
Notes on Integrated Optics

Review of Basic Principles of

Electromagnetic Fields

Prof. Elias N. Glytsis
October 11, 2022

School of Electrical & Computer Engineering

National Technical University of Athens



This page was intentionally left blank......



Contents

1 Review of Maxwell’s Equations 1

2 Plane Wave Solutions 4

2.1 Isotropic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Anisotropic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 The Index Ellipsoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Reflection and Transmission at a Planar Boundary 12

4 Electromagnetic Field Energy and Power - Poynting’s Theorem 18

5 Generalized Reflection and Transmission at a Planar Boundary 24

6 Goos-Hänchen Shift 26

References 30

3



This page was intentionally left blank......



REVIEW OF BASIC PRINCIPLES OF

ELECTROMAGNETIC FIELDS †

1. Review of Maxwell’s Equations

The basis of electromagnetic fields theory are Maxwell’s equations. These equations describe how the

electromagnetic fields are coupled together and are related to the electric charges and currents (which

are the sources of the electromagnetic fields). The most common representation of the Maxwell’s

equations is the following:

~∇× ~E = −∂ ~B
∂t

, (1)

~∇× ~H = ~J +
∂ ~D
∂t

, (2)

~∇ · ~D = ρ, (3)

~∇ · ~B = 0, (4)

where ~E(~r, t) represents the electric field (in V/m), ~D(~r, t) represents the displacement vector (or the

electric flux density vector in C/m), ~H(~r, t) represents the magnetic field (in A/m), ~B(~r, t) represents

the magnetic flux density (in Tesla = Wb/m2), ~J (~r, t) represents the electric current density (in

A/m2),and ρ(~r, t) represents the electric charge density (in C/m3). The above equations are written

in the form of differential equations while an integral form can also be used. In the integral form the

Maxwell’s equations are written as follows:
∮

C

~E · d~̀ = − d

dt

∫∫

S

~B · d~S, (Faraday Law), (5)

∮

C

~H · d~̀ =

∫

S

~J · d~S +
d

dt

∫∫

S

~D · d~S, (Ampere Law), (6)

∫∫

S
© ~D · d~S =

∫∫∫

V
ρdV, (Gauss Law), (7)

∫∫

S
© ~B · d~S = 0, (Absence of Magnetic Monopoles), (8)

where in the first two equations C is a closed contour and S is a surface ending in that contour, while

the orientation of its unit vector is compatible with the right-hand rule when the direction that the

contour is traced. In the last two of the above integral equations, S is a closed surface that defines a

volume V and its unit vector points away from the surface.

In space with various materials parameters, the differential form of the Maxwell’s equations re-

quires the use of boundary conditions between the electromagnetics fields, when they are used at the

† c©2022 Prof. Elias N. Glytsis, Last Update: October 11, 2022
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boundaries between various media. The boundary conditions in electromagnetics can be easily de-

rived from the integral form of Maxwell’s equations by shrinking the contours, surfaces, and volumes

to points on the boundary between differing regions. Then the resulting equations, known as boundary

conditions, are the following:

în × (~E+ − ~E−)S = 0, (9)

în × ( ~H+ − ~H−)S = ~K, (10)

în · ( ~D+ − ~D−)S = σ, (11)

în · ( ~B+ − ~B−)S = 0, (12)

where ~K is the possible surface current density (in A/m) and σ is the possible surface charge density (in

C/m2) on the boundary, respectively. The în is the unit vector normal to the boundary and pointing

to the + region (Fig. 1).

�
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 � � 
 �

Figure 1: Boundary between two media denoted by “+” and “−” respectively.

Another equation that can be derived from Maxwell’s equations is the continuity equation (con-

servation of electric charge) that can be written in the following form (differential or integral)

~∇ · ~J +
∂ρ

∂t
= 0 ⇐⇒

∫∫

S
© ~J · d~S +

d

dt

∫∫∫

V
ρdV = 0, (13)

while the corresponding boundary condition is

în · ( ~J+ − ~J−)S = −~∇2 · ~K− ∂σ

∂t
, (14)

and ~∇2 · ~K denotes the two-dimensional divergence of the current density.

Maxwell’s equations can also be written in the time-harmonic form where phasors are used. For

example the real electric field, ~E(~r, t), and its phasor representation, ~E(~r, ω), are related by ~E(~r, t) =

Re{ ~E(~r, ω) exp(jωt)}, where ω is the radial (angular) frequency of the electromagnetic field. The

same phasor representation can be used for all the electromagnetic fields and sources. The phasor

representation can be thought as a special case of the Fourier transform of the a sinusoidal time varying

electromagnetic field. Using either the Fourier transform of Eqs. (1)-(4) or their phasor representation
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they can be written in the following time-harmonic form:

~∇× ~E(~r, ω) = −jω ~B(~r, ω), (15)

~∇× ~H(~r, ω) = ~J(~r, ω) + jω ~D(~r, ω), (16)

~∇ · ~D(~r, ω) = ρ(~r, ω), (17)

~∇ · ~B(~r, ω) = 0. (18)

The electromagnetic fields are also related via the constitutive equations. For example, in freespace,

the constitutive equations are

~D(~r, t) = ε0~E(~r, t) ⇐⇒ ~D(~r, ω) = ε0 ~E(~r, ω), (19)

~B(~r, t) = µ0
~H(~r, t) ⇐⇒ ~B(~r, ω) = µ0

~H(~r, ω), (20)

where ε0 = 8.854187817× 10−12 F/m is the permittivity and µ0 = 4π × 10−7 H/m is the permeabil-

ity, respectively, of freespace. For a linear, homogeneous, isotropic medium the material response

through the polarization, magnetization (and for conductive material conductivity/resistance) have

to be taken into account. The relation between the material polarization and magnetization and the

electromagnetic fields can be written in the form (for linear, homogeneous, and isotropic media)

~P(~r, t) = ε0

∫ ∞

0

Ge(τ)~E(~r, t − τ)dτ ⇐⇒ ~P (~r, ω) = ε0χe(ω) ~E(~r, ω), (21)

~M(~r, t) =

∫ ∞

0
Gm(τ) ~H(~r, t − τ)dτ ⇐⇒ ~M(~r, ω) = χm(ω) ~H(~r, ω), (22)

~J (~r, t) =

∫ ∞

0
Gc(τ)~E(~r, t − τ)dτ ⇐⇒ ~J(~r, ω) = σ(ω) ~E(~r, ω), (23)

where Ge, Gm, and Gc are kernels that describe the material memory of the electromagnetic fields (the

intervals from 0 to ∞ take into account the causality of the material, i.e. the polarization, for example,

cannot depend on future values of the electric field). The parameters χe, χm, and σ define the electric

susceptibility, the magnetic susceptibility, and the conductivity of the material (these are actually the

Fourier transforms of the kernels Ge, Gm, and Gc respectively). Using the above equations in the

frequency domain the following constitutive equations can be written:

~D(~r, ω) = ε0 ~E(~r, ω) + ~P (~r, ω) = ε0 [1 + χe(ω)] ~E(~r, ω) = ε(ω) ~E(~r, ω), (24)

~B(~r, ω) = µ0[ ~H(~r, ω) + ~M(~r, ω)] = µ0 [1 + χm(ω)] ~H(~r, ω) = µ(ω) ~H(~r, ω), (25)

~J(~r, ω) = σ(ω) ~E(~r, ω), (26)

where ε(ω) = ε0(1 + χe) = ε0εr(ω) is the material permittivity and εr is the material relative permit-

tivity. The material permeability is µ(ω) = µ0(1 + χm) = µ0µr(ω) and µr is its relative permeability.

The dependence of the materials macroscopic parameters (permittivity, permeability, conductivity)

on the frequency denotes what is called dispersion. All real materials have dispersion. Ideally, when a
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material is considered as dispersion free, then its macroscopic parameters are frequency independent

and Eqs. (24)-(26) are also valid in the time domain.

