Coupled-Mode Theory

Integrated Optics

Prof. Elias N. Glytsis

School of Electrical & Computer Engineering National Technical University of Athens

Coupled-Mode Theory

Waveguide Modes (m-th and n-th):

$$\begin{bmatrix} \vec{E}_m \\ \vec{H}_m \end{bmatrix} = \begin{bmatrix} \vec{\mathcal{E}}_m(x,y) \\ \vec{\mathcal{H}}_m(x,y) \end{bmatrix} e^{-j\beta_m z}, \qquad \begin{bmatrix} \vec{E}_n \\ \vec{H}_n \end{bmatrix} = \begin{bmatrix} \vec{\mathcal{E}}_n(x,y) \\ \vec{\mathcal{H}}_n(x,y) \end{bmatrix} e^{-j\beta_n z}$$

Orthogonality Conditions

Guided Modes

$$\begin{aligned} \langle \vec{\mathcal{E}}_m, \vec{\mathcal{H}}_n \rangle &= \frac{1}{2} \iint_S \left[\vec{\mathcal{E}}_m \times \vec{\mathcal{H}}_n^* \right] \cdot \hat{z} dx dy &= \frac{1}{2} \iint_S \left[\vec{\mathcal{E}}_{t,m} \times \vec{\mathcal{H}}_{t,n}^* \right] \cdot \hat{z} dx dy \\ &= \frac{1}{2} \iint_S \operatorname{Re} \left\{ \vec{\mathcal{E}}_{t,m} \times \vec{\mathcal{H}}_{t,n}^* \right\} \cdot \hat{z} dx dy &= \frac{\beta_m}{|\beta_m|} P_m \delta_{|m||n|}, \end{aligned}$$

Radiation Modes

$$\begin{aligned} \langle \vec{\mathcal{E}}_{\beta}, \vec{\mathcal{H}}_{\beta'} \rangle &= \frac{1}{2} \iint_{S} \left[\vec{\mathcal{E}}_{\beta} \times \vec{\mathcal{H}}_{\beta'}^{*} \right] \cdot \hat{z} dx dy &= \frac{1}{2} \iint_{S} \left[\vec{\mathcal{E}}_{t,\beta} \times \vec{\mathcal{H}}_{t,\beta'}^{*} \right] \cdot \hat{z} dx dy \\ &= \frac{1}{2} \iint_{S} \operatorname{Re} \left\{ \vec{\mathcal{E}}_{t,\beta} \times \vec{\mathcal{H}}_{t,\beta'}^{*} \right\} \cdot \hat{z} dx dy &= \frac{\beta}{|\beta|} P_{\beta} \delta(\beta - \beta'). \end{aligned}$$

Perturbation along the Waveguide

 $\begin{aligned} \epsilon'(x,y,z) &= \epsilon(x,y) + \Delta \epsilon(x,y,z) \\ \vec{E}' &= \vec{E}'_t + \hat{z}E'_z \\ \vec{H}' &= \vec{H}'_t + \hat{z}H'_z \\ \hat{z}E'_z &= \frac{1}{j\omega\epsilon'} \left(\vec{\nabla}_t \times \vec{H}'_t\right) \\ \hat{z}H'_z &= -\frac{1}{j\omega\mu_0} \left(\vec{\nabla}_t \times \vec{E}'_t\right) \end{aligned}$

Transverse Field Expansion for the Perturbed Waveguide

$$\begin{bmatrix} \vec{E}'_t \\ \vec{H}'_t \end{bmatrix} = \sum_m a_m(z) \begin{bmatrix} \vec{\mathcal{E}}_{tm}(x,y) \\ \vec{\mathcal{H}}_{tm}(x,y) \end{bmatrix} \exp(-j\beta_m z) + \int_\beta q(z;\beta) \begin{bmatrix} \vec{\mathcal{E}}_{t\beta}(x,y) \\ \vec{\mathcal{H}}_{t\beta}(x,y) \end{bmatrix} \exp(-j\beta z) d\beta$$
$$\begin{bmatrix} E'_z \\ H'_z \end{bmatrix} = \sum_m a_m(z) \begin{bmatrix} \frac{\epsilon}{\epsilon'} \mathcal{E}_{zm}(x,y) \\ \mathcal{H}_{zm}(x,y) \end{bmatrix} \exp(-j\beta_m z) + \int_\beta q(z;\beta) \begin{bmatrix} \frac{\epsilon}{\epsilon'} \mathcal{E}_{z\beta}(x,y) \\ \mathcal{H}_{z\beta}(x,y) \end{bmatrix} \exp(-j\beta z) d\beta$$

