Cylindrical Dielectric Waveguides

Integrated Optics

Prof. Elias N. Glytsis

School of Electrical \& Computer Engineering National Technical University of Athens

Geometry of a Single Core Layer Cylindrical Waveguide

Maxwell's Equations: $\quad \vec{\nabla} \times \vec{E}_{i}=-j \omega \mu_{0} \vec{H}_{i}$,

$$
\vec{\nabla} \times \vec{H}_{i}=+j \omega \epsilon_{0} n_{i}^{2} \vec{E}_{i}, \quad i=1,2
$$

Helmholtz's Equation: $\quad \nabla^{2} \vec{E}_{i}+k_{0}^{2} n_{i}^{2} \vec{E}_{i}=0, \quad(i=1,2)$

$$
\vec{E}_{i}=\vec{E}_{t i}+E_{z i} \hat{z}=\left[E_{r i} \hat{r}+E_{\phi i} \hat{\phi}\right]+E_{z i} \hat{z}, \quad(i=1,2)
$$

Single Core Layer Cylindrical Waveguide

Helmholtz's Equations for Transverse and Longitudinal Components

$$
\begin{aligned}
\nabla^{2} \vec{E}_{t i}+k_{0}^{2} n_{i}^{2} \vec{E}_{t i} & =0 \\
\nabla^{2} E_{z i}+k_{0}^{2} n_{i}^{2} E_{z i} & =0, \quad(i=1,2) \\
\nabla^{2} \vec{H}_{t i}+k_{0}^{2} n_{i}^{2} \vec{H}_{t i} & =0 \\
\nabla^{2} H_{z i}+k_{0}^{2} n_{i}^{2} H_{z i} & =0, \quad(i=1,2)
\end{aligned}
$$

Expressions for Longitudinal Components

$$
\begin{aligned}
E_{z i} & =E_{z i}(r, \phi) e^{-j \beta z} \\
H_{z i} & =H_{z i}(r, \phi) e^{-j \beta z}, \quad(i=1,2)
\end{aligned}
$$

Single Core Layer Cylindrical Waveguide

Relations of Transverse and Longitudinal Components Maxwell's Curl Equations

$$
\begin{aligned}
\frac{1}{r} \frac{\partial E_{z i}}{\partial \phi}+j \beta E_{\phi i} & =-j \omega \mu_{0} H_{r i}, \\
-j \beta E_{r i}-\frac{\partial E_{z i}}{\partial r} & =-j \omega \mu_{0} H_{\phi i}, \\
\frac{1}{r} \frac{\partial\left(r E_{\phi i}\right)}{\partial r}-\frac{1}{r} \frac{\partial E_{r i}}{\partial \phi} & =-j \omega \mu_{0} H_{z i}, \\
\frac{1}{r} \frac{\partial H_{z i}}{\partial \phi}+j \beta H_{\phi i} & =+j \omega \epsilon_{0} n_{i}^{2} E_{r i} \\
-j \beta H_{r i}-\frac{\partial H_{z i}}{\partial r} & =+j \omega \epsilon_{0} n_{i}^{2} E_{\phi i}, \\
\frac{1}{r} \frac{\partial\left(r H_{\phi i}\right)}{\partial r}-\frac{1}{r} \frac{\partial H_{r i}}{\partial \phi} & =+j \omega \epsilon_{0} n_{i}^{2} E_{z i} .
\end{aligned}
$$

Single Core Layer Cylindrical Waveguide

Transverse Field Components as Functions of Longitudinal Field Components

$$
\begin{aligned}
& E_{r i}=-\frac{j \beta}{k_{0}^{2} n_{i}^{2}-\beta^{2}}\left[\frac{\partial E_{z i}}{\partial r}+\frac{\omega \mu_{0}}{\beta} \frac{1}{r} \frac{\partial H_{z i}}{\partial \phi}\right] \\
& E_{\phi i}=-\frac{j \beta}{k_{0}^{2} n_{i}^{2}-\beta^{2}}\left[\frac{1}{r} \frac{\partial E_{z i}}{\partial \phi}-\frac{\omega \mu_{0}}{\beta} \frac{\partial H_{z i}}{\partial r}\right] \\
& H_{r i}=-\frac{j \beta}{k_{0}^{2} n_{i}^{2}-\beta^{2}}\left[\frac{\partial H_{z i}}{\partial r}-\frac{\omega \epsilon_{0} n_{i}^{2}}{\beta} \frac{1}{r} \frac{\partial E_{z i}}{\partial \phi}\right] \\
& H_{\phi i}=-\frac{j \beta}{k_{0}^{2} n_{i}^{2}-\beta^{2}}\left[\frac{1}{r} \frac{\partial H_{z i}}{\partial \phi}+\frac{\omega \epsilon_{0} n_{i}^{2}}{\beta} \frac{\partial E_{z i}}{\partial r}\right] .
\end{aligned}
$$

Single Core Layer Cylindrical Waveguide

Longitudinal Electric Field Component

$$
\frac{\partial^{2} E_{z i}}{\partial r^{2}}+\frac{1}{r} \frac{\partial E_{z i}}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} E_{z i}}{\partial \phi^{2}}+\left(k_{0}^{2} n_{i}^{2}-\beta^{2}\right) E_{z i}=0, \quad(i=1,2)
$$

Separation of Variables

$$
E_{z i}=R_{i}(r) \Phi_{i}(\phi)
$$

$$
\frac{d^{2} \Phi_{i}}{d \phi^{2}}+\nu^{2} \Phi_{i}=0
$$

$$
\frac{d^{2} R_{i}}{d r^{2}}+\frac{1}{r} \frac{d R_{i}}{d r}+\left(k_{0}^{2} n_{i}^{2}-\beta^{2}-\frac{\nu^{2}}{r^{2}}\right) R_{i}=0, \quad(i=1,2)
$$

Single Core Layer Cylindrical Waveguide Field Solutions

Azimuthal and Radial Solutions

$$
\begin{gathered}
\Phi_{i}(\phi)=C_{i} e^{+j \nu \phi}+D_{i} e^{-j \nu \phi}, \quad(i=1,2) \\
R_{i}(r)= \begin{cases}A_{i} J_{\nu}(q r)+B_{i} Y_{\nu}(q r), & q^{2}=k_{0}^{2} n_{i}^{2}-\beta^{2}, \\
A_{i} I_{\nu}(q r)+B_{i} K_{\nu}(q r), & q^{2}=\beta^{2}-k_{0}^{2} n_{i}^{2}, \\
\text { if } \beta>k_{0} n_{i},\end{cases}
\end{gathered}
$$

