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Abstract An algorithm coupling linear least squares and simplex optimization (LLSSIM) is used to 
examine the ability of a three-layer feedforward artificial neural network (ANN) to simulate the high 
and low flows in various climate regimes over a mountainous catchment (the Mesochora catchment in 
central Greece). The plot of the long-term annual catchment pseudo-precipitation (rain plus snowmelt) 
simulated by the snow accumulation and ablation model (SAA) of the US National Weather Service 
(US NWS) showed trends of three climatically distinct periods, described by clearly descending, rising 
and moderately descending segments in pseudo-precipitation. The ANN model was calibrated for each 
of the three climate types and each was validated against the others. A set of statistical measures and 
graphs adapted for high and low flows showed the robustness of the ANN model under various climates 
and transient conditions. The ANN model proved capable of simulating well the daily high and low 
flows when it is calibrated for increasing pseudo-precipitation and validated for moderately decreasing 
pseudo-precipitation. For the entire period, the ANN model provided a better simulation of high and low 
flows than the conceptual soil moisture accounting (SMA) model of the US NWS, which was also 
employed in this study. Because the ANN is not a physically-based model, it is by no means a substitute 
for the SMA model. However, it is concluded that the ANN approach is an effective alternative for daily 
high- and low-flow simulation and forecasting in climatically varied regimes, particularly in cases where 
the internal dynamics of the catchment do not require an explicit representation. 
Key words artificial neural network; conceptual modelling; high flows; linear least squares; low flows; 
simplex optimization  

Réseaux de neurones artificiels et crues et étiages en régimes climatiques variés 
Résumé Un algorithme couplé de moindres carrés linéaires et d'optimisation simplex (LLSSIM) a été 
utilisé afin d’examiner l’aptitude d’un réseau de neurones artificiel (RNA) sans rétroaction à trois 
niveaux à simuler les crues et les étiages selon les régimes climatiques variés d’un bassin versant 
montagneux (le bassin versant de Mesochora en Grèce centrale). Les graphiques de la pseudo-
précipitation (pluie plus fonte nivale) à long terme, simulée par le modèle d’accumulation et d’ablation 
de la neige (SAA) du service national météorologique des Etats Unis (US NWS), ont révélé les 
tendances de trois périodes climatiques distinctes, correspondant à des segments de décroissance forte, 
croissance et décroissance modérée. Le modèle RNA a été calé pour chacun des trois types climatiques 
et validé par rapport aux deux autres. Un ensemble d’indices statistiques et de graphiques adaptés aux 
crues et aux étiages a montré la robustesse du modèle RNA selon différents climats ainsi qu’en 
conditions transitoires. Il est apparu que le modèle RNA est apte à bien simuler les crues et les étiages 
journaliers lorsqu’il est calé en période de pseudo-précipitation croissante et validé en période de 
pseudo-précipitation modérément décroissante. Pour la période entière, le modèle RNA a donné de 
meilleures simulations de crues et d’étiages que le modèle conceptuel de prise en compte de l’humidité 
du sol (SMA) de l’US NWS qui a également été utilisé dans cette étude. Le modèle RNA ne peut pas 
être substitué au SMA puisqu'il n'est pas à bases physiques. Il apparaît cependant que l’approche RNA 
est une alternative efficace pour la simulation et la prévision des crues et des étiages journaliers en 
régimes climatiques variés, en particulier lorsqu’aucune représentation explicite des dynamiques 
internes au bassin versant n’est requise.  
Mots clefs réseau de neurones artificiel; modélisation conceptuelle; crues; moindres carrés linéaires; étiages; 
optimisation simplex 
 
 
INTRODUCTION 
 
The natural climatic variations including droughts, low river flows, and floods are of 
great relevance to water resources system design and operation. For some regions such 
extreme events have been responding to large-scale climatic forces (Trenberth et al., 

 
Open for discussion until 1 February 2007  Copyright © 2006 IAHS Press 



Dionysia Panagoulia 
 
 

 
 
