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Abstract

Incremental Dynamic Analysis (IDA) is an emerging structural analysis method that offers thor-
ough seismic demand and limit-state capacity prediction capability by using a series of nonlinear
dynamic analyses under a suite of multiply scaled ground motion records. Realization of its op-
portunities is enhanced by several innovations, such as choosing suitable ground motion intensity
measures and representative structural demand measures. In addition, proper interpolation and
summarization techniques for multiple records need to be employed, providing the means for
estimating the probability distribution of the structural demand given the seismic intensity. Limit-
states, such as the dynamic global system instability, can be naturally defined in the context of
IDA. The associated capacities are thus calculated such that, when properly combined with Prob-
abilistic Seismic Hazard Analysis, they allow the estimation of the mean annual frequencies of
limit-state exceedance.

IDA is resource-intensive. Thus the use of simpler approaches becomes attractive. The IDA
can be related to the computationally simpler Static Pushover (SPO), enabling a fast and accurate
approximation to be established for single-degree-of-freedom systems. By investigating oscilla-
tors with quadrilinear backbones and summarizing the results into a few empirical equations, a new
software tool, SPO2IDA, is produced here that allows direct estimation of the summarized IDA
results. Interesting observations are made regarding the influence of the period and the backbone
shape on the seismic performance of oscillators. Taking advantage of SPO2IDA, existing method-
ologies for predicting the seismic performance of first-mode-dominated, multi-degree-of-freedom
systems can be upgraded to provide accurate estimation well beyond the peak of the SPO.

The IDA results may display quite large record-to-record variability. By incorporating elastic
spectrum information, efficient intensity measures can be created that reduce such dispersions, re-
sulting in significant computational savings. By employing either a single optimal spectral value, a
vector of two or a scalar combination of several spectral values, significant efficiency is achieved.
As the structure becomes damaged, the evolution of such optimally selected spectral values is
observed, providing intuition about the role of spectral shape in the seismic performance of struc-
tures.
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Chapter 1
Introduction

1.1 Motivation

Earthquake engineering has come a long way since its birth, and it still seems to grow rapidly as we
gain experience. Each time an earthquake happens, we learn something new and the profession
grows to accommodate it. Such is the case in the aftermath of the 1989 Loma Prieta and 1994
Northridge earthquakes, where we learned that sometimes a life-safe building is just not enough.

Both research and practice used to be mostly concerned with the design of structures that
would be safe, in the sense of surviving a seismic event with a minimum number of casualties.
Still, many building owners have realized the staggering costs incurred by a life-safe yet heavily
damaged and non-operational building. Replacing or rehabilitating it, means stopping its oper-
ation, relocating the people and functions that it houses and finally dealing with an expensive
construction market overwhelmed with competing projects after a major earthquake. Compare
that to the slightly increased cost of having had a structure designed to higher standards, chosen to
meet the specific needs of the (demanding) owner, and thus able to remain functional after a small
but relatively frequent event, while still being safe if a rare destructive earthquake hits.

Thus was Performance-Based Earthquake Engineering (PBEE) born, a relatively new but rap-
idly growing idea that seems to be present in all guidelines that were recently published: Vision
2000 (SEAOC, 1995), ATC-40 (ATC, 1996), FEMA-273 (FEMA, 1997), and SAC/FEMA-350
(FEMA, 2000a). In loose terms, it requires that a building be designed to meet specific perfor-
mance objectives under the action of the frequent or the rarer seismic events that it may experience
in its lifetime. So, a building with a lifetime of 50 years may be required to sustain no damages un-
der a frequent, “50% in 50 years” event, e.g., one that has a probability of 50% of being exceeded
in the next 50 years. At the same time it should be able to remain repairable, despite sustaining
some damage, during a “10% in 50 years” event and remain stable and life-safe for rare events of
“2% in 50 years”, although, subsequently, it may have to be demolished. Obviously such perfor-
mance objectives can be better tailored to a building’s function, e.g., being stricter for a hospital
that needs to remain operational even after severe events, while being more relaxed for less critical
facilities, flexible and able to suit each building owner’s needs (respecting a minimum of safety of
course).

PBEE is quite a complicated subject and has created many new challenges that need to be
overcome. We need methods to quantify structural damage (e.g., beams, columns, foundations)
and non-structural damage (e.g., partitions, glass panels), ways to estimate the number of casu-
alties, the loss of building contents, the building downtime, rehabilitation costs, even estimates
of the price inflation after a major earthquake. But before we even get there, we have to start
at the basis; we need a powerful analysis method that will accurately analyze structural models
and estimate the (distribution of) demands that any level of shaking (frequent of not) may impose
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2 CHAPTER 1. INTRODUCTION

and, specifically, determine the level of shaking that will cause a structure to exceed a specified
limit-state, thus failing a given performance objective. In more accurate terms, we need a method
that will allow us to predict the mean annual frequency of violating the prescribed limit-states.

Several methodologies have been proposed to fulfill this role, but arguably the most promising
one is Incremental Dynamic Analysis (IDA). It takes the old concept of scaling ground motion
records and develops it into a way to accurately describe the full range of structural behavior, from
elasticity to collapse. Specifically, IDA involves subjecting a structural model to one (or more)
ground motion record(s), each scaled to multiple levels of intensity, thus producing one (or more)
curve(s) of response parameterized versus intensity level. By suitably summarizing such IDA
curves, defining limit-states and combining the results with standard Probabilistic Seismic Hazard
Analysis (PSHA), we can easily reach the goals we have set. But why stop there? IDA has great
potential and can extend far beyond being just a solution for PBEE, to provide valuable intuition
and help both researchers and professional engineers better understand the seismic behavior of
structures.

1.2 Objectives and scope

The goal of this study is to unify the concept of Incremental Dynamic Analysis and place it in a
concrete context of unambiguous definitions. Given that, this work aims to uncover the strengths
of the methodology and show how it can be applied in a practical way to deal with the issues
of PBEE. Furthermore, IDA is expanded and extended to cover larger ground. We will show its
connection with old and established seismic analysis methods, like the response modificationR-
factor, or the Static Pushover Analysis (also known as the Nonlinear Static Procedure,FEMA,
1997). Additionally, we will use it as a tool to investigate the influence of elastic spectral shape in
the seismic behavior of structures. The ultimate goal is to establish the use of nonlinear dynamic
analyses under multiple ground motion records as the state of the art and try to encourage practice
towards that direction, away from the current use of one to three accelerograms or just the Static
Pushover.

