or i t  might  be a surface-relief grating  formed 
using  photolithography. 

74) Coherent Light Generation: The  dispersive  character 
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Fig. 20. Channel waveguide  beam-splitting  grating. 

of  grating  diffraction is clear from  the  grating  equations 
[(42) and (43)]. Both  the  forward-  and  backward-diffracted 
waves  have directions  of  propagation  that  depend on the 
wavelength  of  the  incident  light. This  dispersive property 
allows  diffraction gratings to be  used in laser  resonators to 
control  the  oscillation frequency  and to produce spectral 
narrowing  of  the  output [I&]-[175]. The grating can  be 
used  internally in the laser cavity to produce  broad-band 
tuning such as with a dye  laser. Alternatively, a reflection 
grating may be used as part  of  the laser cavity. In this  type 
of  open resonator it is possible to have the i th  order 
diffracted wave to be  reflected back in  the  direction  of  the 
incident wave  along  the resonator axis.  The i = 0 wave  can 
be  reflected  out  of the resonator and used as the laser 
output. 
75) Convolution Processing: The convolution  of  two 

one-dimensional signals A(  t )  and 6( t )  may  be defined as 

A( t )  6( t )  = /+ODA( 7 )  6( t - 7 )  d7 (113) 

where T is a  dummy variable representing  a  time  delay 
between  one  function and  the  time-reversed  version  of  the 
other  function. Acoustooptic  grating devices  can be w n -  
struaed  to perform  the  convolution  operation [112], 
[I 761-[I  781. A basic acoustooptic  convolver is shown in Fig. 
21. The signals A ( t )  and 6 ( t )  are used to amplitude-mod- 
ulate  acoustic waves that travel in opposite  directions. The 
acoustic waves  have a  radian  frequency  of us = Znf,. An 
optical wave of radian  frequency w o  (ao = 2rc/A) i s  inci- 
dent  upon these  acoustic gratings at the first Bragg angle. 

- m  

The acoustic waves diffract  the  light and a lens at the 
output combines  the beams as shown. The upper  detector 
receives undiffracted  light and doubly  diffracted  light. The 
undiffracted  light has radian  frequency w o .  The doubly 
diffracted  light is increased in frequency  by the sound 
frequency at  each diffraction  by the  Doppler  effect. Thus 
the  doubly  diffracted  light has a radian  frequency  of wo + 
2w,. The lower detector receives singly  diffracted  light  from 
each  grating. In one case, the  optical  frequency is  increased 
because the  light wave has a  component  opposite  to  the 
direction  that  the grating is moving. This  wave has a  radian 
frequency of wo + 0,. In the  other case, the  optical  radian 
frequency is  decreased and is w o  - 0,. At  either  photode- 
tector,  after  heterodyne  detection,  a signal of  frequency 20, 
is present. If  the  duration  of the input signals A( t )  and 6( t )  
are  less than  the  time  aperture  of  the  interaction  region  and 
i f  both signals occur in the same time span and if the 
signals are band-limited  to one  octave  centered at os, then 
the  convolution signal  can  be  separated from other signals 
by bandpass filtering. 

16) Correlation Processing: The  cross correlation  of  two 
one-dimensional signals A( t )  and 6( t )  may be defined as 

A( t)*6( t )  = / + m A ( 7 ) 6 ( 7  - t )  d7. (114) 

Acoustooptic devices  have been  constructed to operate as 
correlators [112], [178]-[182]. Thus the  form  of  the correla- 
tion  operation is similar to that of  convolution. However, 
for  convolution  the process  may be  visualized as moving a 
time-reversed  version  of  one  function  by  the  other  func- 
tion, whereas for  correlation  the process  may be visualized 
as moving  one  function by  the  other function  without any 
time reversal.  Since in Fig. 21 the two acoustic waves  are 
counter propagating,  the time reversal is automatically pro- 
vided and convolution is produced. The configuration  of 
Fig. 21 can  also  be used to produce  the  cross-correlation 
function.  If  one  of  the signals is time reversed before 
applying  it  to  the transducer, then  there will be effectively 
two  t ime reversals and  the  functions will be oriented  the 
same way in  time as they  move past  each other. Subject to 
the  conditions discussed for  convolution,  the cross correla- 
tion  of  the  two functions will be produced  after  square-law 
detection  and bandpass filtering. 
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Fig. 2 l .  Acoustooptic  space-integrating  convolver. If one of the amplitude-modulated 
sound  waves is time reversed,  this  device  becomes a correlator. 
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Fig. 22. Integrated optical  electrooptic,  acoustooptic  digital  correlator [183]. 

An  integrated  optical  digital correlator  developed at  Bat- 
telle  Columbus  Laboratories is shown in Fig.  22. This device 
uses both an  electrooptic  and an acoustooptic  interaction. 
Light is coupled  into  a slab waveguide  by  a  prism  coupler. 
The light wave is incident at the Bragg angle on a grating 
produced  by  a set of  interdigitated  electrodes. The voltage 
to  each set of  electrodes is separately controllable. For a 
“zero,” no voltage is  applied. For a “one,”  a  voltage is 
applied and the  electrooptically  induced grating  diffracts 
the  light as shown. The  second digital signal is represented 
by  a SAW that is launched  by an interdigitated  transducer. 
For a  “zero,” a constant  amplitude  acoustic wave is pro- 
duced. For a “one,” no acoustic wave is  produced. The light 
that is transmitted or diffracted  by  the  electrooptic  grating 
is incident at the Bragg angle  of  the  acoustic  grating.  At an 
instant  of  time  if  the  two  digital  functions  do  not match, a 
combination  of  undiffraded and  doubly  di-ffracted  light is 
focused on  the upper  detector.  The  detector output repre- 
sents the sum of  the  bit-by-bit Boolean  logical EXCLUSIVE-OR 

operations.  Likewise, if the two digital  functions are the 
same, singly diffracted  light is  focused on the  lower detec- 
tor. I ts  output represents the sum of  the  bit-by-bit Boolean 
logical IDENTITY operations. This output as a function  of 
time  will give the  digital  correlation  between  the two 
functions. 