Transverse Electric Field Component Solution

$$
E_{z i}=\left[A_{i} \mathcal{C}_{\nu}(q r)+B_{i} \mathcal{D}_{\nu}(q r)\right]\left[C_{i} e^{+j \nu \phi}+D_{i} e^{-j \nu \phi}\right]
$$

Oscillatory Bessel Functions Behavior (J_{v} and Y_{v})

Prof. Elias N. Glytsis, School of ECE, NTUA

Modified Bessel Functions Behavior (I_{v} and K_{v})

Single Core Layer Cylindrical Waveguide Field Solutions

Guided Modes Condition

$$
0<k_{0} n_{2}<\beta<k_{0} n_{1}
$$

Core-Region Longitudinal Field Components ($\mathrm{r}<\mathrm{a}$)

$$
\begin{aligned}
E_{z 1} & =A_{1} J_{\nu}(\kappa r)\left[C_{e 1} e^{+j \nu \phi}+D_{e 1} e^{-j \nu \phi}\right] \exp (-j \beta z) \\
H_{z 1} & =F_{1} J_{\nu}(\kappa r)\left[C_{h 1} e^{+j \nu \phi}+D_{h 1} e^{-j \nu \phi}\right] \exp (-j \beta z) \\
\kappa & =\left[k_{0}^{2} n_{1}^{2}-\beta^{2}\right]^{1 / 2}
\end{aligned}
$$

Cladding-Region Longitudinal Field Components ($r>a$)

$$
\begin{aligned}
E_{z 2} & =B_{2} K_{\nu}(\gamma r)\left[C_{e 2} e^{+j \nu \phi}+D_{e 2} e^{-j \nu \phi}\right] \exp (-j \beta z) \\
H_{z 2} & =G_{2} K_{\nu}(\gamma r)\left[C_{h 2} e^{+j \nu \phi}+D_{h 2} e^{-j \nu \phi}\right] \exp (-j \beta z) \\
\gamma & =\left[\beta^{2}-k_{0}^{2} n_{2}^{2}\right]^{1 / 2}
\end{aligned}
$$

z-component of Electric field $\left(E_{z}\right)$ at $r=a$

$$
\begin{gathered}
A_{1} J_{\nu}(\kappa a)\left[C_{e 1} e^{+j \nu \phi}+D_{e 1} e^{-j \nu \phi}\right]=B_{2} K_{\nu}(\gamma a)\left[C_{e 2} e^{+j \nu \phi}+D_{e 2} e^{-j \nu \phi}\right] \\
\text { which implies, } \\
A_{1} J_{\nu}(\kappa a)=B_{2} K_{\nu}(\gamma a) \\
C_{e 1}=C_{e 2}=C_{e} \quad \text { and } D_{e 1}=D_{e 2}=D_{e}
\end{gathered}
$$

z-component of Magnetic field $\left(\mathrm{H}_{\mathrm{z}}\right)$ at $\mathrm{r}=\mathrm{a}$

$$
\begin{aligned}
& F_{1} J_{\nu}(\kappa a)\left[C_{h 1} e^{+j \nu \phi}+D_{h 1} e^{-j \nu \phi}\right]=G_{2} K_{\nu}(\gamma a)\left[C_{h 2} e^{+j \nu \phi}+D_{h 2} e^{-j \nu \phi}\right], \\
& \text { which implies, } \\
& F_{1} J_{\nu}(\kappa a)=G_{2} K_{\nu}(\gamma a), \\
& C_{h 1}=C_{h 2}=C_{h} \quad \text { and } \quad D_{h 1}=D_{h 2}=D_{h},
\end{aligned}
$$

ϕ-component of Electric field $\left(E_{\phi}\right)$ at $r=a$

$$
\begin{aligned}
& \frac{-j \beta}{k_{0}^{2} n_{1}^{2}-\beta^{2}}\left\{A_{1} \frac{j \nu}{a} J_{\nu}(\kappa a)\left[C_{e} e^{+j \nu \phi}-D_{e} e^{-j \nu \phi}\right] \quad-\quad F_{1} \frac{\omega \mu_{0}}{\beta} \kappa J_{\nu}^{\prime}(\kappa a)\left[C_{h} e^{+j \nu \phi}+D_{h} e^{-j \nu \phi}\right]\right\}= \\
& \frac{-j \beta}{k_{0}^{2} n_{2}^{2}-\beta^{2}}\left\{B_{2} \frac{j \nu}{a} K_{\nu}(\gamma a)\left[C_{e} e^{+j \nu \phi}-D_{e} e^{-j \nu \phi}\right] \quad-\quad G_{2} \frac{\omega \mu_{0}}{\beta} \gamma K_{\nu}^{\prime}(\gamma a)\left[C_{h} e^{+j \nu \phi}+D_{h} e^{-j \nu \phi}\right]\right\},
\end{aligned}
$$

which implies,

$$
\begin{aligned}
& \frac{-j \beta}{k_{0}^{2} n_{1}^{2}-\beta^{2}}\left\{A_{1} \frac{j \nu}{a} J_{\nu}(\kappa a)\right. \\
& \frac{-j \beta}{k_{0}^{2} n_{2}^{2}-\beta^{2}}\left\{B_{2} \frac{j \nu}{a} K_{\nu}(\gamma a) \quad-\quad G_{2} \frac{\omega \mu_{0}}{\beta} \kappa J_{\nu}^{\prime}(\kappa a)\right\}= \\
& \left.K_{\nu}^{\prime}(\gamma a)\right\} \Longrightarrow
\end{aligned}
$$

$$
\begin{aligned}
A_{1} \frac{\beta \nu}{\kappa^{2} a} J_{\nu}(\kappa a)+F_{1} \frac{j \omega \mu_{0}}{\kappa} J_{\nu}^{\prime}(\kappa a) & =B_{2} \frac{\beta \nu}{-\gamma^{2} a} K_{\nu}(\gamma a)+G_{2} \frac{j \omega \mu_{0}}{-\gamma} K_{\nu}^{\prime}(\gamma a) \\
\frac{C_{e}}{C_{h}} & =-\frac{D_{e}}{D_{h}}=\chi=1 \\
C_{e}=C_{h}=C & \text { and } \quad D_{e}=-D_{h}=D
\end{aligned}
$$