Copyright © 2006 IAHS Press  

564 

1988; Nichols, 1989; Richey et al., 1989; Eltahir, 1996), thus providing a physical 
explanation for the Hurst phenomenon (Hurst, 1951; Mandelbrot & Wallis, 1968; 
Klemes, 1974). Numerous other studies have established links between natural climate 
variability and hydrological variables on monthly and annual time scales (e.g. Lins, 
1985; Redmond & Koch, 1991; Kahya & Dracup, 1993; Dettinger & Cayan, 1995; 
Lall & Mann, 1995). Other investigations have considered the issue of non-
randomness in hydrological extremes (e.g. Wall & Englot, 1985; Booy & Lye, 1989; 
Lisi & Villi, 1997). 
 Since the assumption of randomness may be clouded by natural climate variability, 
for specific problems (e.g. predicting the impacts of climate change on hydrological 
extremes), the relationship between hydrological extremes and climate must be investi-
gated. In this respect, two major questions have arisen: the first concerns the detection 
of climate variability in the existing records of extreme hydrological events and the 
possible record decomposition into high and low flows, and the second concerns the 
ability of models to capture such extreme values.  
 Although a serious obstacle to answering the first question is the shortness of the 
hydrological records, an effective means for testing whether there have been changes in 
hydrological extremes is to use the regional frequency analysis, or simply to search for 
trends in meteorological records. For example, Bradley (1998) used a regional frequency 
analysis approach to indicate the non-randomness (due to climatic variability) in annual 
maximum precipitation for 43 stations over 42-year period (1949–1990) in the Southern 
Plains of the USA. Bradley applied statistical tests, such as Kendall’s correlation 
coefficient (Hirsch et al., 1991, 1993), the S statistical test and the moving average test, 
to identify trends and non-randomness in annual quantile series.  
 In other related investigations, Mimikou et al. (1991) and Panagoulia (1992b) 
explored the plot of the long-term annual precipitation and pseudo-precipitation (rain 
plus melt) over the medium-sized mountainous catchment of Mesochora, in central 
Greece, for a 15-year period (1972–1986). The exploration of the long-term annual 
pseudo-precipitation by Panagoulia (1992b) revealed three segments with trends of 
varied climate conditions: the first (1972–1977) with a clearly decreasing pseudo-
precipitation, average annual value of 1738 mm and lowest of 1252 mm (in the year 
1977); the second (1978–1983) with an increasing pseudo-precipitation, average 
annual value of 2067 mm and highest value of 2460 mm (in the year 1979); and the 
third (1984–1986) with a moderately decreasing pseudo-precipitation, average annual 
value of 1912 mm, highest value of 2021 mm (in the year 1985), and lowest value of 
1890 mm (in the year 1986). To gain more insight into these results, this study makes 
an intercomparison of the high and low flows of these climatically varied sub-periods 
for observed and modelled flows.  
 Considerable reported studies exist on the comparison of the two major approaches 
for modelling rainfall–runoff (R–R) processes, i.e. the conceptual (physical) modelling 
and the system-theoretic (or black-box) modelling (e.g. Gupta, 1984; Young & Wallis; 
1985; Singh, 1988). The conceptual rainfall–runoff (CR–R) models usually incor-
porate simplified schemes of physical laws and are generally nonlinear, time-invariant 
and deterministic, with parameters that are representative of watershed characteristics. 
The most well known CR–R models, such as the Stanford IV model (Crawford & 
Linsley, 1980), the Sacramento soil moisture accounting (SMA) model of the US 
National Weather Service (Burnash et al., 1973), the Tank model (Sugawara, 1974), 
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the NAM (Nielsen & Hansen, 1973) and the ARNO model (Todini, 1988), have been 
compared to verify their ability to reproduce the measured flow rates, the easiness of 
calibration and estimation, the performance of several sub-processes (e.g. interflow, 
infiltration, evapotranspiration), as well as their physical interpretation (Franchini & 
Pacciani, 1991; Tingsanchali & Gautam, 2000). Although these models are valid in 
capturing the important features of watershed responses, such as the beginning of the 
rising limb of the hydrograph and the flow volume, they present some discrepancies 
related to their ability to reproduce extreme flows (especially high flows). In addition, 
the CR–R models are interpolative, i.e. when they are calibrated to a given set of 
hydrological signals (time series), there is no guarantee that the conceptual models can 
predict accurately when they are used to extrapolate beyond the range of calibration or 
verification experience (Gan & Burges, 1990; Panagoulia, 1992b).  
 In the system-theoretic approach, the models connect inputs and outputs without 
detailed consideration of the internal structure of the physical processes. The most 
common linear time series models are the ARMAX (auto-regressive moving average 
with exogenous inputs) developed by Box & Jenkins (1976). Although these models 
have provided satisfactory predictions in many fields (e.g. Bras & Rodriguez-Iturbe, 
1985; Salas et al., 1980), their lack of nonlinearity in the transformation of rainfall to 
runoff often hampers their performance. This is why the coupling of deterministic 
models, such as the TANK and NAM, with the ARMA stochastic model (Box & 
Jenkins, 1976) applied, for example, to a river basin in Thailand (Tingsanchali & 
Gautam, 2000), improved significantly the flood forecasting capabilities of the models, 
especially the time-to-peak and rising limb of the hydrograph.  
 More recently, the use of artificial neural networks (ANNs) for nonlinear 
theoretical modelling has shown great potential. An ANN is capable of representing 
arbitrarily complex, nonlinear processes that relate inputs to outputs in a wide variety 
of fields (Vemuri & Rogers, 1994). The ANNs have proved to be an effective and 
efficient means to model R–R processes in the case where explicit knowledge of the 
internal hydrological processes is not required. The ANN modelling is widely reported 
in hydrological literature (Raman & Sunilkumar, 1995; Maier & Dandy, 1996; Loke et 
al., 1997; Zhang & Stanley, 1997; Brion & Lingireddy, 1999; Abrahart & See, 2000; 
Tingsanchali & Gautam, 2000; Kim & Barros; 2001, Hu et al., 2001; Wilby et al., 
2003; Cigizoglu, 2003; Campolo et al., 2003; Tomasino et al., 2004; Hu et al., 2005; 
Giustolisi & Laucelli, 2005). 
 Although ANNs have already been shown to produce river flow predictions well 
compared to conventional models (Crespo & Mora, 1993; Karunanithi et al., 1994; 
Hsu et al., 1995; Abrahart & Kneale, 1997; Dawson & Wilby, 1998; Abrahart & See, 
2000; Tingsanchali & Gautam, 2000), their ability to capture high and low flows is 
restricted to the research environment (Minns & Hall, 1996), and they often 
overestimate or underestimate high and low flows (Dawson & Wilby, 1998; Campolo 
et al., 1999; Karunanithi et al., 1994).  
 Reasons for this inability have been discussed in the literature. For example, 
Dawson & Wilby (1998), and Campolo et al. (1999) suggested that the under-
estimation of peak flows could be attributed to a lack of information provided to the 
network, such as the antecedent rainfall. Karunanithi et al. (1994) suggested that the 
problem could be alleviated by including more high-flow patterns in the training data 
sets, while Hsu et al. (1995) proposed log-transformations of flow values to reduce the 
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gap between the high- and low-flow conditions. Minns & Hall (1996, 1997) empha-
sized the need to exercise care when scaling the calibration data prior to ANN training. 
Scaling the calibration data within the range [0.1–0.9] (Hsu et al., 1995; Campolo et 
al., 1999) or [0.2–0.8] showed that the standardization using these reduced ranges bore 
little improvement (Minns & Hall, 1997). 
 Model generalization in itself is another important consideration in predicting high 
and low flows. A standard procedure is cross-validation, whereby another set of data is 
used to monitor the generality of the model during training. The study by Imrie et al. 
(2000), revealed that the generalization beyond the calibration range depends on the 
use of specific functions with respect to inherent hydrological properties of the 
catchment and calibration data. However, the aforementioned issues concern the 
modelling of the absolute extreme flows (high or low), rather than the identification of 
extreme events in climatically different rainfall–runoff (R–R) processes.  
 In this study, an attempt is made to explore the validity of ANNs to simulate high 
and low flows considered as above-mean and below-mean flows (Hsu et al., 1995) in a 
climatically-varied environment beyond their calibration experience. The adopted 
approach is based on the philosophy of Klemes (1982, 1985) concerning the suitability 
of simulation models to predict the effects of climatic variability or change by using 
the dynamics of a differential split-sample test. Here, the various climates have been 
revealed, as reported previously, in the three segments of the long-term annual “rain 
plus melt” over the Mesochora catchment in central Greece. The “rain plus melt” has 
been produced from the implementation over the catchment of the snow accumulation 
and ablation model (SAA) of the US National Weather Service (US NWS).  
 The algorithm of three-layer feedforward ANNs coupled with the linear least 
squares and the nonlinear simplex (LLSSIM) optimization (Hsu et al., 1995) was 
adopted here. The ANN model was calibrated (trained) for each of the three sub-
periods and validated on the other two. The physically-based conceptual soil moisture 
accounting (SMA) model of the US NWS was also employed for comparison 
purposes, since the SMA has been tested extensively in the examined catchment 
(Panagoulia, 1992b; Panagoulia & Dimou, 1997a). The SMA was also used for impact 
assessment of climate variability and change on river flows at daily and sub-daily time 
steps in the study catchment and elsewhere (e.g. Nemec & Schaake, 1982; Lettenmaier 
& Gan, 1990; Panagoulia, 1991, 1992a; Panagoulia & Dimou, 1997a).  
 The choice of the specific ANN model used here is supported by the literature (e.g. 
Campolo et al., 1999; Imrie et al., 2000), since it is more effective and efficient than 
the widely used back-propagation algorithms. Furthermore, the model has been shown 
to capture the global or near-global solutions of a problem with fewer function 
evaluations. Moreover, the LLSSIM algorithm incorporates an automatic procedure for 
expansion of the network size, which can result in a rapid model development without 
user intervention.  
 In the remainder of the paper, a brief overview is given of the architecture of the 
three-layer feedforward ANN modelling and the LLSSIM algorithm for training the 
ANN model weights. Next, the ANN, SAA and SMA model identification is briefly 
presented. Subsequently, the ANN-LLSSIM methodology is examined to simulate the 
high and low flows under various climate conditions over the specified catchment. 
Adapted global statistical measures and graphical displays are used to quantify model 
performance and differences over the calibrated/validated sub-periods. The SMA 
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model results are used for comparison purposes for the entire study period. Finally, the 
analysis of the results and the conclusions are presented.  
 
