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Index Ellipsoid Analysis (October 18, 2019)†

Problem Statement

Assume an anisotropic, linear, homogeneous, and non-magnetic medium for which the Maxwell’s

equations for plane-wave solutions are:

~k × ~H = −ω ~D = −ω[ε] ~E = −ωε0[ε] ~E,

~k × ~E = ω ~B = ωµ0
~H,

~k • ~D = ~k • [ε] ~E = 0,

~k • ~B = ~k • µ0
~H = 0,

where ~k is a wavevector of the form ~k = k0nk̂ = k0n(axı̂x + ay ı̂y + az ı̂z) with k0 the freespace

wavenumber, n the corresponding refractive index for the direction of propagation of this wavevector,

and k̂ the unit vector along the direction of propagation (with ax, ay, and az its directional cosines).

The matrix (tensor) [ε] = ε0[ε] is the permittivity matrix (with [ε] the relative permittivity matrix).

Assume that [A] = [ε]−1 is the inverse relative permittivity tensor (impermeability tensor). For

numerical implementation the following parameters are used: nxx = 1.552, nyy = 1.582, nzz = 1.588,

and ax = ay = az = 1/
√

3.

(a) Show that the displacement vector ~D satisfies the following eigenvalue/eigenvector equation

k̂ ×
[

k̂ ×
(

[A] ~D
)]

+
1

n2
~D = 0.

Solve this equation in the principal axes system xyz shown in Fig. 1.

(b) Since ~D is always perpendicular to ~k it is convenient to use a new coordinate system with one axis

coinciding with the direction of propagation of the wave (assume the unit vector in this direction as

ı̂3 = k̂). Then denote the two new transverse axes by 1 and 2 with unit vectors ı̂1 and ı̂2 respectively.

In this new coordinate system k̂ = [0 0 1]T = ı̂3. Furthermore, assume that ~D and [A] are now

expressed in this new coordinate system. Since ~k · ~D = 0, ~D = [D1 D2 0]T = D1ı̂1 + D2 ı̂2. Show that

the previous equation can be written as




α11 α12

α21 α22



 ~Dt = [At] ~Dt =
1

n2
~Dt,

† c©2019 Prof. Elias N. Glytsis, Last Update: October 18, 2019

1



�

� �

�

� �
� �

� �
� 	

� 
 
� � �

� � �

Figure 1: The index ellipsoid expressed in the principal axes system. The wavevector ~k denotes the direction
of propagation. The intersection of the normal to the wavevector plane, at the origin, with the index ellipsoid
specifies an ellipse (green in the figure). The resulting two eigen-polarizations (directions shown by ~D1 and ~D2),
and the two-eigen indices are specified by the semi-axes of that ellipse. The nww (w = x, y, z) are the principal
refractive indices.

where [At] is the transverse impermeability tensor (symmetric) and ~Dt = [D1 D2]
T . The above

equation is again an eigenvalue/eigenvector equation in two dimensions. The two eigenvalues and the

two eigenvectors correspond to the two refractive indices for the direction of propagation and their

corresponding eigen-polarizations. Find the two eigen-indices and the two eigen-polarizations. Show

that the two eigen-polarizations are orthogonal to each other.

(c) Now show that the ellipse which is defined from the index ellipsoid as an intersection of the index

ellipsoid with a plane perpendicular to k̂ and passing through the origin has semi-axes with lengths

equal to the squares of the eigen-indices. In addition, show that the directions of the two semi-axes

correspond to the two eigen-polarizations.
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Solution

(a) From Maxwell’s equations for plane wave solutions the following steps can be easily written:

~k × ~H = −ω ~D =⇒
~k ×

(
1

ωµ0

~k × ~E

)

= −ω ~D =⇒

~k ×
(

~k × 1

ε0
[ε]−1 ~D

)

= −ω2µ0
~D =⇒

~k ×
(

~k × [A] ~D
)