When a material is linear, homogeneous, and anisotropic then the constitutive equations can be

written in the form

~D(~r, ω) = ε̃(ω) ~E(~r, ω), (27)

~B(~r, ω) = µ̃(ω) ~H(~r, ω), (28)

~J(~r, ω) = σ̃(ω) ~E(~r, ω), (29)

where ε̃, µ̃, and σ̃ are the permittivity, permeability, and conductivity tensors (3 × 3 matrices in this

case). Even more complex constitutive equations can describe real materials such as bianisotropic

materials (where ~D depends on both ~E and ~H and in analogous manner ~B depends on both ~H and

~E). Furthermore, except being anisotropic (or bianisotropic), dispersive (or non-dispersive) a material

can also be inhomogeneous and/or nonlinear. In the case of the inhomogeneity the macroscopic

parameters are spatially dependent (an example would be a holographic grating region). In the case

of a nonlinear material the polarization, and/or magnetization and/or conductivity depend nonlinearly

on the electromagnetic fields.

2. Plane Wave Solutions

2.1 Isotropic Materials

In this section it is assumed that the materials of interest are lossless dielectrics (of zero conductivity,

i.e. σ = 0). In addition, it is assumed that there are no sources (electric charges, ρ = 0 and electric

currents, ~J = 0). This actually means that the electromagnetic fields were generated at infinite distance

away from the areas of interest. Furthermore, it is assumed that all media are linear, homogeneous,

isotropic, and nonmagnetic (common for optical materials). Solutions of the form (time-harmonic)

~E(~r, ω) = ~E0 exp(−j~k · ~r) are sought (phasors). The real field can be determined from ~E(~r, t) =

Re{ ~E0 exp(−j~k · ~r) exp(jωt)}. This form of solution for the electric field constitutes a plane wave

because the locus of constant phase (wavefront) is an infinite plane perpendicular to the direction of

propagation that is defined through the wavevector ~k. Using also the constitutive equations [Eqs. (24)

and (25)] Maxwell’s equations can be written in the following form:

~k × ~E = ωµ0
~H, (30)

~k × ~H = −ωε0εr
~E, (31)

~k · ~E = 0, (32)

~k · ~H = 0. (33)
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By eliminating the magnetic field from the above equations it is straightforward to show that the

following equation should be satisfied

[

~k · ~k − ω2ε0µ0n
2
]

~E = 0, (34)

where n2 = εr with n defined as the index of refraction of the material. Equation (34) is actually the

wave equation for the case of plane wave solutions in the time harmonic form. Of course, in order for

Eq. (34) to have nontrivial solutions it is necessary that the following dispersion equation be satisfied

~k · ~k − ω2ε0µ0n
2 = ~k · ~k − k2

0n
2 = 0, (35)

where k0 = ω
√

ε0µ0 = ω/c = 2π/λ0, with k0, c, λ0 being the freespace wavenumber, the freespace

light velocity, and the freespace wavelength, respectively.

�

�
�

�

�

� � � � � � �

Figure 2: A plane wave dispersion sphere of radius |~k| = k0n. The electric field, the magnetic field, and the wavevector

form a right-handed orthogonal system.

As it is implied from Eqs. (30)-(33) the electric field, the magnetic field, and the wavevector form

a right-handed orthogonal system of vectors. Furthermore, Eq. (35) represents a sphere in wavevector

space of radius k0n. I.e., for any direction of propagation of an electromagnetic wave in an isotropic,

homogeneous, and linear medium the index of refraction is constant while the polarization remains

perpendicular to the direction of propagation. The wavevector surface (sphere) is shown in Fig. 2.

For the latter reason, usually two orthogonal polarizations are recognized which are called eigen-

polarizations since they propagate inside the medium without being altered. For isotropic media the

selection of the two orthogonal polarizations is arbitrary since there are infinite pairs of orthogonal

polarizations for each direction of propagation. This situation changes dramatically in the case of

anisotropic materials.

5



2.2 Anisotropic Materials

Now it is assumed that the materials of interest are lossless, homogeneous, linear, and anisotropic [1].

In other words the permittivity is a tensor, ε̃ = ε0ε̃r, with ε̃ij = ε0ε̃r,ij where i, j = x, y, z and εr,ij are

the relative permittivity tensor elements. It is reminded that when the tensor permittivity is expressed

in the principal axes system then the tensor is in a diagonal form, ε̃ = ε0diag[εr,xx, εr,yy, εr,zz] (where

“diag” denotes a diagonal matrix). When two of the diagonal relative permittivity elements are equal

while the third is different then the material is uniaxial (one optic axis exists) while if all three differ

from each other then the material is biaxial (two optic axes exist). In order to determine plane wave

solutions in the case of a general anisotropic (biaxial) material the following (time-harmonic) form of

the Maxwell’s equations must be solved:

~k × ~E = ωµ0
~H, (36)

~k × ~H = −ωε0 ε̃r
~E, (37)

~k · ~D = ε0~k ·
(

ε̃r
~E
)

= 0, (38)

~k · ~H = 0. (39)

By eliminating the magnetic field it is straightforward to show that the electric field should satisfy the

equation

~k(~k · ~E)− (~k · ~k) ~E = −k2
0 ε̃r

~E. (40)

Notice that the above equation is the wave equation for a general anisotropic material in the case of a

plane wave solution. Expressing the wavevector, the electric field, and the relative permittivity tensor

in the Cartesian x, y, z coordinate system the following equation must be satisfied:







k2
0εr,xx − (k2

y + k2
z) kxky + k2

0εr,xy kxkz + k2
0εr,xz

kykx + k2
0εr,yx k2

0εr,yy − (k2
x + k2

z) kykz + k2
0εr,yz

kzkx + k2
0εr,zx kzky + k2

0εr,zy k2
0εr,zz − (k2

x + k2
y)













Ex

Ey

Ez







= 0 =⇒

=⇒
[

Ã(kx, ky, kz)
]







Ex

Ey

Ez






= 0. (41)

In order for the last equation to accept nontrivial solutions it is necessary to have the determinant

of the matrix Ã equal to zero. I.e., the following should be true [2]

det
[

Ã(kx, ky, kz)
]

= det
[

k2
0 ε̃r − k2Ĩ + ~k~k

]

= 0. (42)

The last equation defines the wavevector surface in the case of an anisotropic material and it is the

analogous equation (35) that it is valid for the isotropic case. The term Ĩ denotes a 3 × 3 unity

matrix and the term ~k~k denotes a dyadic. The wavevector surface expressed by Eq. (42) is a lot

more complicated than the spherical surface of the isotropic case. In fact, it is a two-sheeted surface

6



2

x-wavevector (k x
/k 0

)

ε
xx

 = 1, ε
yy

 = 2,  ε
zz

 = 4, ε
xy

 = 0,  ε
xz

 = 0, ε
yz

 = 0, λ
0
 = 1 µm

1

00

y-wavevector (k
y /k

0 )

0.5

1

1.5

0

0.5

1

2

z
-w

a
v
e
v
e
c
to

r 
(k

z
/k

0
)

x-wavevector (k x
/k 0

)

2

ε
xx

 = 1, ε
yy

 = 2,  ε
zz

 = 4, ε
xy

 = 0,  ε
xz

 = 0, ε
yz

 = 0, λ
0
 = 1 µm

1

0-2

-1

y-wavevector (k
y /k

0 )

0

1

0

0.5

1

2

z
-w

a
v
e
v
e
c
to

r 
(k

z
/k

0
)

(a) (b)