77) Data Processing and  Optical Logic: A  wide variety  of 
data  processing  applications exist that are  based on grating 
diffraction.  Many  of  the  optical systems involved  perform 
Boolean  logical  operations such as AND, OR, EXCLUSIVE-OR, 

and NAND. Of  course, modern  electronic  computers use 
Boolean  logical  functions in combinations to produce 
calculations of arbitrary  complexity. A number of  re- 
searchers have used  gratings to perform  logical  functions on 
parallel optical  inputs [165], [I&]-[lag]. These logical  oper- 
ations may be an end in themselves in some applications. 
Combining  the associative property  of  holographic storage 
together with the Boolean  logical  operation EXCLUSIVE-OR or 
NAND, it is possible to construct  a  truth-table look-up data 
processor.  The  Boolean  logical  functions are used to  indi- 
cate the matches  that  occur  between  the input data and the 
holographically  prestored data that represent the  entries 

from a truth table. With this  type of data processing system 
it is possible to perform  operations like  addition and multi- 
plication  on pairs of  input words in parallel. 

78) Data Storage: Holographic  memory systems for 
high-speed  and  high-capacity data  storage  have been  exten- 
sively  studied [120],  [190]-[207]. The  data recording  and 
readout are generally of the  form as represented in Fig. 
23(a) and (b), respectively.  An  expanded  object beam il- 
luminates a page  composer  (spatial light modulator)  that 
contains  the  data to be recorded  [object A in Fig.  23(a)j. 
Using  a lens, the image of the data is two-dimensionally 
Fourier  transformed at the  location  of  the  recording  medium. 
Th$  pattern is interfered with a  reference wave  and the 
resulting  intensity  distribution is recorded. Such a  hologram 
grating is  called a Fourier transform  hologram. Upon il- 
lumination  with  the reference beam the Fourier transform 
of  the  amplitude  distribution  of  object A is reconstructed. 
After  another  Fourier  transforming  operation,  the image of 
object A (upside down and backwards) is produced at the 
output image  plane as shown in Fig.  23(b).  Thus data  can be 
stored  and  read out so that  the system  operates as a 
memory. In this  configuration,  lateral  movement  of  the 
hologram  does  not cause a movement  of  the image and so 
there is an important  insensitivity  of  the position  of the 
detectors  that would be used at the  output image plane. 
One  of  the features  that has motivated research on this  type 
of  memory is the  potentially very high data  capacity associ- 
ated with holographic storage [119]. Volume storage, for 
example,  can  be  achieved  by  angularly multiplexing  the 
holograms as previously discussed [120]. 
79) Diagnostic  Measurements: The intersection  of two 

time-coincident laser  pulses in a material  using the  config- 
uration  shown in Fig.  13(b)  can produce a transient  grating 
and  thus can  be used to measure  some of  the  physical 
properties  of  the  solid or liquid [106]-[108],  [208]-[218]. The 
period  of  the  induced grating is given  by (107). If the two 
crossed beams approximate uniform plane waves, the  light 
intensity  distribution  in  the sample is given  by (108). This 
pattern,  for  example, could lead to a similar  distribution  of 
excited  electronic states in the  material which can  change 
the  optical properties  of  the  material  and  thus  produce  a 
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Fig. 23. Data  storage  and  correlative  pattern  recognition. (a) Recording  data  page A as a 
Fourier  transform  hologram.  (b)  Playback of data  page A. (c) Obtaining the  cross  correla- 
tion of new data  page 6 with stored  data  page A. 

diffraction grating. By observing the time-dependent decay 
of  the  diffraction  from this grating, information about the 
dynamic  properties of  the physical system can be obtained. 
Transient grating experiments have been used to measure 
electronic  excited state  energy transport and momentum 
transport, trapping rates, hot-electron relaxation rates, fluo- 
rescence quantum yields, orientational relaxation times, 
thermal  diffusion rates,  mass diffusion rates, and coherence 
time  of picosecond pulses.  The diffraction  from  the in- 
duced grating  may  be  monitored by any of several  ways as 
shown in Fig. 24. Higher order diffraction  of  the two ex- 
citing beams can be measured as shown in Fig.  24(a). In this 
case, the  detector is shown measuring a beam which is the 
combination  of  the i = +2 diffracted order of  the  exciting 
beam  that is propagating to the  lower  right and the i = -1 
order  of  the  exciting beam that is propagating to the upper 
right. In Fig. 24(b), a beam of a different wavelength is 
shown probing  the grating.  This beam is aligned to  its first 
Bragg angle  and  the  efficiency  of  the i = +I diffracted 

order is measured. For the  configuration shown, the  moni- 
toring  wavelength is longer than the  exciting wavelength. 
Alternatively,  the  probe  beam  could  be  normally  incident 
upon the  grating as shown in Fig. 2%~). This has’ the 
disadvantage that  the  incident  probe  beam is not at a Bragg 
angle. However,  this  configuration has the advantage that 
the  probe  beam can be  the same wavelength as the  exciting 
beams. In Fig. 24(d), one  of  the  exciting beams is reflected 
(or partially reflected) back into  the  grating and  thus it 
serves as the  probe beam. It  is automatically at the Bragg 
angle and  the  diffracted  power is monitored  using a beam 
splitter to  separate i t  from  the  path  of  the  exciting beam. 

20) Displays: The ability  of a holographic  reconstruction 
to  give a three-dimensional  view  of  the  object is well 
known. The  analysis and  construction of three-dimensional 
holographic displays has received considerable attention 
[219]-[223).  These displays are important in those applica- 
tions that  require  being able to see the  object in three 
dimensions.  Holographic systems, for example,  have been 
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Fig. 24. Diagnostic  configurations  for  measuring  the dif- 
fraction  from a grating in real  time.  (a)  Monitoring a combi- 
nation  of  the i = -1 and i = + 2 (from  the  lower and  upper 
incident waves,  respectively)  higher  order self-diffracted 
waves.  (b) Monitoring  the  diffraction  from a separate  beam 
aligned to i ts  Bragg  angle.  (c) Monitoring the i = +I  wave 
from a normally  incident  probe beam.  (d) Monitoring the 
diffraction of  one  of  the  writing  beams  reflected  back into 
grating  (four-wave  mixing  configuration). 

implemented  for displaying  the core of a nuclear  reactor 
and  for  making measurements in a  bubble  chamber. 