1.3 Organization and outline

All chapters are designed to be autonomous, each being a self-contained, single paper that has
either appeared in a professional journal or is being planned as a future publication. Still, it is
suggested that one becomes acquainted with the concepts introduced by the next chapter before
skipping ahead to other material that may be of interest:

Chapter 2 establishes and defines the basic principles of Incremental Dynamic Analysis (IDA).
Despite being an altogether novel method, bits and pieces of it have appeared in the literature
in several different forms. The goal is to establish a common frame of reference and unified
terminology. First, the concept of the Intensity Measure (IM ) is introduced to better describe
the scaling of a ground motion record, while the Damage Measure (DM ) is used to measure
the structural response. Combined together they define the IDA curve that describes the
response of a structure at several levels of intensity for a given ground motion record: from
elasticity to nonlinearity and ultimately global dynamic instability. Suitable algorithms are
presented to select the dynamic analyses and form the IDA curves, while properties of the
IDA curve are looked into for both single-degree-of-freedom (SDOF) and multi-degree-of-
freedom (MDOF) structures. In addition, we discuss methods for defining limit-states on
the IDA curves and estimating their capacities. Appropriate summarization techniques for
multi-record IDA studies and the association of the IDA study with the conventional Static
Pushover (SPO) Analysis and the yield reductionR-factor are also discussed. Finally in
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the framework of Performance-Based Earthquake Engineering (PBEE), the assessment of
demand and capacity is viewed through the lens of an IDA study.

Were this a car-dealership brochure, you would be looking at the shiny new Ferrari. This
mythical beast has been around for a while, you may have heard about it or seen it in
pictures, but may have felt intimidated. Now we are doing everything we can to describe it
at length, give you complete understanding of the inner workings and offer it at a greatly
reduced cost (of analysis).

Chapter 3 describes the practical use of IDA. Taking a realistic 9-story building as an example
and using the theory and observations of the previous chapter, we will generate a complete
application for PBEE assessment. We are going to take you through a step-by-step tuto-
rial of performing IDA in this representative case-study: choosing suitable ground motion
Intensity Measures (IM s) and representative Damage Measures (DM s), employing inter-
polation to generate continuous IDA curves, defining appropriate limit-states, estimating
the corresponding capacities and summarizing the IDA demands and capacities. Finally,
by combining such summarized results with PSHA in an appropriate probabilistic frame-
work, the mean annual frequencies of exceeding each limit-state are calculated. At first, the
reader is walked through the direct and efficient route to the final product. Then the acquired
knowledge of the process is used to contemplate the choices that we have made along the
way, highlighting the shortcuts we took and the pitfalls we have skillfully avoided.

This is practically where we take you out, sitting at the wheel of the Ferrari, for a test-drive.
See the beast, play with it and experience the thrill it delivers. Is there anything it cannot
do?

Chapter 4 investigates the connection of the IDA with the Static Pushover (SPO) for SDOF sys-
tems. An established method for analyzing structures, the SPO is clearly superseded by the
IDA, but still has a lot to offer in understanding the more complex analysis. Starting with
the simplest of all systems, the SDOF, but allowing it to have a complex force-deformation
backbone, we map the influence of the SPO, or the backbone, to the IDA. There is large
tradition in the profession to provide equations for the mean peak displacement response of
simple nonlinear oscillators, usually sporting the simplest (elastic-perfectly-plastic) back-
bones (SPOs). Here we tap into the power of IDA to take this concept one step further,
in the hope of upgrading the SPO to become a light, inexpensive alternative to the IDA.
The final product is SPO2IDA, an accurate, spreadsheet-level tool for Performance-Based
Earthquake Engineering that is available on the internet. It offers effectively instantaneous
estimation of nonlinear dynamic displacement demands and limit-state capacities, in addi-
tion to conventional strength reductionR-factors and inelastic displacement ratios, for any
SDOF system whose Static Pushover curve can be approximated by a quadrilinear back-
bone.

Even at a discount, not everybody can afford a Ferrari. So, how about using a good old
reliable Toyota, but with a brand new Ferrari-like engine? We are only going to develop the
engine now, creating a free, efficient and mass-producible replica called SPO2IDA, then let
you see how it compares with the real thing.

Chapter 5 extends the connection between SPO and IDA to MDOF structures. Taking advan-
tage of the tools generated in the previous chapter, we venture forth to apply them suit-
ably to MDOF systems, in a manner similar to existing methodologies (e.g.,FEMA, 1997).
SPO2IDA allows the use of an SDOF system whose backbone closely matches the SPO of
the MDOF structure even beyond its peak. The result is a fast and accurate method to esti-
mate the seismic demand and capacity of first-mode-dominated MDOF systems. The sum-
marized IDA curves of complex structures are effortlessly generated, enabling an engineer-
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user to obtain accurate estimates of seismic demands and capacities for structural limit-states
such as immediate occupancy or global dynamic instability. Testing the method against the
full IDA for three MDOF systems shows the accuracy it can achieve, but also highlights its
limitations.

That is where we take our rejuvenated Toyota (SPO2IDA for MDOF systems) out to three
different race tracks (buildings) and have a try-out versus the Ferrari (IDA). Conclusion:
The Toyota cannot really win, but can hold its own, and performs much better that the orig-
inal car we started with. We even come up with suggestions to the “Toyota manufacturers”
(engineers who perform SPOs) on how to build their cars to better take advantage of our
new engine.

Chapter 6 discusses the influence of the elastic spectral shape to the observed dispersion in the
limit-state capacities extracted from IDA. Their record-to-record variability can be signif-
icant, but can be reduced with the introduction of efficientIM s that incorporate spectral
information. While the use of inelastic spectral values can be advantageous, they need
custom-made attenuation laws to be used in a PBEE framework. Thus we focus on elastic
spectra, choosing to investigate an optimal single elastic spectral value, a vector of two, or
a scalar combination of several optimal values. The resulting dispersions are calculated for
each limit-state individually thus allowing us to observe the evolution of such optimal spec-
tral values as the structural damage increases. Most importantly, we measure the sensitivity
of suchIM s to the suboptimal selection of the spectral values, shedding some light into the
possibility ofa priori selection of an efficientIM .

That’s where we make some additions to our Ferrari only to realize we can make it more
efficient (almost twice the miles per gallon) and turn it into a Batmobil. Still experimental,
fresh off the works, but when we open up the throttle and unleash its power, it can take us to
seismic outer-space!

Chapter 7 summarizes the virtues but also the limitations of our methods, describing directions
for future work and improvements needed. Finally, it provides the overall conclusions and
the summary of the thesis.

Here, we praise the abilities and also put some dents to our Ferrari, Toyota and Batmobil.
We acknowledge their weaknesses and suggest how to resolve them in the future.



Chapter 2
Incremental Dynamic Analysis

Vamvatsikos, D. and Cornell, C. A. (2002a).Earthquake Engineering and Structural Dynam-
ics, 31(3): 491–514.© John Wiley & Sons Limited. Reproduced with permission.