Single Core Layer Cylindrical Waveguide Boundary Conditions

ϕ-component of Magnetic field $\left(\mathrm{H}_{\phi}\right)$ at $\mathrm{r}=\mathrm{a}$

$$
\begin{gathered}
\frac{-j \beta}{k_{0}^{2} n_{1}^{2}-\beta^{2}}\left\{F_{1} \frac{j \nu}{a} J_{\nu}(\kappa a)\left[C^{+j \nu \phi}+D e^{-j \nu \phi}\right]-A_{1} \frac{\omega \epsilon_{0} n_{1}^{2}}{\beta} \kappa J_{\nu}^{\prime}(\kappa a)\left[C e^{+j \nu \phi}+D_{e}^{-j \nu \phi}\right]\right\}= \\
\frac{-j \beta}{k_{0}^{2} n_{2}^{2}-\beta^{2}}\left\{G_{2} \frac{j \nu}{a} K_{\nu}(\gamma a)\left[C e^{+j \nu \phi}+D e^{-j \nu \phi}\right]-G_{2} \frac{\omega \mu_{0}}{\beta} \gamma K_{\nu}^{\prime}(\gamma a)\left[C e^{+j \nu \phi}+D e^{-j \nu \phi}\right]\right\}, \\
\text { which implies, }
\end{gathered}
$$

$$
F_{1} \frac{\beta \nu}{\kappa^{2} a} J_{\nu}(\kappa a)-A_{1} \frac{j \omega \epsilon_{0} n_{1}^{2}}{\kappa} J_{\nu}^{\prime}(\kappa a)=G_{2} \frac{\beta \nu}{-\gamma^{2} a} K_{\nu}(\gamma a)-B_{2} \frac{j \omega \epsilon_{0} n_{2}^{2}}{-\gamma} K_{\nu}^{\prime}(\gamma a)
$$

Single Core Layer Cylindrical Waveguide Dispersion Equation

Guided Modes Condition

$$
0<k_{0} n_{2}<\beta<k_{0} n_{1}
$$

$$
\underbrace{\left[\begin{array}{ccc}
J_{\nu}(\kappa a) & 0 & 0 \\
-\frac{\beta \nu}{\kappa^{2} a} J_{\nu}(\kappa a) & \frac{j \omega \mu_{0}}{\kappa} J_{\nu}^{\prime}(\kappa a) & \frac{\beta \nu}{\gamma^{2} a} K_{\nu}(\gamma a) \\
-\frac{j \omega \epsilon_{0} n_{1}^{2}}{\kappa} J_{\nu}^{\prime}(\kappa a) & \frac{j \omega \mu_{0}}{\beta} \gamma K_{\nu}^{\prime}(\gamma a) \\
\frac{\beta \nu}{\kappa^{2} a} J_{\nu}(\kappa a) & -\frac{j \omega \epsilon_{0} n_{2}^{2}}{\gamma} K_{\nu}^{\prime}(\gamma a) & \frac{\beta \nu}{\gamma^{2} a} K_{\nu}(\gamma a)
\end{array}\right]}_{\substack{J_{\nu}(\kappa a) \\
0}}\left[\begin{array}{l}
A_{1} \\
F_{1} \\
B_{2} \\
G_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

$$
\operatorname{det}\{\tilde{\mathcal{A}}(\beta, \nu)\}=0
$$

Single Core Layer Cylindrical Waveguide Dispersion Equation

$$
\left[\frac{J_{\nu}^{\prime}(\kappa a)}{\kappa a J_{\nu}(\kappa a)}+\frac{K_{\nu}^{\prime}(\gamma a)}{\gamma a K_{\nu}(\gamma a)}\right]\left[n_{1}^{2} \frac{J_{\nu}^{\prime}(\kappa a)}{\kappa a J_{\nu}(\kappa a)}+n_{2}^{2} \frac{K_{\nu}^{\prime}(\gamma a)}{\gamma a K_{\nu}(\gamma a)}\right]=\frac{\beta^{2} \nu^{2}}{k_{0}^{2}}\left[\frac{1}{\kappa^{2} a^{2}}+\frac{1}{\gamma^{2} a^{2}}\right]^{2}
$$

Relations between coefficients

$$
\begin{gathered}
B_{2}=\frac{J_{\nu}(\kappa a)}{K_{\nu}(\gamma a)} A_{1}, \\
G_{2}=\frac{J_{\nu}(\kappa a)}{K_{\nu}(\gamma a)} F_{1}, \\
F_{1}=\frac{j \beta \nu}{\omega \mu_{0}}\left(\frac{1}{\kappa^{2} a^{2}}+\frac{1}{\gamma^{2} a^{2}}\right)\left[\frac{J_{\nu}^{\prime}(\kappa a)}{\kappa a J_{\nu}(\kappa a)}+\frac{K_{\nu}^{\prime}(\gamma a)}{\gamma a K_{\nu}(\gamma a)}\right]^{-1} A_{1}, \\
F_{1}=\frac{j \omega \epsilon_{0}}{\beta \nu}\left[n_{1}^{2} \frac{J_{\nu}^{\prime}(\kappa a)}{\kappa a J_{\nu}(\kappa a)}+n_{2}^{2} \frac{K_{\nu}^{\prime}(\gamma a)}{\gamma a K_{\nu}(\gamma a)}\right]\left(\frac{1}{\kappa^{2} a^{2}}+\frac{1}{\gamma^{2} a^{2}}\right)^{-1} A_{1},
\end{gathered}
$$

