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BLACKBODY RADIATION†

A blackbody is an idealized physical body that can absorb all incident electromagnetic

radiation independently of its frequency and its angle of incidence. At thermal equilibrium

a blackbody emits all absorbed radiation. The re-emitted radiation energy depends only on

its temperature. Therefore the intensity of the emitted radiation is related to the amount of

energy in the body at thermal equilibrium. The history of the development of the theory of the

blackbody radiation is very interesting since it led to the discovery of the quantum theory [1].

Josef Stefan, Ludwig Boltzmann, Wilhelm Wien, and finally Max Planck were instrumental in

the development of the theory of blackbody radiation. A nice summary of their short biographies

and the methodologies that were used to obtain their results is presented by Crepeau [2].

Early experimental studies established that the emissivity of a blackbody is a function of

frequency and temperature. A measure of the emissivity can be the term ρ(ν, T ) which is

the density of radiation energy per unit volume per unit frequency (J/m3Hz) at an absolute

temperature T and at frequency ν. The first theoretical studies used the very successful at

that point theory of Maxwell equations for the determination of the density of electromagnetic

modes and from that the determination of ρ(ν, T ). For example, Wilhelm Wien in 1896 used a

simple model to derive the expression

ρ(ν, T ) = αν3 exp(−βν/T ) (1)

where α, β were constants. Wien used the hypothesis that radiation was emitted by molecules

which followed a Maxwellian velocity distribution and that the wavelength of radiation de-

pended only on the molecule’s velocity [2]. However, the above equation failed in the low

frequency range of the experimental data.

In June 1900 Lord Rayleigh published a model based on the modes of electromagnetic

waves in a cavity. Each mode possessed a particular frequency and could give away and take

up energy in a continuous manner. Using the standard electromagnetic theory of a cavity

resonator (see Fig. 1) with perfect conductor walls the following dispersion equation can be

easily obtained [3–5] (see Appendix A) :
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where n is the index of refraction of the medium, and a, b, and d are the dimensions of the

cavity resonator in the x, y, and z directions, and m, p, q are positive integers.
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Figure 1: Cavity box for the determination of the density of electromagnetic modes.

If for simplicity it is assumed that the cavity is a cube, a = b = d then the previous equation

can be written as

m2 + p2 + q2 =
(2ν

c

)2

a2n2 =
(2νna

c

)2

. (3)

In order to count the electromagnetic modes up to frequency ν it is necessary to evaluate the

number of modes that fit in the one eighth of the sphere that is shown in Fig. 2. Thus, the

total number of electromagnetic modes N(ν) can be determined as follows

N(ν) =
(1/8) cavity volume

volume of a mode
=

(1/8)(4/3)π(2νan/c)3

1 × 1 × 1
=

4

3
π

ν3n3a3

c3
. (4)

Due to TE and TM mode degeneracy the above number should be multiplied by a factor of 2.

Therefore, the total number of electromagnetic modes per volume, N (ν), is

N (ν) =
N(ν)

V olume = a3
=

8

3
π

ν3n3

c3
. (5)

Then the density of electromagnetic modes per frequency is

dN (ν)

dν
=

8πν2n3

c3
. (6)
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In the last equation it is assumed that the refractive index n is independent of frequency (or

freespace wavelength). Usually for all materials there is dispersion, i.e. dependence of the

refractive index on the frequency (or wavelength) of the electromagnetic radiation. In the

latter case n = n(ν) and in the above derivative over frequency this dependence must be taken

into account. Then the previous equation can be written as follows [6]

dN (ν)

dν
=

8πν2n2

(

n + ν
dn

dν

)

c3
=

8πν2n2ng

c3
. (7)

where ng = n + ν(dn/dν) = n − λ0(dn/dλ0) (where λ0 is the freespace wavelength) is the

group refractive index and is important in materials such semiconductors and fibers where the

refractive index dependence on frequency (or wavelength) can be significant. For the remainder

of this section it is assumed that the refractive index is independent of frequency (or wavelength)

for the sake of simplicity.
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Figure 2: The one eighth of the sphere in the mpq space for the determination of the number of electromag-

netic modes up to frequency ν .