2.1 Abstract

Incremental Dynamic Analysis (IDA) is a parametric analysis method that has recently emerged in
several different forms to estimate more thoroughly structural performance under seismic loads.
It involves subjecting a structural model to one (or more) ground motion record(s), each scaled
to multiple levels of intensity, thus producing one (or more) curve(s) of response parameterized
versus intensity level. To establish a common frame of reference, the fundamental concepts are
analyzed, a unified terminology is proposed, suitable algorithms are presented, and properties of
the IDA curve are looked into for both single-degree-of-freedom (SDOF) and multi-degree-of-
freedom (MDOF) structures. In addition, summarization techniques for multi-record IDA studies
and the association of the IDA study with the conventional Static Pushover Analysis and the yield
reductionR-factor are discussed. Finally in the framework of Performance-Based Earthquake
Engineering (PBEE), the assessment of demand and capacity is viewed through the lens of an IDA
study.

2.2 Introduction

The growth in computer processing power has made possible a continuous drive towards increas-
ingly accurate but at the same time more complex analysis methods. Thus the state of the art has
progressively moved from elastic static analysis to dynamic elastic, nonlinear static and finally
nonlinear dynamic analysis. In the last case the convention has been to run one to several different
records, each once, producing one to several “single-point” analyses, mostly used for checking
the designed structure. On the other hand methods like the nonlinear static pushover (SPO) (ATC,
1996) or the capacity spectrum method (ATC, 1996) offer, by suitable scaling of the static force
pattern, a “continuous” picture as the complete range of structural behavior is investigated, from
elasticity to yielding and finally collapse, thus greatly facilitating our understanding.

By analogy with passing from a single static analysis to the incremental static pushover, one
arrives at the extension of a single time-history analysis into an incremental one, where the seismic
“loading” is scaled. The concept has been mentioned as early as 1977 byBertero(1977), and has
been cast in several forms in the work of many researchers, includingLuco and Cornell(1998,
2000), Bazzurro and Cornell(1994a,b), Yun et al.(2002), Mehanny and Deierlein(2000), Dubina
et al. (2000), De Matteis et al.(2000), Nassar and Krawinkler(1991, pg.62–155) andPsycharis
et al. (2000). Recently, it has also been adopted by the U.S. Federal Emergency Management

5
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Figure 2.1: An example of information extracted from a single-record IDA study of aT1 = 4 sec, 20-story
steel moment-resisting frame with ductile members and connections, including global geometric nonlinear-
ities (P-∆) subjected to the El Centro, 1940 record (fault parallel component).
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Agency (FEMA) guidelines (FEMA, 2000a,b) as the Incremental Dynamic Analysis (IDA) and
established as the state-of-the-art method to determine global collapse capacity. The IDA study
is now a multi-purpose and widely applicable method and its objectives, only some of which are
evident in Figure2.1(a,b), include

1. thorough understanding of the range of response or “demands” versus the range of potential
levels of a ground motion record,

2. better understanding of the structural implications of rarer / more severe ground motion
levels,

3. better understanding of the changes in the nature of the structural response as the intensity
of ground motion increases (e.g., changes in peak deformation patterns with height, onset
of stiffness and strength degradation and their patterns and magnitudes),

4. producing estimates of the dynamic capacity of the global structural system and

5. finally, given a multi-record IDA study, how stable (or variable) all these items are from one
ground motion record to another.

Our goal is to provide a basis and terminology to unify the existing formats of the IDA study
and set up the essential background to achieve the above-mentioned objectives.

2.3 Fundamentals of single-record IDAs

As a first step, let us clearly define all the terms that we need, and start building our methodology
using as a fundamental block the concept of scaling an acceleration time history.

Assume we are given a single acceleration time-history, selected from a ground motion data-
base, which will be referred to as the base, “as-recorded” (although it may have been pre-processed
by seismologists, e.g., baseline corrected, filtered and rotated), unscaled accelerograma1, a vector
with elementsa1(ti), ti = 0, t1, . . . , tn−1. To account for more severe or milder ground motions, a
simple transformation is introduced by uniformly scaling up or down the amplitudes by a scalar
λ ∈ [0,+∞): aλ = λ ·a1. Such an operation can also be conveniently thought of as scaling the
elastic acceleration spectrum byλ or equivalently, in the Fourier domain, as scaling byλ the
amplitudes across all frequencies while keeping phase information intact.

Definition 1. TheSCALE FACTOR (SF) of a scaled accelerogram,aλ , is the non-negative scalar
λ ∈ [0,+∞) that producesaλ when multiplicatively applied to the unscaled (natural) acceleration
time-historya1.

Note how theSF constitutes a one-to-one mapping from the original accelerogram to all its
scaled images. A value ofλ = 1 signifies the natural accelerogram,λ < 1 is a scaled-down
accelerogram, whileλ > 1 corresponds to a scaled-up one.

Although theSF is the simplest way to characterize the scaled images of an accelerogram it is
by no means convenient for engineering purposes as it offers no information of the real “power” of
the scaled record and its effect on a given structure. Of more practical use would be a measure that
would map to theSF one-to-one, yet would be more informative, in the sense of better relating to
its damaging potential.

Definition 2. A MONOTONIC SCALABLE GROUND MOTION INTENSITY MEASURE (or sim-
ply intensity measure,IM ) of a scaled accelerogram,aλ , is a non-negative scalarIM ∈ [0,+∞)
that constitutes a function,IM = fa1(λ ), that depends on the unscaled accelerogram,a1, and is
monotonicallyincreasing with the scale factor,λ .
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While many quantities have been proposed to characterize the “intensity” of a ground motion
record, it may not always be apparent how to scale them, e.g., Moment Magnitude, Duration,
or Modified Mercalli Intensity; they must be designated as non-scalable. Common examples
of scalableIM s are the Peak Ground Acceleration (PGA), Peak Ground Velocity, theξ = 5%
damped Spectral Acceleration at the structure’s first-mode period (Sa(T1,5%)), and the normalized
factor R = λ/λyield (whereλyield signifies, for a given record and structural model, the lowest
scaling needed to cause yielding) which is numerically equivalent to the yield reductionR-factor
(e.g., Chopra, 1995) for, for example, bilinear SDOF systems (see later section). TheseIM s
also have the property of being proportional to theSF as they satisfy the relationIMprop = λ ·
fa1. On the other hand the quantitySam(T1,ξ ,b,c,d) = [Sa(T1,ξ )]b · [Sa(cT1,ξ )]d proposed by
Shome and Cornell(1999) andMehanny and Deierlein(2000) is scalable and monotonic but non-
proportional, unlessb+d = 1. Some non-monotonicIM s have been proposed, such as the inelastic
displacement of a nonlinear oscillator byLuco and Cornell(2004), but will not be focused upon,
soIM will implicitly mean monotonic and scalable hereafter unless otherwise stated.

Now that we have the desired input to subject a structure to, we also need some way to monitor
its state, its response to the seismic load.

Definition 3. DAMAGE MEASURE (DM) or STRUCTURAL STATE VARIABLE is a non-negative
scalarDM ∈ [0,+∞] that characterizes the additional response of the structural model due to a
prescribed seismic loading.