Single Core Layer Cylindrical Waveguide Dispersion Equation

Case of $v=0: T E_{0 m}$ and $T M_{0 m}$ Guided Modes

$$
\underbrace{\left[\frac{J_{0}^{\prime}(\kappa a)}{\kappa a J_{0}(\kappa a)}+\frac{K_{0}^{\prime}(\gamma a)}{\gamma a K_{0}(\gamma a)}\right]}_{\mathcal{T}_{1}} \underbrace{\left[n_{1}^{2} \frac{J_{0}^{\prime}(\kappa a)}{\kappa a J_{0}(\kappa a)}+n_{2}^{2} \frac{K_{0}^{\prime}(\gamma a)}{\gamma a K_{0}(\gamma a)}\right]}_{\mathcal{T}_{2}}=0
$$

Relations between coefficients

$$
\begin{aligned}
B_{2}-\frac{J_{0}(\kappa a)}{K_{0}(\gamma a)} A_{1} & =0, \\
G_{2}-\frac{J_{0}(\kappa a)}{K_{0}(\gamma a)} F_{1} & =0, \\
F_{1}\left[\frac{J_{0}^{\prime}(\kappa a)}{\kappa a J_{0}(\kappa a)}+\frac{K_{0}^{\prime}(\gamma a)}{\gamma a K_{0}(\gamma a)}\right] & =0, \\
A_{1}\left[n_{1}^{2} \frac{J_{0}^{\prime}(\kappa a)}{\kappa a J_{0}(\kappa a)}+n_{2}^{2} \frac{K_{0}^{\prime}(\gamma a)}{\gamma a K_{0}(\gamma a)}\right] & =0
\end{aligned}
$$

Single Core Layer Cylindrical Waveguide Dispersion Equation

Case of $v=0: \mathrm{TE}_{0 \mathrm{~m}}$ and $\mathrm{TM}_{0 \mathrm{~m}}$ Guided Modes

$$
\begin{aligned}
\frac{J_{1}(\kappa a)}{\kappa a J_{0}(\kappa a)}+\frac{K_{1}(\gamma a)}{\gamma a K_{0}(\gamma a)} & =0, \quad \text { for } T E_{0 m} \\
n_{1}^{2} \frac{J_{1}(\kappa a)}{\kappa a J_{0}(\kappa a)}+n_{2}^{2} \frac{K_{1}(\gamma a)}{\gamma a K_{0}(\gamma a)} & =0, \quad \text { for } T M_{0 m} .
\end{aligned}
$$

Single Core Layer Cylindrical Waveguide Dispersion Equation
Case of $v \neq 0: E H_{v m}$ and $\mathrm{HE}_{\mathrm{vm}}$ Guided Modes

Dispersion Equation for $E H_{v m}$ Guided Modes

$$
\frac{J_{\nu+1}(\kappa a)}{\kappa a J_{\nu}(\kappa a)}=\frac{n_{1}^{2}+n_{2}^{2}}{2 n_{1}^{2}} \frac{K_{\nu}^{\prime}(\gamma a)}{\gamma a K_{\nu}(\gamma a)}+\left(\frac{\nu}{\kappa^{2} a^{2}}-\mathcal{R}\right)
$$

Dispersion Equation for $H E_{v m}$ Guided Modes
$\frac{J_{\nu-1}(\kappa a)}{\kappa a J_{\nu}(\kappa a)}=-\frac{n_{1}^{2}+n_{2}^{2}}{2 n_{1}^{2}} \frac{K_{\nu}^{\prime}(\gamma a)}{\gamma a K_{\nu}(\gamma a)}+\left(\frac{\nu}{\kappa^{2} a^{2}}-\mathcal{R}\right)$,
with $\quad \mathcal{R}=\left[\left(\frac{n_{1}^{2}-n_{2}^{2}}{2 n_{1}^{2}}\right)^{2}\left(\frac{K_{\nu}^{\prime}(\gamma a)}{\gamma a K_{\nu}(\gamma a)}\right)^{2}+\left(\frac{\nu \beta}{n_{1} k_{0}}\right)^{2}\left(\frac{1}{\kappa^{2} a^{2}}+\frac{1}{\gamma^{2} a^{2}}\right)^{2}\right]^{1 / 2}$

$\mathrm{TE}_{0 \mathrm{~m}}$ and $\mathrm{TM}_{0 \mathrm{~m}}$ Guided Modes

Electric \& Magnetic Fields

TE Em_{m} Guided Modes

$$
\begin{aligned}
& E_{z}=0, \quad \text { for } 0 \leq r<\infty, \\
& E_{r}=0, \quad \text { for } 0 \leq r<\infty, \\
& E_{\phi}= \begin{cases}F_{1} Z_{0}\left(\frac{+j k_{0}}{\kappa}\right) J_{0}^{\prime}(\kappa r) e^{-j \beta_{0 m}^{T E} z}, \quad 0 \leq r \leq a, \\
G_{2} Z_{0}\left(\frac{-j k_{0}}{\gamma}\right) K_{0}^{\prime}(\gamma r) e^{-j \beta_{0 m}^{T E} z}, \quad r \geq a\end{cases} \\
& H_{z}= \begin{cases}F_{1} J_{0}(\kappa r) e^{-j \beta_{0 m}^{T E} z}, \quad 0 \leq r \leq a, \\
G_{2} K_{0}(\gamma r) e^{-j \beta_{0 m}^{T E} z}, \quad r \geq a\end{cases} \\
& H_{r}= \begin{cases}F_{1}\left(\frac{-j \beta}{\kappa}\right) J_{0}^{\prime}(\kappa r) e^{-j \beta_{0 m}^{T E} z}, & 0 \leq r \leq a, \\
G_{2}\left(\frac{+j \beta}{\gamma}\right) K_{0}^{\prime}(\gamma r) e^{-j \beta_{0 m}^{T E} z}, & r \geq a\end{cases} \\
& H_{\phi}=0, \\
& \text { for } 0 \leq r<\infty,
\end{aligned}
$$

$\mathrm{TE}_{0 \mathrm{~m}}$ and $\mathrm{TM}_{0 \mathrm{~m}}$ Guided Modes
 Electric \& Magnetic Fields