Rayleigh assigned an energy kBT/2 to each electromagnetic mode (kBT/2 for the electric

field oscillation and kBT/2 for the magnetic field oscillation, where kB = 1.38066 × 10−23J/◦K

is Boltzmann’s constant). More rigorously, the average energy of each electromagnetic mode

can be determined using Boltzmann’s statistics [7]. According to these statistics the probability
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p(E) that an energy of each electromagnetic mode is between E and E + dE is given by

p(E)dE = A exp

(

−
E

kBT

)

dE, (8)

where the constant A is a normalization constant that can be easily found from the normaliza-

tion of p(E) in order to represent a probability density function. Therefore, the constant A is

given by
∫ ∞

0

p(E)dE = 1 =⇒ A =
1

∫ ∞

0

exp(−E/kBT )dE

=
1

kBT
. (9)

Then, the average energy of each electromagnetic mode can be determined from

〈E〉 =

∫ ∞

0

Ep(E)dE =

∫ ∞

0

E
1

kBT
exp

(

−
E

kBT

)

dE = kBT. (10)

Using Eq. (6) and the average energy of Eq. (10) the electromagnetic energy density per unit

frequency ρ(ν, T ) becomes

ρ(ν, T ) =
dN (ν)

dν
〈E〉 =

8πν2n3

c3
kBT. (11)

The last equation is known as the Rayleigh-Jeans distribution of a blackbody radiation and

fails dramatically in the ultraviolet part of the spectrum (historically referred as the “ultraviolet

catastrophe”). This can be seen in the Rayleigh-Jeans curve of Fig. 3.

Planck used purely thermodynamic entropy arguments to derive an improved equation for

Wien’s distribution law shown in Eq. (1). His derived equation was of the form [2]

ρ(ν, T ) =
Cν3

exp(βν/T ) − 1
. (12)

It has been suggested that Planck discovered his famous constant (h) in the evening of October

7, 1900 [1]. Planck had taken into account some additional experimental data by Heinrich

Reubens and Ferdinand Kurlbaum as well as Wien’s formula and he deduced in his Eq. (12),

an expression that “fitted” all the available experimental data. His formula was the now known

as the blackbody radiation formula given by

ρ(ν, T ) =
8πν2n3

c3

hν

exp(hν/kBT )− 1
, (13)

where h = 6.62607004 × 10−34Joule · sec is known as Planck’s constant. The above expression

reduces to Wien’s formula for high frequencies (i.e. hν/kBT � 1) and to Rayleigh-Jeans
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formula for low frequencies (i.e. hν/kBT � 1). An example of Planck’s radiation formula

is shown in Fig. 3 along with Rayleigh-Jeans and Wien’s approximations for a blackbody of

absolute temperature T = 6000◦K.

Having obtained his formula Planck was concerned to discover its physical basis. It was hard

to argue about the density of electromagnetic modes determination. Therefore, he focused

on the average energy per electromagnetic mode. After discussions he had with Boltzmann

regarding the number of ways of distributing discrete equal energy values among a number of

molecules, Planck made the hypothesis that electromagnetic energy at frequency ν could only

appear as a multiple of the step size hν which was a quantum of energy (later it was called

photon). I.e., the energy of the electromagnetic modes could be of the form Ei = ihν where

i = 0, 1, 2, · · · ). Energies between ihν and (i + 1)hν do not occur. Then he used Boltzmann’s

statistics to compute the average energy of an electromagnetic mode. If E0, E1, E2, . . . , are the

allowed energies then according to Boltzmann’s statistics the probability of an electromagnetic

mode to have an energy Ei is

p(Ei) = A exp

(

−
Ei

kBT

)

, (14)

and the normalization constant A is given by

∞∑

i=0

p(Ei) = 1 =⇒ A =
1

∞∑

i=0

exp(−Ei/kBT )

= 1 − exp

(

−
hν

kBT

)

. (15)