 
NEURAL NETWORKS AND LLSSIM TRAINING ALGORITHM 
 
Several ANN structures, e.g. feedforward networks, self-organizing feature maps, 
radial basis networks etc., have been proposed in the literature and their properties 
extensively studied. In this paper, a feedforward ANN is used (Rumelhart et al., 1986) 
for reasons of improved performance. A typical three-layer feedforward ANN is 
shown in Fig. 1 (Hsu et al., 1995). Each layer consists of nodes (processing elements) 
that are connected to other nodes of neighbouring layers. Thus, the first layer (input 
layer) is connected directly to the input variables xi(p) and to hidden layer nodes; the 
second layer (hidden layer) is connected to both the input and output layer nodes; 
while the third layer (output layer) is connected to hidden layer nodes and to the output 
variables zk(p).  
 
 

 
Fig. 1 Typical three-layer feedforward neural network. 

 
 
 A typical node j, is shown in Fig. 1. It receives incoming signals xi from each node 
of the previous layer. Within node j, a linear combination of the incoming signals xi is 
formed, with weights wji, to produce the effective incoming signal sj: 

∑
=

=
on

i
ijij xws

0
 (1) 

Still within node j, the signal sj is passed through a nonlinear activation function 
(sigmoid function) to produce the output yj of the node. The sigmoid function is a 
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smooth, monotonically increasing and bounded function. In this study, the logistic 
function: 
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is used as a sigmoid function. Thus the outputs yj(p) and zk(p) of hidden layer node j 
and output node k, respectively, can be expressed as follows: 
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where xi(p) is the input of input node i, wh
ji  is the connection weight from input node i 

to hidden node j, wo
ki  is the connection weight from hidden node j to output node k, n0 

is the number of input nodes and nh the number of hidden layer nodes. 
 ANNs of this type can be trained to approximate a given input–output relationship. 
The objective of network training is to choose optimal connection weights wh

ji and wo
ki 

so that network predicted outputs zk(p) are a best fit to the measured output values, say 
tk(p). In the present case, where the rainfall–runoff relationship is to be approximated, 
a single output value t(p) (runoff) is measured; hence, the approximating ANNs must 
have a single output node with output value z(p) given by equation (4) with the index k 
dropped. In order to train the network, rainfall–runoff measurements are organized in 
m sets of input–output patterns (indexed by p), each having n0 inputs [x1(p), 
x2(p), …, xn0(p)]T and a single target value (runoff), t(p). Training the ANN is equi-
valent to minimizing the following error function: 
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with respect to the weights  and . h
jiw o

jw
 As regards the LLSSIM network algorithm (Hsu et al., 1995) that was adopted here, 
it partitions the weight space into two groups, namely input-to-hidden layer weights wh

ji 
and hidden-to-output layer weights wo

j, employing a different training strategy for each 
group. Given a set of values for the input-to-hidden layer weights wh

ji, the optimal values 
for hidden-to-output weights are determined explicitly by using linear least squares 
(Scalero & Tepedelenlioglu, 1992). With respect to the input-to-hidden layer weights 
wh

ji, the optimization is performed using the nonlinear simplex algorithm of Nelder & 
Mead (1965). Thus the nonlinear part of the search is performed in a reduced 
dimensional space (input-to-hidden layer weights alone), resulting in acceleration of the 
training process. Improved global search characteristics are also exhibited by the 
nonlinear simplex method, due to its use of multiple points at each iteration and its 
ability to overcome minor local minima. 
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 A brief description of the LLSSIM method follows. Assume that a set of values for 
the input-to-hidden layer weights wh

ji is given. Then the hidden node outputs yj(p) can 
be calculated from equation (3). Now F(wh,wo) is a function of hidden-to-output 
weights wo

j alone; however, the optimization problem to be solved is still a problem of 
nonlinear least squares. In order to obtain explicit optimal values for hidden-to-output 
weights, the LLSSIM method defines an approximately equivalent problem of linear 
least squares. Specifically: (a) the target values t(p) are transformed backward through 

the logistic function of the output node, i.e. ⎟⎟
⎠
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t(p), and (b) a new error function F1(wo) is defined in terms of the transformed target 
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 Now, minimization of F1(wo) with respect to hidden-to-output weights wo
j is a 

problem of linear least squares whose optimal solution  is 
explicitly obtained by solving the following set of linear equations: 
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 Of course, both the hidden node outputs yj(p) and the solution  of equation (7) 
depend on the input-to-hidden layer weights wh; therefore, one writes  for the 
optimal solution of equation (6). 
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 The nonlinear part of the LLSSIM method can now be derived by replacing the 
optimal hidden-to-output weights , obtained from equation (7), into equa-
tion (5): 
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 The error function  now depends only on input-to-hidden layer weights wh 
and the resulting nonlinear least squares problem is solved by the Nelder & Mead 
(1965) in this reduced dimensional space. 

