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ABSTRACT 

An algorithm combining a nonlinear simplex optimization method with linear least squares 
(LLSSIM), is presented to show the potential of a three-layer feed forward ANN models to 
represent the high and low rainfall-runoff relationship over a mountainous catchment. The output 
"rain plus melt" from the snowmelt model of the US National Weather Service (US NWS) applied 
on the mountainous Mesochora catchment in Central Greece was used as input to ANN model. The 
RMSE and % VE statistics were computed separately for flows above and below the 15-year mean 
daily flows. The nonlinear ANN model appears to provide a better representation of the rainfall­
runoff extremes than the conceptual runoff model of the US NWS applied over the same catchment. 
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llEPIAH'PH 

ITapoucrta~ETat tva~ aA"{opt8/!0~ cruvouacr/!ou TYJ~ /!YJ "{pa/!/!tKiJ~ /!E8ooou ~EAncr'tOnoiYJcrYJ~ simplex 
Kat 'tcov EAaxicr'tcov TE'tpa"{cOvcov (LLSSIM), "{ta va oEi~Et 'tYJ ouva/!tK'fJ 'tcov VEUPCOVtKcOV OtKLUCOV /!E 
npocro'tpoq>OOO'tYJcrYJ 'tptcOV cr'tpco/!a'tcov va avanaptcr'touv n~ U\lfYJM~ Kat xa/!YJM~ n/!E~ anoppoiJ~ crE 
oPEwiJ AEKavYJ. To VEPO ~poxiJ~ Kat 'tiJ~YJ~ xtovtoU nou npOEKU\lfE ano 'tYJv Eq>UP/!O"{iJ TOU /!OV'tEAOU 
'tiJ~YJ~ xtoVtoU 'tYJ~ EMY 'tcov HITA crTYJ AEKavYJ 'tYJ~ MEcroXcOpa~ ano'tEAEcrE OEbO/!EVO EtcrOOOU cr'to 
VCUPCOVtKO /!OVTEAO. YnoAo,,{icr8YJKUV 'ta crTancrnKa RMSE Kat %VE "{ta pOE~ navco Kat KaTco TYJ~ 
/!EcrYJ~ YJ/!EpiJcrta~ anoppoiJ~. To /!YJ ,,{pa/!/!tKO VEUPCOVtKO /!OV'tEAO EOEt~E on uvanaptcrTa KUAu'tEpa 
n~ aKpuiE~ cruV8iJKE~ ~poxiJ~-anoppoiJ~ ano TO CVVOtoAO"{tKO /!OV'tEAO anoppoiJ~ 'tYJ~ EMY 'tcov 
HITA nou Eq>ap/!ocr8YJKE (HYJV iota AEKavYJ. 
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1. INTRODUCTION 

The climatic variations observed over the past few years have given rise to record-breaking high 
and low flow events, which stresses the need for a flexible model being able to capture such 
extreme values. The application of artificial neural networks (ANNs) to various aspects of 
hydrological modeling has already gained a great interest since the ANNs are able to model 
nonlinear relationships and perform well with respect to conventional models. However, ANNs in 
capturing rainfall-runoff high and low values are restricted to the research environment [1], or they 
forecast poorly at high-and-Iow levels overestimating or underestimating the flows [2, 3,4]. 

Perhaps, there are some reasons for inability of ANNs to predict extreme values, which could be 
met by some remedies. Some authors [e.g. 2, 3] attributed the underestimation of peak flows to a 
lack of information provided to the network, such as the antecedent rainfall. Some others [e.g. 4, 5] 
suggested to include more high-flow patterns in the training data sets, or to use log transformations 
in flow values to reduce the gap between the high and low flow conditions. 

Model generalization in itself is another important consideration in predicting of extreme values. 
Care has to be taken during training so that the ANN does not become over-fitted to the training 
data and hence it captures only those relationships that are representative of the catchment [6]. A 
standard procedure is cross-validation, whereby another set of data is used to monitor the generality 
of the model during training [7, 8]. 

This study demonstrates the ability of the ANN approach in developing an effective rainfall-runoff 
extreme process without the intention to substitute a physically based conceptual model. The 
algorithm for training three-layer feed forward ANNs adopted here was a combination of linear 
least squares and nonlinear simplex optimization (LLSSIM) [5] since it has been found to perform 
best with respect to input-output function approximations [6]. The flows above and below the mean 
daily flow were considered as high and low values respectively. The ANN model was calibrated 
(trained) over low-flow values (dry years data) and it was validated over high and medium flow 
values, in order to be achieved a better generalization with respect to extreme events predicting. 