Then the average energy 〈E〉 of an electromagnetic mode can be determined as follows

〈E〉 = A
∞∑

i=0

Ei exp

(

−
Ei

kBT

)

= A
[
1hνe−hν/kB T + 2hνe−2hν/kBT + · · ·

]
=

= A
hν exp(−hν/kBT )

[1 − exp(−hν/kBT )]2
=

hν

exp(hν/kBT ) − 1
. (16)

Using the above calculation of the average energy of an electromagnetic mode the Planck’s

formula can be rewritten with the physical meaning of each of its terms

ρ(ν, T ) =
8πν2n3

c3

︸ ︷︷ ︸

Number of em modes

photon energy
︷ ︸︸ ︷

hν
1

exp(hν/kBT )− 1
︸ ︷︷ ︸

Number of photons/mode

. (17)

Later Planck used the energy discretization of the quantum oscillator, i.e. Ei = [(1/2) + i]hν

(i = 0, 1, 2, · · · ). Therefore, he introduced what is known today as the zero point energy, which
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Figure 3: Blackbody radiation for T = 6000◦ K. The initial theories by Rayleigh-Jeans and Wien are also

shown for comparison.

is the lowest energy of a quantum oscillator. This lowest energy can not be zero due to the

Heisenberg’s uncertainty principle. In this case the average energy of an electromagnetic mode

can be calculated in a similar manner as in Eq. (16) and is given by

〈E〉 =
hν

2
+

hν

exp(hν/kBT ) − 1
, (18)

However, in the above equation, the zero point energy hν/2 term causes increase to the radiation

density ρ(ν, T ) to infinity, and should not be used for the blackbody radiation energy density

[8–14]. One simplistic approach to explain the absence of the zero energy term is that the

photons that are either emitted or absorbed by the blackbody radiator are related to transitions

between energy states Ei − Ei′ = (i − i′)hν = `hν (where ` = 0, 1, 2, · · · ), and consequently

the initial assumption of Planck should be used as in Eq. (16). As a general comment, the zero

point energy, i. e. the vacuum energy is one of the still controversial issues of modern physics.

The density of electromagnetic modes can also be expressed per wavelength (freespace) and is

given by
dN (λ0)

dλ0

= −
8πn3

λ4
0

, (19)

and the corresponding density of electromagnetic radiation of a blackbody per wavelength
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(freespace) is

ρ(λ0, T ) =
8πn3

λ4
0

hc/λ0

exp(hc/λ0kBT ) − 1
. (20)

Frequently in the literature the blackbody radiation formula is expressed in terms of the

radiant exitance (or radiant emittance) of the blackbody (in units of power/area = W/m2).

The radiant exitance expresses the total power emitted by a source in a hemisphere (towards

the direction of emission) per unit area of the source. The Poynting vector expresses the power

per unit area of the electromagnetic radiation. Therefore, the Poynting vector is given by

Pavg = (1/2η)|E|2 where E is the electric field amplitude of the electromagnetic wave, and

η =
√

µ0/n2ε0 is the intrinsic impedance of the non-magnetic homogeneous isotropic medium

in which the electromagnetic radiation propagates. The energy density of the electromagnetic

radiation is given by wem = (1/2)n2ε0|E|2. Therefore, Pavg = (c/n)wem. However, the energy

density between ν and ν + dν (or equivalently between λ0 and λ0 + dλ0) is dwem = ρ(ν, T )dν =

ρ(λ0, T )dλ0 and then the power per unit area (between ν and ν + dν or equivalently between

λ0 and λ0 + dλ0) dPavg can be determined as follows

dPavg =
8πn2ν2

c2

hν

exp(hν/kBT )− 1
dν = Pavg,νdν, (21)

dPavg =
8πn2c

λ4
0

hc/λ0

exp(hc/λ0kBT )− 1
dλ0 = Pavg,λ0

dλ0. (22)