In other words aDM is an observable quantity that is part of, or can be deduced from, the
output of the corresponding nonlinear dynamic analysis. Possible choices could be maximum
base shear, node rotations, peak story ductilities, various proposed damage indices (e.g., a global
cumulative hysteretic energy, a global Park–Ang index (Ang and De Leon, 1997) or the stability
index proposed byMehanny and Deierlein, 2000), peak roof driftθroof, the floor peak interstory
drift anglesθ1, . . . ,θn of an n-story structure, or their maximum, the maximum peak interstory
drift angleθmax = max(θ1, . . . ,θn). Selecting a suitableDM depends on the application and the
structure itself; it may be desirable to use two or moreDM s (all resulting from the same nonlinear
analyses) to assess different response characteristics, limit-states or modes of failure of interest
in a PBEE assessment. If the damage to non-structural contents in a multi-story frame needs to
be assessed, the peak floor accelerations are the obvious choice. On the other hand, for structural
damage of frame buildings,θmax relates well to joint rotations and both global and local story
collapse, thus becoming a strongDM candidate. The latter, expressed in terms of the total drift,
instead of the effective drift which would take into account the building tilt, (seePrakhash et al.,
1992, pg.88) will be our choice ofDM for most illustrative cases here, where foundation rotation
and column shortening are not severe.

The structural response is often a signed scalar; usually, either the absolute value is used or
the magnitudes of the negative and the positive parts are separately considered. Now we are able
to define the IDA.

Definition 4. A SINGLE-RECORD IDA STUDY is a dynamic analysis study of a given structural
model parameterized by the scale factor of the given ground motion time history.

Also known simply as Incremental Dynamic Analysis (IDA) or Dynamic Pushover (DPO), it
involves a series of dynamic nonlinear runs performed under scaled images of an accelerogram,
whoseIM s are, ideally, selected to cover the whole range from elastic to nonlinear and finally to
collapse of the structure. The purpose is to recordDM s of the structural model at each levelIM
of the scaled ground motion, the resulting response values often being plotted versus the intensity
level as continuous curves.

Definition 5. An IDA CURVE is a plot of a state variable (DM) recorded in an IDA study versus
one or moreIMs that characterize the applied scaled accelerogram.
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Figure 2.2: IDA curves of aT1 = 1.8 sec, 5-story steel braced frame subjected to 4 different records.

An IDA curve can be realized in two or more dimensions depending on the number of the
IM s. Obviously at least one must be scalable and it is such anIM that is used in the conventional
two-dimensional (2D) plots that we will focus on hereafter. As per standard engineering practice
such plots often appear “upside-down” as the independent variable is theIM which is considered
analogous to “force” and plotted on the vertical axis (Figure2.1(a)) as in stress-strain, force-
deformation or SPO graphs. As is evident, the results of an IDA study can be presented in a
multitude of different IDA curves, depending on the choices ofIM s andDM .

To illustrate the IDA concept we will use several MDOF and SDOF models as examples in the
following sections. In particular the MDOFs used are aT1 = 4 sec 20-story steel-moment resisting
frame (Luco and Cornell, 2000) with ductile members and connections, including a first-order
treatment of global geometric nonlinearities (P-∆ effects), aT1 = 2.2 sec 9-story and aT1 = 1.3 sec
3-story steel-moment resisting frame (Luco and Cornell, 2000) with ductile members, fracturing
connections and P-∆ effects, and aT1 = 1.8 sec 5-story steel chevron-braced frame with ductile
members and connections and realistically buckling braces including P-∆ effects (Bazzurro and
Cornell, 1994b).

2.4 Looking at an IDA curve: Some general properties

The IDA study isaccelerogramandstructural modelspecific; when subjected to different ground
motions a model will often produce quite dissimilar responses that are difficult to predict a priori.
Notice, for example, Figure2.2(a–d) where a 5-story braced frame exhibits responses ranging from
a gradual degradation towards collapse to a rapid, non-monotonic, back-and-forth twisting behav-
ior. Each graph illustrates thedemandsimposed upon the structure by each ground motion record
at different intensities, and they are quite intriguing in both their similarities and dissimilarities.



10 CHAPTER 2. INCREMENTAL DYNAMIC ANALYSIS

0 0.005 0.01 0.015 0.02 0.025 0.03

0.2

0.4

0.6

0.8

1

1.2

1.4

 storey 1  storey 2  storey 3

 storey 4

storey 5

maximum interstory drift ratio, θ max

"f
irs

t−
m

od
e"

 s
pe

ct
ra

l a
cc

el
er

at
io

n 
S

a(
T

1,
 5

%
) 

(g
)

Figure 2.3: IDA curves of peak interstory drifts for each floor of aT1 = 1.8 sec 5-story steel braced frame.
Notice the complex “weaving” interaction where extreme softening of floor 2 acts as a fuse to relieve those
above (3,4,5).

All curves exhibit a distinct elastic linear region that ends atSyield
a (T1,5%)≈ 0.2g andθ yield

max ≈
0.2% when the first brace-buckling occurs. Actually, any structural model with initially linearly
elastic elements will display such a behavior, which terminates when the first nonlinearity comes
into play, i.e., when any element reaches the end of its elasticity. The slopeIM/DM of this segment
on each IDA curve will be called its elastic “stiffness” for the givenDM , IM . It typically varies
to some degree from record to record but it will be the same across records for SDOF systems
and even for MDOF systems if theIM takes into account the higher mode effects (i.e.,Luco and
Cornell, 2004).

Focusing on the other end of the curves in Figure2.2, notice how they terminate at different
levels ofIM . Curve (a) sharply “softens” after the initial buckling and accelerates towards large
drifts and eventual collapse. On the other hand, curves (c) and (d) seem to weave around the elastic
slope; they follow closely the familiarequal displacementrule, i.e., the empirical observation that
for moderate period structures, inelastic global displacements are generally approximately equal
to the displacements of the corresponding elastic model (e.g.,Veletsos and Newmark, 1960). The
twisting patterns that curves (c) and (d) display in doing so are successive segments of “softening”
and “hardening”, regions where the local slope or “stiffness” decreases with higherIM and others
where it increases. In engineering terms this means that at times the structure experiences acceler-
ation of the rate ofDM accumulation and at other times a deceleration occurs that can be powerful
enough to momentarily stop theDM accumulation or even reverse it, thus locally pulling the IDA
curve to relatively lowerDM s and making it a non-monotonic function of theIM (Figure2.2(d)).
Eventually, assuming the model allows for some collapse mechanism and theDM used can track
it, a final softening segment occurs when the structure accumulatesDM at increasingly higher
rates, signaling the onset ofdynamic instability. This is defined analogously to static instability,
as the point where deformations increase in an unlimited manner for vanishingly small increments
in theIM . The curve then flattens out in a plateau of the maximum value inIM as it reaches the
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Figure 2.4: Ductility response of aT = 1 sec, elasto-plastic oscillator at multiple levels of shaking. Earlier
yielding in the stronger ground motion leads to a lower absolute peak response.
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Figure 2.5: Structural resurrection on the IDA curve of aT1 = 1.3 sec, 3-story steel moment-resisting frame
with fracturing connections.

flatline andDM moves towards “infinity” (Figure2.2(a,b)). Although the examples shown are
based onSa(T1,5%) andθmax, these modes of behavior are observable for a wide choice ofDM s
andIM s.