The study is organized as follows. First, a brief overview of the architecture of three-layer feed 
forward ANN models and the LLSSIM training algorithm is described. Next, the LLSSIM 
methodology is used to develop an ANN model for the mountainous Mesochora catchment in 
Central Greece. Finally, the performance of this model with respect to extreme values is compared 
to the soil moisture accounting (SMA) model used by the US NWS. Inputs to both ANN and SMA 
models were used the output 'rain plus melt' from the snow accumulation and ablation model 
(SAA) of the US NWS applied over the Mesochora catchment. 

2. ARTIFICIAL NEURAL NETWORKS (ANNs) AND THE LLSSIM TRAINING 
ALGORITHM 

Several ANN structures, e.g. feed forward networks, self-organizing feature maps, radial basis 
networks etc., have been proposed in the literature and their properties extensively studied. In this 
study a feed forward ANN [9] is used since such networks have been found to have very good 
performance when used as input-output approximations. A typical three-layer feed forward ANN is 
shown in Figure 1 [5]. The first layer (input layer) is connected directly to the input variables 
Xi (p) and to hidden layer nodes, the second layer (hidden layer) is connected to both the input and 
output layer nodes while the third layer ( output layer) is connected to hidden layer nodes and to the 
output variables Zk (p) . 
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The node j receives incoming signals Xi of each node from the previous layer. Within node j, a 
linear combination of the incoming signals Xi is formed, with weights w ji , to produce the effective 

incoming signal s j : 
no 

s.="w .. x. 
J L... JI I 

(1) 
i=O 

Still within node j, the signal Sj is passed through a nonlinear activation function (sigmoid 

function) to produce the output y j of the node. The sigmoid function is a smooth monotonically 

increasing and bounded function. In this study, the logistic function, 
1 

y. =f(s.)=----
J J 1 + exp(-s) 

(2) 

is used as a sigmoid function. 

Figure 1. Typical three layer feed forward neural network [5]. 

Thus the outputs y j (p) and Zk (p) of hidden layer node j and output node k respectively, can be 

expressed as follows: 
no 

y/p) = f(Lw~iXi(p)) (3) 
i=O 

(4) 

where Xi (p) is the input of input node i, W~i is the connection weight from input node i to hidden 

node j, W~j is the connection weight from hidden node j to output node k, no is the number of input 

nodes and n h the number of hidden layer nodes. 

ANNs ofthis type can be trained to approximate a given input-output relationship. The objective of 
network training is to choose optimal connection weights W~i and W~j so that network predicted 
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outputs Zk (p) are a best fit to the measured output values, say tk (p). In our case, where the 

rainfall-runoff relationship is to be approximated, a single output value t(p) (runoff) is measured, 

hence the approximating ANNs must have a single output node with output value z(p) given by (4) 

with the index k dropped. In order to train the network, rainfall-runoff measurements are organized 
in m sets of input-output patterns (indexed by p), each having no inputs [X1 (p), x 2 (p), ... , xno (p )]T 

and a single target value (runoff) t(p). Training the ANN is equivalent to minimizing the following 

error function: 

(5) 

Many methods have been proposed in the literature for training ANNs. In this study we make use of 
the efficient LLSSIM network training algorithm, proposed by [5]. With respect to the input-to­
hidden layer weights w~, the optimization is performed using the nonlinear simplex algorithm of 

[10]. 
In order to obtain explicit optimal values for hidden-to-output weights the LLSSIM method defines 
an approximately equivalent problem oflinear least squares. It concerns: (a) the target values t(p) 

are transformed backwards through the logistic function of the output node, i.e. t (p) = In( t(p) J 
1- t(p) 

are obtained from t(p), and (b) a new error function F1 (WO) is defined in terms of the transformed 

target values t (p) : 

1 m [ n
h ]2 

F1(WO)=2~ t(p)- ~wjy/P) (6) 

Now, minimization of F1 (WO) with respect to hidden-to-output weights wj is a problem of linear 

least squares whose optimal solution WO = [w~ , w~"'" W~h]T is explicitly obtained by solving the 

following set of linear equations: 
In nh m 

LYJp)LY/P)w~ = Lt(P)Yi(P), (7) 
p=1 j=O p=1 

Of course, both the hidden node outputs y j (p) and the solution WO of (7) depend on the input-to­

hidden layer weights w h, therefore we write WO (wh) for the optimal solution of (6). 