Diffraction gratings are also  used for  producing  and  filter- 
ing colors in more  conventional displays [224]-[227]. The 
diffraction  efficiency  of  the i = 0 (transmitted)  order is  
strongly  wavelength-dependent in some surface-relief grat- 
ings. Thus these  gratings can be used as color  filters in 
on-axis projection systems that  transmit only  the zero-order 
light. Gratings  that  produce  the  three  subtractive  primary 
colors, cyan,  magenta, and yellow have been  produced 
[227]. 

Volume holograms have been used for  spatial filtering  to 
detect size,  shape, orientation,  and  color  for  applications 
such as the  recognition  of  biological cells (e.g., red blood 
cells) [225]. Gratings in the  form  of a half-tone screen  have 
been used as overlays with gray-scale  transparency  imagery 
to  disperse  colors into various diffracted orders. With the 
appropriate  spatial  filtering,  this  produces  a  pseudocolor 
display  of the gray-scale information [226]. 

21) Distributed  Feedback: Gratings in slab waveguides 
have previously  been discussed in connection with anten- 
nas, beam  coupling, beam  expansion,  and  beam splitting. If 
the slab  waveguide  contains an active medium capable of 
lasing, then  a  grating or  gratings  can  be  used to provide  the 
feedback required  for laser action [228]-[244]. In contrast to 
a  discrete  resonator  mirror at a specific  location,  the  grat- 
ings acts as a  distributed reflector. If  a single  grating is used 
that is continuous  throughout  the  active  region,  the  device 
is called  a  distributed feedback (DFB) laser. If two grating 
reflectors are used in the slab waveguide on either side of 
the active  region,  the  device is called a distributed Bragg 

reflector (DBR)  laser, as is shown in Fig. 17. The guided 
wave to be  reflected  should be incident  upon the  grating at 
a Bragg angle.  From  the Bragg condition  the grating  period 
required is 

A = mX/2nf sineg (1 15) 

where OB is the zig-zag  angle  of  the  guided wave and n f  is 
the  refractive index of the slab waveguide film. The Bragg 
condition is satisfied  for the i th  diffracted  order  where 
i = m. The  directions  of all the  diffracted orders (if they are 
not evanescent) are determined  from  the  grating  equation 
and are 

6, = sin-' [ ( iA /n ,A)  - sin OB] . (1 16) 

For a  fundamental or first-order Bragg reflector, m = 1. For 
GaAs (X = 840 nm and nf = 3.58) with a  guided  mode 
zig-zag  angle near W0 (which is typically  the case), the 
grating  period  should be A = 117 nm. Since this  grating 
period is very  small  and difficult to fabricate,  higher  order 
( m  = 2,3,  . - + ) grating  reflectors are frequently  constructed. 
These higher  order  grating  reflectors,  though easier to  build, 
have  smaller diffraction efficiencies. The  spectral purity and 
the  frequency  stability  with changing  temperature  of a 
distributed feedback thin-film laser  are markedly  superior 
to that  of  a  cleaved-face  discrete  feedback  semiconductor 
laser. 

22) Filtering: Due  to  the wavelength  selectivity  of  the 
diffraction  by  a grating, spectral filtering is a natural  applica- 
t ion for  them. In integrated  optics,  surface-relief  gratings 
are used with slab  waveguides to provide  filtering  of  the 
optical wave [245]-[252]. An  example  of  this is shown in Fig. 
25. The function  of  the grating in this case is the same as in 
distributed feedback. That is, a narrow  band  around a given 
wavelength is  reflected with  high efficiency. The  wave- 
length  reflected is the value that satisfies the Bragg condi- 
t ion for  the  grating.  Gratings with linearly  varying  periodic- 
ity  (chirped)  produce  reflection over a range of  wavelengths 
and  thus  allow broad-band filtering [248]. 

In  addition  to waveguide  grating  filters  there are 
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Fig. 25. Diffraction behavior  of a slab  waveguide  surface- 
relief  grating as a function  of  wavelength  deviation  from  the 
Bragg  wavelength [246]. 
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acoustooptic  spectral  filters [253]-[259].  These filters are 
generally bulk acoustooptic devices rather  than  integrated 
optical devices.  Acoustooptic  filters have the advantage of 
being  electronically tunable.  Changing  the  frequency  of  the 
voltage  signal  applied changes the  period  of  the acoustic 
grating  produced as indicated  by (112). If the  light propa- 
gates in  the same direction as the  acoustic wave i t  is called 
a  collinear  configuration. In this case, the  grating  fringes are 
perpendicular to the direction  of  the  light propagation  and 
the  grating behaves as a  pure  reflection  grating. If the 
wavevector of the  light and the acoustic wave are not 
parallel, i t  i s  called a noncollinear  configuration.  Acousto- 
optic  filters generally utilize  the anisotropic  properties  of 
crystals  that cause the  polarization  of  the  diffracted  light to 
be  rotated  by 90° by way of the  photoelastic  effect. This 
allows  the  filtered  light  to be  separated from  the remainder 
of  the  light  by  the use of  polarizers. 

23) Head-Up Displays: Another way in  which  the wave- 
length  selectivity  of  a  thick  grating can  be  used is to 
combine  a  narrow  band  of wavelengths with an existing 
field  of  view. Such a  device is called  holographic beam 
combiner  and can be used to construct a head-up  display 
[260]-[262]. An example  head-up  display is shown in Fig.  26. 
The  observer  or pilot sees the scene in  front  of  them. At  the 

MIRROR 4 
COLLIMATINO 

LENS 

. 