Hardening in IDA curves is not a novel observation, having been reported before even for sim-
ple bilinear elastic-perfectly-plastic systems, e.g., byChopra(1995, pg.257-259). Still it remains
counter-intuitive that a system that showed high response at a given intensity level, may exhibit the
same or even lower response when subjected to higher seismic intensities due to excessive harden-
ing. But it is thepatternand thetiming rather than just the intensity that make the difference. As
the accelerogram is scaled up, weak response cycles in the early part of the response time-history
become strong enough to inflict damage (yielding) thus altering the properties of the structure for
the subsequent, stronger cycles. For multi-story buildings, a stronger ground motion may lead to
earlier yielding of one floor which in turn acts as a fuse to relieve another (usually higher) one,
as in Figure2.3. Even simple oscillators when caused to yield in an earlier cycle, may be proven
less responsive in later cycles that had previously caused higherDM values (Figure2.4), perhaps
due to “period elongation”. The same phenomena account for thestructural resurrection, an ex-
treme case of hardening, where a system is pushed all the way to global collapse (i.e., the analysis
code cannot converge, producing “numerically infinite”DM s) at someIM , only to reappear as
non-collapsing at a higher intensity level, displaying high response but still standing (e.g., Figure
2.5).

As the complexity of even the 2D IDA curve becomes apparent, it is only natural to examine
the properties of the curve as a mathematical entity. Assuming a monotonicIM the IDA curve
becomes afunction([0,+∞)→ [0,+∞]), i.e., any value ofIM produces a single valueDM , while
for any givenDM value there is at least one or more (in non-monotonic IDA curves)IM s that
generate it, since the mapping is not necessarily one-to-one. Also, the IDA curve is not necessar-
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ily smooth as theDM is often defined as a maximum or contains absolute values of responses,
making it non-differentiable by definition. Even more, it may contain a (hopefully finite) number
of discontinuities, due to multiple excursions to collapse and subsequent resurrections.

2.5 Capacity and limit-states on single IDA curves

Performance levels or limit-states are important ingredients of Performance Based Earthquake
Engineering (PBEE), and the IDA curve contains the necessary information to assess them. But
we need to define them in a less abstract way that makes sense on an IDA curve, i.e., by a statement
or a rule that when satisfied, signals reaching a limit-state. For example, Immediate Occupancy
(FEMA, 2000a,b) is a structural performance level that has been associated with reaching a given
DM value, usually inθmax terms, while (in FEMA 350,FEMA, 2000a, at least) Global Collapse
is related to theIM or DM value where dynamic instability is observed. A relevant issue that then
appears is what to do when multiple points (Figure2.6(a,b)) satisfy such a rule? Which one is to
be selected?

The cause of multiple points that can satisfy a limit-state rule is mainly the hardening issue
and, in its extreme form, structural resurrection. In general, one would want to be conservative and
consider the lowest, inIM terms, point that will signal the limit-state. Generalizing this concept to
the whole IDA curve means that we will discard its portion “above” the first (inIM terms) flatline
and just consider only points up to this first sign of dynamic instability.

Note also that for most of the discussion we will be equating dynamic instability to numeri-
cal instability in the prediction of collapse. Clearly the non-convergence of the time-integration
scheme is perhaps the safest and maybe the only numerical equivalent of the actual phenomenon
of dynamic collapse. But, as in all models, this one can suffer from the quality of the numerical
code, the stepping of the integration and even the round-off error. Therefore, we will assume that
such matters are taken care of as well as possible to allow for accurate enough predictions. That
being said, let us set forth the most basic rules used to define a limit-state.

First comes theDM-based rule, which is generated from a statement of the format: “If
DM≥CDM then the limit-state is exceeded” (Figure2.6(a)). The underlying concept is usually that
DM is a damage indicator, hence, when it increases beyond a certain value the structural model is
assumed to be in the limit-state. Such values ofCDM can be obtained through experiments, theory
or engineering experience, and they may not be deterministic but have a probability distribution.
An example is theθmax= 2%limit that signifies the Immediate Occupancy structural performance
level for steel moment-resisting frames (SMRFs) with type-1 connections in the FEMA guidelines
(FEMA, 2000b). Also the approach used byMehanny and Deierlein(2000) is another case where
a structure-specific damage index is used asDM and when its reciprocal is greater than unity, col-
lapse is presumed to have occurred. Such limits may have randomness incorporated, for example,
FEMA 350 (FEMA, 2000a) defines a local collapse limit-state by the value ofθmax that induces a
connection rotation sufficient to destroy the gravity load carrying capacity of the connection. This
is defined as a random variable based on tests, analysis and judgment for each connection type.
Even a uniqueCDM value may imply multiple limit-state points on an IDA curve (e.g., Figure
2.6(a)). This ambiguity can be handled by an ad hoc, specified procedure (e.g., by conservatively
defining the limit-state point as the lowestIM ), or by explicitly recognizing the multiple regions
conforming and non-conforming with the performance level. TheDM -based rules have the ad-
vantage of simplicity and ease of implementation, especially for performance levels other than
collapse. In the case of collapse capacity though, they may actually be a sign of model deficiency.
If the model is realistic enough it ought to explicitly contain such information, i.e., show a collapse
by non-convergence instead of by a finiteDM output. Still, one has to recognize that such models
can be quite complicated and resource-intensive, while numerics can often be unstable. Hence
DM -based collapse limit-state rules can be quite useful. They also have the advantage of being
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Figure 2.6: Two different rules producing multiple capacity points for aT1 = 1.3 sec, 3-story steel moment-
resisting frame with fracturing connections. TheDM rule, where theDM is θmax, is set atCDM = 0.08and
theIM rule uses the20%slope criterion.
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consistent with other less severe limit-states which are more naturally identified inDM terms, e.g.,
θmax.

