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Abstract:

A statistical framework based on nonlinear dynamics theory and recurrence quantification analysis of dynamical systems is
proposed to quantitatively identify the temporal characteristics of extreme (maximum) daily precipitation series. The
methodology focuses on both observed and general circulation model (GCM) generated climates for present (1961–2000) and
future (2061–2100) periods which correspond to 1xCO2 and 2xCO2 simulations. The daily precipitation has been modelled as a
stochastic process coupled with atmospheric circulation. An automated and objective classification of daily circulation patterns
(CPs) based on optimized fuzzy rules was used to classify both observed CPs and ECHAM4 GCM-generated CPs for 1xCO2 and
2xCO2 climate simulations (scenarios). The coupled model ‘CP-precipitation’ was suitable for precipitation downscaling. The
overall methodology was applied to the medium-sized mountainous Mesochora catchment in Central-Western Greece. Results
reveal substantial differences between the observed maximum daily precipitation statistical patterns and those produced by the
two climate scenarios. A variable nonlinear deterministic behaviour characterizes all climate scenarios examined. Transitions’
patterns differ in terms of duration and intensity. The 2xCO2 scenario contains the strongest transitions highlighting an unusual
shift between floods and droughts. The implications of the results to the predictability of the phenomenon are also discussed.
Copyright © 2013 John Wiley & Sons, Ltd.
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INTRODUCTION/MOTIVATION

Advanced time series analysis techniques, such as
generalized regression models (El-Aldouni et al., 2005;
Underwood 2009; van Ogtrop et al., 2011), trend analysis
(Pujol et al., 2007; Beguería et al., 2010; Tabari and
Talaee, 2011), and univariate and multivariate
autoregressive modelling (.Langousis and Koutsoyiannis,
2006; Lins et al., 2011; Koirala et al., 2011) have been
extensively considered in hydrometeorology. Also,
shifting mean models (Sveinsson et al., 2003; Rea et al.,
2011), extreme values theory, and other frequency analysis
methods, such as spectral analysis, wavelets, and detrended
fluctuation analysis Khaliq et al., 2006; Kantelhardt et al.,
2006; Zhang et al., 2008; Koirala et al., 2011) have a
history of more than two decades. Most recently, the
dynamical systems approach (e.g. Jayawardena and
Gurung, 2000) and Bayesian techniques (Coles and Tawn,
1996; Coles et al., 2003; Renard et al., 2006; Kottegoda
et al., 2011) have gained the interest of researchers due to
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their flexibility in modelling of complex and temporally
oscillating behaviour of variables, as well as the modelling
of uncertainty in the temporal evolution of variables.
A large part of literature on hydro-meteorological processes

has reported to the modelling of extreme values of time series
such as daily, monthly, or annually extremes of precipitation
data. Extreme values most likely reflect changes in the
magnitude and spatiotemporal variation of the phenomenon
under study. Acquiring knowledge on such behaviour could
lead to effective proactive management of extreme hydrolog-
ical phenomena with significant social and economic
implications (Fowler et al., 2005). Several modelling
approaches of extreme values can be found in literature.
These include fitting distributions to data with or without
spatial pooling (Frei and Schär, 2001; Yue and Wang, 2002;
Stuart et al., 2003), extrememultivariate analysis (Renard and
Lang, 2007), extreme value models with time-dependent
covariates (Tramblay et al., 2011), Bayesian change point
modelling (Perreault et al., 2000; Rasmussen, 2001; Coles
et al., 2003; Xiong and Guo, 2004; Renard et al., 2006;
Seidou et al., 2007), and multi-fractal analysis (Sun and
Barros, 2010). A comparison of several alternative
distributions for extreme valuemodelling using an extensive
global dataset can be found in Papalexiou et al. (2013).
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A critical issue in modelling the complex temporal
behaviour of hydro-meteorological time series is the treatment
of non-stationarity and the temporal persistence, either being
short or long, in the hydrological time series. Hydrological
time series have been found to incorporate long term
dependence and scaling behaviour (Douglas and Barros,
2003;Langousis andKoutsoyiannis, 2006;Koutsoyiannis and
Montanari, 2007; Koutsoyiannis et al., 2007; Koutsoyiannis,
2011) as well as multi-fractal behaviour (Cortis et al., 2008).
Classical time series incorporate several constraints regarding
stationarity and independence, while it has been proven that
most real-world time series are most likely to be non-
stationary and nonlinear in nature (Schreiber, 1999). Coles
et al. (2003) stated that most classical statistical approaches,
which do not take into account themodelling and prediction of
uncertainties in the temporal evolution of hydro-
meteorological time series, are bounded to produce an over-
optimistic appraisal of anticipated extreme conditions that is
often contradicted by real measured data. This false
assumption of a stationary model may also lead to a
considerable underestimation of the probability of an extreme
event occurrence.
Klemes (1974) argued that long memory effects may