Fig. 26. Narrow  spectral  band  holographic  beam  combiner 
used to make a head-up  display. 

same time,  a  holographic  grating  diffracts  light  of  the wave- 
length  corresponding to the  color  of  the  phosphor  of  the 
cathode-ray tube (CRT). In this manner,  data displayed on 
the CRT can  appear  superposed at infinity  with  the scene in 
the  field  of  view. Thus pilots would not have to turn  their 
heads to read  instruments  and data during periods when 
intense  concentration is essential.  The holographic  beam 
combiner will also diffract  out  of the scene the  color 
corresponding to the  phosphor.  However, if  the phosphor 
and  the  beam  combiner are sufficiently  narrow-band in 
their  operation,  this will  not produce  a  noticeable  effect. 
24) Holographic  Optical  Elements: By recording  the in- 

terference  pattern  produced  by two arbitrary  wavefronts, i t  
is possible to produce  a  device  that  transforms  one wave- 
front  into another [e.g.,  Fig. 1qa )  and (b)].  By recording  the 
interference  patterns associated with  multiple wavefronts, i t  
i s  possible to transform  one  incident wave into  multiple 
diffracted waves. HoloaraDhic  oDtical  elements  constructed 

in this way have been  widely  investigated [263]-[273].  For 
example,  a  plane  wavefront  might  be  converted to a  con- 
verging  spherical  wavefront  producing  the  effect  of  a 
spherical  focusing lens.  Similarly, a plane wave could  be 
converted  to a cylindrical wave or to an arbitrary  wavefront. 
They  can perform  the functions of  conventional refractive 
and  reflective  optical components. Since  these holographic 
optical  elements can be  recorded on plates, they may be 
relatively  small  and  lightweight. Solymar and  Cooke [20] list 
a  number  of  additional  potential advantages of  holographic 
optical  elements: 1) An  element may perform several func- 
tions  simultaneously (e.g., deflection,  focusing, filtering). 2) 
Arrays of  elements can be  constructed on a single  plate 
(e&, a  lenslet array). 3) Elements  can be easily  stacked 
together owing  to their  planar  structure. 4) Elements  can be 
formed  on curved substrates if needed. 5) Production costs 
could  ultimately  be small. 

25) Image  Amplification: Some holographic  recording 
materials do  not require any developing. The interference 
pattern is recorded  directly in the  material. The photorefrac- 
tive materials are  an important  example of self-developing 
recording media. In these  materials,  such as lithium niobate, 
the  recording in general is a  dynamic process.  That is, as the 
hologram  grating is recorded i t  diffracts light  from  both  of 
the  recording beams into the  incident beams.  These dif- 
fracted  light beams interfere with the  incident beams and 
this  interference is also recorded as part of  the  total  holo- 
gram. Depending  on the crystal and  the  physical  configura- 
tion, it is possible  for  one of  the  recording beams to be 
diminished  and  the other  one to  be correspondingly ampli- 
fied.  This  dynamic  recording process has been used to 
produce image amplification [274]-[276]. In this case the 
reference  beam  (the pump beam) is depleted  and  the 
object beam is enhanced. 

26) Image Processing: 
Image  Subtraction can be  accomplished  directly by 

holographic techniques [275],  [277]-[281]. Two exposures 
are typically made in a Fourier transform  configuration such 
as shown in Fig.  23(a). With equal  amplitudes  and 180° 
phase shift  between  the  two recordings, i t  is possible to 
produce  a  point-by-point subtraction of the images in the 
output image  plane. The two exposures  can be in  photo- 
graphic fi lm [277] in  which  the image  subtraction then 
appears after  development. The two exposures can  be  done 
in a  self-developing  material such as a  photorefractive crystal 
of  lithium  niobate [278] in  which case the  image  subtraction 
can be  monitored  continuously  during  the subtractive  re- 
cording.  Further, the second  image to be subtracted  need 
not be  recorded into the  material. The second  object  can 
be  placed in  the  input plane and its wavefront superposed 
(equal in amplitude and with 18O0 phase shift) with the 
diffracted  wavefront  from  the hologram of  the first object 
and thus produce image subtraction without changing the 
stored  image [279]. Alternatively, image subtraction can be 
implemented  using  the energy  transfer between  the two 
writing beams in dynamic  holography [275]. 

Edge Enhancement in images  can be  achieved  using 
nonlinear  holographic  recording [282],  [283]. In photorefrac- 
tive crystals it is  possible to have the  induced  refractive 
index  change  proportional to the  modulation  ratio of the 
interference  pattern [cf. (108)]. If the  object beam is much 
more  intense  than  the reference beam, then  the  modula- 
tion  ratio will be  small  everywhere except  where there is a 
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transition  from  light  to dark (an  edge) in the  object beam. 
Because the  modulation  ratio is near unity at these points, 
they are recorded with  high  diffraction  efficiency and an 
edge-enhanced  image is produced. 

Image  Deblurring can be  accomplished with the use of 
various  types of gratings  [284]-[288]. If the image moved 
linearly with respect to the  recording  device it is possible to 
restore the  original  image  by  a  number  of  techniques. 
Deconvolution  of  the image and  the  linear blurring  func- 
tion can be achieved  using various grating  filters  placed in 
the back  focal  plane  of  a lens that  performs  the  Fourier 
transform of  the  coherently  illuminated  blurred image. De- 
pending  on  the  configuration used, the  deblurring mask 
might  be  a  holographically recorded  complex  grating or a 
simple square-wave  (Ronchi  ruling)  grating. Linear motion 
deblurring can also  be accomplished  by  using  angularly 
multiplexed  volume holograms. In this approach,  an  ap- 
propriate set of gratings with different  slant angles (+) but 
with the same period along  the surface (A/sin+) are re- 
corded.  From  the  grating  equation  for  forward-diffracted 
waves, (43), it is observed that  for a given  diffracted  order, 
all of  the gratings  diffract  the incident wave in the same 
direction. The diffraction  efficiency  of each grating  depends 
on  the  amount  of dephasing  that exists from  the Bragg 
condition. The object produces  an  entire angular spectrum 
of  plane waves. Each component of this  spectrum is mod- 
ified (weighted)  by  the set of  multiplexed gratings. By 
selecting  the appropriate set of  volume gratings it is  possi- 
ble  to accomplish image deblurring  directly. In this  tech- 
nique there are no auxiliary  components such as Fourier 
transform lenses.  The filter is  simply  placed  adjacent to the 
coherently  illuminated  blurred image (with fringes  per- 
pendicular  to linear  blur)  and  the  resulting  diffracted wave 
represents the  deblurred  image. 