The alternativeIM-based rule, is primarily generated from the need to better assess collapse
capacity, by having a single point on the IDA curve that clearly divides it to two regions, one
of non-collapse (lowerIM ) and one of collapse (higherIM ). For monotonicIM s, such a rule
is generated by a statement of the form: “IfIM ≥CIM then the limit-state is exceeded” (Figure
2.6(b)). A major difference with the previous category is the difficulty in prescribing aCIM value
that signals collapse for all IDA curves, so it has to be done individually, curve by curve. Still, the
advantage is that it clearly generates a single collapse region, and the disadvantage is the difficulty
of defining such a point for each curve in a consistent fashion. In general, such a rule results in
bothIM andDM descriptions of capacity. A special (extreme) case is taking the “final” point of
the curve as the capacity, i.e., by using the (lowest) flatline to define capacity (inIM terms), where
all of the IDA curve up to the first appearance of dynamic instability is considered as non-collapse.

TheFEMA (2000a) 20% tangent slope approach is, in effect, anIM -based rule; thelast point
on the curve with a tangent slope equal to 20% of the elastic slope is defined to be the capacity
point. The idea is that the flattening of the curve is an indicator of dynamic instability (i.e., the
DM increasing at ever higher rates and accelerating towards “infinity”). Since “infinity” is not a
possible numerical result, we content ourselves with pulling back to a rate ofθmax increase equal
to five times the initial or elastic rate, as the place where we mark the capacity point. Care needs
to be exercised, as the possible “weaving” behavior of an IDA curve can provide several such
points where the structure seems to head towards collapse, only to recover at a somewhat higher
IM level, as in Figure2.6(b); in principle, these lower points should thus be discarded as capacity
candidates. Also the non-smoothness of the actual curve may prove to be a problem. As mentioned
above, the IDA curve is at best piecewise smooth, but even so, approximate tangent slopes can be
assigned to every point along it by employing a smooth interpolation. For sceptics this may also be
thought of as a discrete derivative on a grid of points that is a good “engineering” approximation
to the “rate-of-change”.

The above mentioned simple rules are the building blocks to construct composite rules, i.e.,
composite logical clauses of the above types, most often joined by logical OR operators. For
example, when a structure has several collapse modes, not detectable by a singleDM , it is ad-
vantageous to detect global collapse with an OR clause for each individual mode. An example is
offshore platforms where pile or soil failure modes are evident in deck drift while failures of braces
are more evident in maximum peak inter-tier drift. The first — inIM terms — event that occurs is
the one that governs collapse capacity. Another case is Global Collapse capacity, which as defined
by FEMA in FEMA (2000a,b) is in fact an OR conjunction of the 20% slopeIM -based rule and a
CDM = 10%DM -based rule, whereSa(T1,5%) andθmax are theIM andDM of choice. If either of
the two rules obtains, it defines capacity. This means that the 20% stiffness detects impending col-
lapse, while the 10% cap guards against excessive values ofθmax, indicative of regions where the
model may not be trustworthy. As aDM description of capacity is proposed, this definition may
suffer from inaccuracies, since close to the flatline a wide range ofDM values may correspond to
only a small range ofIM s, thus making the actual value ofDM selected sensitive to the quality of
IDA curve tracing and to the (ad hoc) 20% value. If, on the other hand, anIM description is used,
the rule becomes more robust. This is a general observation for collapse capacity; it appears that
it can be best expressed inIM terms.

2.6 Multi-record IDAs and their summary

As should be evident by now, a single-record IDA study cannot fully capture the behavior a build-
ing may display in a future event. The IDA can be highly dependent on the record chosen, so a
sufficient number of records will be needed to cover the full range of responses. Hence, we have
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to resort to subjecting the structural model to a suite of ground motion records.

Definition 6. A MULTI -RECORD IDA STUDY is a collection of single-record IDA studies of the
same structural model, under different accelerograms.

Such a study, correspondingly produces sets of IDA curves, which by sharing a common
selection ofIM s and the sameDM , can be plotted on the same graph, as in Figure2.7(a) for a
5-story steel braced frame.

Definition 7. An IDA CURVE SET is a collection of IDA curves of the same structural model
under different accelerograms, that are all parameterized on the sameIMs andDM.

While each curve, given the structural model and the ground motion record, is a completely
defined deterministic entity, if we wish to take into account the inherent randomness with respect
to what record the building might experience, we have to bring a probabilistic characterization
into play. The IDA given the structural model and a statistical population of records is no longer
deterministic; it is arandom line, or a random functionDM = f (IM ) (for a single, monotonic
IM ). Then, just as we are able to summarize a suite of records by having, for example, mean,
median, and 16%, 84% response spectra, so we can define mean, median and 16%, 84% IDA
curves (e.g., Figure2.7(b)) to (marginally) summarize an IDA curve set. We, therefore, need
methods for estimating statistics of a sample of 2D random lines (assuming a singleIM ), a topic
of Functional Data Analysis (Ramsay and Silverman, 1996). They conveniently fall in two main
categories.

First are the parametric methods. In this case a parametric model of theDM given theIM is
assumed, each line is separately fit, providing a sample of parameter values, and then statistics of
the parameters are obtained. Alternatively a parametric model of the medianDM given theIM
can be fit to all the lines simultaneously. As an example, consider the 2-parameter, power-law
modelθmax = α · [Sa(T1,5%)]β introduced byShome and Cornell(1999), which under the well-
documented assumption of lognormality of the conditional distribution ofθmax givenSa(T1,5%),
often provides a simple yet powerful description of the curves, allowing some important analytic
results to be obtained (Jalayer and Cornell, 2002; Cornell et al., 2002). This is a general property
of parametric methods; while they lack the flexibility to accurately capture each curve, they make
up by allowing simple descriptions to be extracted.

On the other end of the spectrum are the non-parametric methods, which mainly involve the
use of “scatterplot smoothers” like the running mean, running median,LOESSor the smoothing
spline (Hastie and Tibshirani, 1990). Perhaps the simplest of them all, the running mean with
a zero-length window (or cross-sectional mean), involves simply calculating values of theDM
at each level ofIM and then finding the average and standard deviation ofDM given theIM
level. This works well up to the point where the first IDA curve reaches capacity, whenDM
becomes infinite, and so does the mean IDA curve. Unfortunately most smoothers suffer from
the same problem, but the cross-sectional median, or cross-sectional fractile is, in general, more
robust. Instead of calculating means at eachIM level, we now calculate sample medians, 16%
and 84% fractiles, which become infinite only when collapse occurs in 50%, 84% and 16% of the
records respectively. Another advantage is that under suitable assumptions (e.g., continuity and
monotonicity of the curves), the line connecting thex% fractiles ofDM givenIM is the same as
the one connecting the(100−x)% fractiles ofIM givenDM . Furthermore, this scheme fits nicely
with the well-supported assumption of lognormal distribution ofθmax givenSa(T1,5%), where the
median is the natural “central value” and the 16%, 84% fractiles correspond to the median times
e∓dispersion, where “dispersion” is the standard deviation of the logarithms of the values (Jalayer
and Cornell, 2002).

