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For Blackbody Radiation: 
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Radiative  Processes of Stimulated Emission 
Basic Principle of laser Operation 

http://www.laserfest.org/lasers/images/nero1.jpg 
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Lineshape Function 
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Lineshape Function,   g(ν) = Probability g(ν)dν  for a photon to be: 
 
-  Spontaneously Emitted between ν and  ν+dν 
-  Absorbed between ν and  ν+dν 
-  Stimulating Emitted between ν and  ν+dν 
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Lineshape  Function  Measurement 

Slab of material of width L 
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Lineshape  Function  Measurement 

Normalization  of  Absorption  Coefficient  α  gives 
the  Lineshape  function 
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Damped  Oscillation 
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Damped  Oscillation  
(He-Ne laser transition λ0 = 0.6328μm) 
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Lineshape Function 
Spontaneous Emission Lifetime 

Heisenberg  Uncertainty  Principle 

E1 

E2 

N1 

N2 

hν = E2 ‒ E1  

hν 

E1 + x     

E1 + x + hν     



Prof. Elias N. Glytsis, School of ECE, NTUA 11 

E1 

E2 

N1 

N2 

hν = E2 ‒ E1  
hν 

E1 + x     

E1 + x + hν     

Lineshape Function 
Spontaneous Emission Lifetime 



Prof. Elias N. Glytsis, School of ECE, NTUA 12 

Damped  Oscillation with  Elastic  Collisions 
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Damped  Oscillation with  Elastic  Collisions 

Average over 1000 random events 
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Damped  Oscillation with  Elastic  Collisions 

Average over 1000 random events Average over 10000 random events 
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Damped  Oscillation with  Elastic  Collisions 
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Damped  Oscillation with  Elastic  Collisions 

Average over 1000 random events 
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Homogeneous  Spectrum  Broadening 

Characteristics of Homogeneous Broadening 
• Each atom in the system has a common emitting spectrum width Δv. 

• The lineshape g(v) describes the response of any of the atoms (indistinguishable) 
• Finite interaction lifetime of the absorbing and emitting atoms 
 
Mechanisms of Homogeneous Broadening 
• The spontaneous lifetime of the excited state 
• Elastic collisions of an atom with other atoms or with the crystal (phonons) 
• Pressure broadening of atoms in a gas 

 
Homogeneous Broadening can be described with a Lorentzian Lineshape 
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Inhomogeneous  Spectrum  Broadening 

Features of Inhomogeneous Broadening 
• Individual atoms are distinguishable, each having a slightly different frequency due 

to “seeing” slightly different environment  
• The observed spectrum of spontaneous emission reflects the spread in the 

individual transition frequencies (not only the broadening due to the finite lifetime 
of the excited state) 

 
Example Mechanisms of Inhomogeneous Broadening  
• The energy levels of impurity in a host crystal 
• Random strain 
• Crystal imperfections 
• Doppler effect in gases 
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Maxwell-Boltzmann Velocity Distribution 
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Maxwell-Boltzmann Velocity Distribution 

 Velocity Distributions along x-axis (laser light propagation) 

 Doppler Effect 
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Inhomogeneous  Spectrum  Broadening 

Maxwell-Boltzmann 
velocity distribution 

Lorentzian Lineshape 
for each velocity group 

 Velocity Distributions along x-axis (laser light propagation) 
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Inhomogeneous  Spectrum  Broadening 

Average Lineshape Function 

Voigt Lineshape Function 

F. Schreir, “Optimized implementations of rational approximations for the Voigt and complex error function”, Journal of Quantitative Spectroscopy 
& Radiative Transfer 112 (2011) 1010–1025 
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Inhomogeneous  Spectrum  Broadening 

If  the  Lorentzian  Lineshape  is  much  narrower  than  the  
Maxwell-Boltzmann then: 
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Inhomogeneous  Spectrum  Broadening 

Average Lineshape Function Comparison 

ΔνG 

ΔνL 
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Inhomogeneous  Spectrum  Broadening 

Average Lineshape Function Comparison 

ΔνG 

ΔνL 

ΔνV 
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Inhomogeneous  Spectrum  Broadening 

Average Lineshape Function Comparison 
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Stimulated Emission Cross-Section and Induced Rate 
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Gain  Definition 
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Absorption  Definition 
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hν = E2 ‒ E1  
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Steady-State Solution 

Gain Saturation 
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Below Threshold, Iν ≈ 0,  R1 = 0 

τ2/τ1 = 2 τ2/τ1 = 0.5 

Gain Saturation 
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Above Threshold, Iν ≠ 0, R1 = 0, τ1= 0 

τ2/τ1 = 2∙10+6 τ2/τ1 = 0.5 

Gain Saturation 
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Above Threshold, Iν ≠ 0 

τ2/τ1 = 200 

Gain Saturation 
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Above Threshold, Iν ≠ 0 

Nd-YAG Laser:    τ1 = 30ns, τ2 = 255μs,  τ2/τ1 = 8500 

Gain Saturation 
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Gain Saturation 
Homogeneous Broadening 
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Example:   A21 = 3.39 × 106   1/s, ΔN = 1015 cm-3, ΔνH = 170MHz, λ0 = 0.6328μm  