The radiance L (in W/m2sr where sr = steradian) of a radiant source (that could be a

blackbody radiator) is defined as L = d2P/dA⊥/dΩ where d2P is the differential electromagnetic

power that is emitted by the source in a specified direction, dA⊥ is the differential source

area element perpendicular to the specified direction of propagation, and dΩ is the differential

solid angle inside which the differential power is propagated in the specified direction [15]. A

blackbody emits radiation equally in all directions and consequently it seems similarly bright

from any direction observed. This means that its radiance L is constant and independent of the

observation angle. Such a source is called Lambertian [15]. Therefore, a blackbody is always a

Lambertian source. Integrating the radiance all over the solid angles it can be easily shown that
∫

Ω
LdΩ = 4πL =

∫
(d2P/dA⊥) = Pavg . Then the spectral radiance, dLs of blackbody radiation

between ν and ν + dν or λ0 and λ0 + dλ0 can be expressed as follows

dLs =
dPavg

4π
=

2n2ν2

c2

hν

exp(hν/kBT )− 1
dν = Ls,νdν, and (23)
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dLs =
dPavg

4π
=

2n2c

λ4
0

hc/λ0

exp(hc/λ0kBT )− 1
dλ0 = Ls,λ0

dλ0. (24)

From radiometry [15] it can be easily determined that the radiance L and the radiant exi-

tance (emittance) M (W/m2) of a blackbody (or a Lambertian source in general) can be related

from the equation M = Lπ. This is straightforward to show since M =
∫

Ω
[d2P/(dAsdΩ)]dΩ =

∫

Ω
L cos θdΩ =

∫ π/2

θ=0

∫
2π

φ=0
L cos θ sin θdθdφ = Lπ (where dAs = dA⊥/ cos θ and dΩ = sin θdθdφ).

Consequently dM = πdL = Mν(ν)dν = Mλ0
(λ0)dλ0 = Mλ(λ)dλ, where Mν , Mλ0

, and Mλ are

the spectral exitances in W/m2/Hz, W/m2/m (in freespace wavelength) and W/m2/m (inside

medium wavelength), respectively. In addition, c = λ0ν and c/n = λν = (λ0/n)ν. For example

the radiant spectral exitance (power/unit area/frequency = W/m2/Hz) of a blackbody radiator

can be determined to be

Mν(ν) =
2πn2ν2

c2

hν

exp(hν/kBT ) − 1
, (25)

while the same spectral exitance expressed per wavelength (in freespace or in medium) interval

(power/unit area/wavelength = W/m2/m) is given by

Mλ0
=

2πn2c

λ4
0

hc/λ0

exp(hc/λ0kBT )− 1
, (26)

Mλ =
2πc

n2λ4

hc/λ

exp(hc/λnkBT ) − 1
. (27)

Integrating the above equations over all frequencies (or wavelengths) the radiant exitance M of

a blackbody radiator at temperature T can be determined. This is known as Stefan’s law and

is expressed by the following equation

M =

∫ ∞

0

Mλ0
dλ0 =

( 2π5k4
B

15h3c2

)

n2T 4 = σn2T 4 (28)

where σ = 5.67 × 10−8 W/m2 ◦K−4 = Stefan-Boltzmann constant (usually the refractive index

is considered that of vacuum or air, i.e. n ' 1). The maxima of the blackbody radiator curve

can be found from the solution of the equation

dMλ0
(λ0,max)

dλ0

= 0 ⇒
hc

λ0,maxkBT
= 4.96511423 ⇒ λ0,maxT = 2897.821µm◦K, (29)

where the last part of the above equation described how the peak of the blackbody radiation

shifts with the temperature and it is known as Wien’s displacement law. An example of Mλ0
for

T = 6000 ◦K and Wien’s displacement law are shown in Fig. 4. A similar Wien’s displacement
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Figure 4: Blackbody radiation spectral exitance (emittance), Mλ0
(λ0), for T = 6000◦ K as a function of

freespace wavelength. The Wien’s displacement law is also shown for the same wavelength range. The maximum

of Mλ0
occurs for λ0,max = 0.483 µm.

law can be defined for Mν . The maxima for Mν can be found by

dMν(νmax)

dν
= 0 ⇒

hνmax

kBT
= 2.82143937 ⇒

νmax

T
= 5.878924 × 1010 Hz/◦K. (30)

An example of Mν for T = 6000 ◦K and Wien’s displacement law are shown in Fig. 5. It

is mentioned that the peak of Mλ0
, λ0,max, and the peak of Mν , νmax, are not related by

λ0,maxνmax = c since the corresponding spectral exitances are per unit wavelength and per unit

frequency respectively.