= −ω2ε0µ0
~D = −k2

0
~D =⇒

k̂ ×
(

k̂ × [A] ~D
)

= − 1

n2
~D. (1)

At this point let’s attempt to solve the latter equation in the principal axis system xyz. Using the

vector identity (~a × (~b × ~c = (~a • ~c)~b − (~a •~b)~c, in Eq. (1), it can be written as:

[

k̂ • [A] ~D
]

k̂ −
[

k̂ • k̂
]

︸ ︷︷ ︸

=1

[A] ~D = − 1

n2
~D












1 − a2
x

n2
xx

−axay

n2
yy

−axaz

n2
zz

−ayax

n2
xx

1 − a2
y

n2
yy

−ayaz

n2
zz

−azax

n2
xx

−azay

n2
yy

1 − a2
z

n2
zz
















Dx

Dy

Dz



 =
1

n2





Dx

Dy

Dz



 . (2)

In the last derivation [A] = diag[1/nww] (where w = x, y, z). It is straightforward to show that the

determinant of the 3 × 3 matrix of Eq. (2) is equal to −(a2
x + a2

y + a2
z − 1)/(nxx

2n2
yyn2

zz) = 0 since

always a2
x + a2

y + a2
z = 1. Therefore, one of the eigenvalues of Eq. (2) is equal to zero. The remaining

two eigenvalues correspond to the 1/n2 inverse eigen-indices while the corresponding eigenvectors

correspond to the two polarizations. Using the data for the numerical implementation, the fast and

slow indices and the corresponding polarizations are:

nf = 1.56264128 D̂f = [−0.81416, +0.46057,+0.35359]T, (3)

ns = 1.58512289 D̂s = [−0.06176,−0.67420, +0.73596]T , (4)

Since the matrix involved is of only third order and since its determinant is always zero due to the

directional cosines involved the characteristic polynomial of the matrix of Eq. (2) becomes (calculations

where performed in Wolfram Mathematica):

F (ρ) = ρ
[
ρ2 − Aρ − B

]
= 0,

A =
n2

xxn2
yy + n2

xxn2
zz − a2

zn
2
xxn2

yy − a2
yn

2
xxn2

zz + a2
yn

2
yyn2

zz + a2
zn

2
yyn2

zz

n2
xxn2

yyn
2
zz

,

B =
−n2

xx + a2
yn

2
xx + a2

zn
2
xx − a2

yn
2
yy − a2

zn
2
zz

n2
xxn2

yyn
2
zz

= −
a2

xn2
xx + a2

yn
2
yy + a2

zn
2
zz

n2
xxn2

yyn
2
zz

,
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and the resulting eigenvalues are:

1

n2
1

= ρ1 =
1

2

[

A +
√

A2 + 4B
]

,

1

n2
2

= ρ2 =
1

2

[

A −
√

A2 + 4B
]

,

ρ3 = 0. (5)

The refractive indices n1 and n2 correspond to the eigen-indices of the two corresponding eigen-

polarizations. Of course the zero eigenvalue does not have any physical meaning and it is neglected.

The eigenvectors can be also determined analytically since the eigenvalues have been found. Specifi-

cally, it can be shown that if nf = min(n1, n2) and ns = max(n1, n2) then the two eigen-polarizations

are:

D̂w = [Dxw, Dyw, Dzw]T
1

√

D2
xw + D2

yw + D2
zw

, w = s, f, and

Dxw =
Dzwaz

D(ρw)n2
zz

[a22(ρw)ax − a12(ρw)ay] ,

Dyw =
Dzwaz

D(ρw)n2
zz

[−a12(ρw)ax + a11(ρw)ay] ,

Dzw = 1,

D(ρw) = a11(ρw)a22(ρw) − a12(ρw)a21(ρw),

a11(ρw) =
1 − a2

x

n2
xx

− ρw,

a12(ρw) = −axay

n2
yy

,

a21(ρw) = −axay

n2
xx

,

a22(ρw) =
1 − a2

y

n2
yy

− ρw.