D. L. Lee, Electromagnetic Principles of Integrated Optics, John Wiley & Sons, 1986

Perturbation along the Waveguide

perturbation

Neglect Radiation Modes (for problems that light remains mostly guided)

$$\begin{bmatrix} \vec{E}'_t \\ \vec{H}'_t \end{bmatrix} \simeq \sum_m a_m(z) \begin{bmatrix} \vec{\mathcal{E}}_{tm}(x,y) \\ \vec{\mathcal{H}}_{tm}(x,y) \end{bmatrix} \exp(-j\beta_m z)$$
$$\begin{bmatrix} E'_z \\ H'_z \end{bmatrix} \simeq \sum_m a_m(z) \begin{bmatrix} \frac{\epsilon}{\epsilon'} \mathcal{E}_{zm}(x,y) \\ \mathcal{H}_{zm}(x,y) \end{bmatrix} \exp(-j\beta_m z)$$

 $\vec{\nabla} \times \vec{E}_m = -j\omega\mu_0 \vec{H}_m$ $\vec{\nabla} \times \vec{H}_m = +j\omega\epsilon\vec{E}_m$

D. L. Lee, Electromagnetic Principles of Integrated Optics, John Wiley & Sons, 1986

Lorentz Reciprocity Theorem

D. L. Lee, Electromagnetic Principles of Integrated Optics, John Wiley & Sons, 1986

Lorentz Reciprocity Theorem

$$RHS = -j\omega \iint_{S} (\epsilon' - \epsilon) \vec{\mathcal{E}}_{m}^{*} e^{j\beta_{m}z} \cdot \vec{E}' \, dxdy$$

$$= -j\omega \iint_{S} (\epsilon' - \epsilon) \left(\vec{\mathcal{E}}_{tm}^{*} + \hat{z}\mathcal{E}_{zm}\right) e^{j\beta_{m}z} \cdot \left(\vec{E}_{t}' + \hat{z}E_{z}'\right) \, dxdy$$

$$= -j\omega \iint_{S} (\epsilon' - \epsilon) \left(\vec{\mathcal{E}}_{tm}^{*} + \hat{z}\mathcal{E}_{zm}\right) e^{j\beta_{m}z} \cdot \left(\sum_{n} a_{n}(z)\vec{\mathcal{E}}_{tn}e^{-j\beta_{n}z} + \hat{z}\frac{\epsilon}{\epsilon'}\sum_{n} a_{n}(z)\mathcal{E}_{zn}e^{-j\beta_{n}z}\right) \, dxdy$$

$$= -j\omega \left[\sum_{n} a_{n}(z)e^{j(\beta_{m}-\beta_{n})z} \left\{\iint_{S} (\epsilon' - \epsilon) \left(\vec{\mathcal{E}}_{tm}^{*} \cdot \vec{\mathcal{E}}_{tn} + \frac{\epsilon}{\epsilon'}\mathcal{E}_{zm}^{*}\mathcal{E}_{zn}\right) dxdy\right\}\right]$$

$$I HS = -PHS$$

Coupled-Mode Equations

$$\frac{da_m}{dz} = -j\sum_n C_{nm}a_n(z)e^{j\beta_m-\beta_n)z}$$

$$C_{nm} = C_{nm}^t + C_{nm}^z$$

$$C_{nm}^t = \frac{\omega}{4P_m}\frac{\beta_m}{|\beta_m|}\iint_S (\epsilon'-\epsilon) \left(\vec{\mathcal{E}}_{tm}^* \cdot \vec{\mathcal{E}}_{tn}\right) dxdy$$

$$C_{nm}^z = \frac{\omega}{4P_m}\frac{\beta_m}{|\beta_m|}\iint_S (\epsilon'-\epsilon)\frac{\epsilon}{\epsilon'}\mathcal{E}_{zm}^*\mathcal{E}_{zn} dxdy$$

Usually all modes (guided) are normalized to unit power $P_m = 1W$

Usually perturbation is small ($\epsilon/\epsilon' \approx 1$)

Two waveguides (A and B) in proximity The presence of each consists a perturbation to its neighbor

Assume that both waveguides A and B are single (guided)-mode waveguides.