An interesting point that should be discussed is the presence of the refractive index in

Eq. (28). It is reminded that n corresponds to the refractive index (assuming no dispersion)

of the medium that exists inside the blackbody cavity (see the calculation of the density of

electromagnetic modes inside the orthogonal cavity). However, the radiated electromagnetic

energy propagates away from the blackbody radiator. In many textbooks the refractive index

is omitted from Eq. (28) since it is assumed that the blackbody emits radiation into vacuum

or into the air (where nair ' 1). This is justified because of the radiance’s conservation [16, 17]

between two homogeneous media of different refractive index. Let’s consider a smooth boundary

between two dielectric media of refractive indices of n1 and n2 respectively as it is shown

in Fig. 6. In this figure an elementary beam of rays is incident from the left on a small
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Figure 5: Blackbody radiation spectral exitance (emittance), Mν(ν), for T = 6000◦ K as a function of

frequency. The Wien’s displacement law is also shown for the same frequency range. The maximum of Mν

occurs for νmax = 3.52× 1014 Hz.

area element dA of the smooth boundary [16, 17]. The normal on the differential element

is assumed to represent the polar axis of a coordinate system center at the middle of the

differential element with its transverse plane being in the tangential direction of the boundary

(and therefore perpendicular to the plane of the interface shown in Fig. 6). Since the boundary

is assumed to be smooth the Snell’s law applies for the elementary rays. Therefore, n1 sin θ1 =

n2 sin θ2. Neglecting the reflection losses (which is definitively an approximation) the power

in the beam should be the same at both sides of the boundary. I.e. d2P1 = d2P2. However,

d2P1 = L1 cos θ1dAdΩ1 = L1 cos θ1dA sin θ1dθ1dφ where φ lies in the transverse to the boundary

plane. Similarly, d2P2 = L2 cos θ2dAdΩ2 = L2 cos θ2dA sin θ2dθ2dφ. Differentiating the Snell’s

law gives n1 cos θ1dθ1 = n2 cos θ2dθ2. In order to satisfy the power conservation the following

holds

d2P1 = L1 cos θ1dA sin θ1dθ1dφ = d2P2 = L2 cos θ2dA sin θ2dθ2dφ =⇒

L1 = L2

cos θ2dθ2

cos θ1dθ1

sin θ2

sin θ1

= L2

n2
1

n2
2

=⇒

L1

n2
1

=
L2

n2
2

= L0 ⇐⇒
M1

n2
1

=
M2

n2
2

= M0, (31)
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Figure 6: Radiance conservation at a smooth boundary between two homogeneous dielectric media with

refractive indices n1 and n2 respectively.

where L0 and M0 are the radiance and exitance in vacuum respectively. Therefore, returning

to Eq. (28) it is now obvious that Mi = n2

i M0 where M0 = σT 4. This might imply that if

ni > 1 the exitance radiated from a dielectric medium into air could be larger than M0. This

is not the case since some of the energy emitted within the medium of refractive index ni

is reflected back into the emitting medium at the medium-air interface due to total internal

reflection of the radiation (from Snell’s law the maximum angle that is refracted into the air is

θmax = sin−1(1/ni) which is the critical angle). Therefore only radiation within a cone of apex

angle θmax will refracted into air (neglecting reflection losses). The radiated power for an area

dA (see Fig. 6) in the accepted cone can be determined as

dP =

∫
2π

0

∫ θmax

0

LidA cos θ sin θdφdθ = 2πLidA
sin2 θmax

2

= πLidA
1

n2
i

=
Mi

n2
i

dA = M0dA,

and consequently the total power (per unit area) emitted by a blackbody radiator does not

depend on the refractive index of the medium. Of course, in this analysis all reflections where

neglected. Some discussion about taking into account the reflections is presented in Ref. [17,18].