be revealed in hydrological time series due to the
implementation of stationary constrained models to com-
plex non-stationary time series. However, Klemes (1974)
recognized the non-stationary means in the Hurst phenom-
enon. Khaliq et al. (2006), in a thorough review of existing
frequency approaches to treating hydro – meteorological
data, underlined the need to apply methodologies that could
account for the complex non-stationary behaviour of hydro-
meteorological observations. A similar comment on the
inadequacy of most stochastic approaches to model
environmental processes is made by Cortis et al. (2008).
A general remark on the existing literature on hydro-

meteorological time series applications is that, inmost cases,
the time series are usually erroneously modelled as having a
homogeneous behaviour, for example being stochastic or
nonlinear deterministic and so on. In time series modelling,
there exist two paradigms to model irregular time series, the
deterministic nonlinear and the linear stochastic behaviour
(Schreiber, 1999). Between these two boundaries of
modelling exists a wide range of different models and
behaviour defined by different degrees of nonlinearity and
stochasticity that cannot be addressed by a single model.
The knowledge of whether the series behave determinis-

tically or stochastically, or even, whether the series oscillate
or shift from periodic to chaotic behaviour is of great
significance in the data-driven prediction process. Hence, a
key question arises concerning the simulated hydro-
meteorological time series for 1xCO2 and 2xCO2 climate
scenarios: The most up-to-date approaches are related to
dynamical or statistical downscaling of general circulation
model (GCM) outputs such as, precipitation, temperature,
airflow, and others which are conditioned or not on
atmospheric circulation patterns (CPs) (Giorgi and Mearns,
1991; Leavseley, 1994; Matyasovsky et al., 1994; Wilby
et al., 1998; Bárdossy andMierlo, 2002;Wilby andWingley,
2000; Panagoulia et al., 2008). However, what actually
Copyright © 2013 John Wiley & Sons, Ltd.
happens with the GCM generated climates series them-
selves?Can these series keep the same degree of nonlinearity
and stochasticity or the same oscillations and shifts from
periodic to chaotic behaviour with the observed (historical)
ones? If not, what differences could be anticipated?
In the remainder of this paper, we provide an alternative

framework based on the nonlinear dynamics theory and the
recurrence analysis of dynamical systems in order to
quantitatively identify the temporal characteristics of extreme
(maximum) daily precipitation series. The available daily
precipitation time series are conditioned on atmospheric
circulation. More specifically, an automated objective classi-
fication of daily CPs based on optimized fuzzy rules was used
to classify the observed CPs (Panagoulia et al., 2006a). The
ECHAM4 GCM-generated scenarios of daily CPs were
used to classify the 1xCO2 and 2xCO2 climate scenarios
(Panagoulia et al., 2008). The daily precipitation was
modelled as a stochastic process coupled with atmospher-
ic circulation (Stehlik and Bárdossy, 2002;Panagoulia
et al., 2006b). This type of classification defines circulation
(CPs) that can explain the variability of precipitation in a
locally specific form ensuring so the dependence between
large-scale atmospheric circulation and precipitation which is
necessary for precipitation downscaling. The overall
methodology was applied to the medium-sized
mountainous Mesochora catchment in Central-Western
Greece using observed climate time series for 1972–1992,
and also using GCM generated climates for present period
(1961–2000) and for future period (2061–2100), which
correspond to 1xCO2 and 2xCO2 simulations (scenarios).
METHODOLOGICAL FRAMEWORK

