NATIONAL TECHNICAL UNIVERSITY OF ATHENS

School of Electrical & Computer Engineering Division of Electromagnetic Appl., Electro-Optics, & Electronic Materials

> 9 Iroon Polytechniou St., Zografou, Athens 15780 Tel. (30) 210-7722479, Fax. (30) 210-7722281 E-mail: eglytsis@central.ntua.gr

Problem Set No. 1 (Due Date: 15/11/2023)

Problem 1 (*Plane Waves in Anisotropic Media*) [30%]

The plane-wave (algebraic) form of Maxwell's equations for a linear, homogeneous, non-magnetic, and anisotropic medium are

 $\begin{aligned} \vec{k} \times \vec{H} &= -\omega \vec{D}, \\ \vec{k} \times \vec{E} &= \omega \vec{B}, \\ \vec{k} \cdot \vec{D} &= 0, \\ \vec{k} \cdot \vec{B} &= 0, \end{aligned}$

where $\vec{B} = \mu_0 \vec{H}$, and $\vec{D} = [\epsilon] \vec{E}$.

(a) Show that the wavevector \vec{k} always points in the direction of $\vec{D} \times \vec{B}$.

(b) Show that the magnitude of the wavevector is given by $\vec{k} \cdot \vec{k} = \omega^2 \mu_0 [(\vec{D} \cdot \vec{D})/(\vec{D} \cdot \vec{E})].$

(c) Show that the complex Poynting vector, $\vec{S} = (1/2)\vec{E} \times \vec{H}^*$, can point in a direction other than that of the wavevector \vec{k} .

Problem 2 (Quarter-Wave Plate) [30%]

A linearly polarized electromagnetic wave is incident normally at z = 0 on the xy-face of a crystal so that it propagates along its z-axis. The xyz coordinate system is the principal axes system of the crystal. The corresponding permittivity tensor is diagonal with elements ϵ_{xx} , ϵ_{yy} , and ϵ_{zz} . If the wave is initially polarized so that it has equal components along the x and y axes, what is the state of its polarization at the plane $z = z_0$ where

$$k_0(n_{xx} - n_{yy})z_0 = \frac{\pi}{2},$$

and $\epsilon_{ww} = \epsilon_0 n_{ww}^2$ (w = x, y, z). Assume that $n_{xx} > n_{yy}$ and $n_{xx} = n_s$ (slow axis along x direction), $n_{yy} = n_f$ (fast axis along the y direction).

Problem 3 (Polarization Transformation by a Wave Plate) [40%]

A wave plate is characterized by its phase retardation Γ and the azimuth angle ψ .

((a) Find the polarization state of the emerging beam, assuming that the incident beam is polarized

along the x direction. Use a complex number to represent the resulting polarization state obtained.(I.e. define $p = E_y/E_x$).

(b) The polarization state of the incident x-polarized beam is represented by a point at the origin of the complex plane. Show that the transformed polarization state can be anywhere on the complex plane, provided Γ can be varied from 0 to 2π and ψ can be varied from 0 to $\pi/2$. Physically, this means that any polarization state can be produced from linearly polarized light, provided a proper wave plate is available. To show this find the wave-plate parameters Γ and ψ for any given r and φ . For a numerical example find the Γ and ψ for the (r, φ) pairs $(1, \pi/2), (1, -\pi/2), (\infty, 0), \text{ and } (2, -\pi/2)$. Make also plots of r and φ as a function of Γ and ψ .

(c) Show that the Jones matrix W of a wave plate is unitary, that is $W^{\dagger}W = 1$ where $W^{\dagger} = (W^T)^*$ (T denotes transposed and * denotes conjugate).

(d) Let \vec{V}'_1 and \vec{V}'_2 be the transformed Jones vectors of \vec{V}_1 and \vec{V}_2 , respectively. Show that if \vec{V}_1 and \vec{V}_2 are orthogonal, so are \vec{V}'_1 and \vec{V}'_2 . (\vec{A} and \vec{B} are orthogonal if $\vec{A} \cdot \vec{B}^* = 0$).