The numerical application of the last equations in the case of nxx = 1.552, nyy = 1.582, nzz =

1.588, and ax = ay = az = 1/
√

3, can produce practically the same numerical results found earlier

using numerical evaluation of the eigenvalues/eigenvectors problem. It is worth mentioning, that the

numerical evaluation of eigenvalues/eigenvectors seems more accurate than the analytical counterpart

presented previously. This can be determined when examining how perpendicular the two eigen-

polarizations are. Specifically the dot product of the eigen-polarizations determined with a numerical

technique in Eqs. (3) and (4) is of the order of 10−15 while the corresponding dot product of the

analytically computed eigenvectors is of the order of 10−13.

(b) Let’s determine the unit vectors ı̂1 and ı̂2 given that ı̂3 = k̂. The selection of ı̂1 and ı̂2 is arbitrary

since they can be any two perpendicular to each other and perpendicular to ı̂3 unit vectors. The ı̂2

can be defined as ı̂2 = ı̂3 × ı̂z/|̂ı3× ı̂z | (in the case that ı̂3 = k̂ 6= ı̂z). Then, ı̂1 = ı̂2× ı̂3/|̂ı2× ı̂3|. Then,
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the three new unit vectors in the 123 coordinate system can be expressed as follows (for az 6= ±1):

ı̂3 = axı̂x + ay ı̂y + az ı̂z,

ı̂2 =
1

√

1− a2
z

[ay ı̂x − axı̂y] ,

ı̂1 =
1

√

1− a2
z

[
−axaz ı̂x − ayaz ı̂y + (a2

x + a2
y )̂ız

]
.

In the case that az = ±1 then ı̂3 = ı̂z, ı̂2 = ı̂y, and ı̂1 = ı̂x and this is a trivial case since it is

propagation along one of the principal axis of the material. Now let’s rewrite the initial result of

previous question in the 123 coordinate system:

[

k̂ • [A123] ~D
]

k̂ −
[

k̂ • k̂
]

︸ ︷︷ ︸

=1

[A123] ~D = − 1

n2
~D =⇒





0

0
1



 •





α11 α12 α13

α21 α22 α23

α31 α32 α33









D1

D2

0



 −





α11 α12 α13

α21 α22 α23

α31 α32 α33









D1

D2

0



 = − 1

n2





D1

D2

0



 =⇒

[
α11 α12

α21 α22

]

︸ ︷︷ ︸

[At]

[
D1

D2

]

=
1

n2

[
D1

D2

]

, (6)

where the elements of the inverse impermeability matrix [A123] can be found from the following

coordinate transformation:

[A123] = [T ][A][T ]T , with (7)

[T ] =












− axaz
√

1 − a2
z

− ayaz
√

1 − a2
z

√

1 − a2
z

ay
√

1 − a2
z

− ax
√

1 − a2
z

0

ax ay az












.

The elements of the [At] matrix, of Eq. (6), can be easily determined and are given by:

α11 =
1 − a2

z

n2
zz

+
a2

xa2
z

n2
xx

√

1 − a2
z

+
a2

ya
2
z

n2
yy

√

1 − a2
z

,

α12 = α21 =
axayaz

1 − a2
z

[
1

n2
yy

− 1

n2
xx

]

,

α22 =
a2

x

n2
yy(1 − a2

z)
+

a2
y

n2
xx(1 − a2

z)
.
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Now the eigenvalues and the eigenvectors can be easily determined analytically and are the following:

ρf =
1

n2
f

=
1

2

[

α11 + α22 +
√

(α11 − α22)2 + 4α12α21

]

, (8)

~Df =

[

1,
ρf − α11

α12
, 0

]T

∥
∥
∥
∥

[

1,
ρf − α11

α12
, 0

]∥
∥
∥
∥

, (9)

ρs =
1

n2
s

=
1

2

[

α11 + α22 −
√

(α11 − α22)2 + 4α12α21

]

, (10)

~Ds =

[

1,
ρs − α11

α12
, 0

]T

∥
∥
∥
∥

[

1,
ρs − α11

α12
, 0

]∥
∥
∥
∥

. (11)

The two eigenvectors can be transformed into the xyz coordinate system by the coordinate transfor-

mation ~D
xyz
w = [T ]T ~Dw (with w = f, s). Applying the last expressions for the numerical application

the results of Eqs. (3) and (4) can be obtained.