Phase-space reconstruction

Let Wi be the sliding window of time where i = 1,2,..,.n,
then, a pattern of a variable X in the i-th window can
be defined by: Xi(t) = (x t,xt� t, . . .,x(m� 1) t� t), where t is
the time delay and m is the dimension. These two
parameters define the depth of information that a pattern
carries. The process of constructing the previous vector
is named phase-space reconstruction and aims at
converting a scalar time data into a multivariable
system. It has been shown by Takens (1981) that the
reconstruction of the dynamics of a system by one
variable is possible if m is chosen such as: 2m+1> d,
where d is the actual system’s dimension. The optimum
values of t and m can be estimated using the
mutual information that measures the information flow
between sequential time delays (Fraser and Swinney,
1986) and the false nearest neighbors. This last feature
examines the behaviour of near neighbors under
changes in the dimension from m to m+ 1 (Kennel
et al. 1992) equally.

Visualizing and quantifying dynamics in the phase-space

The basic characteristic of dynamical systems is that they
exhibit a recurrent behaviour in terms of their temporal
Hydrol. Process. (2013)
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characteristics in the phase-space. The recurrence of a
system’s state x at time i in a different time j is given by
(Marwan et al., 2007):

Rm;ei
i; j ¼ θ ei � !xi �!xj

�� ��� �
;! xi 2 Rm; i; j ¼ 1 . . .N (1)

where Ν is the number of states xi in the time window of
study, ei is the threshold (Euclidean distance) for the
distances Ri,j, ‖‖ a norm (Euclidean norm), and θ() the
Heaviside function: (θ< 0) = 0, (θ≥ 0) = 1. The plot of all
distances observed provides the recurrence plot (RP)
(Eckmann et al., 1987). Given constant value of e value,
the RP is symmetric. Moreover, the RP has a diagonal line
of p/4 angle which is called Line of Identity (LOI) and
corresponds to states recurrent state of Rm;ei

i; j ¼ 1 (Marwan
et al., 2007).
The RP provides a visual manner in inspecting the

recurrent behaviour of variables and various complex
patterns (Marwan et al., 2007). For example, in a time
window of study, states can be recurrent or isolated in
time. From the recurrent ones, those that may form
diagonal lines parallel to the LOI reveal a deterministic
behaviour. These lines may be short expressing nonlinear
or chaotic behaviour or substantially long that signifies a
periodic behaviour. Moreover, vertical lines and the
patterns they form correspond to the tangential motion in
the phase-space (laminar states in intermittent regimes)
(Gao and Cai, 2000, Marwan et al., 2007).The laminar
states detection is important in order to identify the slow
varying states. Table I depicts the statistical analogies of
observed patterns on RPs (Marwan et al., 2007).
Zbilut and Webber (1992) and, later, Webber and

Zbilut (1994) provided a statistical manner of quantifying
the RPs named as Recurrence Qualitative Analysis
(RQA). RQA is established on a set of statistical measures
that quantify the previously mentioned RP patterns. These
measures are seen in Table II. In brief, RQA is based on
the percentage of recurrent points observed in a time
window of study (%REC), which is an indication of the
correlation observed in the data (Casdagli, 1997). This
hints that the near past holds information on the manner
the system evolves in time.
Based on this, the percentage of recurrent points that

form lines parallel to the main diagonal can be defined as
%DET. %DET is a sign of the deterministic evolution in
which high values of %DET hint a deterministic structure
in the phase-space. Next, the complexity of the observed
deterministic structure is quantified using the ENT
Table I. Statistical analogies of patterns on

RP patterns

Homogeneity Stationary
Fading Non-stati
Disruptions Non-stati
Periodic Patterns Cyclicitie
Single Isolated Points Heavy flu
Diagonal Lines Similar e
Vertical and Horizontal lines/clusters Some sta