)(~ hwF

 
 
RUNOFF MODELLING IN CLIMATICALLY VARIED REGIMES  
 
The Mesochora catchment, drained by the Acheloos River (Fig. 2), was selected for 
performance exploration of a three-layer feedforward ANN model under climatically 
varied regimes. As discussed, the SMA model of the US NWS is also considered in 
this study for comparison purposes. The basic criterion for the catchment selection was 
its geographical and hydrological significance due to the partial diversion of the river 
for irrigation and hydropower purposes. The Mesochora catchment, with an area of 
633 km2, lies in the central mountain region of Greece and extends nearly 32 km from  
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Fig. 2 The Mesochora catchment area and hydrometeorological stations. 
 
 
north (39°42′) to south (39°25′) with an average width of about 20 km. The climate in 
the Mesochora catchment is elevation-dependent, with hot summers and mild winters 
at low elevations and mild summers and cold winters at high elevations. Due to the 
high mean elevation (1390 m a.s.l.), the catchment hydrology is controlled by snowfall 
and snowmelt. The catchment mean annual precipitation (weighted average over eleva-
tion bands) is about 1900 mm and the mean annual runoff is 1170 mm (or 23.5 m3 s-1). 
The annual cycle of rainfall (rain plus melt) and observed runoff of the catchment for the 
15-year study period is shown in Fig. 3, reflecting a seasonal hydrological cycle with 
low discharge values during the summer and much higher values during the winter.  
 Fifteen consecutive years of daily rainfall (rain plus melt generated from SAA 
model) and runoff data for the Mesochora catchment were selected for model develop-
ment and testing. As a first step, the first five years of data (1972–1976) were used for 
model calibration (training), while the remaining ten years (1977–1986) were used for  
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(a) 

(b) 

Fig. 3 Mesochora catchment long-term annual cycles in: (a) pseudo-precipitation and 
(b) runoff. 

 
 
ANN model validation. The whole period (1972–1986) was used for SMA model 
calibration. This process was used to select the best ANN model with respect to the 
number of nodes in the input, output and hidden layers. Training and calibration 
periods were long enough to extract representative results of overall catchment 
behaviour, compared to the study by Hsu et al. (1995), in which the identification 
period was only one wet year. The selected ANN model was tested for its ability to 
perform under different climate conditions. The plot of the long-term annual pseudo-
precipitation (rain plus melt) over the catchment (Fig. 4) reflects three segments with 
varying climate trends, as discussed in the introduction. The ANN model was cali-
brated for each of the three segments and validated on the other two. In reality, the first 
segment includes the major portion of data used for ANN model determination 
(identification); thus, with a small tolerance, the period for ANN identification and that 
for model calibration on the clearly descending segment of pseudo-precipitation should 
be assumed identical. In this way, the calibrated ANN model was examined for climate 
transferability according to the relative principles of Klemes (1985). For completeness 
of the study, both the ANN and SMA models were compared for the same time 
horizon (15-year period). 
 A flood or low-flow forecasting model can offer detailed knowledge when it 
operates in a sub-daily time step, such as 4, 12, or 18 hours with current (t = 0 h) and 
antecedent (t = –1, –2, …–n h) conditions and/or when it includes meteorological multi- 
step forecasting (e.g. Imrie et al., 2000; Tingsanchali & Gautam, 2000; Abrahart & See, 
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Fig. 4 Long-term annual pseudo-precipitation (rain plus melt) of the Mesochora 
catchment.  

 
 
2000; Kim & Barros, 2001). Floods and low flows (occurrences, duration, magnitude, 
threat scores, etc.) are examined after a threshold is defined (e.g. Panagoulia & Dimou, 
1997b; Kim & Barros, 2001). In this study, the daily time step in the modelled time 
series was kept for exploration of high and low flows at a preliminary stage in investiga-
tion of model transferability for high/low flows to varied climate conditions. It should be 
noted that, despite the evidence of inter-annual variability in runoff (as seen in Fig. 3), 
the epoch data were not pre-classified into low or high values for ANN model calibra-
tion or validation. This approach has been adopted by other authors (e.g. See et al., 
1997) and is a topic requiring further research for different climates.  
 Regarding the evaluation of neural network solutions, the use of “goodness-of-fit” 
statistics can give no real indication of what the network is getting right or wrong. The 
neural network solutions are designed to minimize global measurements (Abrahart & 
See, 2000). Furthermore, global evaluation statistics do not provide specific informa-
tion of model performance at high and low flow levels. Thus, four global statistical 
measures were adapted for flows above and below the mean daily flow along with 
graphical displays. These are: (a) the root mean squared error (RMSE), defined as the 
sum of the squares of the differences of the forecasts and observations; (b) percentage 
volume in errors (bias) (%VE), defined as the differences between observed and simu-
lated hydrographs; (c) the percentage error in peak (%MF), defined as the difference 
between forecasts and observations; and (d) the correlation coefficient (CORR), which 
describes the strength of the linear relationship between forecasts and observations.  
 Finally, bearing in mind that no comparison would be complete without a plot of 
observed and forecast hydrograph (Green & Stephenson, 1986), the hydrographs of 
observed vs modelled flows and their associated scatter plots were examined. 
 