TM M_{m} Guided Modes

$$
\begin{aligned}
& E_{z}= \begin{cases}A_{1} J_{0}(\kappa r) e^{-j \beta_{0 m}^{T M} z}, & 0 \leq r \leq a, \\
B_{2} K_{0}(\gamma r) e^{-j \beta_{0 m}^{T M} z}, & r \geq a\end{cases} \\
& E_{r}= \begin{cases}A_{1}\left(\frac{-j \beta}{\kappa}\right) J_{0}^{\prime}(\kappa r) e^{-j \beta_{0 m}^{T M} z}, & 0 \leq r \leq a, \\
B_{2}\left(\frac{+j \beta}{\gamma}\right) K_{0}^{\prime}(\gamma r) e^{-j \beta_{0 m}^{T M} z}, & r \geq a\end{cases} \\
& E_{\phi}=0, \quad \text { for } 0 \leq r<\infty \text {, } \\
& H_{z}=0, \quad \text { for } 0 \leq r<\infty \text {, } \\
& H_{r}=0, \quad \text { for } 0 \leq r<\infty \text {, } \\
& H_{\phi}= \begin{cases}\frac{A_{1}}{Z_{0}}\left(\frac{-j k_{0} n_{1}^{2}}{\kappa}\right) J_{0}^{\prime}(\kappa r) e^{-j \beta_{0 m}^{T M} z}, & 0 \leq r \leq a, \\
\frac{B_{2}}{Z_{0}}\left(\frac{+j k_{0} n_{2}^{2}}{\gamma Z_{0}}\right) K_{0}^{\prime}(\gamma r) e^{-j \beta_{0 m}^{T M} z}, & r \geq a\end{cases}
\end{aligned}
$$

$\mathrm{TE}_{0 \mathrm{~m}}$ and $\mathrm{TM}_{\mathrm{om}}$ Guided Modes

Electric \& Magnetic Fields
TE_{01} Guided Mode: $\mathrm{n}_{1}=1.50, \mathrm{n}_{2}=1.47, \mathrm{a}=5 \mu \mathrm{~m}, \lambda_{0}=1.55 \mu \mathrm{~m}$

$\mathrm{TE}_{0 \mathrm{om}}$ and $\mathrm{TM}_{0 \mathrm{~m}}$ Guided Modes

Electric \& Magnetic Fields
TE_{01} Guided Mode: $\mathrm{n}_{1}=1.50, \mathrm{n}_{2}=1.47, \mathrm{a}=5 \mu \mathrm{~m}, \lambda_{0}=1.55 \mu \mathrm{~m}$

$\mathrm{TE}_{0 \mathrm{~m}}$ and $\mathrm{TM}_{0 \mathrm{~m}}$ Guided Modes

Electric \& Magnetic Fields
TE_{02} Guided Mode: $\mathrm{n}_{1}=1.50, \mathrm{n}_{2}=1.47, \mathrm{a}=5 \mu \mathrm{~m}, \lambda_{0}=1.55 \mu \mathrm{~m}$

$\mathrm{TE}_{0 \mathrm{~m}}$ and $\mathrm{TM}_{0 \mathrm{~m}}$ Guided Modes
Electric \& Magnetic Fields
TE_{02} Guided Mode: $\mathrm{n}_{1}=1.50, \mathrm{n}_{2}=1.47, \mathrm{a}=5 \mu \mathrm{~m}, \lambda_{0}=1.55 \mu \mathrm{~m}$

$\mathrm{TE}_{0 \mathrm{~m}}$ and $\mathrm{TM}_{0 \mathrm{~m}}$ Guided Modes

Electric \& Magnetic Fields

$$
\mathrm{TM}_{01} \& \mathrm{TM}_{02} \text { Guided Modes: } \mathrm{n}_{1}=1.50, \mathrm{n}_{2}=1.47, \mathrm{a}=5 \mu \mathrm{~m}, \lambda_{0}=1.55 \mu \mathrm{~m}
$$

$E H_{v m}$ and $\mathrm{HE}_{\mathrm{vm}}$ Guided Modes Electric Fields

$$
\begin{aligned}
& E_{z}= \begin{cases}A_{1} J_{\nu}(\kappa r) f_{e}(\phi) e^{-j \beta_{\nu m} z}, \quad 0 \leq r \leq a, \\
B_{2} K_{\nu}(\gamma r) f_{e}(\phi) e^{-j \beta_{\nu m} z}, r \geq a\end{cases} \\
& E_{r}= \begin{cases}{\left[-j A_{1} \frac{\beta}{\kappa} J_{\nu}^{\prime}(\kappa r)+Z_{0} F_{1} \frac{\nu k_{0}}{\kappa} \frac{J_{\nu}(\kappa r)}{\kappa r}\right] f_{e}(\phi) e^{-j \beta_{\nu m} z},} & 0 \leq r \leq a, \\
{\left[j B_{2} \frac{\beta}{\gamma} K_{\nu}^{\prime}(\gamma r)-Z_{0} G_{2} \frac{\nu k_{0}}{\gamma} \frac{K_{\nu}(\gamma r)}{\gamma r}\right] f_{e}(\phi) e^{-j \beta_{\nu m} z},} & r \geq a\end{cases} \\
& E_{\phi}= \begin{cases}{\left[A_{1} \frac{\nu \beta}{\kappa} \frac{J_{\nu}(\kappa r)}{\kappa r}+j Z_{0} F_{1} \frac{k_{0}}{\kappa} J_{\nu}^{\prime}(\kappa r)\right] f_{h}(\phi) e^{-j \beta_{\nu m} z},} & 0 \leq r \leq a, \\
{\left[-B_{2} \frac{\nu \beta}{\gamma} \frac{K_{\nu}(\gamma r)}{\gamma r}-j Z_{0} G_{2} \frac{k_{0}}{\gamma} K_{\nu}^{\prime}(\gamma r)\right] f_{h}(\phi) e^{-j \beta_{\nu m} z},} & r \geq a\end{cases}
\end{aligned}
$$

