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There is a great deal of scientific literature in many fields
on modelling extremes in time series.

For example, in meteorology: modelling extremes of
rainfall, temperature, wind speed. This is often related to
engineering design: what is the greatest stress that a
structure must withstand?

For many years, since Jenkinson (Quart. J. Roy. Met.
Soc., 1955), the Generalised Extreme Value distribution
has been employed to model meteorological extremes.
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The GEV distribution

F (x ;µ, σ, ξ) =


exp

{
−

[
1 + ξ(x−µ)

σ

]−1/ξ
}

, ξ 6= 0

exp
{
−exp

[
− (x−µ)

σ

]}
, ξ = 0

with location µ ∈ R; scale σ > 0; shape ξ ∈ R

ξ = 0 ⇒ Gumbel distribution with support x ≥ µ + σ
ξ

ξ > 0 ⇒ Fréchet distribution with support

ξ < 0 ⇒ (reversed) Weibull distribution with support
x ≤ µ− σ

ξ
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Non–stationarity

A series of maximum temperatures or maximum precipitation in
an area might not be stationary, but could show trends over a
period of time.

Indeed, there is mounting evidence that hydro–climatic extreme
series are not stationary, owing to natural climate variability or
anthropogenic climate change

Jain and Lall, Water Resources Research, 2001
Milly et al., Science, 2008.
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Annual minimum temperatures in a mountainous area
of Greece (with trend fitted by lowess in Minitab)

Modelling non-stationarity within the framework of the GEV
distribution requires extended models with covariate-dependent
changes in at least one of the distribution’s three parameters
(Coles, “Intro. to Statist. Modelling of Extreme Values”, 2001).
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Non–stationary GEV

Parameters are a function of time t and possibly other
covariates as well (Coles, 2001). In the environmetrics
literature, it is common to keep the shape ξ constant. In this
case, the non-stationary over time GEV distribution is

F (y ;µ(t), σ(t), ξ) = exp

{
−

[
1 + ξ

y − µ(t)
σ(t)

]−1/ξ
}

Nogaj et al., Nonlin Proc Geophys, 2007
El Adlouni et al., Water Resources Research, 2007
Cannon, Hydrol. Proc., 2010
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For example, the following polynomial regression structures
could be considered for location and scale parameters when
time is the explanatory covariate

µ(t) = µ0 + µ1t + µ2t2 + µ3t3

σ(t) = exp(σ0 + σ1t + σ2t2 + σ3t3)

allowing up to cubic dependence on time of both the location µ
and scale σ parameters.
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Denote by GEVjk the model with time dependence of order j in
the location parameter and order k in the scale parameter. e.g.
the GEV21 non–stationary model assumes

↪→ a quadratic trend (µ3 = 0) in location and

↪→ a log–linear trend in scale (σ2 = σ3 = 0).

The stationary GEV distribution is GEV00 .
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Generalised Additive Models for Location, Scale and
Shape (GAMLSS)

Rigby and Stasinopoulos, 2005, Applied Statistics

This class of models allows covariate–dependence in up to four
parameters of a distribution chosen from a very wide family.

For example, Villarini et al., (Adv. Water Resources, 2010)
examined the fit of five distributions (Gumbel, Weibull, Gamma,
Logistic and Lognormal) to data on rainfall and temperature in
Rome.

Non-stationary GEV distributions can also be fitted within this
framework.
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GAMLSS

General model for parameter θk is

gk (θk ) = Xkβk +

Jk∑
j=1

Zjkγjk

where gk is a link function, Xk is a design matrix containing the
values of Jk covariates for each of n independent observations,
βk is a parameter vector of length Jk , Zjk is another known
design matrix of dimension n× qjk and γjk is a qjk - dimensional
random vector.
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GAMLSS

GAMLSS modelling is implemented in the R package “gamlss”
(http://cran.R-project.org/package=gamlss),

which makes it easy to include features such as random effects
or non–polynomial dependence on covariates by means of

splines.
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Model selection

Given the availability of many alternative models, we need
objective procedures for selecting which of various
candidate models fits best (e.g. non–stationary instead of
stationary? non–stationary in which parameters?)

The likelihood ratio test can be used to compare two
hierarchically nested models
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Model selection

Information criteria: choose model with smallest value of

AICC = −2ˆ̀+ 2p +
2p(p + 1)

n − p − 1

(this is the corrected AIC - the third term is a small-sample
adjustment) or

BIC = −2ˆ̀+ p ln n

where ˆ̀ is the maximized value of the likelihood from a
model that contains p parameters, and n is the sample size
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Empirical comparison of AICc and BIC for selection of
GEV models

Simulation study to find how often each criterion correctly
identifies the true model among the set of models GEVjk
(j = 0, 1, 2, 3; k = 0, 1, 2, 3), for samples of sizes n = 20, 50 or
100 (Panagoulia et al., Environmetrics, 2014).