Application of Coupled-Mode Equations to two-coupled waveguides In proximity ϵ_2 ε₁ ε3 ε₁ ε₁ Waveguide B Waveguide A $\begin{bmatrix} \vec{E}_A \\ \vec{H}_A \end{bmatrix} = \begin{bmatrix} \vec{\mathcal{E}}_A(x,y) \\ \vec{\mathcal{H}}_A(x,y) \end{bmatrix} e^{-j\beta_A z} \begin{bmatrix} \vec{E}_B \\ \vec{H}_B \end{bmatrix} = \begin{bmatrix} \vec{\mathcal{E}}_B(x,y) \\ \vec{\mathcal{H}}_B(x,y) \end{bmatrix} e^{-j\beta_B z}$ Assume that: $\iint_{C} \left(\vec{\mathcal{E}}_{A} \times \vec{\mathcal{H}}_{B}^{*} \right) \cdot \hat{z} dx dy \simeq 0$ (approximate orthogonality condition) $\begin{bmatrix} \vec{E'} \\ \vec{H'} \end{bmatrix} \simeq a_A(z) \begin{bmatrix} \vec{\mathcal{E}}_A(x,y) \\ \vec{\mathcal{H}}_A(x,y) \end{bmatrix} e^{-j\beta_A z} + a_B(z) \begin{bmatrix} \vec{\mathcal{E}}_B(x,y) \\ \vec{\mathcal{H}}_B(x,y) \end{bmatrix} e^{-j\beta_B z}$

Prof. Elias N. Glytsis, School of ECE, NTUA

$$\frac{da_A}{dz} = -j \left[a_A(z)C_{AA} + a_B(z)C_{BA}e^{j(\beta_A - \beta_B)z} \right]$$
$$\frac{da_B}{dz} = -j \left[a_A(z)C_{AB}e^{j(\beta_B - \beta_A)z} + a_B(z)C_{BB} \right]$$

Coupling Coefficients

$$C_{AA} \simeq \frac{\omega}{4} \frac{\beta_A}{|\beta_A|} \iint_{S_B} (\epsilon' - \epsilon) \left(\vec{\mathcal{E}}_A^* \cdot \vec{\mathcal{E}}_A\right) dxdy$$

$$C_{BB} \simeq \frac{\omega}{4} \frac{\beta_A}{|\beta_A|} \iint_{S_A} (\epsilon' - \epsilon) \left(\vec{\mathcal{E}}_B^* \cdot \vec{\mathcal{E}}_B\right) dxdy$$

$$C_{BA} \simeq \frac{\omega}{4} \frac{\beta_A}{|\beta_A|} \iint_{S_B} (\epsilon' - \epsilon) \left(\vec{\mathcal{E}}_A^* \cdot \vec{\mathcal{E}}_B\right) dxdy$$

$$C_{AB} \simeq \frac{\omega}{4} \frac{\beta_A}{|\beta_A|} \iint_{S_A} (\epsilon' - \epsilon) \left(\vec{\mathcal{E}}_B^* \cdot \vec{\mathcal{E}}_A\right) dxdy$$

However: $C_{AA} \simeq 0$ & $C_{BB} \simeq 0$

$$\frac{da_A}{dz} = -ja_B(z)C_{BA}e^{+j(\beta_A-\beta_B)z}$$
$$\frac{da_B}{dz} = -ja_A(z)C_{AB}e^{-j(\beta_A-\beta_B)z}$$

$$C_{BA} \simeq \frac{\omega}{4} \frac{\beta_A}{|\beta_A|} \iint_{S_B} (\epsilon' - \epsilon) \left(\vec{\mathcal{E}}_A^* \cdot \vec{\mathcal{E}}_B\right) dxdy$$
$$C_{AB} \simeq \frac{\omega}{4} \frac{\beta_A}{|\beta_A|} \iint_{S_A} (\epsilon' - \epsilon) \left(\vec{\mathcal{E}}_B^* \cdot \vec{\mathcal{E}}_A\right) dxdy$$