Figure 3: The wavevector surface of a biaxial material with εxx = 1, εyy = 2, εzz = 4, εxy = εxz = εyz = 0, and

freespace wavelength λ0 = 1.0µm. (a) One eighth of the wavevector surface is shown. Observe how the two wavevector

sheets intersect. (b) One quarter of the wavevector surface is shown. The intersection of the two-sheet surface defines

one the optic axes. There is a similar intersection point in the symmetrical quarter which defines the second optic axes.

in which the two sheets intersect. The intersection of the two sheets define the two optic axis. To

have a better understanding a sample case is shown in Fig. 3. For each wavevector (kx, ky, kz) that

satisfies Eq. (42) the corresponding refractive index can be found as n =
√

k2
x + k2

y + k2
z/k0 while the

corresponding polarization of the electric field vector can be determined from the null space of matrix

Ã(kx, ky, kz). Specifically, if the wavevector is expressed in the rectangular coordinate system, with

the azimuthal and polar angles (φ and θ) specifying its direction, then

~k = k0n(axx̂ + ay ŷ + az ẑ) = k0n(sin θ cos φ x̂ + sin θ sinφ ŷ + cos θ ẑ), (43)

where n is refractive index that the plane wave experiences when is propagating through the medium

at the specified direction. By replacing the wavevector components from Eq.(43) into Eq. (42) the
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following bi-quadratic equation for n can be derived

An4 + Bn2 + C = 0, where, (44)

A = a4
xεr,xx + a4

yεr,yy + a4
zεr,zz + a2

xa2
yεr,xx + a2

xa2
zεr,xx + a2

xa2
yεr,yy + a2

ya
2
zεr,yy

a2
xa2

zεr,zz + a2
ya

2
zεr,zz + 2axa

3
yεr,xy + 2a3

xayεr,xy + 2axa
3
zεr,xz + 2a3

xazεr,xz

+2aya
3
zεr,yz + 2a3

yazεr,yz + 2axaya
2
zεr,xy + 2axa2

yazεr,xz + 2a2
xayazεr,yz ,

B = −a2
xεr,xxεr,yy + a2

xε2
r,xz + a2

yε
2
r,xy + a2

yε
2
r,yz + a2

zε
2
r,xz + a2

zε
2
r,yz + a2

xε2
r,xy − a2

yεr,xxεr,yy

−a2
xεr,xxεr,zz − a2

zεr,xxεr,zz − a2
yεr,yyεr,zz − a2

zεr,yyεr,zz + 2axayεr,xzεr,yz − 2axayεr,xyεr,zz

+2axazεr,xyεr,yz − 2axazεr,xzεr,yy + 2ayazεr,xyεr,xz − 2ayazεr,xxεr,yz,

C = εr,xxεr,yyεr,zz − εr,zzε
2
r,xy + 2εr,xyεr,xzεr,yz − εr,yyε

2
r,xz − εr,xxε2

r,yz.

Equation (44) always has two real positive solutions that correspond to the two extraordidary waves

that can propagate for each specified direction. The polarization of the corresponding electric field

can be found from Eq. (41). It is reminded that the ~D eigenvectors are perpendicular to each other.

The previous equation can be simplified if the relative permittivity is expressed in the principal axis

system and all the off-diagonal elements become zero (εr,xy = εr,xz = εr,yz = 0). In the latter case

Eq. (44) can be written

a2
xn2(n2 − εr,yy)(n

2 − εr,zz) + a2
yn

2(n2 − εr,xx)(n2 − εr,zz) + a2
zn

2(n2 − εr,xx)(n
2 − εr,yy)

= (n2 − εr,xx)(n2 − εr,yy)(n
2 − εr,zz), (45)

and the last equation can be expressed in the most common compact form [1]

a2
x

n2 − εr,xx
+

a2
y

n2 − εr,yy
+

a2
z

n2 − εr,zz
=

1

n2
, (46)

though the latter equation cannot be used along the principal axes of the coordinate system.

In the case of a uniaxial material the permittivity tensor can be written (in the principal axis

system) as ε̃ = ε0diag[εO, εO, εE] = ε0diag[n2
O, n2

O, n2
E] where nO and nE are the ordinary and the

principal extraordinary refractive index respectively. The direction of the unique optic axis is denoted

by the unit vector ĉ = cxx̂+ cy ŷ + cz ẑ. By decomposing all vectors in Eqs. (36)-(39) into a component

along the optic axis and one transverse to the optic axis (for example for electric field Ec, and ~Et

respectively), they can be written in the following form [3]

(~kt × ĉ)Ec + kc(ĉ × ~Et) = ωµ0
~Ht, (47)

~kt × ~Et = ωµ0Hcĉ, (48)

(~kt × ĉ)Hc + kc(ĉ× ~Ht) = −ωε0n
2
O

~Et, (49)

~kt × ~Ht = −ωε0n
2
EEcĉ, (50)

n2
O
~kt · ~Et + n2

EkcEc = 0, (51)

~kt · ~Ht + kcHc = 0. (52)
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Manipulating the above equations it is straightforward to derive the wavevector surface equation

equivalent to Eq. (42) for the uniaxial material. This is written as follows

[~k · ~k − k2
0n

2
O][n2

O
~k · ~k + (n2

E − n2
O)(~k · ĉ)2 − k2

0n
2
On2

E ] = 0. (53)

From Eq. (53) the two possible solutions are evident while the corresponding polarizations are given

as follows

~k · ~k − k2
0n

2
O = 0 =⇒ ~E · ĉ = 0, ordinary wave, (54)

n2
O
~k · ~k + (n2

E − n2
O)(~k · ĉ)2 − k2

0n
2
On2

E = 0, =⇒ ~H · ĉ = 0 extraordinary wave. (55)

To have a better understanding a sample case is shown in Fig. 4 which is similar to Fig. 3 but for a

uniaxial material.
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Figure 4: The wavevector surface of a uniaxial material with εxx = n2

O = 1, εyy = n2

O = 1, εzz = n2

E = 2.25,

εxy = εxz = εyz = 0, and freespace wavelength λ0 = 1.0µm. (a) One eighth of the wavevector surface is shown. The one

surface is a sphere [Eq. (54)] while the other is an ellipsoid [Eq. (55)]. Observe how the two wavevector sheets become

tangent in this case. (b) One quarter of the wavevector surface is shown. The two-sheet surfaces become tangent in the

direction of the optic axis which in this case is the z-axis

Half of the wavevector surfaces along with their optic axes are shown in Fig. 5a and 5b for the

biaxial and uniaxial cases presented previously.

For comparison purposes similar figures to Figs. 3 and 4 are given in Fig. 6 for an isotropic material

of unity relative permittivity.

2.3 The Index Ellipsoid

The index ellipsoid is used to determine the eigen-polarizations and the corresponding indices of

refraction for a given direction of propagation in an anisotropic crystal. The index ellipsoid (or optical

indicatrix) represents a normalized surface of constant electromagnetic energy density. It is known (it is

9



(a) (b)

Figure 5: (a) The wavevector surface of a biaxial material with εxx = 1, εyy = 2, εzz = 4, εxy = εxz = εyz = 0,

and freespace wavelength λ0 = 1.0 µm. Half of the wavevector surface is shown. Observe the two wavevector sheets that

intersect in four points that define the two optic axes of the biaxial material. (b) The wavevector surface of a uniaxial

material with εxx = 1, εyy = 1, εzz = 2.25, εxy = εxz = εyz = 0, and freespace wavelength λ0 = 1.0 µm. Half of the

wavevector surface is shown. Observe the ellipsoidal and spherical wavevector sheets that touch only in two points where

the single optic axis is defined.
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Figure 6: The wavevector surface of an isotropic material with ε = n2 = 1, and freespace wavelength λ0 = 1.0µm.

(a) One eighth of the wavevector surface is shown. The two-sheeted surface collapses to a single spherical surface. (b)

One quarter of the wavevector surface is shown.
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reviewed in a later section) that in a homogeneous, lossless, and linear medium (dielectric in this case)

the electromagnetic energy density is given by 〈wem〉 = (1/4)Re{ ~E · ~D∗} = (1/4) ~E · ~D∗ [see Eq. (101)

where ~E and ~D are the phasors of the electric field and the dielectric displacement, respectively].