- True models: GEV00, GEV10, GEV01, GEV11, each with
ξ = -0.1, 0 and 0.1

- Coefficients in non-stationary models equal to one

- 1000 generated samples for each combination of true
model and sample size

- Fit all the GEVjk models to each sample, j = 0, 1, 2, 3,
k = 0, 1, 2, 3 by maximum likelihood using R package
“ismev”

- Select best according to AICc and BIC
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Simulation results

Results did not depend on shape ξ

Both criteria had high success rates in detecting
non–stationarity.

BIC was more successful in identifying the correct model:
↪→ > 80% of the time for n = 50
↪→ > 90% for n = 100.

Neither performed very well for n = 20, which is a very
small sample in relation to the number of parameters in
some of these models.
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Confidence intervals

- Confidence intervals are often an important output from
the fitting of models to series of extremes.

- Especially, we require confidence intervals for extreme
quantiles of the distribution, which are usually expressed
as return periods.
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Return periods

- For example, annual rainfall data, event = year’s rainfall
exceeds the upper q% point

⇒ P(event)=q in any given year

⇒ E(years until event) = 1/q (geometric distribution)
e.g. if q = 0.01, then,

E(years until event) = 100, a 100-year return period.

- Obviously, estimates of these extreme quantiles can only
be obtained by model fitting, because by definition they
correspond to rare events.
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Confidence intervals for a quantile

How to construct a confidence interval for a quantile? Any
quantile = f(max. likelihood estimates of model parameters)

↪→ Base CI for quantile on asymptotic normal distribution of
MLEs. Unlikely to work for extreme quantiles

↪→ Bootstrap methods

↪→ Kysely (J. Appl. Met. Clim., 2008) looked at this for
stationary GEV

↪→ Panagoulia et al. (Environmetrics, 2014) for non–stationary
GEV
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Simulation study

We compared in our simulation study 12 confidence intervals
for quantiles.

These were obtained from all the combinations of

- 3 ways of constructing bootstrap samples

- 4 methods for constructing confidence intervals based on
the bootstrap samples
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Bootstrap samples

Parametric resampling

- Fit the model to the actual data

- Generate samples from this model, with parameter values equal
to the estimates

Random-t resampling (case resampling)

- Construct each bootstrap sample by simple random
sampling with replacement from the original data

- Entire data vectors (cases) are sampled

Fixed–t resampling

- The covariate vectors in the bootstrap samples are the
same as in the original data

- The residuals from the fit to the original data are resampled

- The original covariate vector and the resampled residual
give a generated value for each case
C. Caroni, D. Panagoulia and P. Economou ICRA 6, Barcelona, May 26–29, 2015
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Constructing confidence interval

Normal - the CI is constructed using Normal distribution
with mean, sd obtained from bootstrap distribution

Percentile - non-parametric CI, from the order statistics of
the bootstrap distribution

Basic - transformation of percentile interval

Bias-corrected and accelerated (BCa) - Modify percentile
CI to correct for bias and skewness
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Illustrative results (1):

Simulated coverage proportion of various bootstrap 95%
confidence intervals of estimate of upper 1% point of GEV00
(µ = 0, σ = 1, ξ = −0.1). 1000 runs, simulated sample size
n=100 and 1000 bootstrap samples in each run.

Normal Basic Percentile BCa
Fixed - t 0.896 0.884 0.875 0.910

Random - t 0.891 0.885 0.877 0.912
Parametric 0.910 0.899 0.881 0.918

BCa does best

C. Caroni, D. Panagoulia and P. Economou ICRA 6, Barcelona, May 26–29, 2015
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Summary of results for simulated CIs

No clear differences between methods concerning CIs for
parameters

Intervals very wide for extreme quantiles

Coverage probabilities well below nominal level for
quantiles from the 90th onwards - except for BCa method

Parametric method a bit better than random-t and fixed-t,
which hardly differ

Computation time similar for all the methods
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Illustrative results (2):

Simulated coverage proportion of BCa parametric bootstrap
95% confidence intervals estimate of upper 1% point for
various GEV models, with n = 50.

GEV00 GEV10 GEV01 GEV11
ξ = -0.1 0.914 0.927 0.935 0.976
ξ = 0 0.913 0.932 0.933 0.969

ξ = 0.1 0.912 0.931 0.915 0.964

Values in range 0.936-0.964 are not significantly different from
nominal 0.95

C. Caroni, D. Panagoulia and P. Economou ICRA 6, Barcelona, May 26–29, 2015



tu-logo

ur-logo

Illustrative results (3):

Simulated coverage proportion of BCa parametric bootstrap
95% confidence intervals estimate of upper 1% point for
various GEV models, with ξ = −0.1.

GEV00 GEV10 GEV01 GEV11
n = 20 0.971 0.966 0.979 0.990
n = 50 0.914 0.927 0.935 0.976

n = 100 0.918 0.932 0.930 0.963

Values in range 0.936-0.964 are not significantly different from
nominal 0.95
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Application

- Data from a river catchment in a mountainous area of
Greece

- Historical data 1972-1992

- Data under two climate-change scenarios, 1961-2000 and
2061-2100

- Annual maximum precipitation over whole area was
analysed in Panagoulia et al. (2014).