$E H_{v m}$ and $\mathrm{HE}_{\mathrm{vm}}$ Guided Modes Magnetic Fields

$$
\begin{aligned}
& H_{z}= \begin{cases}F_{1} J_{\nu}(\kappa r) f_{h}(\phi) e^{-j \beta_{\nu m} z}, \quad 0 \leq r \leq a, \\
G_{2} K_{\nu}(\gamma r) f_{h}(\phi) e^{-j \beta_{\nu m} z}, \quad r \geq a\end{cases} \\
& H_{r}= \begin{cases}{\left[-j F_{1} \frac{\beta}{\kappa} J_{\nu}^{\prime}(\kappa r)-\frac{A_{1}}{Z_{0}} \frac{\nu k_{0} n_{1}^{2}}{\kappa} \frac{J_{\nu}(\kappa r)}{\kappa r}\right] f_{h}(\phi) e^{-j \beta_{\nu m} z},} & 0 \leq r \leq a, \\
{\left[j G_{2} \frac{\beta}{\gamma} K_{\nu}^{\prime}(\gamma r)+\frac{B_{2}}{Z_{0}} \frac{\nu k_{0} n_{2}^{2}}{\gamma} \frac{K_{\nu}(\gamma r)}{\gamma r}\right] f_{h}(\phi) e^{-j \beta_{\nu m} z},} & r \geq a\end{cases} \\
& H_{\phi}= \begin{cases}{\left[F_{1} \frac{\nu \beta}{\kappa} \frac{J_{\nu}(\kappa r)}{\kappa r}-j \frac{A_{1}}{Z_{0}} \frac{k_{0} n_{1}^{2}}{\kappa} J_{\nu}^{\prime}(\kappa r)\right] f_{e}(\phi) e^{-j \beta_{\nu m} z},} & 0 \leq r \leq a, \\
{\left[-G_{2} \frac{\nu \beta}{\gamma} \frac{K_{\nu}(\gamma r)}{\gamma r}+j \frac{B_{2}}{Z_{0}} \frac{k_{0} n_{2}^{2}}{\gamma} K_{\nu}^{\prime}(\gamma r)\right] f_{e}(\phi) e^{-j \beta_{\nu m} z},} & r \geq a\end{cases} \\
& \hline
\end{aligned}
$$

$$
f_{e}(\phi)=\binom{\cos (\nu \phi)}{\sin (\nu \phi)} \quad f_{h}(\phi)=\binom{j \sin (\nu \phi)}{-j \cos (\nu \phi)}
$$

HE_{11} Guided Mode Electric \& Magnetic Fields

$$
\mathrm{n}_{1}=1.50, \mathrm{n}_{2}=1.47, \mathrm{a}=5 \mu \mathrm{~m}, \lambda_{0}=1.55 \mu \mathrm{~m}
$$

HE_{11} Guided Mode Electric \& Magnetic Fields

$$
\mathrm{n}_{1}=1.50, \mathrm{n}_{2}=1.47, \mathrm{a}=5 \mu \mathrm{~m}, \lambda_{0}=1.55 \mu \mathrm{~m}
$$

$H E_{11}-E_{t}$ field $[\sin (\nu \phi)], n_{1}=1.5, n_{2}=1.47, a=5 \mu \mathrm{~m}, \lambda_{0}=1.55 \mu \mathrm{~m}, \mathrm{~N}=1.4965$

$H E_{11}-H_{t}$ field $[\sin (\nu \phi)], n_{1}=1.5, n_{2}=1.47, a=5 \mu \mathrm{~m}, \lambda_{0}=1.55 \mu \mathrm{~m}, \mathrm{~N}=1.4965$

HE_{11} Guided Mode Poynting Vector

$$
\mathrm{n}_{1}=1.50, \mathrm{n}_{2}=1.47, \mathrm{a}=5 \mu \mathrm{~m}, \lambda_{0}=1.55 \mu \mathrm{~m}
$$

HE_{12} Guided Mode Electric \& Magnetic Fields

$$
\mathrm{n}_{1}=1.50, \mathrm{n}_{2}=1.47, \mathrm{a}=5 \mu \mathrm{~m}, \lambda_{0}=1.55 \mu \mathrm{~m}
$$

HE_{12} Guided Mode Electric \& Magnetic Fields

$$
\mathrm{n}_{1}=1.50, \mathrm{n}_{2}=1.47, \mathrm{a}=5 \mu \mathrm{~m}, \lambda_{0}=1.55 \mu \mathrm{~m}
$$

HE_{12} Guided Mode Poynting Vector

$$
\mathrm{n}_{1}=1.50, \mathrm{n}_{2}=1.47, \mathrm{a}=5 \mu \mathrm{~m}, \lambda_{0}=1.55 \mu \mathrm{~m}
$$

EH_{11} Guided Mode Electric \& Magnetic Fields

$$
\mathrm{n}_{1}=1.50, \mathrm{n}_{2}=1.47, \mathrm{a}=5 \mu \mathrm{~m}, \lambda_{0}=1.55 \mu \mathrm{~m}
$$

EH_{11} Guided Mode Electric \& Magnetic Fields

$$
\mathrm{n}_{1}=1.50, \mathrm{n}_{2}=1.47, \mathrm{a}=5 \mu \mathrm{~m}, \lambda_{0}=1.55 \mu \mathrm{~m}
$$

EH_{21} Guided Mode Electric \& Magnetic Fields

$$
\mathrm{n}_{1}=1.50, \mathrm{n}_{2}=1.47, \mathrm{a}=5 \mu \mathrm{~m}, \lambda_{0}=1.55 \mu \mathrm{~m}
$$

EH_{21} Guided Mode Electric \& Magnetic Fields

$$
\mathrm{n}_{1}=1.50, \mathrm{n}_{2}=1.47, \mathrm{a}=5 \mu \mathrm{~m}, \lambda_{0}=1.55 \mu \mathrm{~m}
$$

Prof. Elias N. Glytsis, School of ECE, NTUA

$$
T E_{0 m}, T M_{0 m}, \mathrm{Eh}_{v m} \text {, and } \mathrm{HE}_{\mathrm{vm}} \text { Guided Modes }
$$

Test Case Parameters: $\mathrm{n}_{1}=1.50, \mathrm{n}_{2}=1.47, \mathrm{a}=5 \mu \mathrm{~m}, \lambda_{0}=1.55 \mu \mathrm{~m}$

Effective Indices

	$T E_{0 m}$		$T M_{0 m}$	
ν	$m=1$	$m=2$	$m=1$	$m=2$
0	1.49133190	1.47278703	1.49125723	1.47272794
$\boldsymbol{E H} \boldsymbol{H}_{\boldsymbol{\nu}}$		$\boldsymbol{H} \boldsymbol{E}_{\boldsymbol{\nu m}}$		
ν	$m=1$	$\boldsymbol{m}=2$	$m=1$	$m=2$
1	1.48453284	-	1.49654129	1.48232990
2	1.47648180	-	1.49127863	1.47271676
3	-	-	1.48447568	-
4	-	-	1.47635769	-