Gain Saturation 
Homogeneous Broadening 
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Doppler Broadening 

Gain Saturation 
Inhomogeneous  Broadening 
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Limiting Cases 

Gain Saturation 
Inhomogeneous  Broadening 
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Example:  A21 = 3.39 × 106   1/s, ΔN = 1015 cm-3, ΔνH = 170MHz, ΔνG = 1.5GHz λ0 = 0.6328μm 

He-Ne Laser 

Gain Saturation 
Inhomogeneous  Broadening 
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Example:  A21 = 3.39 × 106   1/s, ΔN = 1015 cm-3, ΔνH = 170MHz, ΔνG = 1.5GHz λ0 = 0.6328μm 

He-Ne Laser 

Gain Saturation 
Inhomogeneous  Broadening 
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Example: A21 = 3.39 × 106   1/s, ΔN = 1015 cm-3, ΔνH = 170MHz, ΔνG = 1.5GHz λ0 = 0.6328μm 

He-Ne Laser 

Gain Saturation 
Inhomogeneous  Broadening 



Example: A21 = 3.39 × 106   1/s, ΔN = 1015 cm-3, ΔνH = 17MHz, ΔνG = 1.5GHz λ0 = 0.6328μm 

He-Ne Laser 

Gain Saturation 
Inhomogeneous  Broadening 
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Gain Saturation 
Homogeneous & and Inhomogeneous Broadening 

From J. T. Verdeyen, “Laser Electronics” 3rd Ed. Prentice Hall, 1995 

Homogeneous  
Broadening 

Inhomogeneous  
Broadening 
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Electron Motion Equation 

Classical  Electron Oscillator Model 
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Fourier Transform Pairs Electron Motion Equation 

Electric Dipole Moment 

Macroscopic Polarization 

Classical  Electron Oscillator Model 
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Macroscopic Polarization 

He-Ne laser Example (inversion of N = 1010 cm-3  ) 

Classical  Electron Oscillator Model 
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Stimulated Emission  
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(a) Parallel plane cavity: Highest mode volume and highest diffraction loss.  
Difficult to align. 
(b) The spherical cavity : Represents the functional "opposite" of the plane 
parallel cavity (a). It is easiest to align, has the lowest diffraction loss, and has 
the smallest mode volume. CW dye lasers are equipped with this type of cavity 
because a focused beam is necessary to cause efficient stimulated emission of 
these lasers. The spherical cavity is not commonly used with any other type of 
laser. 
(c) The long radius cavity: Improves on the mode volume, but does so at the 
expense of a more difficult alignment and a slightly greater diffraction loss 
than that of the confocal cavity. This type of cavity is suitable for any CW laser 
application, but few commercial units incorporate the long radius cavity. 
(d) The confocal cavity: A compromise between the plane parallel and the 
spherical cavities. The confocal cavity combines the ease of alignment and low 
diffraction loss of the spherical cavity with the increased mode volume of the 
plane parallel. Confocal cavities can be utilized with almost any CW laser, but 
are not in common use. 
(e) The hemispherical cavity : Actually is one half of the spherical cavity, 
and the characteristics of the two are similar. The advantage of this type of 
cavity over the spherical cavity is the cost of the mirrors. The hemispherical 
cavity is used with most low power He-Ne lasers because of low diffraction 
loss, ease of alignment, and reduced cost. 
(f) The long-radius-hemispherical cavity :  Combines the cost advantage of 
the hemispherical cavity with the improved mode volume of the long-radius 
cavity. Most CW lasers (except low-power He-Ne lasers) employ this type of 
cavity. In most cases, r1 > 2L. 
(g) The concave-convex cavity : Normally is used only with high power CW 
CO2 lasers. In practice, the diameter of the convex mirror is smaller than that 
of the beam. The output beam is formed by the part of the beam that passes 
around the mirror and, consequently, has a "doughnut" configuration. The 
beam must pass around the mirror because mirrors that will transmit the 
intense beams of these high-power lasers cannot be constructed. 

Common Resonators Types 

http://www.repairfaq.org/sam/laserioi.htm#ioiresc 

http://www.repairfaq.org/sam/laserioi.htm�
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Laser  Operation  Basics 

http://ehs.oregonstate.edu/laser/training/how-laser-works 
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Fabry-Perot  Laser 
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Fabry-Perot  Laser 

Resonance Conditions 

Threshold Gain 
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Fabry-Perot  Laser 
Frequency Pulling 

2kℓ [ 1 + χ’/2n2 ] 

2πm 

2πm 

2πm Frequency pulling 
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ν ν0 

 χ’ 2kℓ 

νm νm 

(νm-ν0) (Δν1/2/Δν) 

-(νm-ν0) (Δν1/2/Δν) 
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Fabry-Perot with Gain 

https://en.wikipedia.org/wiki/File:Etalon-2.svg 

Ii 

It 
 
 

 
Ir 
 
 
 

G = 1 (no gain) 
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Fabry-Perot with Gain 
Gmax = 1.031147 
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3-Level and 4-Level Lasers 
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Laser Power Considerations 
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Laser Power Considerations 