Copyright © 2013 John Wiley & Sons, Ltd.
variable which corresponds to the frequency distribution
of the diagonal line lengths and can be related to the
Shannon entropy (Marwan et al., 2007). The more
complex the determinism observed in the system under
study, the higher the ENT value, the higher the
complexity in the time series structure, the more difficult
to predict its short-term evolution. Moreover, the
maximum length of the diagonal line provided by the
Lmax is related to the inverse of the largest positive
Lyapunov Exponent (Eckmann et al., 1987; Zbilut et al.,
1998). Low values of Lmax are an indication of strong
nonlinearity that is characterized by chaotic behaviour.
The joint consideration of such statistics is essential in
analyzing systems with complex dynamics.
From a methodological point of view, the proposed

data analysis approach has been found to be particularly
effective for highlighting hidden structures of the
dynamics of the system under consideration without
imposing any pre-defined constraint to the data. Some
applications include nonlinear analysis of Electroenceph-
alogram signals and heart rate data (Thomasson et al.,
2001, Wessel et al., 2001), financial time series analysis
and stock market indices (McKenzie, 2001; Belaire-
Franch, 2004; Fabretti and Ausloos, 2005), IP-network
traffic (Masugi, 2006), analysis of seismic processes
(Matcharashvili et al., 2008), and road traffic analysis
(Vlahogianni et al., 2006; Vlahogianni et al., 2007;
Vlahogianni et al., 2008).
RQA incorporates two essential modelling features.

The first is that quantification does not depend upon
mathematical transformations such as the Fourier trans-
form which is linear, wavelets, and so on. The second is
that quantification can be carried out in multiple di-
mensions through the method of time delays. This last is
important when treating chaotic-like systems that are
multidimensional and nonlinear (Zbilut, 2000).
IMPLEMENTATION AND RESULTS

The data sets

The proposed methodological framework was applied
to mountainous Mesochora catchment that is the most
upstream sub-catchment of the Acheloos R. catchment.
At the outlet of the catchment, a reservoir has been
constructed (useful capacity of 228 hm3) with a
hydropower plant with installed capacity of 160 MW.
Mean annual discharge is equal to23.2 m3/s. The
Recurrence Plots (Marwan et al. 2007)

Statistical analogies

process
onarity (trend)
onarity; transitional behaviour
s in the process
ctuation in the process; random process
volution of states at different times. Sign of deterministic process
tes do not change or change slowly for some time (laminarity)

Hydrol. Process. (2013)



Table II. Definition of RQA variables

Variable Definition

REC Percent of recurrent points in the recurrence matrix 1
N2

XN

l¼1

Rm;e
i;j

DET Percent of recurrent points in the recurrence matrix that form diagonal lines

XN

l¼1min

lP lð Þ

XN

l¼1

lP lð Þ

ENT Reflects the complexity of the deterministic structure in the system �
XN

l¼lmin

P lð Þ1nP lð Þ

Lmax

Maximum length of the diagonal lines max({li ; i= 1, . . .,N})

P(l): the frequency distribution of the lengths l of the diagonal lines
N: the length of the time window W considered
m: the embedding dimension
e: the distance threshold (Euclidean distance)
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catchment with an area of about 633 km2 lies in the
central-western mountain region of Greece (Figure 1)
and extends nearly 32 km from north (390 50 ) to south
(390 42 ) with an average width of about 20 km. The
mean catchment elevation is 1390 m, while the elevation
from the highest point to the catchment outlet ranges from
2200m to 780 m.
The climate of the area is dominated by cold and wet

winters, as well as by warm and dry summers, and the
soils have been formed from decay of hard limestones and
flysch (clayish, psammitic and mixed). The precipitation
stations are installed within and around the catchment.
The most of the stations are located at the lower half of
the catchment over a range of elevations from 780 to 1160m.
The daily values of precipitation were available at
12 stations for the period of 1972–1992. The precipitation
variability at the stations was determined by conditioning
on atmospheric CPs. The CPs were classified via the
fuzzy-rules-based approach combined with the simulated
annealing algorithm (Bárdossy et al., 2002; Panagoulia
et al., 2006a). The pressure data used were obtained from
the National Meteorological Centre (NMC) grid-point
data set for different windows over Europe with a grid
resolution of 5o�5o. It was found that the 700 hPa data in
the window 20 o–65 o N, 20 oW–50 o E provided the best
results, while the optimal number of CPs defined to
12 based on the automated objective optimization
procedure (Panagoulia et al., 2006a).
The space-time intermittence, the occurrence probabil-