 
ANN MODEL IDENTIFICATION 
 
A first step in building an ANN model for the rainfall–runoff relationship is data 
normalization. Since sigmoid functions are used in ANN models, the hydrological data 
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)

should be normalized to the range [0,1]. Indeed, in this study, the rainfall data were 
normalized to the range [0,1] before applying the LLSSIM algorithm. However, 
following Hsu et al. (1995), the runoff data series was normalized to the range  
[0.1, 0.9] in order to avoid the problem of output signal saturation, sometimes encoun-
tered in ANN applications (Smith, 1993).  
 Next, a nonlinear discrete-time dynamical model is assumed for the rainfall–runoff 
process. Specifically (see also Hsu et al., 1995), it is assumed that, at time t, the ANN 
output z(t) is related to past rainfall measurements r(t – j), j = 1, …, na and to past 
runoff measurements ( jtt −~ , j = 1, …, nb, i.e.: 

( ) )()(~,),2(~),1(~),(,),2(),1()(~ tenttttttntrtrtrgtt ba +−−−−−−= LL  (9) 

where the unknown nonlinear mapping g(⋅) is to be approximated by the ANN model 
by minimizing the mapping error e(t). Here na and nb are the numbers of past input and 
output measurements, respectively, contributing to the current output. Thus at time t 
the input vector  is 
presented to the input layer nodes of the ANN. This input vector together with the 
current output (runoff) measurement 

T
ba nttttttntrtrtrp )](~,),2(~),1(~),(,),2(),1([)( −−−−−−= LLx

)(~)(~ ttpt =  constitutes the pth input–output 
training pattern for the ANN model. 
 The notation ANN(na, nb, nh) is used henceforth to denote the above model 
structure, where na + nb = n0 is the number of nodes in the input layer, nh is the number 
of nodes in the hidden layer, and the output layer consists of a single node. Thus an 
ANN model is identified by selecting values for na, nb and nh, and by using the 
LLSSIM algorithm in order to estimate network weights wh

ji and wo
j which minimize 

the prediction error function F(wh,wo) of equation (5).  
 In the current study, several combinations of na, nb and nh were examined in order to 
make a preliminary assessment of the suitability of ANN models to represent the 
rainfall–runoff process in mountainous catchments. Selected results of this preliminary 
exploration are given in Table 1; these results are fully discussed in Panagoulia & 
Maratos (2003a,b). The same table gives a summary of the results for three repre-
sentative combinations (na, nb, nh) listed as ANN models A, B and C, followed by a 
parenthesis indicating the (na, nb, nh) combination. From the statistical performance of 
the ANN models calibrated for a five-year period and validated for the remaining ten-
year period, respectively, as reflected in Table 1, and from the corresponding graphs 
presented in Panagoulia & Maratos (2003a,b) it is deduced that the ANNC(3,5,4) model 
performs best. The performance of this model, subsequently denoted as ANNI with 
I = 0, 1, 2, 3 denoting the calibration/validation period, is further investigated in order to 
assess the model ability to represent high and low flows in varied climate conditions.  
 
 

Table 1 Calibration and validation statistics for the five-year calibration study. 

RMSE %VE  %MF CORR No. Model 
Calibration Validation Calibration Validation Calibration Validation Calibration Validation 

1 ANNA(2,3,3) 16.785 18.170 –2.267 –2.019 –67.300 –71.100 0.8165 0.8411 
2 ANNB(5,4,3) 13.190 16.277 –1.410 –1.790 –23.800 –53.700 0.8895 0.8730 
3 ANNC(3,5,4) 12.440 16.185 –1.230 –1.480 –3.200 –57.210 0.9100 0.8750 
RMSE: root mean square error; %VE: percentage volume error; %MF: percentage error of maximum flow; and 
CORR: correlation statistic.  
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SAA AND SMA MODEL IDENTIFICATION 
 
The SAA model was developed by Anderson within the US National Weather Service 
Hydrologic Research Laboratory (Anderson, 1973) and has been tested in a number of 
mountainous catchments in the western USA, Mediterranean countries and elsewhere. 
This is a deterministic, continuous conceptual model consisting of a set of mathe-
matical formulations, which explicitly describe the change in storage of water and heat 
in the snowpack, based on data for precipitation and temperature at 6-hourly intervals. 
 It has been widely used for snowmelt purposes (e.g. Anderson, 1973; Lettenmaier 
& Gan, 1990; Panagoulia, 1992a,b; Georgakakos & Bae, 1994). In this study, the SAA 
model is applied over three elevation bands and is calibrated concurrently with the 
SMA rainfall–runoff model, which accepts as input the “rain plus melt water” provided 
from the SAA model. 
 The SMA model was developed in the US National Weather Service (US NWS) 
Sacramento, California River Forecast Center by Burnash et al. (1973) and forms the 
basis of the US NWS catchment hydrological response model for operational fore-
casting. At first it was used for the Sacramento basin simulation, and since then it has 
been widely used (e.g. Burnash et al., 1973; Peck, 1976; Kitanidis & Bras, 1980a,b; 
Lettenmaier & Gan, 1990; Panagoulia, 1992a,b). This is a deterministic, lumped 
parameter, conceptual model, which explicitly accounts for the flux of soil moisture 
between five storage zones. Transfer of water between the soil moisture zones controls 
the runoff response. Direct runoff from impervious areas and water surfaces, surface 
runoff, interflow from the upper zone free water and the primary and supplemental 
baseflows from the lower zone generate streamflow. The inputs to the SMA model are 
the “rain plus melt” provided by the SAA model and the potential evapotranspiration. 
In this study, the “rain plus melt” was the average quantity weighted over three 
elevation bands of the catchment. The streamflow generated from the SMA model was 
included in the study. The coupled models were calibrated manually by using the 15-
year period that has a sufficient length for calibration of conceptual models under 
plentiful data conditions. 
 