Below Threshold 

Above Threshold 

Steady-State 



Prof. Elias N. Glytsis, School of ECE, NTUA 59 

Laser Power Considerations 

Power due to Stimulated Emission 

N2-N1 

Nth 
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Optimum  Outcoupling   
(small losses, small gain, high Q) 

A. Yariv  and  P. Yeh, Photonics, 6th Ed., Oxford University Press (2007) 
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Laser Oscillation for Homogeneous Broadening 

From J. T. Verdeyen, “Laser Electronics” 3rd Ed. Prentice Hall, 1995 
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Laser Oscillation for Inhomogeneous Broadening 
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Laser Oscillation for Inhomogeneous Broadening 

From J. T. Verdeyen, “Laser Electronics” 3rd Ed. Prentice Hall, 1995 
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Below  Threshold 

Above  Threshold 

Coldren and Corzine, Diode Lasers  & Photonic Integrated Circuits, J. Wiley (1995) 
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From B.E.A. Saleh & M. C. Teich, “Fundamentals of Photonics” 2nd Ed. J. Wiley & Sons,2007. 

Mode Selection - Tuning 
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Mode Selection - Tuning 

From B.E.A. Saleh & M. C. Teich, “Fundamentals of Photonics” 2nd Ed. J. Wiley & Sons, 2007 
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Laser Dynamics – Simplified Two-Level System 
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Laser Dynamics – Simplified Two-Level System 

Normalized Rate Equations 
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Laser Dynamics – Simplified Two-Level System 
Sub-threshold System – gth = 0.64 (S = 0.527292) 
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Laser Dynamics – Simplified Two-Level System 
Above-threshold System – gth = 0.64 (S = 0.527292) 
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Laser Dynamics – Simplified Two-Level System 
Above-threshold System – gth = 0.64 (S = 0.527292) 
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Laser Dynamics – Simplified Two-Level System 
Above-threshold System – gth = 0.64 (S = 0.527292) – Step Change 
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Laser Dynamics – Simplified Two-Level System 
Above-threshold System – gth = 0.64 (S = 0.527292) – Step Change 
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Laser Dynamics – Step Change in Excitation 

From J. T. Verdeyen, “Laser Electronics” 3rd Ed. Prentice Hall, 1995 
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From J. T. Verdeyen, “Laser Electronics” 3rd Ed. Prentice Hall, 1995 

Sinusoidal Response – gth = 0.64 (S = 0.527292) 

Laser Dynamics – Simplified Two-Level System 
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Laser Dynamics – Simplified Two-Level System 
Sinusoidal Response – gth = 0.64 (S = 0.527292) 
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Laser Dynamics – Simplified Two-Level System 
Sinusoidal Response – gth = 0.64 (S = 0.527292) 
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Laser Dynamics – Simplified Two-Level System 
Sinusoidal Response – gth = 0.64 (S = 0.527292) 
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Laser Dynamics – Simplified Two-Level System 
Sinusoidal Response – gth = 0.64 (S = 0.527292) 
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Laser Dynamics – Simplified Two-Level System 
Sinusoidal Response – gth = 0.64 (S = 0.527292) 



Prof. Elias N. Glytsis, School of ECE, NTUA 81 

Laser Dynamics – Simplified Two-Level System 
Sinusoidal Response – gth = 0.64 (S = 0.527292) 
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Mode Locking – Time Domain Consideration 

From A. Siegman, “Lasers”, Univ. Science Books, 1986  
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Mode Locking – Time Domain Consideration 

From A.E. Siegman, “Lasers”, Univ. Science Books, 1986  
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Mode Locking – Frequency Domain Consideration 

From J. T. Verdeyen, “Laser Electronics”, 3rd Ed., Prentice Hall, 1995  
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Mode Locking – Frequency Domain Consideration 

From J. T. Verdeyen, “Laser Electronics”, 3rd Ed., Prentice Hall, 1995  
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Mode Locking – Frequency Domain Consideration 

From A. Yariv and P. Yeh, “Photonics”, 6th  Ed., Oxford Univ. Press, 2007 
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Mode Locking – Frequency Domain Consideration 

From A.E. Siegman, “Lasers”, Univ. Science Books, 1986  
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Mode Locking – Frequency Domain Consideration 
 L = 1m, n = 1, λ0 = 1μm, Δν = 1.50e+09Hz 
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Mode Locking – Frequency Domain Consideration 
 L = 2m, n = 1, λ0 = 1μm, Δν = 1.50e+09Hz 
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Q-Switching 

From J. T. Verdeyen, “Laser Electronics”, 3rd Ed., Prentice Hall, 1995  
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A. Yariv and P. Yeh, Photonics, 6th Ed., Oxford University Press (2007) 

Q-Switching Example Outputs Extraction  Efficiency 
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Q-Switching  Example  Outputs 

ni/nth= 1.649 ni/nth= 4.482 

ni/nth= 2.718 ni/nth= 7.389 

W. G. Wagner and B. A. Lengyel, J. Appl. Phys., vol. 34, Jul. 1963 
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