ity of dry days, the rainfall amounts on wet days, as well
as the clustering of wet and dry day occurrence that has
great impacts on the CPs persistence have been taken into
account in mathematical modelling of daily precipitation
adopting the methodology of Stehlik and Bárdossy
(2002). The observed daily precipitation series for all
the available periods were used to estimate the precipi-
Copyright © 2013 John Wiley & Sons, Ltd.
tation coupling parameters, which describe the stochastic
links between CPs and point precipitation data. Using
these attained parameters, the precipitation time series
were simulated (generated) (Panagoulia et al., 2006b). A
spatial covariance function for observed and simulated
time series was assessed. The interpolation of point
precipitation data to a regular grid and subsequently to
nine elevation zones of the whole catchment was carried
out using external drift kriging (Ahmed and de Marsily,
1987). The weighted mean precipitation from all
zones was treated as the mean areal precipitation (the
weighting was proportional to the zone area). Beyond
the CP-dependent observed daily precipitation over the
Mesochora catchment for the period 1972–1992, down-
scaling was carried out for ECHAM4 GCM-generated
CPs. The analysis was based on daily values at the
aforesaid sector 20 o–65 o N, 20 oW–50 o E over the700 hPa
pressure field for 1xCO2 and 2xCO2 climate scenarios in
the corresponding periods 1961–2000 and 2061–2100. The
geo-potential pressure heights (the700 hPa pressure) for
both scenarios were classified by applying the same method
as described above for the observed data,With the estimated
parameters of the stochastic precipitation model for the
observed data, the classified GCM-CPs point precipitation
time series were generated representing the two climate
scenarios (Panagoulia et al. 2008). Subsequently, the zone
and mean areal precipitation for the two climate scenarios
were calculated as described above for the observed data.
From the resulting daily precipitation, we calculated

and further analysed three extreme time series: The first
was the CP-dependent historical maximum daily mean
areal precipitation series calculated in each month for
each year for the period 1972–1992. This series is
depicted in Figure 2. The other two were the maximum
daily mean areal precipitation series in each month
for each year with regards to the two ECHAM4 GCM-
Hydrol. Process. (2013)



Figure 1. The Mesochora catchment, Greece: Topography and hydro-
meteorological stations

Figure 3. Time series of the maximum daily mean areal precipitation
(in mm) in each month for each year for the 1xCO2 and 2xCO2 climate

scenarios corresponding to the periods 1961–2000 and 2061–2100

NONLINEAR DYNAMICS AND RECURRENCE ANALYSIS OF EXTREME PRECIPITATION
generated scenarios of daily CPs for 1xCO2 and 2xCO2

climate scenarios corresponding to the periods 1961–
2000 and 2061–2100 as these are depicted in Figure 3.

Visual inspection of the precipitation patterns

In order to apply the recurrence quantification analysis
(RQA), the available (calculated) series are embedded in
the phase-space. Embedding is accomplished using the
mutual information and the false nearest neighbor
algorithm in order to estimate the optimum values of
the time delay t and the dimension m, respectively.
Figure 2. Time series of the historical maximum daily mean areal
precipitation (in mm) in each month for each year for the period 1972–1992

Copyright © 2013 John Wiley & Sons, Ltd.
Concerning the observed (historical) maximum daily
precipitation, from Figure 4(a) (left), we can observe that
the optimum value for t equals to 1, a value that
corresponds to the first local minimum. Moreover,
Figure 4(a) (right) also shows that the value of m that
corresponds to the lowest percent of false neighbors in the
reconstructed phase-space is 12. Consequently, the
temporal evolution of the maximum daily precipitation
is studied through the vector Pi(t) = (Pt,Pt� 1, . . .,Pt� 12).
The same analysis is conducted for the 1xCO2 and 2xCO2

climate scenarios and the results for the t and m values
reflected from Figure 4(b) and (c) are similar to those of
the observed (historical) maximum daily precipitation.
Figure 5 shows the RPs of the reconstructed series for

the entire time period under study. From the patterns
observed in these graphs, various interesting remarks
arise. First, each month’s historical maximum daily
precipitation series exhibits a nonlinear deterministic
(chaotic-like) behaviour because short lines parallel to the
LOI are reflected in the pattern of the RP (Figure 5a). The
length of these lines varies with time indicating a
changing degree of nonlinearity in historical maximum
daily precipitation series. A different behaviour is
observed in maximum daily precipitation series of
the1xCO2 (Figure 5b) and the 2xCO2 (Figure 5c) climate
scenarios. Square-like patterns and disruptions are evident
in both scenarios. Such features characterize a process
that exhibits strong variability and non-stationary behaviour
that, when compared to those in the RP of the historical
Hydrol. Process. (2013)
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Figure 4. Mutual information with respect to the time delay t and false nearest neighbors algorithm with respect to the dimension m of maximum daily
mean areal precipitation in each month for each year for (a) historical, (b) 1xCO2, and (c) 2xCO2 climate scenarios
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maximum daily precipitation, a stronger nonlinearity
(shorter diagonal lines) is evident.
Table III reports the values of the REC statistic for the