 
RESULTS AND DISCUSSION 
 
In this section, the performance of the ANN (3,5,4) model is further investigated for 
high and low flows in periods with trends of various climate conditions. This network 
model, henceforth denoted as ANN0, ANN1, ANN2 and ANN3, relates na = 3 past 
rainfall measurements and nb = 5 past flow measurements to the current output that has 
nh = 4 hidden nodes. The ANN0 model is calibrated for the entire 15-year period. The 
ANN1, ANN2 and ANN3 models are calibrated and validated for climatically varied 
conditions, namely, the clearly descending period from 1972 to 1977, the rising period 
from 1978 to 1983, and the moderately descending period from 1984 to 1986, as seen 
in Fig. 4. The ANN1 model is calibrated for the first six years (1972–1977) and is 
validated over: (a) the six following years (1978–1983), denoted as validation period A 
in Table 2 and graphs; and (b) the last three years (1984–1986), denoted as validation 
period B in Table 2 and graphs. The ANN2 model is calibrated for the last three years 
(1984–1986) and is validated over: (a) the six first years (1972–1977), denoted as vali- 
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Table 2 Calibration and validation statistics for above- and below-mean flows under climatically varied periods 
(clearly descending, rising, and moderately descending). 

Above-mean flow: Below-mean flow: Model Period 
RMSEA %VEA %VFA CORRA RMSEB %VEB %VFB CORRB 

Hydrological Calibration:  
1–5479 days 

 
37.3100 

 
–4.4200 

 
24.3822 

 
0.6853 

 
8.2300 

 
21.1200 

 
0.1877 

 
0.7028 

ANN0 Calibration:  
1–5479 days 

 
23.5211 

 
–3.7468 

 
–41.9630 

 
0.8493 

 
3.8388 

 
  6.6412 

 
40.4652 

 
0.8737 

Calibration:  
1–2192 days 

 
14.2780 

 
–2.9530 

 
–4.3890 

 
0.8953 

 
2.1975 

 
21.9310 

 
–60.7480 

 
0.6222 

Validation A:  
2193–4383 days 

 
22.2960 

 
–3.4480 

 
–38.4130 

 
0.8515 

 
6.4690 

 
28.5970 

 
–17.6700 

 
0.3689 

ANN1 

Validation B:  
4384–5479 days 

 
15.2970 

 
–2.7000 

 
–25.6230 

 
0.9087 

 
1.8220 

 
39.4960 

 
14.9070 

 
0.4243 

Calibration:  
4384–5479 days 

 
10.7090 

 
–2.4790 

 
0.3210 

 
0.9562 

 
2.1600 

 
35.9020 

 
–9.8600 

 
0.2401 

Validation A:  
1–2192 days 

 
20.4220 

 
–4.5870 

 
–41.3280 

 
0.7714 

 
4.2710 

 
28.8030 

 
1.4790 

 
0.3373 

ANN2 

Validation B:  
2193–4383 days 

 
24.7290 

 
–2.9310 

 
–32.3650 

 
0.8138 

 
7.1826 

 
17.5190 

 
1.5390 

 
0.3049 

Calibration:  
2193–4383 days 

 
17.3910 

 
–2.2500 

 
–25.9400 

 
0.9124 

 
3.5750 

 
15.8330 

 
4.2040 

 
0.5780 

Validation A:  
1–2192 days 

 
20.9420 

 
–3.7672 

 
–72.2680 

 
0.7568 

 
2.5440 

 
17.5300 

 
–5.5590 

 
0.5746 

ANN3 

Validation B:  
4384–5479 days 

 
18.1410 

 
–2.5810 

 
–64.8800 

 
0.8678 

 
2.1110 

 
25.1560 

 
–0.4560 

 
0.3635 

 
 