- Stationary GEV model for precipitation was supported.
Furthermore, ξ = 0 not rejected (i.e. Gumbel distribution)

Here we look at temperature
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Application - annual maxima - minima of temperature

Analysis presented here: annual maxima and minima of
historical temperature data

Overall and separately in 9 zones (dividing the area by
elevation)

Model dependence on time and space

Use other distributions from GAMLSS as well as the GEV
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Results: annual maxima of temperature

C. Caroni, D. Panagoulia and P. Economou ICRA 6, Barcelona, May 26–29, 2015
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Results: annual maxima of temperature

MLE of stationary GEV separately in each zone

Zone µ̂ σ̂ ξ̂
(altitude)

1 25.2 2.05 -0.23
2 24.4 2.05 -0.19
· · · · · · · · · · · ·
5 23.0 2.22 -0.17
· · · · · · · · · · · ·
9 22.0 3.06 0.06

↪→ Strong suggestion of spatial dependence

↪→ Also, some evidence (p = 0.05 in likelihood ratio test)
supporting GEV10 model in Zone 5 and higher, i.e. µ
depending linearly on time

C. Caroni, D. Panagoulia and P. Economou ICRA 6, Barcelona, May 26–29, 2015
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Plot of µ̂ versus elevation (zone)
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Fit GEV to data on all zones, introducing zone as a
covariate for the parameters - annual maxima of temperature

Preferred model (AICc, BIC, LR tests)

- µ depends on zone and year

- ln σ depends on zone

- ξ constant over zones and years

µ̂ = 25.00− 0.285 Zone + 0.118 (Year − 1982)

(0.36) (0.073) (0.030)

ln σ̂ = 0.554 + 0.068 Zone

(0.109) (0.021)

ξ̂ = −0.142 - sig. different from zero

(0.045) (unlike models for rainfall)
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Similar analysis for annual minima of temperature

Carry out analysis as for max, with input = (-1) x min

- Preferred model: µ depends on zone and year

- ln σ depends on year

- ξ constant over zones and years

µ̂ = 0.438 + 1.043 Zone + 0.121 (Year − 1982)

(0.314) (0.060) (0.024)

ln σ̂ = 0.579 + 0.026 (Year − 1982)

(0.063) (0.011)

ξ̂ = 0.004 - not sig. different from zero

(0.063)
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Other distributions

Use R package “gamlss” to try fitting other distributions to
these data

In particular, Gamma, Log Normal, Inverse Gaussian

These are 2 parameter distributions: allow both
parameters to depend on covariates

We show results of fitting to maxima annual temperatures
including zone effects

C. Caroni, D. Panagoulia and P. Economou ICRA 6, Barcelona, May 26–29, 2015



tu-logo

ur-logo

maxima annual temperatures

There seems to be very little difference between the overall
fits of these distributions

For the preferred model (one parameter depending on year
and zone, the other depending on zone - same model as
GEV), BIC values are

Gamma 928.25
Inverse Gaussian 927.38

Log Normal 926.77

The following slide shows the closeness of fits between
GEV and Log Normal
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Conclusions (1)

Fitting GEV to stationary series of extremes is a
well-established methodology in the analysis of climate
data and elsewhere.

The evidence shows that in fact series are often not
stationary.

Non-stationarity can be catered for by allowing the
distribution’s parameters to depend on time and other
covariates.

Model selection is important: we carried out a study of the
use of information criteria to select the best model. We
found that the BIC works best, except for small n when AIC
is preferable.

These criteria detect non-stationarity with high success.

C. Caroni, D. Panagoulia and P. Economou ICRA 6, Barcelona, May 26–29, 2015



tu-logo

ur-logo

Conclusions (2)

Often, the quantities of main interest are quantiles
estimated from the fitted model, especially extreme
quantiles corresponding to long return periods.

We require confidence intervals for these estimates. We
investigated the accuracy of bootstrap CI’s, for 12
combinations of methods of construction and ways of
drawing bootstrap samples.

We recommend BCa CI’s as much better than CI
constructed by the other methods, and parametric
resampling for bootstrapping as slightly better than other
techniques.
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Conclusions (3)

Other distributions besides GEV can be used

The GAMLSS framework makes possible the fitting of
other distributions in non-stationary form, with up to four
parameters depending on covariates

In our application, GEV and GAMLSS modelling led to the
same conclusions concerning dependence on time and
space
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Conclusions (4)

Different distributions (e.g. GEV and Log Normal)
produced almost indistiguishable fits in this example.

Perhaps surprisingly, estimates of extreme quantiles were
also similar
e.g. 99.9th percentile (Zone 5, 1982)

GEV 34.3
Gamma 33.6

Inverse Gaussian 34.1
Log Normal 34.1
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