Mode Effective Index vs Normalized Frequency
Small $\Delta \mathrm{n}=\mathrm{n}_{1}-\mathrm{n}_{2}=0.03$

Mode Effective Index vs Normalized Frequency

Weakly Guided Approximation

$n_{1} \simeq n_{2} \quad \longrightarrow \quad \frac{n_{1}^{2}}{n_{2}^{2}} \simeq 1$

Assume only transverse fields - Scalar Wave Equation

$$
\begin{gathered}
\psi=\psi(r, \phi) e^{-j \beta z} \\
\frac{\partial^{2} \psi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \psi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \psi}{\partial \phi^{2}}+\left(k_{0} n^{2}-\beta^{2}\right) \psi=0
\end{gathered}
$$

$$
\begin{aligned}
\psi(r, \phi) & =\left[A c_{\nu}(q r)+B d_{\nu}(q r)\right]\left[C e^{j \nu \phi}+D e^{-j \nu \phi}\right] \\
q^{2} & =k_{0}^{2} n^{2}-\beta^{2} \\
c_{\nu} & =J_{\nu} \text { or } I_{\nu} \\
d_{\nu} & =Y_{\nu} \text { or } K_{\nu}
\end{aligned}
$$

$$
\psi(r, \phi)= \begin{cases}A_{1} J_{\nu}(\kappa r)\left[C e^{j \nu \phi}+D e^{-j \nu \phi}\right] e^{-j \beta z} & r \leq a \\ \kappa=\sqrt{k_{0}^{2} n_{1}^{2}-\beta^{2}} & \\ B_{2} K_{\nu}(\gamma r)\left[C e^{j \nu \phi}+D e^{-j \nu \phi}\right] e^{-j \beta z} & r \geq a \\ \gamma=\sqrt{\beta^{2}-k_{0}^{2} n_{2}^{2}} & \end{cases}
$$

Weakly Guided Approximation

$n_{1} \simeq n_{2} \quad \longrightarrow \quad \frac{n_{1}^{2}}{n_{2}^{2}} \simeq 1$

Dispersion Equation for Guided Modes

$$
\kappa a \frac{J_{\ell-1}(\kappa a)}{J_{\ell}(\kappa a)}=-\gamma a \frac{K_{\ell-1}(\gamma a)}{K_{\ell}(\gamma a)} \quad \ell=\left\{\begin{array}{lll}
1 & \text { for } & T E_{0 m}, T M_{0 m} \\
\nu+1 & \text { for } & E H_{\nu m} \\
\nu-1 & \text { for } & H E_{\nu m}
\end{array}\right.
$$

Linearly Polarized Modes (LP-modes)

$$
\begin{aligned}
& L P_{1 m} \longrightarrow \\
& \text { sum of } T E_{0 m}, T M_{0 m}, H E_{2 m} \\
& L P_{\nu m} \longrightarrow \\
& \text { sum of } H E_{\nu+1, m}, E H_{\nu-1, m} \quad(\nu \geq 2) \\
& L P_{0 m} \longrightarrow \quad H E_{1 m}
\end{aligned}
$$

LP-Modes Examples

Test Case Parameters: $\mathrm{n}_{1}=1.50, \mathrm{n}_{2}=1.47, \mathrm{a}=5 \mu \mathrm{~m}, \lambda_{0}=1.55 \mu \mathrm{~m}$
$L P_{01}, N_{\text {eff }}=1.49656109, n_{1}=1.5, n_{2}=1.47, \lambda_{0}=1.55 \mu \mathrm{~m}, a=5 \mu \mathrm{~m}$

$$
L P_{02}, N_{\text {eff }}=1.48239901, n_{1}=1.5, n_{2}=1.47, \lambda_{0}=1.55 \mu \mathrm{~m}, a=5 \mu \mathrm{~m}
$$

Prof. Elias N. Glytsis, School of ECE, NTUA

LP-Modes Examples

Test Case Parameters: $\mathrm{n}_{1}=1.50, \mathrm{n}_{2}=1.47, \mathrm{a}=5 \mu \mathrm{~m}, \lambda_{0}=1.55 \mu \mathrm{~m}$

LP-Modes Examples

Test Case Parameters: $\mathrm{n}_{1}=1.50, \mathrm{n}_{2}=1.47, \mathrm{a}=5 \mu \mathrm{~m}, \lambda_{0}=1.55 \mu \mathrm{~m}$

LP-Modes Examples

Test Case Parameters: $\mathrm{n}_{1}=1.50, \mathrm{n}_{2}=1.47, \mathrm{a}=5 \mu \mathrm{~m}, \lambda_{0}=1.55 \mu \mathrm{~m}$
Hybrid Modes

Cutoff Conditions

 (under weakly-guiding approximation)$$
\gamma=\left(\beta^{2}-k_{0}^{2} n_{2}^{2}\right)^{1 / 2}=0, \quad V=k_{0} a\left(n_{1}^{2}-n_{2}^{2}\right)^{1 / 2}
$$

$$
\frac{V_{c} J_{\ell-1}\left(V_{c}\right)}{J_{\ell}\left(V_{c}\right)}=0 \quad \ell= \begin{cases}1 & \text { for } T E_{0 m}, T M_{0 m} \\ \nu+1 & \text { for } E H_{\nu m} \\ \nu-1 & \text { for } H E_{\nu m}\end{cases}
$$

$$
J_{0}\left(V_{c m}\right)=0 \quad \text { for } \quad T E_{0 m}, T M_{0 m}
$$

$$
V_{c}=0 \quad \text { for } H E_{11}
$$

$$
J_{1}\left(V_{c m}\right)=0 \quad \text { for } \quad H E_{1 m}(m \geq 2)
$$

$$
J_{\nu-2}\left(V_{c m}\right)=0 \quad \text { for } \quad H E_{\nu m}(\nu \geq 2)
$$

$$
\text { or }\left(\frac{n_{1}^{2}}{n_{2}^{2}}+1\right) J_{\nu-1}\left(V_{c m}\right)=\frac{V_{c m}}{\nu-1} J_{\nu}\left(V_{c m}\right) \text { for } H E_{\nu m}(\nu \geq 2)
$$

$$
J_{\nu}\left(V_{c m}\right)=0 \quad \text { for } \quad E H_{\nu m}(\nu \geq 1)
$$

$$
\begin{array}{lll}
J_{1}\left(V_{c m}\right)=0 & \text { for } & L P_{0 m} \\
J_{0}\left(V_{c m}\right)=0 & \text { for } & L P_{1 m} \\
J_{\nu-1}\left(V_{c m}\right)=0 & \text { for } & L P_{\nu m}
\end{array}
$$