three available time series which are the historical
(observed) series and the series of 1xCO2 and 2xCO2.
RQA analysis is conducted using stable distance
threshold ei equal to 30% of the distances calculated via
the Equation (1). In Table III, the percent change between
the REC values for the 1xCO2 and 2xCO2 and the
historical series is also demonstrated. As can be observed,
there is a downward change in the values of the REC
statistic for the 1xCO2 and 2xCO2 series. This implies
that the recurrence of the maximum precipitation time
series for 1xCO2 and 2xCO2 climate scenarios is
decreased when compared to that of the historical series.
Copyright © 2013 John Wiley & Sons, Ltd.
The reduced recurrence highlights a weaker memory or
stochasticity in the downscaled extreme precipitation
series implying uncorrelated abrupt hydro-meteorological
events such as heavy rainfall episodes and flash floods.
In order to directly compare the three datasets in terms

of their deterministic and nonlinear features, the DET,
ENT, and Lmax statistics are calculated while holding the
recurrence stable (REC=1%). As seen in Table IV, the
values of DET and ENT statistics reflect weaker but less
complex deterministic behaviour of precipitation in the
1xCO2 and 2xCO2 series than that of the historical series.
Moreover, the lower values of Lmax statistic for the
precipitation in the 1xCO2 and 2xCO2 series show
stronger nonlinearity than this of historical series. Under
constant recurrent conditions, the combined values of the
Hydrol. Process. (2013)
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Figure 5. Recurrence plots of maximum daily mean areal precipitation in each month for each year for (a) historical, (b) 1xCO2, and (c) 2xCO2 climate
scenarios

NONLINEAR DYNAMICS AND RECURRENCE ANALYSIS OF EXTREME PRECIPITATION
three statistics support more stochastic, nonlinear and
unpredictable structure in future precipitation (2xCO2
scenario). The hydrological effect of such a precipitation
may be a chaotic occurrence of flood events.

Variability of the statistical characteristics of precipitation
patterns

In order to examine more thoroughly the temporal
behaviour of the precipitation patterns, as well as the
patterns for 1xCO2 and 2xCO2 climate scenarios, an RQA
is conducted in 10-year time window that slides through
Copyright © 2013 John Wiley & Sons, Ltd.
time The choice of the extent of the time window of study
is empirically selected so as to have a significant amount
of patterns to study the evolution of the average daily
maximum precipitation. The results are demonstrated in
Figure 6. The time series for all RQA variables start 10
years after the original time series (Figures 2 and 3) in
order to construct the first precipitation pattern.

The graph of 10-year average of the historical
maximum daily mean areal precipitation sliding over
the study period depicts an increasing trend (Figure 6a).
In contrast, the corresponding graph for the 1xCO2 and
Hydrol. Process. (2013)



Table III. Values of RQA variables for the three available time series

Historical data (Hist) 1xCO2 2xCO2 (1xCO2- Hist.)/Hist % (2xCO2- Hist)/Hist% (2xCO2-1xCO2)/1xCO2%

Mean 31.64 31.86 30.78 0.70 �2.72 �3.39
St. Deviation 20.38 19.58 19.11 �3.93 �6.23 �2.40
REC 0.72 0.56 0.29 �22.22 �59.72 �48.21

Table IV. Values of RQA variables for the three available time series with stable recurrence (REC= 1%)

Historical data (Hist) 1xCO2 2xCO2 (1xCO2- Hist.)/Hist% (2xCO2- Hist)/Hist % (2xCO2-1xCO2)/1xCO2 %

DET 87.92 82.95 83.87 �5.2 �4.2 1.1
ENT 2.94 2.50 2.52 �15.0 �14.3 0.8
Lmax 14.00 12.00 10.00 �14.3 �28.6 �16.7

