

NATIONAL TECHNICAL UNIVERSITY OF ATHENS
 School of Electrical \& Computer Engineering

Division of Electromagnetic Appl., Electro-Optics, ε^{3} Electronic Materials
9 Iroon Polytechniou St., Zografou, Athens 15780
Tel. (30) 210-7722479, Fax. (30) 210-7722281
E-mail: eglytsis@central.ntua.gr

Problem Set No. 1

(Due Date: 15/11/2023)
Problem 1 (Plane Waves in Anisotropic Media) [30\%]
The plane-wave (algebraic) form of Maxwell's equations for a linear, homogeneous, non-magnetic, and anisotropic medium are

$$
\begin{aligned}
\vec{k} \times \vec{H} & =-\omega \vec{D}, \\
\vec{k} \times \vec{E} & =\omega \vec{B}, \\
\vec{k} \cdot \vec{D} & =0, \\
\vec{k} \cdot \vec{B} & =0,
\end{aligned}
$$

where $\vec{B}=\mu_{0} \vec{H}$, and $\vec{D}=[\epsilon] \vec{E}$.
(a) Show that the wavevector \vec{k} always points in the direction of $\vec{D} \times \vec{B}$.
(b) Show that the magnitude of the wavevector is given by $\vec{k} \cdot \vec{k}=\omega^{2} \mu_{0}[(\vec{D} \cdot \vec{D}) /(\vec{D} \cdot \vec{E})]$.
(c) Show that the complex Poynting vector, $\vec{S}=(1 / 2) \vec{E} \times \vec{H}^{*}$, can point in a direction other than that of the wavevector \vec{k}.

Problem 2 (Quarter-Wave Plate) [30\%]

A linearly polarized electromagnetic wave is incident normally at $z=0$ on the $x y$-face of a crystal so that it propagates along its z-axis. The $x y z$ coordinate system is the principal axes system of the crystal. The corresponding permittivity tensor is diagonal with elements $\epsilon_{x x}, \epsilon_{y y}$, and $\epsilon_{z z}$. If the wave is initially polarized so that it has equal components along the x and y axes, what is the state of its polarization at the plane $z=z_{0}$ where

$$
k_{0}\left(n_{x x}-n_{y y}\right) z_{0}=\frac{\pi}{2},
$$

and $\epsilon_{w w}=\epsilon_{0} n_{w w}^{2}(w=x, y, z)$. Assume that $n_{x x}>n_{y y}$ and $n_{x x}=n_{s}$ (slow axis along x direction), $n_{y y}=n_{f}$ (fast axis along the y direction).

Problem 3 (Polarization Transformation by a Wave Plate) [40\%]
A wave plate is characterized by its phase retardation Γ and the azimuth angle ψ.
((a) Find the polarization state of the emerging beam, assuming that the incident beam is polarized
along the x direction. Use a complex number to represent the resulting polarization state obtained.(I.e. define $\left.p=E_{y} / E_{x}\right)$.
(b) The polarization state of the incident x-polarized beam is represented by a point at the origin of the complex plane. Show that the transformed polarization state can be anywhere on the complex plane, provided Γ can be varied from 0 to 2π and ψ can be varied from 0 to $\pi / 2$. Physically, this means that any polarization state can be produced from linearly polarized light, provided a proper wave plate is available. To show this find the wave-plate parameters Γ and ψ for any given r and φ. For a numerical example find the Γ and ψ for the (r, φ) pairs $(1, \pi / 2),(1,-\pi / 2),(\infty, 0)$, and $(2,-\pi / 2)$. Make also plots of r and φ as a function of Γ and ψ.
(c) Show that the Jones matrix W of a wave plate is unitary, that is $W^{\dagger} W=1$ where $W^{\dagger}=\left(W^{T}\right)^{*}(T$ denotes transposed and $*$ denotes conjugate).
(d) Let \vec{V}_{1}^{\prime} and \vec{V}_{2}^{\prime} be the transformed Jones vectors of \vec{V}_{1} and \vec{V}_{2}, respectively. Show that if \vec{V}_{1} and \vec{V}_{2} are orthogonal, so are \vec{V}_{1}^{\prime} and $\vec{V}_{2}^{\prime} \cdot\left(\vec{A}\right.$ and \vec{B} are orthogonal if $\left.\vec{A} \cdot \vec{B}^{*}=0\right)$.