The nonlinear part of the LLSSIM method can now be derived by replacing the optimal hidden-to­
output weights WO (w h), obtained from (7), into (5): 

~ 1 m [ ( nh no J]2 F(Wh)=F(Wh'WO(Wh))=2~ t(p)-f ~wj(wh)f(t;W~>i(P)) (8) 

The error function F(wh) now depends only on input-to-hidden layer weights w h and the resulting 

nonlinear least squares problem is solved by the nonlinear simplex method by [10]. 
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3. RAINFALL-RUNOFF MODELING 

This study compares the performance of two kinds of different model structures with respect to 
their ability to represent the rainfall-runoff process of extreme events over a medium-sized 
mountainous catchment. The two model structures are (1) three-layer feed forward ANN model, 
and (2) the SMA model of the US NWS. The first is nonlinear system theoretical model and the 
second is a conceptual model. Fifteen consecutive years of daily rainfall (rain plus melt generated 
from SAA model) and runoff data for the Mesochora catchment (633 km2), were selected for model 
development and testing. The first five years of data (1972 to 1976) including the mostly low flows 
were used for model identification, while the remaining ten years (1977 to 1986) were used for 
ANN model validation including medium and high flows. Whole the IS-year period was used for 
SMA and ANNO model calibration. Identification and calibration periods are long enough to extract 
representative results of catchment low-and-high flows behavior, in contrast to [5] study in which 
the identification period was only one wet year, considered as a disadvantage by the same authors. 

4. ANN MODEL IDENTIFICATION 

A first step in building an ANN model for the rainfall-runoff relationship is data normalization. 
Since sigmoid functions are used in ANN models, the hydrologic data should be normalized to the 
range [0,1]. Next, it is assumed that, at time t, the runoff output z(t) is related to past rainfall inputs 
r(t-j), j=I,···,na and to past runoff outputs '1(t-j), j=I,···,nb,i.e., 

'1 (t) = g(r(t -1),r(t - 2),·· ·,r(t - na), '1 (t -1), '1(t - 2),.··, '1(t - n b»)+ e(t) (9) 

Where, the unknown nonlinear mapping g(.) is to be approximated by the ANN model by 
minimizing the unknown mapping error e(t). Here na and nb are the numbers of past inputs and 

outputs, respectively, contributing to the current output. Thus at time t the input vector 
x(p) = [ret -1),r(t - 2),.· ·,r(t - na),t(t -1),t(t - 2),·· ·,t(t - nb)]T is presented to the input layer 

nodes of the ANN. This input vector together with the current output (runoff) measurement 
'1 (p) = '1 (t) constitutes the p th input -output training pattern for the ANN model. 

The notation ANN (n a , n b , n h) is used in the sequel to denote the above model structure, where 

na + nb = no is the number of nodes in the input layer, n h is the number of nodes in the hidden 

layer, and the output layer consists of a single node. Thus an ANN model is identified by selecting 
values for na, nb and n h , and by using the LLSSIM algorithm in order to estimate network 

weights W~'i and wj which minimize the prediction error function F(w\ we) of equation (5). 

In this study several combinations of na, n b, n h were examined in order to make an assessment of 

the suitability of ANN models to represent the rainfall-runoff extreme process in mountainous 
catchment. Selected results ofthis exploration are given in Tables land 2 below. 

5. SMA MODEL IDENTIFICATION 

The SMA model is a conceptual rainfall-runoff model that is one ofthe components of the National 
Weather Service River Forecast System (NWSRFS) used to convert precipitation inputs into 
streamflow outputs [11, 12]. The inputs to the SMA model are precipitation (SAA model snowmelt) 
and potential evapotranspiration. Precipitation is provided in the form of mean areal precipitation 
over elevation bands. The outputs from the model are estimated evapotranspiration and channel 
inflow; the latter is converted into streamflow by means of a unit hydrograph. The model was 
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calibrated manually by using the15-year period that is a suitable length for calibration of conceptual 
models. 

6. RESULTS AND DISCUSSION 

The statistical performance of the identified ANN models for the five-year calibration period and 
the overall 10-year validation period, on a daily basis, is summarized in Table 1. The results are 
presented and discussed below. 