Table 3.2 Cutoff Conditions and Designations of the First 12 LP Modes in a Step Index Fiber

	Bessel Function	l	Degenerate Modes	$L P$ V_{c}
0	-	0	$H E_{11}$	$L P_{01}$
2.405	J_{0}	1	$T E_{01}, T M_{01}, H E_{21}$	$L P_{11}$
3.832	J_{1}	2	$E H_{11}, H E_{31}$	$L P_{21}$
3.832	J_{-1}	0	$H E_{12}$	$L P_{02}$
5.136	J_{2}	3	$E H_{21}, H E_{41}$	$L P_{31}$
5.520	J_{0}	1	$T E_{02}, T M_{02}, H E_{22}$	$L P_{12}$
6.380	J_{3}	4	$E H_{31}, H E_{51}$	$L P_{41}$
7.016	J_{1}	2	$E H_{12}, H E_{32}$	$L P_{22}$
7.016	J_{-1}	0	$H E_{13}$	$L P_{03}$
7.588	J_{4}	5	$E H_{41}, H E_{61}$	$L P_{51}$
8.417	J_{2}	3	$E H_{22}, H E_{42}$	$L P_{32}$
8.654	J_{0}	1	$T E_{03}, T M_{03}, H E_{23}$	$L P_{13}$

LP-Modes (from A. Ghatak and K. Thyagarajan, "Introduction to Fiber Optics")

Table 8.2. Cutoff frequencies of various $L P_{l m}$ modes in a step index fiber

$l=0$ modes	$\left(J_{1}\left(V_{c}\right)=0\right)$		$l=1$ modes	$\left(J_{0}\left(V_{c}\right)=0\right)$
			Mode	V_{c}
LP_{01}	0		LP_{11}	2.4048
LP_{02}	3.8317		LP_{12}	5.5201
LP_{03}	7.0156		LP_{13}	8.6537
LP_{04}	10.1735		LP_{14}	11.7915
$l=2$ modes	$\left(J_{1}\left(V_{c}\right)=0 ; V_{c} \neq 0\right)$	$l=3$ modes	$\left(J_{0}\left(V_{c}\right)=0 ; V_{c} \neq 0\right)$	
			Mode	V_{c}
Mode	V_{c}		LP_{31}	5.1356
LP_{21}	3.8317		LP_{32}	8.4172
LP_{22}	7.0156		11.6198	
LP_{23}	10.1735	LP_{33}	14.7960	
LP_{24}	13.3237			

Power Considerations (LP Modes)

The poynting vector along the z-direction is given by: (for a mode)

$$
S_{z}=\frac{1}{2} \operatorname{Re}\left\{\vec{E}_{\times} \vec{H}^{*}\right\}_{z}=\frac{1}{2} \operatorname{Re}\left\{E_{x} H_{y}^{*}-E_{y} H_{x}^{*}\right\}=\frac{1}{2} \operatorname{Re}\left\{E_{r} H_{\phi}^{*}-E_{\phi} H_{r}^{*}\right\}
$$

Then the power in the core and cladding can be found from:

$$
\begin{aligned}
& P_{\text {core }}=\int_{\phi=0}^{2 \pi} \int_{r=0}^{\alpha} S_{z} r d r d \phi \\
& P_{\text {clad }}=\int_{\phi=0}^{2 \pi} \int_{r=\alpha}^{\infty} S_{z} r d r d \phi
\end{aligned}
$$

For LP modes (weakly guiding approximation) it can be shown that

$$
\begin{aligned}
& P_{\text {core }}=\frac{\beta_{\nu}}{2 \omega \mu_{0}} \pi a^{2}\left|A_{1}\right|^{2}\left[J_{\nu}^{2}(J<a)-J_{\nu-1}(\kappa a) J_{\nu+1}(J<a)\right] \\
& P_{\text {clad }}=\frac{\beta_{\nu}}{2 \omega p_{0}} \pi a^{2}\left|A_{1}\right|^{2}\left[-J_{\nu}^{2}\left(\text { Koa) }-\left(\frac{\kappa}{\gamma}\right)^{2} J_{\nu-1}\left(\text { Kra) } J_{\nu+1}(\text { KRa) }]\right.\right.\right. \\
& P=P_{\text {clad }}+P_{\text {cove }}=\frac{\beta_{\nu}}{2 \omega p_{0}} \pi a^{2}\left|A_{1}\right|^{2}\left(1+\left(\frac{\kappa}{\gamma}\right)^{2}\right)\left(-J_{\nu-1}\left(\text { Ka) } J_{\nu+1}(\kappa a)\right)\right.
\end{aligned}
$$

Power Considerations (LP Modes)

$$
\begin{aligned}
\Gamma_{c 1}=\frac{P_{c l a d}}{P} & =\frac{1}{V^{2}}\left[(x a)^{2}+\frac{(\gamma a)^{2} J_{\nu}^{2}(x a)}{J_{\nu-1}(x a) J_{\nu+1}(K a)}\right]=\left(\frac{\kappa \alpha}{V}\right)^{2}\left(1-\frac{K_{\nu}^{2}(\gamma a)}{K_{\nu-1}(\gamma a) K_{v+1}(\gamma)}\right) \\
\Gamma_{c o} & =\frac{P_{\text {core }}}{P}=1-\Gamma_{c 1}=1-\left(\frac{s k a}{V}\right)^{2}\left[1-\frac{K_{v}^{2}(\gamma a)}{K_{\nu-1}(\gamma a) K_{v+1}(\gamma a)}\right]
\end{aligned}
$$