The orthogonality between the two eigen vectors ~Ds and ~Df can be easily shown as follows:

~Df • ~Ds = K2

[

1 +
(ρf − α11)(ρs − α11)

α2
12

]

=

= K2 α2
12 + α2

11 − α11(ρf + ρs) + ρfρs

α2
12

= 0, since

ρf + ρs = α11 + α22, and ρfρs = α11α22 − α2
12.

In the above expressions K2 is the product of the normalization constants of the two eigenvectors.

(c) The index ellipsoid can be expressed in general in the quadratic form

[x, y, z][A][x, y, z]T = 1,

where [A] is the impermeability matrix. Transforming the above equation in the 123 coordinate system

(as it was introduced in (b)) the index ellipsoid can be written as

[x1, x2, x3][A123][x1, x2, x3]
T = 1, (12)

where [A123] is the impermeability matrix given in Eq. (7). According to the index-ellipsoid approach

in order to find the two eigen-polarizations and their refractive indices it is necessary to find the

intersection of the index ellipsoid with a plane normal to the wavevector direction through the origin.

In the 123 coordinate system this plane is the x3 = 0 plane, and the resulting intersection with the

index ellipsoid [Eq. (12)] is

[x1, x2][At][x1, x2]
T = 1, (13)

where the last equation specifies the intersection ellipse of the x3 = 0 plane with the index ellipsoid.

The 2 × 2 matrix [At] was specified in (b). From linear algebra it is well known that the eigenvalues
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of [At] correspond to the two semi-axis of the ellipse which are the eigenvalue refractive indices for

propagation along the k̂ direction. The directions of the two semi-axes (major and minor) correspond

to the two eigen-polarizations (for slow and fast wave). Consequently, the proposed procedure for

determining the eigen-polarizations and their refractive indices from index ellipsoid is justified. The

eigenvalues and eigenvectors of [At] have been specified in (b) [see Eqs. (8)–(11)].

It might be beneficial to come to the same result from a different initial point. Let’s write the

index ellipsoid equation in the xyz principal axis coordinate system along with the plane which is

normal to the wavevector direction of interest (and passing through the origin):

x2

n2
xx

+
y2

n2
yy

+
z2

n2
zz

= 1, (14)

~r • k̂ = axx + ayy + azz = 0. (15)

In order to find the intersection both equations must be satisfied. The two semi-axes of the intersection

ellipse correspond to the two eigen-polarizations and their directions correspond to the two eigen-

polarizations. To find the semi-axes it is necessary to find the minimum and the maximum of x2+y2+z2

on the intersection ellipse. Let’s use the method of Lagrange multipliers:

F (x, y, z) = (x2 + y2 + z2) + λ1

[
x2

n2
xx

+
y2

n2
yy

+
z2

n2
zz

− 1

]

+ λ2 [axx + ayy + azz] =⇒ (16)

∂F

∂x
= 0 =⇒ 2x + 2λ1

x

n2
xx

+ λ2ax = 0, (17)

∂F

∂y
= 0 =⇒ 2y + 2λ1

y

n2
yy

+ λ2ay = 0, (18)

∂F

∂z
= 0 =⇒ 2z + 2λ1

z

n2
zz

+ λ2az = 0, (19)

∂F

∂λ1
= 0 =⇒ x2

n2
xx

+
y2

n2
yy

+
z2

n2
zz

− 1 = 0, (20)