dation period A in Table 2 and graphs; and (b) the six following years (1978–1983), 
denoted as validation period B in Table 2 and graphs. The ANN3 model is calibrated 
for the six middle years (1978–1983), and is validated over: (a) the six first years 
(1972–1977), denoted as validation period A in Table 2 and graphs; and (b) the last 
three years (1984–1986), denoted as validation period B in Table 2 and graphs. The 
SMA model (hydrological model) is calibrated over the entire 15-year period. The 
statistics (RMSE, %VE, %MF, CORR) computed separately for flows above and below 
the 15-year mean (23.41 m3 s-1) over all the calibration/validation periods of the ANNI 
models are summarized in Table 2. The analysis of results is presented below begin-
ning with the statistical values of Table 2 and graphs, and continued with hydrographs 
and scatter plots.  
 The RMSEA and RMSEB statistic measures the residual variance for above-mean 
and below-mean flows, respectively; the optimal value is 0.0. The ANN0 model has 
the smallest RMSEA and RMSEB against those of the hydrological model, bearing in 
mind that both models are calibrated for the overall 15-year period. In comparison with 
the subsequently examined ANN1, ANN2 and ANN3 models calibrated for different 
periods (smaller in length), the ANN0 model RMSEA and RMSEB performance is the 
worst. This may be a significant finding as it may be related to the ability of 
“nonlinear” model structure to handle better the high/low flows in classified climate 
types. The ANN2 and the ANN1 models have the smallest RMSE (RMSEA and 
RMSEB) during calibration and validation periods respectively, which are the last three 
years (1984–1986) climatically expressing the moderately descending segment of “rain 
plus melt” in Fig. 4. However, the ANN2 model validation RMSEA and RMSEB perfor-
mance over the climatically rising segment (second period of six years in Fig. 4) is the 
worst of the three models. On average, between calibration and validation periods, the 
ANN1 model performs best when it is calibrated for clearly decreasing pseudo-
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precipitation and validated for moderately decreasing pseudo-precipitation as 
measured by RMSEA and RMSEB statistics.  
 The %VEA and %VEB statistic calculates the percentage volume error (bias) for 
above-mean and below-mean flows, respectively, under the observed and simulated 
hydrographs, summed over the data period. The value 0.0 is best; positive values 
indicate overestimation, and negative values underestimation. The ANN0 model 
performance is superior to that of SMA for above-mean and below-mean flows, but it 
is worst for smaller calibration periods for above-mean flows. For below-mean flows, 
the SMA performance is better for the ANN1 and ANN2 calibration periods. The 
comparison among ANN1, ANN2, and ANN3 models showed that, during calibration, 
the ANN3 model performs best for the rising segment of “rain plus melt” over above- 
and below-mean flows, while, during validation, the ANN3 model performs best for 
the moderately descending segment over above-mean flows and for the clearly 
descending segment under below-mean flows correspondingly. The worst performance 
for the ANN1 model (overestimation) occurs when it is validated for the moderately 
descending segment under below-mean flows. The best performance for the examined 
climates is that of ANN3. 
 The %MFA and %MFB statistic calculates the percentage error in matching the 
maximum (peak) flow for above-mean and below-mean flows, respectively, of the data 
record. The optimal value is 0.0; positive values indicate overestimation, and negative 
values underestimation. Again, the ANN0 performance is worse than the other ANN 
models with smaller calibration data periods for above-mean flows. For below-mean 
flows, the performance continues to be worse except for the case of ANN1 calibration. 
The comparison among smaller periods showed that, during calibration, the ANN2 and 
ANN3 models match the peak flow very well for the moderately descending segment 
over above-mean flows and the rising segment under below-mean flows, respectively. 
During validation, %MFA and %MFB present the smallest deterioration for the ANN1 
and ANN3 models, respectively, for the moderately descending segment. On average, 
between calibration and validation periods, the ANN3 model performs best when it is 
calibrated to increasing pseudo-precipitation and validated to moderately decreasing 
pseudo-precipitation as measured by %MFA and %MFB statistics. 
 The correlation (CORR) statistic calculates the linear correlation between the 
observed and simulated flows for above-mean (CORRA) and below-mean (CORRB) 
flows, respectively, with an optimal value of 1.0. The ANN0 CORR value is slightly 
worse than that of the other models under calibration for above-mean flows, but this 
model performance is steadily better compared to that of smaller calibration periods. The 
CORR value is expectedly worse (smaller) during validation than during calibration for 
all of the models over above- and below-mean flows. During calibration, the best value 
of CORR is given by the ANN2 model for the moderately descending segment over 
above-mean flows, and correspondingly by the ANN1 and ANN3 models for the clearly 
descending and rising segments under the below-mean flows. During validation, the 
ANN1 model correlates best the observed and simulated flows for the moderately 
descending segment over the above-mean flows, while the ANN3 model correlates less 
well the observed and simulated flows for the clearly descending segment under the 
below-mean flows. On average, it may be concluded that the ANN3 model performs 
best when it is calibrated for increasing pseudo-precipitation and validated for clearly 
decreasing pseudo-precipitation as measured by the correlation statistic.  
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 To examine these results in more detail, Figs 5 and 6 present the RMSEA and 
RMSEB statistics for each model (SMA, ANN0, ANN1, ANN2, and ANN3), computed 
separately for each of the 15 years and presented as a function of the mean flow for the 
given year. Subsequently, Figs 7 and 8 present the %VEA and %VEB statistics for each 
model, also computed separately for each of the 15 years and presented as a function 
of the mean flow for the given year.  
 The RMSEA statistic is presented in Fig. 5(a)–(d). In all four cases, the lower mean 
high-flow years appear to have the tendency for lower model RMSEA. In Fig. 5(a) the 
RMSEA is presented for the SMA and ANN0 models, both of which are calibrated for 
the entire 15-year period, including a variety of values in high flows (more or less 
high). Clearly, the RMSEA performance of the SMA model is worse than that of the 
ANN0 model for all years. This may be attributed to the inability of a “less nonlinear” 
SMA model structure to handle more variable conditions. With this in mind, and trying 
to decrease the large number of computations needed for this study, separation of the 
SMA model performance into calibration and validation periods has not been carried 
out as it was for the ANN models. However, a comparison of SMA and calibrated/ 
validated ANN model performance is performed within this work. It should be noted 
that in Fig 5(b), (c) and (d), the ANNI models present a nearly linear relationship of 
their ability to match the calibration and validation data (residual variance computed 
by RMSEA) with the wetness of the year. This tendency is smaller for the ANN0 model 
calibration data, as shown in Fig. 5(a)–(d). The ANN3 and ANN1 models present the 
smallest RMSEA on calibration and validation period A, respectively. On average, with 
a small difference between ANN1 and ANN3, the best fitting of linear correlation and 
smallest RMSEA values is provided by the ANN1 model, which is calibrated on the 
clearly descending flows and validated on the increasing flows. Note that the 
calibration/validation period for the ANN2 model is determined by three years, thus 
increasing the uncertainty, especially when discussing issues of linearity. 
 Figure 6(a)–(d) shows the RMSEB statistic. In all four cases, the lower mean low-
flow years do not appear to have a clear tendency of lower model RMSEB as is the case 
for RMSEA for mean high flows. For below-mean flows, the RMSEB performance of 
the SMA model (Fig. 6(a)) is worse than that of the ANN0 model for all years, while 
there is no significant difference in performance among ANN0, ANN1 and ANN3 
calibrated models. In Fig. 6(b), (c) and (d), the ANNI models keep the tendency of a 
linear relationship between calibration and validation data (residual variance computed 
by RMSEB) with the wetness of the year in an unclear way. However, the ANN1 and 
ANN3 model performance is best, as noticed for the RMSEA case for the 
calibration/validation periods.  
 The %VEA statistic is shown in Fig. 7. The results indicate that the SMA model 
has a poor performance as compared to the ANNI models, as does the ANN0 when 
compared to the ANN1 and ANN3 calibrated models. The ANN3 and ANN1 models 
present the smallest bias during calibration (rising flows) and validation period A 
(rising flows), correspondingly. In Fig. 7(b), (c) and (d), the ANNI models do not 
present any clear linear relationship between the ability to match the calibration and 
validation data (residual variance computed by %VEA) with the wetness of the year. 
 Figure 8 shows the %VEB statistic. The results indicate that the ANNI models con-
sistently have smaller bias as compared to the SMA model. The ANN0 model presents 
equally small bias as compared to the ANN1 and ANN3 calibrated models with a slight 



 

 
 

 

 

 
Fig. 5 Annual performance of RMSE statistics for above mean flow for each model (SMA, ANN0, ANN1, ANN2 and ANN3) plotted against total flow 
for each data year.  
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Fig. 6 Annual performance of RMSE statistics for below mean flow for each model (SMA, ANN0, ANN1, ANN2 and ANN3) plotted against total flow 
for each data year. 