The blackbody radiation represents the upper limit to the amount of radiation that a real

body may emit at a given temperature. At any given freespace wavelength λ0, emissivity ε(λ0),
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is defined as the ratio of the actual emitted radiant exitance M̃λ0
over the emitted radiant

exitance of a blackbody Mλ0
,

ελ0
=

M̃λ0

Mλ0

. (32)

Emissivity is a measure of how strongly a body radiates at a given wavelength. Emissivity

ranges between zero and one for all real substances (0 ≤ ελ0
≤ 1). A gray body is defined as

a substance whose emissivity is independent of wavelength, i.e. ελ0
= ε. In the atmosphere,

clouds and gases have emissivities that vary rapidly with wavelength. The ocean surface has

near unit emissivity in the visible regions.

For a body in local thermodynamic equilibrium the amount of thermal energy emitted must

be equal to the energy absorbed. Otherwise the body would heat up or cool down in time,

contrary to the assumption of equilibrium. As a result of this it can be said that materials

that are strong absorbers at a given wavelength are also strong emitters at that wavelength.

Similarly weak absorbers are weak emitters.

Blackbody radiation is also used to establish a color scale as a function of the absolute

temperature. The color temperature of a light specimen is the temperature of a blackbody with

the closest spectral distribution. For example, the sun has a typical color temperature of 5500◦

K.
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APPENDIX A: Determination of Electromagnetic Modes

in Rectangular Metallic Cavities

The purpose of this Appendix is to review the determination of electromagnetic modes in a

rectangular-shaped cavity which is considered to have perfectly conducting walls while the

material filling the cavity is homogeneous, linear and isotropic [3–5]. The approach that will

be presented here is rather independent from the knowledge of the solutions of rectangular

metallic waveguides solutions which is normally the traditional manner in determining the

cavity modes. The rectangular cavity with the corresponding coordinate system is shown in

Fig. 1. It is assumed that the determination of the TEmpq modes is sought, i.e., it is assumed

that Ez = 0 while all other field components Ex, Ey, Hx, Hy, Hz are in general nonzero. Every

field component satisfies the Helmholtz equation

∇2S + k2

0n
2S =

( ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

S + k2

0n
2S = 0, (A.1)

where S = Ex, Ey, Hx, Hy, Hz , k0 = ω/c = 2π/λ0 is the freespace wavenumber, and n is the

refractive index of the material inside the cavity. Because of the rectangular geometry it is

reasonable to seek solutions based on the method of separation of variables, i.e., S(x, y, z) =

X(x)Y (y)Z(z) where X(x) = A cos(kxx) + B sin(kxx), Y (y) = C cos(kyy) + D sin(kyy), and

Z(z) = E cos(kzz)+F sin(kzz), with k2
x+k2

y+k2
z = k2

0n
2. From the two curl Maxwell’s equations

∇× ~E = −jωµ0
~H, and ∇× ~H = +jωε0n

2 ~E, for the TEmpq modes the following equations are

derived:

Ex =
1

jωε0n2

(∂Hz

∂y
−

∂Hy

∂z

)

, (A.2)

Ey =
1

jωε0n2

(∂Hx

∂z
−

∂Hz

∂x

)

, (A.3)

Ez =
1

jωε0n2

(∂Hy

∂x
−

∂Hx

∂y

)

= 0, (A.4)

Hx = +
1

jωµ0

∂Ey

∂z
, (A.5)

Hy = −
1

jωµ0

∂Ex

∂z
, (A.6)

Hz = −
1

jωµ0

(∂Ey

∂x
−

∂Ex

∂y

)

. (A.7)
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Since the cavity is surrounded by perfect conducting walls the boundary conditions on the

various field components are that the normal to the wall boundary magnetic field components

are zero as well as the tangential to the boundaries electric field components. These conditions

can be expressed by the following equations:

Hx(x = 0, y, z) = Hx(x = a, y, z) = 0, (A.8)

Hy(x, y = 0, z) = Hy(x, y = b, z) = 0, (A.9)

Hz(x, y, z = 0) = Hz(x, y, z = d) = 0, (A.10)

Ex(x, y = 0, z) = Ex(x, y = b, z) = Ex(x, y, z = 0) = Ex(x, y, z = d) = 0, (A.11)

Ey(x = 0, y, z) = Ey(x = a, y, z) = Ey(x, y, z = 0) = Ey(x, y, z = d) = 0, (A.12)

where it is reminded that for the TEmpq modes Ez = 0, ∀ x, y, z. In order to satisfy the boundary

conditions for the Hx component the X(x) = sin(kxmx) where kxm = (mπ/a) and m = 0, 1, · · · .

Similarly, for Hy to satisfy the boundary conditions the Y (y) = sin(kypy) where kyp = (pπ/b)

and p = 0, 1, · · · . Therefore, the solutions for Hx and Hy take the following form

Hx(x, y, z) = sin
(mπ

a
x
)

Y1(y)Z1(z), with
(mπ

a

)2

+ k2

y + k2

z = k2

0n
2, (A.13)

Hy(x, y, z) = X2(x) sin
(pπ

b
y
)

Z2(z), with k2

x +
(pπ

b

)2

+ k2

z = k2

0n
2. (A.14)

In order to force the Ez field component to be zero from Eq. (A.4) the following should hold

∀ x, y, z,

1

jωε0n2

{dX2

dx
sin

(pπ

b
y
)

Z2(z)
}

=
1

jωε0n2

{

sin
(mπ

a
x
)dY1

dy
Z1(z)

}

∀x, y, z. (A.15)

Using X2(x) = A2 cos(kxx) + B2 sin(kxx) and Y1(y) = C1 cos(kyy) + D1 sin(kyy) it is straight-

forward to show that B2 = 0 = D1, and kx = (mπ/a), ky = (pπ/b), and the coefficients of the

Z1(z) and Z2(z) are related in such a way that the field components Hx and Hy are expressed

by the following equations:

Hx(x, y, z) = sin
(mπ

a
x
)

cos
(pπ

b
y
)

[E1 cos(kzz) + F1 sin(kzz)], (A.16)

Hy(x, y, z) = cos
(mπ

a
x
)

sin
(pπ

b
y
) pπ/b

mπ/a
[E1 cos(kzz) + F1 sin(kzz)], (A.17)

where, of course (mπ/a)2+(pπ/b)2+k2

z = k2

0n
2. Now in order to satisfy the boundary condition

for the Hz field component the following solution is valid

Hz(x, y, z) = H0zX3(x)Y3(y) sin
(qπ

d
z
)

. (A.18)
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From the z-dependence of Hz it is implied that the Ex and Ey field components have the

following form due to Eq. (A.7)

Ex(x, y, z) = E0xX1(x)Y1(y) sin
(qπ

d
z
)

, (A.19)

Ey(x, y, z) = E0yX2(x)Y2(y) sin
(qπ

d
z
)

, (A.20)

where E0x, E0y are amplitude constants. Then applying Eqs. (A.5) and (A.6) for the Hx and

Hy components respectively, in conjunction with Eqs. (A.16). (A.17), (A.19), and (A.20), the

following conditions must be satisfied ∀ x, y, z,

sin
(mπ

a
x
)

cos
(pπ

b
y
)

[E1 cos(kzz) + F1 sin(kzz)] = +
1

jωµ0

[

E0y
qπ

d
cos

(qπ

d
z
)

X2(x)Y2(y)
]

,

cos
(mπ

a
x
)

sin
(pπ

b
y
) pπ/b

mπ/a
[E1 cos(kzz) + F1 sin(kzz)] = −

1

jωµ0

[

E0x
qπ

d
cos

(qπ

d
z
)

X1(x)Y1(y)
]

.