27) Incoherent-to-Coherent  Converter: Many  optical 
signal  and  data  processing systems require  coherent images 
for  their  operation.  However, many times  the imagery only 
exists in incoherent  form (e.g., from  a CRT). The  use of  the 
photorefractive  material  bismuth  silicon  oxide to make a 
two-dimensional  incoherent-to-coherent converter has 
been  recently demonstrated [289]. In this device, the  inter- 
ference  of two coherent  plane waves [cf. (108)) is recorded 
as a  planar  fringe phase grating. Before, during, or after  this 
exposure,  an  incoherent image  can  be focused onto  the 
crystal. In the  region  where  the  incoherent image is bright, 
the charge carriers are photoexcited  and  redistributed within 
that  bright region. Thus the  overall  grating is  locally erased 
in bright regions of  the image. When  coherent light is 
diffracted  from  the resultant  grating,  the  efficiency  of  the 
diffraction varies inversely with the  intensity  of  the  incoher- 
ent image. A negative  coherent  replica  of  the input  incoher- 
ent  image is produced in  the  diffracted beam. Therefore  the 
device  functions as an incoherent-to-coherent  converter. 

28) Interferometry: Nondestructive  testing  using holo- 
graphic  interferometry [290]-[295] has already achieved a 
high degree of commercial success. Turbine blades, heli- 
copter  blades,  and  automobiles are being  vibration  tested in 
this  manner. A double-exposure  hologram  grating of the 
object is  recorded with the same reference beam and  played 
back.  The  result of  deformation  between  the  two exposures 
appears as fringes on the  reconstruction  of  the  object. 
Interpretation  of  the fringe  pattern  allows  the  locations  and 
amounts  of  deformation  to  be  determined. The holographic 

gratings  can  be  recorded on  film emulsions  when  there is  
appreciable  time  between the exposures  or they can  be 
recorded on a  real-time basis (millisecond  time scale) in 
high-sensitivity  photorefractive  materials such as bismuth 
silicon  oxide and  bismuth  germanium  oxide. 

29) Lenses: Gratings to focus light can be  recorded 
holographically or the  location  of  the  grating  fringes can be 
calculated  from a knowledge  of  the  incident  and  the  de- 
sired  focused wave. Grating lenses  have been  investigated 
for  bulk  optics  (two-dimensional wavefronts) [2%]-[301] 
and for  integrated  optics [302]-[312]. A schematic illustra- 
tion  of a grating  waveguide lens for  integrated  optics is  
shown  in Fig.  27.  The  angular field  of  view over which 
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Fig. 27. Slab  waveguide  chirped  grating lens [309]. 

grating lenses will operate is determined  by  the angular 
selectivity  of  the grating. The field  of  view can be made 
large by decreasing  the  thickness  of the grating, but this 
decreases the  diffraction  efficiency. Waveguide  grating 
lenses with nearly diffraction-limited performance have 
been  constructed  with 90 percent diffraction  efficiency and 
3" field of  view. 
30) Mode Conversion: In  bulk optics or in integrated 

optics, i f  the  polarization  of  the  light is rotated,  then  mode 
conversion is said to have occurred. In  a  bulk acoustooptic 
device  such as a  tunable  filter,  the  polarization  of the light 
can  be rotated  by  the nature of  the photoelastic  effect  that 
describes the change of refractive  index  that is produced  by 
the acoustic  strain wave.  For guided modes in a dielectric 
waveguide, TE, and TM, ( n  = 0,1,2, . . ) guided modes 
may  exist. Mode conversion, in general,  describes all of  the 
possible  transformations TE, + TE,,  TE,  TM,, TM, 4 
TM,, and TM, 4 TE,. When  the  total  field  of a particular 
waveguide mode is decomposed into  two zig-zag  plane 
waves i t  is clear  that  the  waveguide  grating  vector does not 
lie  in the  plane of incidence  for  either  of  the  component 
plane waves. As discussed in Section 11-E, this  situation 

8 requires a three-dimensional  vector diffraction analysis  [29] 
and  coupling  between  the  polarization  component per- 
pendicular t o  the plane  of  incidence  and  the  component 
lying in the plane of incidence is inherent. Mode conver- 
sion has been  extensively  studied  for  the  acoustooptic 
grating case  [313],  [314] and  for  the  waveguide  grating case 

37) Modulation: High-speed  electrooptic  grating  mod- 
ulators can be constructed  using  interdigitated  electrodes 

[315]-[317]. 
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on a substrate [152],  [318]-[322]. If the  electrode  period is 
large, the  modulator  will operate in the Raman-Nath  reg- 
ime such as indicated  in Fig. 15 where  the  incident beam is 
shown  normally  incident  upon the  grating. If the  interdig- 
itated  electrode  period is sufficiently small, the modulator 
will operate in the more efficient Bragg regime such as 
indicated  in Fig. 22 where the beam is shown  incident at 
the first Bragg  angle.  These  devices  can  be operated in a 
digital  (“on” or “off‘? or analog manner. Usually  the i = +I 
diffracted beam is used as the  output of  the device, though 
the  other orders are  also modulated. 

Acoustooptic grating  modulators are inherently  not as 
fast as electrooptic devices, but acoustooptic  modulators 
can be configured  in more versatile ways  [150],  [178], 
[323]-[327]. A basic acoustooptic waveguide modulator is 
shown  in Fig. 19. The period  of  the acoustic grating pro- 
duced is inversely  proportional to the input frequency as 
given  by (112).  Because of the wide range of  possible input 
frequencies,  the  resulting  grating diffraction can  change 
from Raman-Nath regime behavior (at low frequencies) to 
Bragg regime  behavior (at high frequencies). An amplitude- 
modulated  sound wave (such as depicted in Fig. 21) will 
produce  amplitude  modulation of  the i = 0 transmitted 
wave. For small amplitude acoustic waves, the depth of 
modulation  of  the  amplitude-modulated  light wave is pro- 
portional  to  the acoustic power rather than  the acoustic 
amplitude  which  might be a more desirable situation. This 
applies  for  both  the Raman-Nath and Bragg regimes. Multi- 
ple  tilted surface acoustic wave  transducers (sets of inter- 
digitated electrodes) can be used to extend greatly the 
bandwidth  of these  devices.  At its design frequency, each 
set of electrodes produces an acoustic wave grating that is 
oriented at its  first Bragg angle with respect to the guided 
light beam. The  transducers, connected in parallel, each 
diffract  out  of  the  light beam a different range of  frequen- 
cies present in  the input signal. The i = 0 transmitted wave 
is amplitude  modulated by all of the SAW transducers  and 
the signal bandwidth is greatly  increased.  Frequency mod- 
ulation can also be produced by an acoustooptic modula- 
tor. From the phase-matching  requirement, it follows that 
the  frequency of  the  diffracted orders are given by 

( = f, f i t  (1 17) 

where f, is the  incident  optical frequency. The + or - is 
determined by  the  Doppler  effect and  depends on  which 
direction  the  sound grating is moving. Therefore, the i = 0 
transmitted beam is  not  frequency-modulated. However, 
the  other orders are frequency-modulated. 