 

 
 
 

 
Fig. 7 Annual performance of %VE statistics for above mean flow for each model (SMA, ANN0, ANN1, ANN2 and ANN3) plotted against total flow 
for each data year. 
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Fig. 8 Annual performance of %VE statistics for below mean flow for each model (SMA, ANN0, ANN1, ANN2 and ANN3) plotted against total flow 
for each data year. 
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superiority of ANN3 model. The ANN3 and ANN1 models present the smallest bias 
during the calibration period (rising flows) and the validation period A (rising flows), 
respectively. In Fig. 8(b), (c) and (d), the ANNI models present a somewhat linear 
tendency between the ability to match the calibration and validation data (residual 
variance computed by %VEB) with the wetness of the year, particularly with ANN3 
and ANN1 models for the examined calibration/ validation periods.  
 Figure 9 shows the ability of the SMA (hydrological) and ANN0, as well as the 
ANN1 and ANN3 models to match the hydrographs focusing on high and low flows for  
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(c) (d)

Fig. 9 (a)–(h) Daily hydrographs simulated by SMA, ANN0, ANN1 and ANN3 
models for calibration and validation periods.  
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Fig. 10 (a)–(h) Scatter plots comparing simulated and observed flows of SMA, ANN0, 
ANN1 and ANN3 models for calibration and validation periods. 
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both calibration and validation periods. The ANN2 model has been excluded in this 
further investigation as it has been consistently shown to underperform. Figure 9(a) and 
(b) shows the matching of observed and estimating hydrographs for the SMA and ANN0 
models, which are both calibrated on all years. The plot indicates that the ANN0 model 
can better model the high and low flows than the SMA model, while the same model 
(ANN0) exhibits a worse performance than the ANN1 and ANN3 calibrated models 
(Fig. 9(c) and (d)). Figure 9(c) and (d), related to the calibration periods of the ANN1 
and ANN3 models, respectively, shows that both models can capture most of the peaks 
and particularly the ANN3 model that must estimate the highest flows (rising rainfall 
segment) in the entire 15-year period. The validated models ANN1 and ANN3 over the 
moderately descending segment (Fig. 9(g) and (h)) fit the high and low flows quite well. 
This feature may be attributed to the fact that both models are calibrated to intensely 
variable flows (low and high) and validated to medium values, as reflected by the 
moderately descending segment of pseudo-precipitation.  
 Estimated vs observed flow plots for the SMA (hydrological) model, ANN1 and 
ANN3 models for calibration and validation periods are shown in Fig. 10. It is noted 
that the models were calibrated/validated to flows while the data are presented using 
logs. Figure 10(a) and (b) indicates that the SMA model tends to have the largest 
deviation from the 1:1 line. The ANN0 model has the closest matching of simulated 
and observed flows, indicating that the ANN models are implicitly doing a better job 
in representing the nonlinearities in partitioning precipitation into precipitation excess. 
However, the ANN3 calibrated for a smaller period against the ANN0 model presents 
a closer matching of observed and simulated data. During smaller calibration periods 
(Fig. 10(c) and (d)), the ANN3 model presents the smallest deviations from the 1:1 
line, expressing the rising segment of pseudo-precipitation (increasing flows). The 
performance of the ANN1 model for this period is worse. In the validation periods, the 
ANN1 model validated for period B (Fig. 10(g)) over the moderately descending 
segment of pseudo-precipitation shows the closest match of simulated and observed 
flows. An almost equally good matching is exhibited by the ANN3 model validated for 
the same period B (Fig. 10(h)).  
 
 
SUMMARY AND CONCLUSIONS 
 
The ability of artificial neural network models to simulate high and low flows in 
various climate conditions over a medium-sized mountainous catchment has been 
examined. An efficient procedure (LLSSIM, Hsu et al., 1995) for estimating the 
weights (parameters) of a three-layer ANN was adopted. The nonlinear ANN was 
employed to simulate the daily flows in three climatically different periods, described 
by trends of clearly descending, rising and moderately descending segments in the 
long-term annual pseudo-precipitation (rain plus melt) plot over the Mesochora 
catchment in central Greece for a 15-year period. The ANN model was calibrated on 
flows for the entire period and for each of three climatically varied periods, and was 
validated for the others. The flows above and below the mean daily flow over the 15-
year period were considered as high and low flows, respectively, in a preliminary 
phase of this study. All the applied performance measures and graphs demonstrated the 
robustness of the ANN model to simulate quite well the high and low flows under 



Artificial neural networks and high and low flows in various climate regimes 
 
 

 
 

Copyright © 2006 IAHS Press  

585

various climate regimes. Undoubtedly, there are deviations among evaluation results, 
as was to be expected, due to the different measures that were employed (see Hsu et 
al., 1995; Kim & Barros, 2001).  
 However, the following findings can be reported:  
1. The ANN model can simulate high flows quite well when it is calibrated for 

increasing values of pseudo-precipitation and is validated for moderately decrea-
sing values. 

2. Low flows are predicted to acceptably good levels by the ANN model when it is 
calibrated for increasing values of pseudo-precipitation and validated for 
moderately, or clearly decreasing, values of pseudo-precipitation.  

3. The ANN model can match the calibration and validation residual variance data 
(measured by RMSEA,B and %VEA,B) of high and low flows with the wetness of the 
year in a somewhat linear relationship when it is calibrated for clearly decreasing 
values of pseudo-precipitation and validated for increasing values. 

4. The daily hydrographs and scatter plots of high and low flows are best represented 
by the ANN model when it is calibrated for increasing values of pseudo-
precipitation and it is validated for moderately decreasing values.  

5. On the average statistics and graphs, it could be concluded that the ANN model 
can simulate well the daily high and low flows, when it is calibrated for increasing 
pseudo-precipitation and validated for moderately decreasing pseudo-precipitation.  

6. For the entire period, the ANN model provided a better representation of the daily 
high and low flows than the hydrological (SMA) model. Furthermore, the ANN 
model is more efficient in capturing such flows when it works for classified 
climates with smaller calibration periods. 

 Finally, since the ANN model has no physically realistic components and para-
meters, it is by no means a substitute of the SMA model. Nevertheless, due to model 
flexibility, the ANN approach provides a viable and effective alternative for daily 
high- and low-flow simulation and forecasting in climatically varied regimes in cases 
that do not require explicit analysis of the internal dynamics of the catchment or in 
cases where insufficient calibration data are available. 
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