Finally, a variant for treating collapses is proposed byShome and Cornell(2000), where the
conventional moments are used to characterize non-collapses, thus removing the problem of in-
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Figure 2.7: An IDA study for thirty records on aT1 = 1.8 sec, 5-story steel braced frame, showing (a) the
thirty individual curves and (b) their summary (16%, 50% and 84%) fractile curves (in log-log scale).
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finities, while the probability of collapse given theIM is summarized separately by a logistic
regression.

A simpler, yet important problem is the summarizing of the capacities of a sample ofN curves,
expressed either inDM (e.g.,{C i

θmax
}, i = 1. . .N ) or IM (e.g.,{C i

Sa(T1,5%)}, i = 1. . .N ) terms.
Since there are neither random lines nor infinities involved, the problem reduces to conventional
sample statistics, so we can get means, standard deviations or fractiles as usual. Still, the observed
lognormality in the capacity data, often suggests the use of the median (e.g.,ĈSa(T1,5%) or Ĉθmax),
estimated either as the 50% fractile or as the antilog of the mean of the logarithms, and the stan-
dard deviation of the logarithms as dispersion. Finally, when considering limit-state probability
computations (see section below), one needs to address potential dependence (e.g., correlation)
between capacity and demand. Limited investigation to date has revealed little if any systematic
correlation betweenDM capacity andDM demand (givenIM ).

2.7 The IDA in a PBEE framework

The power of the IDA as an analysis method is put to use well in a probabilistic framework, where
we are concerned with the estimation of the annual likelihood of the event that the demand exceeds
the limit-state or capacityC. This is the likelihood of exceeding a certain limit-state, or of failing
a performance level (e.g., Immediate Occupancy or Collapse Prevention inFEMA, 2000a), within
a given period of time. The calculation can be summarized in the framing equation adopted by the
Pacific Earthquake Engineering Center (Cornell and Krawinkler, 2000)

λ (DV ) =
∫∫

G(DV |DM ) |dG(DM |IM )| |dλ (IM )| (2.1)

in which IM , DM andDV are vectors of intensity measures, damage measures and “decision
variables” respectively. In this paper we have generally used scalarIM (e.g., Sa(T1,5%)) and
DM (e.g.,θmax) for the limit-state case of interest. The decision variable here is simply a scalar
“indicator variable”: DV = 1 if the limit-state is exceeded (and zero otherwise).λ (IM) is the
conventional hazard curve, i.e., the mean annual frequency ofIM exceeding, say,x. The quantity
|dλ (x)|= |dλ (x)/dx| dx is its differential (i.e.,|dλ (x)/dx| is the mean rate density).|dG(DM |IM)|
is the differential of the (conditional) complementary cumulative distribution function (CCDF)
of DM given IM , or fDM |IM (y|x)dy. In the previous sections we discussed the statistical char-
acterization of the random IDA lines. These distributions are precisely this characterization of
|dG(DM |IM)|. Finally in the limit-state case, when on the left-hand side of Equation (2.1) we
seekλ (DV=1) = λ (0), G(0|DM) becomes simply the probability that the capacityC is less than
some level of theDM , say,y; so G(0|DM) = FC(y), whereFC(y) is the cumulative distribution
function ofC, i.e., the statistical characterization of capacity, also discussed at the end of the pre-
vious section. In the global collapse case, capacity estimates also come from IDA analyses. In
short, save for the seismicity characterization,λ (IM), given an intelligent selection ofIM , DM
and structural model, the IDA produces, in arguably the most comprehensive way, precisely the
information needed both for PBEE demand characterization and for global collapse capacity char-
acterization.

2.8 Scaling legitimacy andIM selection

As discussed above, we believe there is useful engineering insight to be gained by conducting
individual and sets of IDA studies. However, concern is often expressed about the “validity” of
DM results obtained from records that have been scaled (up or down), an operation that is not
uncommon both in research and in practice. While not always well expressed, the concern usually
has something to do with “weaker” records not being “representative” of “stronger” ones. The
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issue can be more precisely stated in the context of the last two sections as: will the median (or any
other statistic of)DM obtained from records that have been scaled to some level ofIM estimate
accurately the medianDM of a population of unscaled records all with that same level ofIM .
Because of current record catalog limitations, where few records of any single givenIM level can
be found, and because we have interest usually in a range ofIM levels (e.g., in integrations such
as Equation (2.1)), it is both more practical and more complete to ask: will the (regression-like)
function medianDM versusIM obtained from scaled records (whether via IDAs or otherwise)
estimate well that same function obtained from unscaled records? There is a growing body of
literature related to such questions that is too long to summarize here (e.g.,Shome and Cornell,
1998, 1999). An example of such a comparison is given in Figure2.8from Bazzurro et al.(1998),
where the two regressions are so close to one another that only one was plotted by the authors.
Suffice it to say that, in general, the answer to the question depends on the structure, theDM ,
the IM and the population in mind. For example, the answer is “yes” for the case pictured in
Figure2.8, i.e., for a moderate period (1 sec) steel frame, for whichDM is maximum interstory
drift and IM is first-mode-period spectral acceleration, and for a fairly general class of records
(moderate to large magnitudes,M, all but directivity-influenced distances,R, etc.). On the other
hand, for all else equal exceptIM defined now asPGA, the answer would be “no” for this same
case. Why? Because such a (first-mode dominated) structure is sensitive to the strength of the
frequency content near its first-mode frequency, which is well characterized by theSa(1 sec,5%)
but not byPGA, and as magnitude changes, spectral shape changes implying that the average
ratio of Sa(1 sec,5%) to PGA changes with magnitude. Therefore the scaled-record median drift
versusPGA curve will depend on the fractions of magnitudes of different sizes present in the
sample, and may or may not represent well such a curve for any (other) specified population of
magnitudes. On the other hand, theIM first-mode spectral acceleration will no longer work well
for a tall, long-period building that is sensitive to shorter periods, again because of spectral shape
dependence on magnitude.

There are a variety of questions of efficiency, accuracy and practicality associated with the wise
choice of theIM for any particular application (e.g.,Luco and Cornell, 2004), but it can generally
be said here that if theIM has been chosen such that the regression ofDM jointly on IM , M and
R is found to be effectively independent ofM andR (in the range of interest), then, yes, scaling of
records will provide good estimates of the distribution ofDM givenIM . Hence we can conclude
that scaling is indeed (in this sense) “legitimate”, and finally that IDAs provide accurate estimates
of DM given IM statistics (as required, for example, for PBEE use; seeBazzurro et al.(1998),
Shome and Cornell(1999).

IDA studies may also bring a fresh perspective to the larger question of the effectiveIM
choice. For example, smaller dispersion ofDM givenIM implies that a smaller sample of records
and fewer nonlinear runs are necessary to estimate medianDM versusIM . Therefore, a desir-
able property of a candidateIM is small dispersion. Figure2.9 shows IDAs from a 9-story steel
moment-resisting frame in which theDM is θmax and theIM is either (a)PGA or (b)Sa(T1,5%).
The latter produces a lower dispersion over the full range ofDM values, as the IDA-based results
clearly display. Furthermore, the IDA can be used to study how well (with what dispersion) partic-
ular IM s predict collapse capacity; againSa(T1,5%) appears preferable toPGA for this structure
as the dispersion ofIM values associated with the “flatlines” is less in the former case.