Replacing ~E = ε−1
0 [εr]

−1 ~D the electromagnetic energy density can be written as (expressed in the

principal axes system)

�

� �

��  !
"

# $
% & ' ( () * *

+ , ,

Figure 7: The index ellipsoid in the general biaxial case where nxx 6= nyy 6= nzz 6= nxx, shown in the principal axes

system. A random direction of a plane wave wavevector is also shown. The intersection of the plane perpendicular to

the wavevector forms an ellipse with its axes specifying the two eigenpolarizations ~D1 and ~D2 with n1 and n2 (semi-axes

of the ellipse) the corresponding refractive indices.

4〈wem〉ε0 =
D2

x

εr,xx
+

D2
x

εr,yy
+

D2
z

εr,zz
=

D2
x

n2
xx

+
D2

y

n2
yy

+
D2

z

n2
zz

. (56)

If in the above equation the term ~D/
√

4〈wem〉ε0 is replaced by ~r = xx̂+yŷ +zẑ the resulting equation

is
x2

n2
xx

+
y2

n2
yy

+
z2

n2
zz

= 1, (57)

and represents the index ellipsoid in the xyz coordinate system which is shown in Fig. 7. The index

ellipsoid can be used mainly to determine the two indices of refraction and the two corresponding

directions of ~D associated with the two independent plane waves that can propagate along an arbitrary

direction ~k in a crystal (as shown in Fig. 7). This is done as follows: the intersection ellipse between

a plane through the origin that is normal to the direction of propagation ~k and the index ellipsoid is

determined. Then the two axes of the intersection ellipse are equal in length to 2n1, and 2n2, where n1,

and n2 are the two indices of refraction. The axes of the intersection ellipse are parallel, respectively,
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to the directions of the eigen-polarization vectors ~D1, and ~D2 of the two allowed solutions of the

Maxwell equations [Eqs. (36)-(39)]. These indices and the corresponding eigen-polarization directions

are also referred as the “slow” (max{n1, n2}) and the “fast” (min{n1, n2}). The index ellipsoid with

an intersection ellipse is shown in Fig. 7 and a proof of this can be found in Ref. [1].

If the index ellipsoid is expressed in a generalized coordinate system (not the principal axes system)

then it will have the form of a generalized ellipsoid in the xyz coordinate system and its equation is

given by

[

x y z
]T

[A]





x

y
z



 =
[

x y z
]T







1
n2

xx

1
n2

xy

1
n2

xz
1

n2
yx

1
n2

yy

1
n2

yz
1

n2
zx

1
n2

zy

1
n2

zz











x

y
z



 = 1, (58)

where A = [εr]
−1 is the impermeability matrix. It is reminded that the impermeability matrix is also

symmetric since is the inverse of the symmetric relative permittivity matrix (nuv = nvu, where u 6= v

and u, v = x, y, z).

In the case of uniaxial material where nxx = nyy = nO (ordinary index) and nzz = nE (extraordi-

nary index), the index ellipsoid is an ellispoid of revolution around z axis (optic axis). In the latter

case, if the direction of the electromagnetic wavevector forms an angle θ with the optic axis, the

extraordinary refractive index, ne(θ) is given by

cos2 θ

n2
O

+
sin2 θ

n2
E

=
1

n2
e(θ)

, (59)

while of course the ordinary index remains always nO.

3. Reflection and Transmission at a Planar Boundary

In this section the reflection and transmission of a plane wave at a planar boundary between two

isotropic dielectrics will be reviewed. In Fig. 8 the boundary (xz plane) between two dielectrics of

permittivities ε1 = ε0εr1 = ε0n
2
1 and ε2 = ε0εr2 = ε0n

2
2 is shown. A plane wave is incident at angle θ1

on the boundary and a reflected as well as a transmitted wave are induced. The electric field in region

1 (left) and region 2 (right) can be written as follows

~E1 = ~Ei exp(−j~ki · ~r) + ~Er exp(−j~kr · ~r), (60)

~H1 =
1

ωµ0

(

~ki × ~Ei

)

exp(−j~ki · ~r) +
1

ωµ0

(

~kr × ~Er

)

exp(−j~kr · ~r), (61)

~E2 = ~Et exp(−j~kt · ~r), (62)

~H2 =
1

ωµ0

(

~kt × ~Et

)

exp(−j~kt · ~r), (63)

where ~Ei, ~Er, and ~Et correspond to the incident, reflected, and transmitted electric field amplitudes,

while ~ki, ~kr, and ~kt correspond to the incident, reflected, and transmitted wavevectors. Of course the
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Figure 8: A planar boundary between two isotropic, nonmagnetic, dielectrics with permittivities ε1 and ε2. The green

electric field direction (along the y-axis) corresponds to the TE polarization, while the blue electric field direction (in the

xz-plane) corresponds to the TM polarization. The angle of incidence is θ1, the angle of reflection is θr = θ1, and the

angle of refraction is θ2.

wavevectors satisfy Eq. (35) for each of the regions of interest. Using the continuity of the tangential

to the boundary electric field components the following necessary condition must be satisfied:

(~ki · ~r)z=0 = (~kr · ~r)z=0 = (~kt · ~r)z=0 =⇒ kix = krx = ktx =⇒
k0n1 sin θ1 = k0n1 sin θr = k0n2 sin θ2. (64)

The last equation is the well known phase matching condition. From the phase matching condition it

is evident that θr = θ1 (reflection angle equals incident angle) and n1 sin θ1 = n2 sin θ2 (Snell’s law).

Of course in order to find the unknown amplitude coefficients for the reflected and the transmitted

waves the full form of the boundary condition should be used in conjunction with the analogous

boundary condition for the magnetic field. Usually, any incident polarization for the incident field

can be decomposed into one that the electric field is perpendicular to the plane of incidence (xz plane

here) which is referred as ⊥ or TE polarization, and one that the electric field is parallel to the plane of

incidence which is referred as ‖ or TM polarization. A generalized polarization formulation is presented

in a later section. These two orthogonal polarizations are decoupled in the case of the isotropic media

and can be studied independently. Solving the boundary conditions the unknown amplitudes of the

reflected and of the transmitted fields can be determined. These are generally expressed in the form
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of the Fresnel equations which are shown below:

r
TE

= r⊥ =
Er

Ei
=

n1 cos θ1 − n2 cos θ2

n1 cos θ1 + n2 cos θ2
, (65)

t
TE

= t⊥ =
Et

Ei
=

2n1 cos θ1

n1 cos θ1 + n2 cos θ2
, (66)

r
TM

= r‖ =
Er

Ei
=

n2 cos θ1 − n1 cos θ2

n2 cos θ1 + n1 cos θ2
, (67)

t
TM

= t‖ =
Et

Ei
=

2n1 cos θ1

n2 cos θ1 + n1 cos θ2
. (68)

There are some interesting points to be discussed in the case of the Fresnel equations. Initially, it

is assumed that n1 < n2 (for example from air to glass). In this case the wavevector diagram of Fig. 9a

is valid. The phase matching condition is also shown in this figure. For this case the Brewster angle

can also be defined as the angle for which the reflected wave vanishes. For nonmagnetic materials this

can occur only in the case of TM (‖) polarization, and it is defined as r
TM

(θ1 = θB) = 0 =⇒ θB =

tan−1(n2/n1). As an example, the reflection and transmission coefficients are shown in Figs. 10 and

11 as functions of the angle of incidence θ1 for the case of n1 = 1.0 and n2 = 1.5.

The situation becomes more interesting when n1 > n2 (for example from glass to air). In this case

the Brewster angle is defined in a similar manner as before and it exists only for TM polarization.