32) Monochromator: The wavelength  dispersion  of a 
given  diffracted order  of a grating can  be determined  from 
the  grating  equations [(42)  and  (43)].  This property is widely 
used to select a narrow band of wavelengths from a broad- 
band  optical source such as an  arc lamp. The  source il- 
luminates  the  grating and an exit slit  placed in one of  the 
diffracted orders selects a range  of wavelengths that is - 
passed to the  output of the monochromator. Either  trans- 
mission or reflection gratings  can  be  used in various config- 
urations so that as the  grating is rotated  to change the 
wavelength selected,  the output  light always has the same 
direction. By electrically  controlling  the  rotation  of  the 
grating  it is possible to change the center wavelength  of  the 
output  linearly  in  time so that  the  absorption or reflection 
spectra (or other  property)  of a sample  can  be plotted. 

Possible configurations  for an ultraviolet  monochromator 
based on a transmission grating, for example, are given in 
[328]. 

33) Multiport Storage: Electronic  semiconductor  mem- 
ories can only be  read  by one user  at  any given time. 
Frequently,  however,  there are many  users that  need  the 
stored data and so each  must wait in a queue  to gain access 
to  it.  Holographic systems for data  storage,  associative re- 
call, and data processing have been discussed in previous 
sections. Another  capability  of  holographic systems is multi- 
port access [329],  [330].  This would circumvent  the queuing 
problem of  ordinary  (single-port) memories and would al- 
low simultaneous access by multiple users to  the same data 
or to other data in the memory. Optical  memory systems 
based on angular multiplexing of thick holograms can  have 
multiport access to the stored data  by having multiple 
simultaneous reference beams.  These  beams  can be arrayed 
angularly  above and below the  plane  of  incidence  that was 
used for  recording those data.  The well-known angular 
selectivity characteristics  of thick hologram gratings occur 
for angular changes of the reference beam in the  plane of 
incidence.  However, angular  changes of  the reference beam 
perpendicular  to  the plane of incidence  produce very little 
dephasing from the vector form of the Bragg condition  and 
thus  allow  additional simultaneous  positions for other  refer- 
ence beams to read out data  [330].  Because of  the angular 
separation of  the beams, the data  page  images produced 
wil l be  spatially separated and can be read with  different 
detector arrays. 

34) Multiple Beam Generation: Diffraction by a grating 
produces multiple beams as pictured  in Fig. 4 and whose 
directions are given  by the grating  equations [(42) and (43)]. 
Tailoring  the  number and intensities  of  the  diffracted beams 
by adjusting  the  period and the profile  of the  grating is  of 
great interest  for a variety of  applications [331].  An im- 
portant  example  of  this type  of  application is a grating to 
produce  three beams for  reading video disks. A reading 
beam to detect  the  pits and two tracking beams  (one on 
each side of  the  row  of pits) are needed in this case. 
Gratings can  be synthesized so that most of the power is in 
the i - -1, 0, and + I  orders for  this  application. 

35) Multiplexing,  Demultiplexing:  Wavelength  division 
multiplexing  and  demultiplexing can be  used to increase 
the  channel capacity  of a communications system.  The 
wavelength  dispersion characteristics of diffraction gratings 
allow  them  to  be used directly as multiplexers  and  demulti- 
plexers [332]-[339].  The grating can be  an acoustic wave,  an 
etched  surface-relief grating, a hologram grating, etc. In 
addition,  it is possible to use a chirped  grating  period  to 
give  broader band  multiplexing and demultiplexing. 

36) Optical Testing: Gratings are widely used in  optical 
system testing.  Applications  include measurement of  the 
refractive  index  of a lens  [340],  laser  damage testing [341], 
modulation transfer function (MTF)  measurement  [342], and 
many  more. For example, the measurement of  the MTF of a 
lens can be accomplished by using diffraction-shearing  in- 
terferometry. This  may  be implemented by two  diffraction 
gratings, in contact and rotatable with respect to each 
other. This replaces a rotating-parallel-plate shearing inter- 
ferometer MTF measurement system in  which large plate 
thicknesses are required. 

37) Pattern  Recognition:  Optical devices to  perform  the 
cross correlation  between  two one-dimensional signals  have 
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been discussed in the  section  “Correlation Processing.” 
Optical systems using  hologram gratings  can  also be used 
to  obtain  the cross correlation  between  two-dimensional 
signals (images). This  type of system  was first developed by 
Vander  Lugt [343] and has been  studied in various  forms 
since then [344]-[346].  To accomplish  pattern  recognition, 
the system is normally used as a  matched filter. That is, 
when a  signal (image)  appears that matches the  recorded 
image, the  autocorrelation  that is produced is threshold 
detected since i ts amplitude will be larger than  that  for any 
cross correlation  that may occur when  the signal  does not 
match  the  recorded pattern.  An  optical  configuration  for 
producing  the  two-dimensional cross correlation is  shown 
in Fig. 23. The  Fourier  transform  hologram  of an image A is 
recorded as shown  in Fig. 23(a). I f  a new image ( B )  i s  
placed in the  input plane  and  similarly  coherently il- 
luminated,  the  light  diffracted  in  the  direction  of  the  origi- 
nal  reference  beam will be the  product  of  the complex 
conjugate  of  the Fourier  transform  of A and the Fourier 
transform of B. Upon Fourier transformation with a lens, 
this  product becomes  the cross correlation  of A and 6. If 6 
matches A ,  then  the  intensity  of  the  light in the  correlation 
plane exceeds the  threshold  level  of  the  detector  and  the 
presence of  the  autocorrelation (match) is registered. Fur- 
ther,  the  location  of  the  match in the  correlation  plane 
corresponds to  the  location  of  the  match in the  stored 
image A .  