TABLE 1 C l"b f . a 1 ra Ion an d V l"d f St f f £ F· Y a 1 a IOn a IS 1CS or lVe- ears C l"b f St d a 1 ra IOn u 1y 
RMSE %VE %MF CORR 

Model Calibrat Validatio Calibrat Validati Calibrat Validati Calibrat Validatio 
No ion n ion on ion on ion n 
1 ANN1(2,3,3) 16.785 18.170 -2.267 -2.019 -67.300 -71.100 0.8165 0.8411 
2 ANN2(5,4,3) 13.190 16.277 -1.410 -1.790 -23.800 -53.700 0.8895 0.8730 
3 ANN3(3,5,4) 12.440 16.185 -1.230 -1.480 -3.200 -57.210 0.9100 0.8750 

4 ANN4(3,5,4) 11.820 17.600 -1.100 -1.840 -23.200 -61.600 0.9190 0.8500 
RMSE denotes root-mean-square error; %VE, percent volume error; %MF, percent error of 
maximum flow; and CORR, correlation statistic 

The RMSE statistic measures the residual variance with optimal value 0.0. The % VE statistic 
measures the percent error in volume (bias) under the observed and simulated hydrographs, 
summed over the data period; 0.0 is best, positive values indicate overestimation, and negative 
values indicate underestimation. The %MF statistic measures the percent error in matching the 
maximum (peak) flow of the data record; 0.0 is best; positive values indicate overestimation, and 
negative values indicate underestimation. The correlation (CORR) statistic measures the linear 
correlation between the observed and simulated flows with optimal value 1.0. On average, between 
calibration and validation periods, as well as among all the statistics the ANN3 (3,5,4) model 
performs best. 

Figures 2a and 2b present the simulated by ANN3 (3,5,4) daily streamflow (in mm) and observed 
one for the calibration and validation period respectively. The ANN3 (3,5,4) model tends to fit the 
low-flows quite well, while the high-flow performance is not extremely good. 

In the following paragraphs, the ANN3 (3,5,4) model is compared with SMA, with respect to low 
and high flows. In order to examine these results in more detail, Table 2 and Figures 3a-3d present 
the RMSE and %VE statistics computed separately for flows above and below the 15-year mean 
daily flow (24.41m3/s). This provides an indication of performance on high- and low- flow events. 
Figure 3a presents the RMSEA statistic (root-mean-square error for above-mean flows). Clearly, the 
ANN model performs best for dry and wet years (whole the15-year period). Figure 3b presents to 
RMSEB statistic (root-mean-square error for below-mean flows). The ANN model performs best for 
all of the years, except for 1983, that both models present the same behavior. 
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Figures 2a and 2b. (a) Calibration and (b) prediction daily hydro graphs for ANN3 (3,5,4) model. 

TABLE 2. Statistics for Fifteen Years Calibration Study and Above-Below Mean Flows 
Below 

Above mean flow mean flow 

RMSEA %VEA RMSE %VEB 

No Model RMSE %VE %MF CORR. B 

Hydrological 22.455 2.071 - 0.749 37.313 -4.412 8.828 2l.121 
1 77.752 

2 ANNO 13.77 -l.112 -41.96 0.911 23.521 -3.737 3.839 6.641 

Figure 3c presents the %VEA statistic (percent volume error for above-mean flows). The ANN 
model provides consistently low bias, while the SMA performance is poor. Figure 3d presents the 
%VEB statistic (percent volume error for below-mean flows). The SMA model performance is very 
poor. We could point out that the poor performance of the SMA model does not reflect so much on 
the ability of the model as it does on the calibration procedure used. On the other hand, an 'expert' 
would not allow the model error bias at various flow levels to deteriorate so much while minimizing 
the error variance. 
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Figure 3 Annual performance statistics of above -and- below mean flow for each model plotted 
against total annual flow for each data year: (a) root-mean-square error for above-mean daily flow, 
(b) root-mean-square error for below-mean daily flow, (c) percent volume error for above-mean 
daily flow, and (d) percent volume error for below-mean daily flow. 

7. SUMMARY AND CONCLUSIONS 

The potential of artificial neural network models for simulating the hydrological behavior of 
extreme values over a mountainous catchment has been presented in this study. An efficient 
procedure (LLSSIM, [5]) for estimating the weights (parameters) of a three-layer ANN was used. 
The nonlinear ANN model identified using the LLSSIM identification procedure seems to provide a 
better system theoretical representation of the rainfall-runoff extreme values of the medium-sized 
mountainous Mesochora catchment, in Central Greece, than the conceptual SMA model. Because 
the ANN approach presented here does not provide models that have physically realistic 
components and parameters, it is by no means a substitute for conceptual catchment modeling. 
However, the results suggest that the ANN approach may provide an alternative to SMA model for 
developing input-output simulation and forecasting of extreme flows in situations that do not 
require modeling of the internal structure of the catchment. 
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