However, in this case, for both polarizations the critical angle can be defined. From Snell’s law the

critical angle is defined as the angle of incidence for which the refraction angle becomes 90 degrees.

Therefore, the critical angle θcr is defined as θcr = sin−1(n2/n1). In wavevector space this situation is

depicted in Fig. 9b. In this situation due to the phase matching condition [Eq. (64)] ktx = k0n2 and

the z component of the transmitted wavevector ktz becomes zero. In other words, the transmitted

electric field, Eq. (62), is independent of z. This can happen only in theory since exactly at the

critical angle the transmitted field is constant in region 2 which would require infinite energy from

the electromagnetic field. The practical case is when the angle of incidence is greater than the critical

angle (θ1 > θcr). In the latter case from the phase matching condition it can be deduced

ktx = k0n1 sin θ1 > k0n1 sin θcr = k0n2. (69)

From the last equation and Eq. (35) for region 2 it is obvious that (for θ1 > θcr)

k2
tz = k2

0n
2
2 − k2

tx < 0 =⇒ ktz = ±j
√

k2
tx − k2

0n
2
2 = ±jk0

√

n2
1 sin2 θ1 − n2

2 = ±jγt. (70)

This means that the z component of the transmitted wavevector becomes purely imaginary. In the

wavevector diagram this situation is depicted in Fig. 9c where the dashed purpled arrow representing

the transmitted wavevector is complex. There is some ambiguity in selecting the sign of the right-hand
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Figure 9: The wavevector surface of an interface between two dielectrics. (a) Case of incidence from a low to higher

refractive index (n1 < n2). (b) Case of incidence from a high to a lower refractive index (n1 > n2) and at θ1 = θcr. (c)

Case of incidence from a high to a lower refractive index (n1 > n2) and at θ1 > θcr.

side of Eq. (70). Since the transmitted field is expressed by Eq. (62), in order to represent a physical

field the “−” sign must be selected. Then Eq. (62) becomes

~E2 = ~Et exp[−k0

√

n2
1 sin2 θ1 − n2

2z] exp[−jxk0n1 sin θ1] = ~Ete
−γtz exp[−jxk0n1 sin θ1]. (71)

The corresponding real field can be determined from the above phasor as (assuming for simplicity that

~Ei is real)

~E2(x, z, t) = |t|Eiûte
−γtz cos [ωt − xk0n1 sin θ1 + φ(θ1)] , (72)

where t = |t|ejφ is the complex transmission coefficient and ût is the unit vector of the transmitted

electric field. For example, ût = û
TE

= ŷ for TE polarization, and ût = ût
TM

= cos θ2x̂ − sin θ2ẑ
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Figure 10: Reflection coefficient as a function of the angle of incidence θ1 for TE and TM polarization in the case of

n1 < n2. The Brewster angle θB = tan−1(1.5/1) = 56.31◦ is obvious in the TM polarization case.

for TM polarization. However, in the TM polarization case ût
TM

has an imaginary component that

should suitably (with the appropriate phase shift) be incorporated in the latter equation of the real

transmitted electric field. However, for simplicity, the form of Eq. (72) does not take into account

the complex component of ût. The latter form of the transmitted field is called “evanescent field” or

“evanescent wave.” It is easy to show that the evanescent wave does not transfer real power in the z

direction. This is the reason that this situation is called total internal reflection since all the power

is reflected back into the incident region. An example evanescent field (its real part for t = 0 for TE

polarization) is shown in Fig. 12 for n1 = 1.5, n2 = 1.0, and θ = 65◦.

In the case of total internal reflection the reflection and transmission coefficients from Fresnel

equations become complex. It is interesting to define the reflection coefficients in this case which can
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Figure 11: Transmission coefficient as a function of the angle of incidence θ1 for TE and TM polarization in the case

of n1 < n2.

be described as follows

r
TE

=
Er

Ei
= 1ej2φTE(θ1) = 1 exp



j2 tan−1







√

n2
1 sin2 θ1 − n2

2

n1 cos θ1









 , (73)

r
TM

=
Er

Ei
= 1ej2φTM (θ1) = 1 exp



j2 tan−1







n2
1

n2
2

√

n2
1 sin2 θ1 − n2

2

n1 cos θ1









 . (74)

From the previous equations it is evident that when θ1 > θcr the reflection coefficients have unit

magnitude (thus all incident power is reflected back) and phase that depends on θ1 and varies from 0
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Figure 12: The real part of a TE polarized evenescent field that is generated in region 2 (n2 = 1.0) from and indicent

TE polarized wave from region 1 (n1 = 1.5) for an angle of incidence θ1 = 65◦ (> θcr = 41.8◦).

to π. The transmission coefficients become also complex in this case and are given by

t
TE

=
Et

Ei
= |t

TE
|ejφTE(θ1) =

2n1 cos θ1
√

n2
1 − n2

2

exp



j tan−1







√

n2
1 sin2 θ1 − n2

2

n1 cos θ1









 , (75)

t
TM

=
Et

Ei
= |t

TM
|ejφTM (θ1) =

2n1n2 cos θ1
√

n4
2 cos2 θ1 + n4

1 sin2 θ1 − n2
1n

2
2

exp



j tan−1







n2
1

n2
2

√

n2
1 sin2 θ1 − n2

2

n1 cos θ1









 . (76)

As an example, the reflection and transmission coefficients are shown in Figs. 13 and 14 as functions

of the angle of incidence θ1 for the case of n1 = 1.5 and n2 = 1.0.

4. Electromagnetic Field Energy and Power - Poynting’s Theorem

From Maxwell’s equations [Eqs.(1)-(4)] it can be shown the following equality

−~∇ · (~E × ~H) = ~E · ~J + ~E · ∂ ~D
∂t

+ ~H · ∂ ~B
∂t

=

= ~E · ~J +
∂

∂t

(ε0
2

~E · ~E
)

+
∂

∂t

(µ0

2
~H · ~H

)

+ ~E · ∂ ~P
∂t

+ µ0
~H · ∂ ~M

∂t
, (77)
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Figure 13: Reflection coefficient as a function of the angle of incidence θ1 for TE and TM polarization in the case of

n1 > n2. The Brewster angle θB = tan−1(1/1.5) = 33.69◦ is obvious in the TM polarization case. For both TE and TM

polarization cases the critical angle θcr = sin−1(1/1.5) = 41.81◦ is also shown. For θ1 > θcr the reflection coefficients

become complex of unity magnitude and phase 2φTE (θ1) or 2φTM (θ1).

where the above equation represents the Poynting’s theorem in point form. In case that a closed surface

S is chosen, that encloses a volume V , the Poynting’s theorem can also be written in its integral form

as follows

−
∫∫

S
©

(

~E × ~H
)

· d~S =

∫∫∫

V

~E · ~J dV +

∫∫∫

V

∂

∂t

(ε0
2

~E · ~E +
µ0

2
~H · ~H

)

dV +

∫∫∫

V

~E · ∂ ~P
∂t

dV +

∫∫∫

V
µ0

~H · ∂ ~M
∂t

dV, (78)

where the vector ~N = ~E × ~H is defined as the Poynting vector (W/m2). The left-hand side of Eq. (78)

represents the total power entering the volume V via the closed surface S. The right-hand sides

represent the ohmic losses expended in volume V , the rate of increase of the vacuum electromagnetic

energy in volume V , the power expended in electric dipoles in volume V , and the power expended in

magnetic dipoles in volume V , respectively.