38) Phase Conjugation: The diffraction grating  geometry 
for  the  production  of a  conjugate  wavefront was shown in 
Fig.  14. If  the  recording material is a  self-developing  material 
of  high  sensitivity such as photorefractive  bismuth  silicon 
oxide, i t  is possible to produce the conjugate wave in real 
time. This process is called phase conjugation [347]-[355] 
and is  depicted in Fig. 28. An  incoming wave is shown 
distorted as a  result of passing through an aberrating 
medium. The  interference  pattern  between the  distorted 
wavefront  and a  plane  reference wave is recorded as a 
grating in  the photorefractive crystal.  The conjugate  refer- 
ence wave (which  could  be  produced  by a  plane  mirror 
reflecting  the reference wave in this case) then  illuminates 
the  recorded  hologram  grating. The i = + I  diffracted wave 
from  the conjugate  reference wave is the conjugate  of the 
incoming wave. This predistorted wave upon passing back 
through  the aberrating  medium will approximately  repro- 
duce  the  conjugate  of  the wave that was incident  upon  the 
aberrating  medium. Thus by  predistorting  the  return wave, 
a process of  wavefront  correction  in  the  return signal has 
been  implemented. If the  recording  material is sufficiently 
sensitive, the aberrating medium can  change in real time 
and new gratings will be  recorded  that will provide wave- 
front  correction  by  predistorting  the  return wave to com- 
pensate for  the changed  aberrating  medium. Since there are 
four waves present in the  recording  material  (the  reference 
wave  and i ts conjugate,  the incoming and  the outgoing 
waves), the process is frequently  called  ”four-wave  mixing.” 

Phase conjugation can be used to provide  feedback in a 
laser cavity [356]-[360].  The  phase conjugation system in 
this case acts as a  reflector  that always returns  the  conjugate 
of  the wave received. Therefore,  changes causing  wavefront 
distortion can  occur within the laser cavity which are cor- 
rected in real time by the phase conjugate  mirror.  The 
four-wave  mixing geometry is the same as that  shown in 
Fig. 2qd) in the section on “Diagnostic Measurements.” 

e 
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Fig. 28. Phase conjugation configuration. (a)  Recording the 
interference  pattern produced  by  distorted  wavefront  and 
reference  wavefront. (b) Production of conjugate  of  incom- 
ing wave by illuminating grating with  the conjugate  of the 
reference  wave. This  predistorts  the  return  wave so that  its 
wavefront is corrected  traveling back through the aberrating 
medium. 

Thus the equivalence  of phase conjugation  and  real-time 
holography is apparent [361]-[363]. 

39) Pulse Shaping  and  Compression: 
Electronic Pulse Compression can be  achieved by  chirp- 

ing  the pulse,  launching i t  as an acoustic wave, and  diffract- 
ing light  from  the  resulting acoustic  grating [178], [364]-[365]. 
This is shown schematically in Fig.  29.  The linearly  swept 
frequency  pulse is converted to an  acoustic wave.  From the 
grating  equation (43), the i = +I forward-diffracted waves 
will have differing  directions over the  variable-period  grat- 
ing.  This  results in a focusing  of  the light  to a focal  length 
of F = L$ AT/X A f  where AT is the  time  duration  of  the 
pulse and A f  is the range of  frequencies in the pulse. 
Diffraction-limited focusing is possible in these  devices. 
The  focused  spot moves at the speed of  sound s. A 
detector at the focal  plane will detect  a new pulse  that has 
been compressed by a  factor of A T -  A f .  Compression  ratios 
of 500 are possible with these  devices. 

Passive Optical Pulse Shaping i s  possible  using  a  pair of 
reflection gratings  oriented  parallel  and  facing each other 
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Fig. 29. Acoustooptic  pulse  compressor.  Chirped  electronic  pulse i s  received  and corn- 
pressed by detection of the  focused light by a detector in the  focal  plane [365]. 

[366],  [367]. The  incident  light is reflected  from  one  grating 
to the  other  and exits the second grating  traveling  parallel 
to its original  direction. The grating  pair used together with 
an  appropriate  filter mask is capable  of  producing  short 
pulses  (nanosecond to picosecond)  of  arbitrary  pulse shapes. 
Properly tailored temporal  intensity  profiles are essential in 
applications  such as laser fusion. 

Active  Optical Pulse Compression down  to femtosec- 
ond  time scales  can be  achieved  using  a  grating  pair to- 
gether with a  spectrally  chirped  optical  pulse [368]-[371]. 
The parallel  gratings have the  property of  producing a time 
delay in  the  output  light that increases with wavelength. If 
the  input  pulse is  frequency  swept in time,  this  chirped 
pulse will have its envelope compressed in time  when it 
passes through  the grating  pair which acts as a dispersive 
delay  line.  The  frequency chirp can  be produced  by self- 
phase modulation  which can be imposed on the  incident 
pulse  by  passing i t  through an optical  Kerr-effect liquid  or  a 
length  of  optical fiber. 

40) QSwitching,  Mode Locking,  Cavity Dumping: 
QSwitching of a laser cavity to produce a high-power 

output pulse can be  accomplished with an acoustooptic 
grating  inside  the  cavity [372]. When  the  acoustic  grating 
is aligned to the first Bragg angle  and the  acoustic grat- 
ing i s  “on,” the Q factor  for  the resonator is very low and 
the lasing action is quenched. With further pumping  of  the 
active  medium,  the  gain  of  the laser  increases. When  the 
acoustic wave is switched  “off,”  the Q of  the  cavity is 
restored  and  an  intense  pulse is  emitted. 

Mode Locking of  a laser to  obtain  a  train  of very short 
pulses can  also be  done by using an acoustooptic  modula- 
tor  in the laser cavity [372]-[376]. A configuration  similar to 
that  described  for  Qswitching can  be  used  except that  the 
loss introduced  into the  cavity must occur at a  repetition 
rate  equal to the frequency spacing between  longitudinal 
modes of  the laser cavity. This produces a train of intense 
pulses  that are emitted at the  modulation rate. 