D. PANAGOULIA AND E. I. VLAHOGIANNI
2xCO2 climate scenarios (Figure 6b and c) shows a more
variable evolution with intensely upward and downward
trends. From the REC statistic, it is evident that historical
precipitation patterns exhibit a decreasing recurrence
structure. From January 1982 and forward, the recurrence
of each month’s maximum daily mean areal precipitation
per year systematically decreases. This is not the case
with 1xCO2 and 2xCO2 climate scenarios whereas the
recurrence is cyclic. In the scenario of 1xCO2, three time
periods are observed. The first period is until 1981 in
which the recurrence increases. The second period is until
January 1989 in which the recurrence significantly
decreases, and in the third (last) period the recurrence
starts to increase. For the 2xCO2 scenario (Figure 6c), the
recurrence is increasing until January 2088 where a
sudden drop is observed. Observing the recurrence in the
three time series, it seems that there is a time period where
meteorological characteristics lose their strong depen-
dence from their past states; for the historical data, this
coincides with the period after 1986 (Figure 6a), whereas
for the 1xCO2 and 2xCO2 scenarios with the periods after
1989 and 2091, respectively. This behaviour is associated
to an acute increase in the values of all studied maximum
daily precipitation time series. This feature is crucial to
the predictability of extreme precipitation, as it denotes
the time period in which the near past information losses
its criticality on the manner by which the system evolves
in time.
A more thorough investigation is attempted through an

examination of determinism evolution in the three
precipitation series (resulting from the historical, and
1xCO2 and 2xCO2 climate scenarios). They all exhibit a
variable determinism evolution which is stronger to the
series of 2xCO2 climate scenarios. If this evolution is
combined with the evolution of the Lmax, that is related to
the inverse of the largest positive Lyapunov Exponent,
then all three time series and especially the 1xCO2 and
2xCO2 reflect a piecewise nonlinear deterministic
structure. In all time series substantial drop to DET value
is observed, pointing to a shift from deterministic to
stochastic structure. This is illustrated by the drop in
1991–1992 for the observed precipitation series, and by a
Copyright © 2013 John Wiley & Sons, Ltd.
similar drop in 1987–1990 for the 1xCO2 series. For the
2xCO2 series, a shift to stochasticity is observed around
2096 and 2099. Apart from these examples, there are
numerous transitions between determinism and
stochasticity observed in 1xCO2 and 2xCO2 series. The
corresponding behaviour of the historical precipitation
patterns seems to be more straightforward.
The shifts between determinism and stochasticity are

also evident in the series for the ENT pattern (Figure 6a,
b, and c). It is observed that drops in DET are related to
drops in ENT. This argument is somehow expected
because transitions between nonlinear determinism and
stochasticity are more likely to be associated with a
decrease in the entropy of the time series.
Another significant element that can be extracted from

the analysed time series concerns the intensity and
duration of several transitions’ patterns. The oscillating
behaviour in the observed data is associated with peaks in
the RQA statistics which reveal periodic-to-periodic or
periodic-to-chaotic transitions that differ in duration and
intensity. A characteristic example is the peaks in the
2xCO2 series observed in 1/2079 and 3/2086 which are
reflected in more acute drops in DET statistic than those
related to the peak observed in 1/2074 (Figure 6c). These
peaks in DET have different characteristics with respect
to the nonlinearity and entropy. Moreover, between the
1/2079 and 3/2086 drops on the determinism in 2xCO2

series, there is a chaotic-to-periodic transition (low to
high Lmax values) which is shifting from low to high
complexity, as indicated by the ENT pattern (Figure 6c).
In this case, the system of the 2xCO2 series behaves as a
nonlinear deterministic one until 3/2086. Then, a change
takes place and the system returns to a state of low
periodicity (Lmax) but with more complex structure than
before (higher ENT value).
It is suggested that the proposed approach may be used

to examine the variability in the statistical characteristics
of hydrological time series. However, this may not
straightforwardly reveal the significance in the differences
of the three time series (historical, 1xCO2, and 2xCO2)
which are explored through their statistics patterns
evolution. Resampling strategies could be implemented
Hydrol. Process. (2013)
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Figure 6. Time series of the maximum daily mean areal precipitation (in mm) in each month for each year for (a) historical, (b) 1xCO2, and (c) 2xCO2

climate scenarios for 10-year time window, as well as the REC, DET Lmax, and ENT statistics patterns
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in order to assess the significance of RQA statistics or to
compare the three univariate time series.
CONCLUSIONS