If the medium is linear in terms of its electric and magnetic properties, and experiences negligible
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Figure 14: Transmission coefficient as a function of the angle of incidence θ1 for TE and TM polarization in the case

of n1 > n2. For θ1 > θcr the transmission coefficient become complex.

dispersion, then the electromagnetic energy density can be defined as

wem = we + wm =
1

2

(

~E · ~D + ~H · ~B
)

=
1

2

(

ε|~E|2 + µ| ~H|2
)

. (79)

Then Eqs. (77) and (78) can be written in the following forms

−~∇ ·
(

~E × ~H
)

= ~E · ~J +
∂wem

∂t
, (80)

−
∫∫

S
©

(

~E × ~H
)

· d~S =

∫∫∫

V

[

~E · ~J +
∂wem

∂t

]

dV. (81)

The physical meaning of the differential or integral form of Eqs. (80) or (81) is that the time rate

of change of electromagnetic energy within a certain volume, plus the total work done by the fields on

the sources within the volume, is equal to the energy flowing in through the boundary surfaces of the

volume per unit time. This is the statement of conservation of energy.

Of course the case of a dispersionless medium is ideal. All real materials have dispersion (frequency

dependent parameters) as well as losses. In order to express the Poynting theorem in the dispersive

case it is necessary to express all fields in the frequency domain (Fourier transform is applied to all

field quantities). For example, the real electric field in the time domain and its corresponding complex
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electric field in the frequency domain are related via the following Fourier transform pair

~E(~r, ω) =

∫ +∞

−∞

~E(~r, t)e−jωtdt, (82)

~E(~r, t) =
1

2π

∫ +∞

−∞

~E(~r, ω)e+jωtdω, (83)

where the same holds for all field quantities. Since the time domain fields are real it is straightforward

to show that ~E(~r,−ω) = ~E∗(~r, ω) (the “*” denotes complex conjugate) and ε∗(ω) = ε(−ω) with similar

arguments holding for the magnetic field counterparts. The permittivity and the permeability are in

general complex functions of ω and can be written in the form

ε(ω) = ε′(ω) − jε′′(ω) = ε0
[

ε′r(ω)− jε′′r(ω)
]

, (84)

µ(ω) = µ′(ω) − jµ′′(ω) = µ0

[

µ′
r(ω)− jµ′′

r(ω)
]

, (85)

where the real and the imaginary parts of the permittivity and the permeability are denoted as primed

or double-primed terms respectively. The “−” sign in the imaginary part is compatible with the Fourier

transform definition as well as with the phasors definitions (in many physics textbooks the “+” sign

is selected and opposite signs in the exponents of the Fourier transforms and phasors). The doubled-

primed terms denote losses that the electromagnetic field suffers as it passes through a medium at

frequencies near resonances where the ε′′r(ω) > 0 and µ′′
r(ω) > 0 terms can represent absorption. When

the frequency of the electromagnetic wave is far from the resonances then ε′′r (ω) ' µ′′
r(ω) ' 0 and this

frequency range is generally refer to as “transparency range.”

In most realistic situations even monochromatic radiation has a spectrum differing from a delta

function (even lasers exhibit broadening of their spectrum). Therefore [4, 6, 5] it is common to consider

the electric and magnetic fields of the form

~E(t) = ~E0(t) cos(ω0t + φe), (86)

~H(t) = ~H0(t) cos(ω0t + φh), (87)

where for simplicity the spatial dependence is implied. The ~E0(t) and ~H0(t) are slowly varying am-

plitudes (their Fourier transforms do not have high frequency terms), ω0 is the main frequency (high

frequency) of oscillation of the electromagnetic field and φe, φh are phase constants which can be space

dependent. Using the approach of Jackson [4] it can be shown that

〈

~E · ∂ ~D
∂t

+ ~H · ∂ ~B
∂t

〉

HF
= ω0ε

′′(ω0)〈~E · ~E〉HF + ω0µ
′′(ω0)〈 ~H · ~H〉HF +

∂ueff

∂t
, (88)

ueff =
1

2

d

dω

(

ωε′(ω)
)

|ω0

〈

~E · ~E
〉

HF
+

1

2

d

dω

(

ωµ′(ω)
)

|ω0

〈

~H · ~H
〉

HF
, (89)

〈

~E · ~E
〉

HF
=

1

2
~E0 · ~E0, (90)

〈

~H · ~H
〉

HF
=

1

2
~H0 · ~H0, (91)
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where 〈∗〉HF denotes a high-frequency averaging (over a time period 2π/ω0). The term ueff denotes

the effective electromagnetic energy density while the first two terms of the right hand side of Eq. (88)

denote dissipation losses. The differential form of the Poynting’s theorem can then be written as

−~∇ ·
(〈

~E × ~H
〉

HF

)

=
〈

~E · ~J
〉

HF
+ ω0ε

′′(ω0)
〈

~E · ~E
〉

HF
+ ω0µ

′′(ω0)
〈

~H · ~H
〉

HF
+

∂ueff

∂t
. (92)

At this point the time-harmonic form of the Poynting theorem will be reviewed. All the field

components are represented by phasors. For example, the electric field ~E and its phasor ~E are related

by ~E(~r, t) = Re{ ~E(~r, ω) exp(jωt)}. The time average Poynting vector is given by

〈

~N
〉

=
1

T

∫ T

0

~Ndt =
1

2
Re

{

~E × ~H∗
}

= Re{~S}, (93)

where ~S = (1/2) ~E× ~H∗ is the complex Poynting vector. Manipulating Maxwell’s equations in a similar

manner as for the derivation of Eq. (77) it can be easily shown that

−~∇ · ~S =
1

2
~E · ~J∗ − 1

2
jω ~E · ~D∗ +

1

2
jω ~H∗ · ~B. (94)

Using Eqs. (24), (25), (26), (84), and (85), and ~J = ~Js + σ(ω) ~E (where ~Js represents source currents)

the previous equation can be written as follows (the conductivity σ(ω) is assumed real)

−~∇ · ~S =
1

2
~E · ~J∗

s +
1

2
σ(ω)| ~E|2 +

1

2
ωε′′(ω)| ~E|2 +

1

2
ωµ′′(ω)| ~H|2 +

j

2
ω[−ε′(ω)| ~E|2 + µ′(ω)| ~H|2]. (95)

The above equation is the Poynting theorem in its differential form for time harmonic fields. The

Poynting theorem can expressed in its integral form by integrating Eq. (95) over a closed surface S
surrounding a volume V . The resulting equation is

−
∫∫

S
©~S · d ~S =

1

2

∫∫∫

V

~E · ~J∗
s dV +

1

2

∫∫∫

V
σ(ω)| ~E|2dV +

1

2

∫∫∫

V

ω
[

ε′′(ω)| ~E|2 + µ′′(ω)| ~H|2
]

dV +

j
ω

2

∫∫∫

V

[

− ε′(ω)| ~E|2 + µ′(ω)| ~H|2
]

dV. (96)
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From the above equation the real and imaginary parts showing the following power equilibrium

P + P` + Pdis = Ps, (97)

Q + Qem = Qs, (98)

P = Re
{

∫∫

S
©~S · d ~S

}

,

P` =
1

2

∫∫∫

V
σ(ω)| ~E|2dV,

Pdis =
1

2

∫∫∫

V
ω
[

ε′′(ω)| ~E|2 + µ′′(ω)| ~H|2
]

dV +

Ps =
1

2

∫∫∫

V

Re
{

− ~E · ~J∗
s

}

dV,

Q = =m
{

∫∫

S
©~S · d ~S

}

,

Qem =
ω

2

∫∫∫

V

[

− ε′(ω)| ~E|2 + µ′(ω)| ~H|2
]

dV.

Qs =
1

2

∫∫∫

V

=m
{

− ~E · ~J∗
s

}

dV,

where Eq. (97) is the real power equilibrium, with P is the power exiting volume V , P` is the power

consumed in ohmic losses (conduction currents) inside V , Pdis is the power that is dissipated into

volume V due to material dielectric and magnetic losses, Ps is the power delivered by the sources

in volume V . Equation (98) reveals the equilibrium of reactive power, with Q is the reactive power

exiting volume V , Qem is the reactive power stored in volume V (with a capacitive part due to electric

field and an inductive part due to the magnetic field), and Qs is the reactive power delivered by the

sources in volume V .