Prof. Elias N. Glytsis, School of ECE, NTUA

Assume solutions of the form:

$$a_A(z) = A_0 e^{-j\gamma_A z}$$

$$a_B(z) = B_0 e^{-j\gamma_B z}$$

$$-j\gamma_A A_0 e^{-j\gamma_A z} = -jC_{BA} e^{j\Delta\beta z} B_0 e^{-j\gamma_B z} \implies \gamma_A A_0 = C_{BA} B_0 e^{j(\Delta\beta+\gamma_A-\gamma_B)z}$$
$$-j\gamma_B B_0 e^{-j\gamma_B z} = -jC_{AB} e^{-j\Delta\beta z} A_0 e^{-j\gamma_A z} \implies \gamma_B B_0 = C_{AB} A_0 e^{-j(\Delta\beta+\gamma_A-\gamma_B)z}$$

$$\begin{split} \Delta\beta + \gamma_A - \gamma_B &= 0 \\ \gamma_A &= -\frac{\Delta\beta}{2} \pm \left[\left(\frac{\Delta\beta}{2} \right)^2 + C_{AB} C_{BA} \right]^{1/2} \\ \gamma_B &= +\frac{\Delta\beta}{2} \pm \left[\left(\frac{\Delta\beta}{2} \right)^2 + C_{AB} C_{BA} \right]^{1/2} \end{split}$$

Assume power transfer from B to A: $a_A(z=0) = 0 \longrightarrow A_1 = -A_2$

$$a_A(z) = 2jA_1e^{j(\Delta\beta/2)z}\sin(Sz)$$

$$a_B(z) = j\frac{2A_1}{C_{BA}}e^{-j(\Delta\beta/2)z} \left[-\frac{\Delta\beta}{2}\sin(Sz) + jS\cos(Sz)\right]$$

Waveguide Powers:

$$P_A(z) = P_0 rac{|C_{BA}|^2}{S^2} \sin^2(Sz)$$

$$P_B(z) = P_0 \left[\left(\frac{\Delta \beta}{2S} \right)^2 \sin^2(Sz) + \cos^2(Sz) \right]$$

Prof. Elias N. Glytsis, School of ECE, NTUA

Prof. Elias N. Glytsis, School of ECE, NTUA

Supermode Analysis of Directional Coupler

Prof. Elias N. Glytsis, School of ECE, NTUA

Supermode Analysis of Directional Coupler

Assume TE modes:

$$E(x,z) = \hat{y} \left[c_s \mathcal{E}_s(x) e^{-j\beta_s z} + c_a \mathcal{E}_a(x) e^{-j\beta_a z} \right]$$

$$= \hat{y} \mathcal{E}_B(x) e^{-j\beta_B z}$$

$$E_{inc}(x,z) = \hat{y}\mathcal{E}_B(x)e^{-j\beta_B}$$

$$z = 0 \implies E_{inc}(x, z = 0) = E(x, z = 0)$$

$$c_s = \langle \mathcal{E}_B(x), \mathcal{E}_s(x) \rangle = \frac{1}{P} \frac{\beta_s}{2\omega\mu_0} \int_{-\infty}^{+\infty} \mathcal{E}_B(x) \mathcal{E}_s^*(x) dx$$

$$c_s \simeq c_a = c$$

$$\frac{1}{P} \frac{\beta_s}{2\omega\mu_0} \int_{-\infty}^{+\infty} \mathcal{E}_B(x) \mathcal{E}_s^*(x) dx$$

$$c_a = \langle \mathcal{E}_B(x), \mathcal{E}_a(x) \rangle = \frac{1}{P} \frac{\beta_a}{2\omega\mu_0} \int_{-\infty}^{+\infty} \mathcal{E}_B(x) \mathcal{E}_a^*(x) dx$$

Supermode Analysis of Directional Coupler

$$E(x, z_0) = \hat{y} \left[c_s \mathcal{E}_s(x) e^{-j\beta_s z_0} + c_a \mathcal{E}_a(x) e^{-j\beta_a z_0} \right]$$
$$\simeq c \mathcal{E}_s(x) e^{-j\beta_s z_0} \left[1 + \frac{\mathcal{E}_a(x)}{\mathcal{E}_s(x)} e^{j(\beta_s - \beta_a) z_0} \right]$$
$$(\beta_s - \beta_a) z_0 = \pi \implies z_0 = L = \frac{\pi}{\beta_s - \beta_a}$$

 $E(x, z_0) = \hat{y} c e^{-j\beta_s z_0} \left[\mathcal{E}_s(x) - \mathcal{E}_a(x) \right]$

Supermode Analysis of Directional Coupler