Cavity Dumping to obtain a single  high-intensity  pulse 
can  be  achieved  using an acoustooptic  device in the laser 
cavity [374]-[377]. In this case, the laser resonator mirrors 
are designed to be  totally  reflecting rather than  allowing 
some of  the  light  to  be transmitted out  of the  cavity. In  the 
absence of  the acoustic grating,  energy builds up in the 
highly  reflective  cavity. Then  an acoustic  pulse propagates 
into  the beam  and  diffracts energy out  of  the  cavity  produc- 
ing a  high-power pulse of light. 
47) Solar Concentration: The efficient use of photovol- 

taic  cells  requires  that a large amount  of solar energy be 

concentrated on each cell. Since  large-size refractive  optical 
elements are prohibitively expensive, it has been  proposed 
that  holographic  optical  elements  be used for solar con- 
centration [378]-[380].  These concentrators can be  light- 
weight and,  because of  generally  relaxed tolerances, they 
can  be  replicated easily. 

42) Spectral  Analysis: 
Microwave Spectral Analysis can be  performed  using 

acoustooptic  devices. The microwave signal is launched as 
an acoustic  wave  and  a  collimated light wave is diffracted 
from  the acoustic  grating. For a given  diffracted order, the 
grating  equation (43) indicates  that a particular  grating 
period (inversely  proportional  to  microwave  frequency) will 
diffract  light at a  specific angle. Collimated  light at a given 
angle with respect to a lens axis will be focused by  the lens 
to a  spot with a  corresponding  displacement from the axis 
in the  focal plane. Thus the lens performs an angle-to-dis- 
placement  conversion.  A lens is used in a microwave spec- 
trum analyzer in this way. At  microwave  frequencies,  the 
acoustic  grating  periods  produced are large compared to 
the  wavelength  of  light and  thus  the  grating  equation 
shows  that the angles of  diffraction  will  be small. For small 
angles, the displacement  of  the  focused  spot from the axis 
is directly  proportional  to  the microwave  frequency. Thus a 
linear array of detectors can be used in the back focal  plane 
of  the lens  and the received  frequency will increase linearly 
with detector  number. The frequency range covered at each 
detector  will  be  the same.  The fundamental i = +I dif- 
fracted  order is used in practice. From the  grating  equation, 
i t  can  be shown that  one octave of  frequencies can be 
covered  by the spectrum analyzer without any higher  order 
diffracted waves being focused onto  the detector array. At 
the  low-frequency  limit  of an octave bandwidth spectrum 
analyzer, the i = +I diffracted  order is at its smallest angle 
of  diffraction and  the i = + 2  diffracted  order is  focused 
adjacent to  the high-frequency  end  of  the  detector array. 
Acoustooptic  spectrum analyzers  have been  implemented 
in bulk  optical  form [381]-[384] and in integrated  optical 
form  using surface  acoustic waves  [178],  [385]-[391]. 

Optical Spectral Analysis can be  accomplished  directly 
using  the  wavelength dispersive property of a diffraction 
grating. The spectrum  contained in the incoming  light is 
angularly  dispersed  by  the  grating. Spectroscopy  may be  the 
oldest  and  most  widely used application  of  gratings [69]. 
Applications in the visible  region  of  the  spectrum  date  back 
to  the  nineteenth century. In  addition  to  the visible, there is 
current  work on ultraviolet  region  gratings [392],  [393] and 
X-ray region  gratings [394],  [395]. 
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43) Switching: Switching  of  light can be  achieved  using 
an  acoustooptic  or  electrooptic  grating [3%]-[400]. An in- 
tegrated  optics  electrooptic Bragg switch is pictured in Fig. 
30. A set of  interdigitated electrodes at the  intersection  of 
two  multimode channel  waveguides is aligned so that  the 

CHANNEL 
WAVEGUIDES 

A 

B 

INTERDIGITATED 
ELECTRDOES 

Fig. 30. Channel  waveguide  electrooptic  switch [398]. 

electrooptically  induced  permittivity grating is at the first 
Bragg angle. Without a voltage  applied to the  interdigitated 
electrodes,  there is no grating  and light propagates A + A’ 
and 6 + 6‘. If a  voltage is applied,  the  induced  grating 
diffracts  the  light so that it propagates A + 6’ and 6 + A’ 
thus  producing  switching  action as might  be used in a 
communication bus between processors in a  computer. 

6. Other  Applications 

Numerous  applications  of  grating diffraction have been 
presented in this section. While  the applications of the 
gratings are distinct,  the use of  the basic diffraction char- 
acteristics are common among  them. Some applications are 
really  combinations  of others. Many  other  important  appli- 
cations have not been discussed due to space limitations. 
These include Bragg diffraction imaging [m], a raster-scan 
lV display system [402], a  multichannel  digital processor 
[403], and  others. 

IX. SUMMARY 

A  rigorous  electromagnetic analysis of  diffraction  by di- 
electric slab gratings  and  surface-relief gratings has been 
reviewed.  Numerous  alternative  representations  of  the  total 
field  inside  the grating have been  shown to be equivalent. 
By selecting  the  appropriate  coupled-wave expansion, the 
amplitudes of  the space-harmonic  components of  the  field 
have been  shown  to  be  directly  obtainable using a state- 
variables  approach  from  linear systems theory. The ampli- 
tudes of  the evanescent and  propagating  orders  outside of 
the  grating can then be calculated  using  electromagnetic 
boundary  conditions.  Using a series of fundamental as- 
sumptions,  rigorous  coupled-wave  theory is shown to re- 
duce to  the various  existing  approximate  theories in the 
appropriate  limits. The effects  of  the  fundamental assump- 
tions in the approximate  theories have been  quantified  and 
discussed. 

A wide  variety  of applications  of  grating diffraction  in  the 
broad areas of acoustooptics,  holography,  integrated  optics, 
quantum electronics,  and spectral  analysis  have been dis- 
cussed.  The use of gratings is very widespread in modern 
optical  technology  and  directly  affects many areas of elec- 

trical  engineering.  Grating structures are even  appearing in 
the everyday  lives of lay people. There  have, for example, 
been 10.5 million copies  distributed  of  the  “eagle”  holo- 
gram  grating that appears on a cover of the National  Geo- 
graphic [W]. Indeed, i t  appears that  grating diffraction  will 
be even  more pervasive and  important in the  future. 
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