Summarizing the time-averaged energy densities in the case of dispersive media can be written as

〈we〉 =
1

4

d

dω

(

ωε′(ω)
)〈

~E0 · ~E0

〉

=
1

4

d

dω

(

ωε′(ω)
)

Re{ ~E · ~E∗}, (99)

〈wm〉 =
1

4

d

dω

(

ωµ′(ω)
)〈

~H0 · ~H0

〉

=
1

4

d

dω

(

ωµ′(ω)
)

Re{ ~H · ~H∗}, (100)

while in the time harmonic case the corresponding equations become

〈we〉 =
1

4
Re{ ~E · ~D∗}, (101)

〈wm〉 =
1

4
Re{ ~H · ~B∗}. (102)

In the case of a plane electromagnetic wave the time-averaged electric energy density is equal to the

time-averaged magnetic energy density, and total electromagnetic energy density is given by

〈wem〉 = 2〈we〉 = 2〈wm〉 =
1

2
Re{ ~E · ~D∗} =

1

2
Re{ ~H · ~B∗}. (103)
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When a plane wave is incident at a planar boundary between two linear, isotropic, lossless, and non-

magnetic regions application of Poynting theorem gives the following power conservation equation for

the direction normal to the boundary

Pr

Pi
+

Pt

Pi
= |r

TE
|2 + |t

TE
|2Re{n2 cos θ2}

n1 cos θ1
= 1, TE Polarization (104)

Pr

Pi
+

Pt

Pi
= |r

TM
|2 + |t

TM
|2 Re{n∗

2 cos θ2}
n1 cos θ1

= 1, TM Polarization, (105)

where Pi, Pr, Pt are the indident, reflected, and transmitted powers. In the case of lossless medium

in region 2 the above equations are the same. The term n∗
2 denote the complex conjugate of the

refractive index and of the complex cosine. These are in general complex in the case that region 2

consists of a lossy material such as a metal. The last equations simply state that the percentage of

the reflected power plus the percentage of the transmitted power equals unity for a lossless case of

reflection/refraction at a planar boundary.

5. Generalized Reflection and Transmission at a Planar Boundary

The geometry of the planar interface between to isotropic media is again depicted in Fig. 8. In this

case the polarization of the incident wave has both TE (perpendicular) and TM (parallel) components.

Therefore, in this formulation any elliptical in general polarization of the incident wave can be treated.

The corresponding incident wave can be described by its electric field phasor

~Ei = E
TE

û
TE

exp(−j~ki · ~r) + E
TM

û
TM

exp(−j~ki · ~r), where (106)

û
TE

= ŷ,

û
TM

= cos θ1 x̂ − sin θ1 ẑ,

~ki = k0
√

εr1µr1 (sin θ1 x̂ + cos θ1 ẑ) ,

and εr1, µr1 are the relative permittivity and relative permeability of region 1 (in case of non-magnetic

medium µr1 = 1). The E
TE

and E
TM

complex amplitude terms can represent any, elliptical in general,

polarization. The reflected electric field phasor is given by

~Er = E
TE

r
TE

ûr
TE

exp(−j~kr · ~r) + E
TM

r
TM

ûr
TM

exp(−j~kr · ~r), where (107)

ûr
TE

= û
TE

= ŷ,

ûr
TM

= − cos θ1 x̂ − sin θ1 ẑ,

~kr = k0
√

εr1µr1 (sin θ1 x̂ − cos θ1 ẑ) ,

where r
TE

and r
TM

are the amplitude reflection coefficients (complex in general). Therefore, the total

electric field phasor of region 1 is given by

~E1 = E
TE

û
TE

exp(−j~ki · ~r) + E
TM

û
TM

exp(−j~ki · ~r) +

E
TE

r
TE

û
TE

exp(−j~kr · ~r) + E
TM

r
TM

ûr
TM

exp(−j~kr · ~r). (108)
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The corresponding magnetic field phasor in region 1 can straightforwardly be determined and is given

by

~H1 = −E
TE

Z1
û

TM
exp(−j~ki · ~r) +

E
TM

Z1
û

TE
exp(−j~ki · ~r)−

E
TE

r
TE

Z1
ûr

TM
exp(−j~kr · ~r) +

E
TM

r
TM

Z1
û

TE
exp(−j~kr · ~r), (109)

where Z1 = (µ1/ε1)
1/2 is the wave impedance of region 1. The electric and magnetic field phasors in

region 2 are similarly given by

~E2 = t
TE

E
TE

û
TE

exp(−j~kt · ~r) + t
TM

E
TM

ût
TM

exp(−j~kt · ~r), (110)

~H2 = −t
TE

E
TE

Z2
ût

TM
exp(−j~kt · ~r) +

t
TM

E
TM

Z2
û

TE
exp(−j~kt · ~r), (111)

~kt = k0
√

εr2µr2 (sin θ2 x̂ + cos θ2 ẑ) ,

ût
TM

= cos θ2 x̂ − sin θ2 ẑ,

where εr2, µr2 are the relative permittivity and relative permeability of region 2 (in case of nonmagnetic

medium µr2 = 1), and t
TE

and t
TM

are the amplitude transmission coefficients (complex in general).

Applying the boundary conditions at the z = 0 planar interface for the tangential electric and

magnetic field components it is straightforward to obtain the following equations:

√
εr1µr1 sin θ1 =

√
εr2µr2 sin θ2, (112)

1 + r
TE

= t
TE

, (113)

cos θ1 − r
TM

cos θ1 = t
TM

cos θ2, (114)

−cos θ1

Z1
+

cos θ1rTE

Z1
= −cos θ2tTE

Z2
, (115)

1

Z1
+

r
TM

Z1
=

t
TM

Z2
. (116)

Solving the previous equations the amplitude reflections and transmitted coefficients can be easily

calculated in this general formulation and are given by

r
TE

=
Z2 cos θ1 − Z1 cos θ2

Z2 cos θ1 + Z1 cos θ2
, (117)

t
TE

=
2Z2 cos θ1

Z2 cos θ1 + Z1 cos θ2
, (118)

r
TM

=
Z1 cos θ1 − Z2 cos θ2

Z1 cos θ1 + Z2 cos θ2
, (119)

t
TM

=
2Z2 cos θ1

Z1 cos θ1 + Z2 cos θ2
, (120)

where the last equations are generalized equivalent to Eqs. (65), (66), (67), and (68) which hold for

nonmagnetic media. It is mentioned that region 2 can be lossy and in the latter case ε2 and µ2 can

become complex.
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In order to evaluate the percentage of the power reflected and the percentage of the power trans-

mitted the z-components of the complex Poynting vectors must be evaluated. Using the phasor fields

defined previously, after some manipulations, the following z-components of the complex Poynting

vectors for regions 1 and 2 can be determined:

S1z =
cos θ1

Z1

{

|E
TE

|2 + |E
TM

|2 − |E
TE

|2|r
TE

|2 − |E
TM

|2|r
TM

|2 −

|E
TE

|2r∗
TE

exp
(

+j(~kr − ~ki) · ~r
)

+ |E
TE

|2r
TE

exp
(

−j(~kr − ~ki) · ~r
)

+

|E
TM

|2r∗
TM

exp
(

+j(~kr − ~ki) · ~r
)

− |E
TM

|2r
TM

exp
(

−j(~kr − ~ki) · ~r
)

}

(121)

S2z =
1

Z∗
2

{

|t
TE

|2|E
TE

|2(cos θ2)
∗ + |t

TM
|2|E

TM
|2 cos θ2

}

. (122)

Equating the real parts of the z-components of the Poynting vectors the normalized reflected and

transmitted powers are given by

Pr

Pi
=

|r
TE

|2|E
TE

|2 + |r
TM

|2|E
TM

|2
|E

TE
|2 + |E

TM
|2 , (123)

Pt

Pi
=

Z1

cos θ1

|t
TE

|2|E
TE

|2Re{(cos θ2)
∗/Z∗

2 )}+ |t
TM

|2|E
TM

|2Re{cos θ2/Z
∗
2 )}

|E
TE

|2 + |E
TM

|2 . (124)

The last two equations take the simple form of Eqs. (104) and (105) in the case of the TE (E
TM

= 0)

or TM (E
TE

= 0) polarization respectively.