∂F

∂λ2
= 0 =⇒ axx + ayy + azz = 0 (21)

At this point some manipulations of the above equations are necessary. First, let’s multiply Eqs. (17),

(18), and (19) by x, y, and z respectively, and add them together. The result [using Eqs. (20) and

(21)] is:

λ1 = −(x2 + y2 + z2) = −n2. (22)

Now multiply Eqs. (17), (18), and (19) by ax, ay, and az respectively, and add them together [making

use of the result for λ1 from Eq. (22)]. Then, the λ2 becomes

λ2 = 2n2

[
axx

n2
xx

+
ayy

n2
yy

+
azz

n2
zz

]

. (23)
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Next, let’s use the solutions for λ1 and λ2 to manipulate Eq. (17):

2x

(

1 +
λ1

n2
xx

)

= −λ2ax =⇒

2x

(

1 − n2

n2
xx

)

= −2n2

[
axx

n2
xx

+
ayy

n2
yy

+
azz

n2
zz

]

ax =⇒

x

n2
− x

n2
xx

+
a2

xx

n2
xx

= −axay
y

n2
yy

− −axaz
z

n2
zz

=⇒
(

n2
xx

n2
− a2

y − a2
z

)
x

n2
xx

+ axay
y

n2
yy

+ axaz
z

n2
zz

= 0 =⇒

a2
y + a2

z

n2
xx

x − axay

n2
yy

y − axaz

n2
zz

z =
1

n2
x =⇒

1 − a2
x

n2
xx

x − axay

n2
yy

y − axaz

n2
zz

z =
1

n2
x (24)

In the last derivation the identity (for the directional cosines) a2
x + a2

y + a2
z = 1 was used. Performing

the same steps for Eqs. (18) and (19) the following set of equations can be written:












1 − a2
x

n2
xx

−axay

n2
yy

−axaz

n2
zz

−ayax

n2
xx

1 − a2
y

n2
yy

−ayaz

n2
zz

−azax

n2
xx

−azay

n2
yy

1 − a2
z

n2
zz
















x
y

z



 =
1

n2





x
y

z



 . (25)

Of course the last equation is identical to Eq. (2) that was derived directly from Maxwell’s equations.

I.e., the geometrical solution of the index ellipsoid is identical to the Maxwell’s equations solution.

Since the matrix is singular only two eigenvalues are non-zero that correspond to the fast and slow

refractive indices. The eigenvectors corresponding to the two eigenvalues give the directions of the

two eigen-polarizations.

Of course, one could just solve numerically the system of Eqs. (17)–(21) to find the minimum and

maximum of n2 = x2 + y2 + z2 which correspond to the two eigen-indices (fast and slow). Then,

the vector [x, y, z] would correspond to the eigen-polarization. However, sometimes the numerical

solution of a system of nonlinear equations may not provide all the possible solutions depending on

the initial guesses.

Another approach is to use other methods for constrained optimization. Such methods are provided

by Matlab’s function “fmincon” which uses the interior-point method. To illustrate the procedure let’s

specify the following minimization problem:

F (x, y, z) = min
︸︷︷︸

x,y,z

{
x2 + y2 + z2

}
, subject to

x2

n2
xx

+
y2

n2
yy

+
z2

n2
zz

= 1, and

axx + ayy + azz = 0.
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Using the above method the point (xf , yf , zf) is found that minimize F (x, y, z). Then the fast refractive

index and its corresponding eigen-polarization are nf = (x2
f + y2

f + z2
f )1/2 and D̂f = [xf , yf , zf ]T/nf .

The slow refractive index can be found by minimizing the function G(x, y, z) = 1/(x2 + y2 + z2).

The corresponding resulting optimization point is (xs, ys, zs). Then the slow refrative index and its

corresponding eigen-polarization are ns = (x2
s + y2

s + z2
s )1/2 and D̂s = [xs, ys, zs]

T/ns.
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