In the literature, hydro-meteorological time series appli-
cations have systematically supported the complex and
non-stationary nature of precipitation patterns. However,
these have usually failed to provide a comprehensive
statistical characterization of both temporal evolution and
observed transitions, which is necessary for the process
adopted for model selection and prediction. In the present
paper, a statistical framework based on nonlinear
dynamics theory and recurrence analysis of dynamical
Copyright © 2013 John Wiley & Sons, Ltd.
systems has been proposed in order to quantitatively
identify the temporal characteristics of extreme (maxi-
mum) daily precipitation series in each month for each
year for present and 1xCO2 and 2xCO2 climate scenarios.
Recognizing the peculiarities that are induced in

the obtained maximum daily mean areal precipitation in
each month for each year (historical and two climate
scenarios) by the employed GCM-generated CPs and
approaches for estimation and modelling of areal precipi-
tation, the summarized results of the paper are as follows:

1. A substantial difference exists between the extreme
(maximum) daily mean areal precipitation series in each
month for each year patterns for historical and two climate
scenarios evaluated.
Hydrol. Process. (2013)
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2. The historical patterns exhibit decreasing recurrence
with time that is not the case for the two climate
scenarios examined where recurrence is cyclic.

3. A variable nonlinear determinism exists in all datasets
and especially for 1xCO2 and 2xCO2 climate scenarios.

4. Periodic-to-chaotic and chaotic-to-chaotic transitional
patterns are evident for all climates presenting though
differences in terms of duration and intensity. The
strongest transitions are noted to the 2xCO2 scenario.

From the methodological standpoint, the proposed
approach was based on methods that are able to quantify
the statistical characteristics of the time series by a
multidimensional and nonlinear system without depending
onmathematical linear or nonlinear transformations, such as
the Fourier transform, wavelets, and so. Moreover, the
above mentioned characteristics of time series evolution
may have significant implications to future water resources
systems design and planning underling an extraordinary
situation of shifts between droughts and floods conditions.
The analysis presented helps to statistically discern the
temporal patterns of the precipitation phenomena under
investigation and characterize the transitions observed.
These aspects of time series analysis are essential in the
process of prediction and could be used to detect basic
statistical characteristics of the time series, such as on which
time period the near past information losses its criticality on
the manner the system evolves in time, and, consequently
help towards proper selection of a prediction model. To this
end, we could say that the characteristics of the GCM-
downscaled time series for future time horizon may point to
the need to develop different predictionmodels than those of
historical ones for predicting maximum daily mean
areal precipitation.
It should be noted, that the developedmethodology is novel

for the hydro-meteorological domain and the results presented
herein should be considered preliminary. As such, several
improvements could be implemented in the methodology,
such as resampling strategies in order to judge the significance
of RQA statistics or to compare two univariate time series
under the developed or other relative (classical) methods, e.g.
spectral analysis, wavelet analysis, cascade analysis, etc.
Future research inRQA focused onGCM-downscaled outputs
could offer further insights in hydro-meteorological predictions
for an evolving climate. Finally, ongoing research is focused
on developing a pattern-based prediction scheme that would
incorporate spatiotemporal patterns and would select the
appropriate modelling strategy based on the short-term
statistical characteristics of precipitation series.
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APPENDIX

The ECHAM4 atmospheric general circulation model has
been developed at theMax Planck Institute forMeteorology
(MPI), Hamburg, Germany. The model is a spectral
transform model with 19 atmospheric layers, and the results
used here derived from experiments performed with spatial
resolution T42. Themodel structure of ECHAM4, including
Copyright © 2013 John Wiley & Sons, Ltd.
dynamics and numerics, is documented in detail in
Roeckner et al. (1996). The experiment with CO2

concentrations for the period 1961–2000 is 346 ppmv
corresponding to 1xCO2 and for the period 2061–2100 is
748 ppmv corresponding to 2xCO2 (Monika Esch,
Max Planck Institute for Meteorology, Atmosphere in the
Earth System).
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