6. Goos-Hänchen Shift

It was mentioned in Sec. 3, that when a plane wave is incident from a dense medium (of refractive

index n1) to a less dense medium (of refractive index n2, with n2 < n1) at an angle of incidence

greater than the critical angle [θ1 > θcr = sin−1(n2/n1)], then it experiences a phase shift of 2φTE(θ1)

or 2φTM(θ1) upon reflection for TE or TM polarization, respectively [Eqs. (73) and (74)]. When a

finite size beam is reflected at such a boundary at an angle greater than the critical angle then a lateral

displacement of the beam occurs that is associated to the phase shift incurred. This effect does not

occur in the case of a plane wave that has an infinite extent.

The first researchers that looked into this issue were V. F. Goos and H. Hänchen. According to

Ref. [7], in 1947, Goos and Hänchen [8] investigated the difference between reflection from a silver

surface and total internal reflection at a glass-air interface. Their clever experiment was performed

using a glass prism onto which a narrow strip of silver was deposited along the center. As shown in

Fig. 15, a wide light beam was incident on one end of the prism at an incident angle greater than the

critical angle (of glass-air interface) inside the prism. The beam upon exiting from the prism it was

projected onto a screen. The total internal reflections took place only within the prism excluding the
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Figure 15: Goos-Hänchen original experimental setup [8].

region of the silver deposit in the center. In the center, the light is reflected repeatedly by the silver

strip as it travels through the prism. On the screen, the translation between the two light beams with

different mechanisms of reflection was compared and measured.

In order to theoretically determine the lateral shift, known in the literature as Goos-Hänchen shift,

it is necessary to represent the finite size beam via a plane wave expansion. The simplest possible

such a representation is one that contains a superposition of two plane waves incident at slightly

differing angles of incidence. Then, the tangential to the boundary (yz plane of Fig. 16) wavevector

components, can be considered as kz ± ∆kz. In this case the incidence electromagnetic field at the

boundary (x = 0) can be written as

~Fi(x = 0, z) = ~F0[e
−j(kz+∆kz )z + e−j(kz−∆kz )z] = 2 ~F0 cos(∆kzz)e−jkzz, (125)

where F is either the electric field (for TE polarization) or the magnetic field H (for TM polarization).

In addition, for simplicity it was assumed that the two plane waves have the same amplitude. Using

Eqs. (73) or (74) the reflected beam at the boundary can be written as

~Fr(x = 0, z) = ~F0[e
j2φ(kz+∆kz )e−j(kz+∆kz )z + ej2φ(kz−∆kz )e−j(kz−∆kz )z], (126)
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Figure 16: A planar boundary between two isotropic dielectrics with n1 > n2 and at an angle of incidence θ1 > θcr. In

case that the incident field, Ei, represents a beam of finite size the reflected field, Er , (beam) experience a Goos-Hänchen

shift of 2zs.

where φ can be either φTE (for TE polarization) or φTM (for TM polarization). Using a Taylor

expansion around kz the phase shifts can be expressed by φ(kz ± ∆kz) ' φ(kz) ± (dφ/dkz)|kz∆kz.

Using the latter expansion into the equation for the reflected field it can be shown that

~Fr(x = 0, z) = 2 ~F0 cos[∆kz(z − 2zs)]e
−jkzzej2φ(kz), with (127)

zs =
dφ

dkz

∣

∣

∣

kz

. (128)

The distance zs expresses the lateral Goos-Hänchen shift. According to Fig. 16 an associated penetra-

tion depth xs can be defined. This is presumably the penetration distance of the field into the region

of index n2 in order to exit at a lateral distance 2zs along the boundary using the ray approach. The

2zs and xs = zs/ tan θ1 distances can easily be calculated for both TE and TM polarizations. The
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resutling equations are

2zsTE
=

2λ0 tan θ1

2π(n2
1 sin2 θ1 − n2

2)
1/2

, (129)

xsTE
=

λ0

2π(n2
1 sin2 θ1 − n2

2)
1/2

, (130)

2zsTM
=

(n1/n2)
2(n2

1 − n2
2)

n2
1[cos2 θ1 + (n1/n2)4 sin2 θ1] − (n1/n2)4n2

2

2λ0 tan θ1

2π(n2
1 sin2 θ1 − n2

2)
1/2

, (131)

xsTM
=

(n1/n2)
2(n2

1 − n2
2)

n2
1[cos2 θ1 + (n1/n2)4 sin2 θ1] − (n1/n2)4n2

2

λ0

2π(n2
1 sin2 θ1 − n2

2)
1/2

. (132)
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Figure 17: The Goos-Hänchen normalized shift 2zs/λ0 and the corresponding normalized penetration distance xs/λ0

at the boundary between glass (n1 = 1.5) and air (n2 = 1.0) for TE and TM polarization. Both distances are defined

for θ1 > θcr.

For example the normalized to the freespace wavelength values of 2zsTE
, 2zsTM

, xsTE
, xsTM

are

shown in Fig. 17 for the case of a glass-air interface (n1 = 1.5 and n2 = 1.0).

A more general approach of the derivation of the Goos-Hänchen shift can be achieved if a plane

wave spectrum representation of the incident beam is considered. For example, the incident field can
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be expressed by

~Fi(x = 0, y, z) = ~F0

∫ +∞

−∞

∫ +∞

−∞
F̃ (ky, kz)e

−j(kyy+kzz)dkydkz, (133)

where F̃i(ky, kz) denotes the plane wave spectrum of the incident field at the boundary (x = 0).

The reflected field is given by (assuming that all its wavevector components are incident at an angle

θ1 > θcr)

~Fr(x = 0, y, z) = ~F0

∫ +∞

−∞

∫ +∞

−∞
F̃ (ky, kz)e

j2φ(ky ,kz)e−j(kyy+kz z)dkydkz. (134)

A two-dimensional Taylor expansion of φ(ky, kz) around a central point (ky0, kz0) gives

φ(ky, kz) ' φ(ky0, kz0)+
∂φ

∂ky

∣

∣

∣

ky0

(ky−ky0)+
∂φ

∂kz

∣

∣

∣

kz0

(kz−kz0) = φ(ky0, kz0)+(~k‖−~k‖0) · ~∇φ|~k‖0, (135)

where ~k‖ = ky ŷ + kzẑ and similarly ~k‖0 = ky0ŷ + kz0ẑ. Substituting the last equation into Eq. (134)

the reflected field can be expressed as

~Fr(x = 0, y, z) = ~F0

∫ +∞

−∞

∫ +∞

−∞

F̃ (ky, kz) exp[−j~k‖ · (~r‖ − 2~∇φ|~k‖0)]dkydkz

= e
j2[φ(ky0,kz0)−~k‖0·~∇φ|~k‖0

]
~Fi(x = 0, ~r‖ − 2~∇φ|~k‖0), (136)

where ~r‖ = yŷ + zẑ. Then the resulting generalized Goos-Hänchen shift, ~dGH , is defined as

~dGH = 2~∇φ|~k‖0 = 2

{

∂φ

∂ky

∣

∣

∣

ky0

ŷ +
∂φ

∂kz

∣

∣

∣

kz0

ẑ

}

. (137)
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