From the last two equations the following solutions for the Ex, Ey, Hx, Hy fields can be obtained

Hx =
E0y

jωµ0

(qπ

d

)

sin
(mπ

a
x
)

cos
(pπ

b
y
)

cos
(qπ

d
z
)

, (A.21)

Hy =
E0y

jωµ0

pπ/b

mπ/a

(qπ

d

)

cos
(mπ

a
x
)

sin
(pπ

b
y
)

cos
(qπ

d
z
)

, (A.22)

Ex = −E0y
pπ/b

mπ/a
cos

(mπ

a
x
)

sin
(pπ

b
y
)

sin
(qπ

d
z
)

, (A.23)

Ey = E0y sin
(mπ

a
x
)

cos
(pπ

b
y
)

sin
(qπ

d
z
)

. (A.24)

The last component to be determined is the Hz. Using the solutions for Ex and Ey as well as

Eq. (A.7) and Eq. (A.18) the following solution for Hz is obtained

Hz = −
E0y

jωµ0

a

mπ

[(mπ

a

)2

+
(pπ

b

)2]

cos
(mπ

a
x
)

cos
(pπ

b
y
)

sin
(qπ

d
z
)

. (A.25)

In order to write the equations in the usual format [?,4] found in the literature the coefficient of

the Hz component can be defined as C = −(E0y/jωµ0)(a/mπ)k2
c where k2

c = (mπ/a)2+(pπ/b)2.

Using C as the free parameter in the expressions of the fields of the TEmpq mode the fields are

summarized in the following form:
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TEmpq Modes :

Ex = C
jωµ0

k2
c

(pπ

b

)

cos
(mπ

a
x
)

sin
(pπ

b
y
)

sin
(qπ

d
z
)

, (A.26)

Ey = −C
jωµ0

k2
c

(mπ

a

)

sin
(mπ

a
x
)

cos
(pπ

b
y
)

sin
(qπ

d
z
)

, (A.27)

Ez = 0, (A.28)

Hx = −C
1

k2
c

(mπ

a

)(qπ

d

)

sin
(mπ

a
x
)

cos
(pπ

b
y
)

cos
(qπ

d
z
)

, (A.29)

Hy = −C
1

k2
c

(pπ

b

)(qπ

d

)

cos
(mπ

a
x
)

sin
(pπ

b
y
)

cos
(qπ

d
z
)

, (A.30)

Hz = C cos
(mπ

a
x
)

cos
(pπ

b
y
)

sin
(qπ

d
z
)

. (A.31)

In exactly similar manner the solutions of the TMmpq modes can be calculated where the

Hz = 0. These solutions are summarized next for completeness.

TMmpq Modes :

Ex = −D
1

k2
c

(mπ

a

)(qπ

d

)

cos
(mπ

a
x
)

sin
(pπ

b
y
)

sin
(qπ

d
z
)

, (A.32)

Ey = −D
1

k2
c

(pπ

b

)(qπ

d

)

sin
(mπ

a
x
)

cos
(pπ

b
y
)

sin
(qπ

d
z
)

, (A.33)

Ez = D sin
(mπ

a
x
)

sin
(pπ

b
y
)

cos
(qπ

d
z
)

, (A.34)

Hx = D
jωε0n

2

k2
c

(pπ

b

)

sin
(mπ

a
x
)

cos
(pπ

b
y
)

cos
(qπ

d
z
)

, (A.35)

Hy = −D
jωε0n

2

k2
c

(mπ

a

)

cos
(mπ

a
x
)

sin
(pπ

b
y
)

cos
(qπ

d
z
)

, (A.36)

Hz = 0. (A.37)

where now D has been selected as the free parameter coefficient. For both TEmpq and TMmpq

modes the dispersion relation and the corresponding resonance frequencies are given by the

following equations

k2

0
n2 =

(mπ

a

)2

+
(pπ

b

)2

+
(qπ

d

)2

, (A.38)

ωmnq =
c

n

√
(mπ

a

)2

+
(pπ

b

)2

+
(qπ

d

)2

. (A.39)
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