2.9 The IDA versus theR-factor

A popular form of incremental seismic analysis, especially for SDOF oscillators, has been that
leading to the yield reductionR-factor (e.g.,Chopra, 1995). In this case the record is left un-
scaled, avoiding record scaling concerns; instead, the yield force (or yield deformation, or, in
the multi-member MDOF case, the yield stress) of the model is scaled down from that level that
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coincides with the onset of inelastic behavior. If both are similarly normalized (e.g., ductility =
deformation/yield-deformation andR= Sa(T1,5%)/Syield

a (T1,5%)), the results of this scaling and
those of an IDA will be identical for those classes of systems for which such simple structural
scaling is appropriate, e.g., most SDOF models, and certain MDOF models without axial-force–
moment interaction, without second-or-higher-order geometric nonlinearities, etc. One might
argue that these cases of common results are another justification for the legitimacy of scaling
records in the IDA. It can be said that the difference between theR-factor and IDA perspectives
is one of design versus assessment. For design one has an allowable ductility in mind and seeks
the design yield force that will achieve this; for assessment one has a fixed design (or existing
structure) in hand and seeks to understand its behavior under a range of potential future ground
motion intensities.

2.10 The IDA versus the Nonlinear Static Pushover

The common incremental loading nature of the IDA study and the SPO suggests an investigation
of the connection between their results. As they are both intended to describe the same structure,
we should expect some correlation between the SPO curve and any IDA curve of the building
(Figure2.1), and even more so between the SPO and the summarized (median) IDA curve, as the
latter is less variable and less record dependent. Still, to plot both on the same graph, we should
preferably express the SPO in theIM , DM coordinates chosen for the summarized IDA. While
someDM s (e.g.,θmax) can easily be obtained from both the static and the dynamic analysis, it
may not be so natural to convert theIM s, e.g., base shear toSa(T1,5%). The proposed approach
is to adjust the “elastic stiffness” of the SPO to be the same as that of the IDA, i.e., by matching
their elastic segments. This can be achieved in the aforementioned example by dividing the base
shear by the building mass, which is all that is needed for SDOF systems, times an appropriate
factor for MDOF systems.

The results of such a procedure are shown in Figures2.10(a,b) where we plot the SPO curve,
obtained using a first-mode force pattern, versus the median IDA for a 20-story steel moment-
resisting frame with ductile connections and for a 5-story steel braced frame usingSa(T1,5%) and
θmax coordinates. Clearly both the IDA and the SPO curves display similar ranges ofDM values.
The IDA always rises much higher than the SPO inIM terms, however. While a quantitative
relation between the two curves may be difficult, deserving further study (e.g.,Seneviratna and
Krawinkler, 1997), qualitatively we can make some, apparently, quite general observations that
permit inference of the approximateshapeof the median IDA simply by looking at the SPO.

1. By construction, the elastic region of the SPO matches well the IDA, including the first sign
of nonlinearity appearing at the same values ofIM andDM for both.

2. A subsequent reduced, but still non-negative stiffness region of the SPO correlates on the
IDA with the approximate “equal-displacement” rule (for moderate-period structures) (Ve-
letsos and Newmark, 1960), i.e., a near continuation of the elastic regime slope; in fact
this near-elastic part of the IDA is often preceded by ahardeningportion (Figure2.10(a)).
Shorter-period structures will instead display some softening.

3. A negative slope on the SPO translates to a (softening) region of the IDA, which can lead to
collapse, i.e., IDA flat-lining (Figure2.10(a)), unless it is arrested by a non-negative segment
of the SPO before it reaches zero inIM terms (Figure2.10(b)).

4. A non-negative region of the SPO that follows after a negative slope that has caused a signifi-
cantIM drop, apparently presents itself in the IDA as a new, modified “equal-displacement”
rule (i.e., an near-linear segment that lies on a secant) that has lower “stiffness” than the elas-
tic (Figure2.10(b)).
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2.11 IDA Algorithms

Despite the theoretical simplicity of an IDA study, actually performing one can potentially be
resource intensive. Although we would like to have an almost continuous representation of IDA
curves, for most structural models the sheer cost of each dynamic nonlinear run forces us to think
of algorithms designed to select an optimal grid of discreteIM values that will provide the desired
coverage. The density of a grid on the curve is best quantified in terms of theIM values used,
the objectives being: a highdemand resolution, achieved by evenlyspreadingthe points and thus
having no gap in ourIM values larger than some tolerance, and a highcapacity resolution, which
calls for aconcentrationof points around the flatline to bracket it appropriately, e.g., by having a
distance between the highest (in terms ofIM ) “non-collapsing” run and the lowest “collapsing”
run less than some tolerance. Here, by collapsing run we mean a dynamic analysis performed at
someIM level that is determined to have caused collapse, either by satisfying some collapse-rule
(IM or DM based, or more complex) or simply by failing to converge to a solution. Obviously, if
we allow only a fixed number of runs for a given record, these two objectives compete with one
another.

In a multi-record IDA study, there are some advantages to be gained by using information from
the results of one record to adapt the grid of points to be used on the next. Even without exploiting
these opportunities, we can still design efficient methods to tackle each record separately that are
simpler and more amenable to parallelization on multiple processors. Therefore we will focus on
thetracingof single IDA curves.

Probably the simplest solution is asteppingalgorithm, where theIM is increased by a constant
step from zero to collapse, a version of which is also described inYun et al.(2002). The end result
is a uniformly-spaced (inIM ) grid of points on the curve. The algorithm needs only a pre-defined
step value and a rule to determine when to stop, i.e., when a run is collapsing.

repeat
increaseIM by the step
scale record, run analysis and extractDM (s)

until collapse is reached

Although it is an easily programmable routine it may not be cost-efficient as its quality is
largely dependent on the choice of theIM step. Even if information from previously processed
ground motion records is used, the step size may easily be too large or too small for this record.
Even then, the variability in the “height” (inIM terms) of the flatline, which is both accelerogram
andIM dependent, tends to unbalance the distribution of runs; IDA curves that reach the flatline
at a lowIM level receive fewer runs, while those that collapse at higherIM levels get more points.
The effect can be reduced by selecting a goodIM , e.g.,Sa(T1,5%) instead ofPGA, asIM s with
higher DM variability tend to produce more widely dispersed flatlines (Figure2.9). Another
disadvantage is the implicit coupling of the capacity and demand estimation, as the demand and
the capacity resolutions are effectively the same and equal to the step size.

Trying to improve upon the basis of the stepping algorithm, one can use the ideas on searching
techniques available in the literature (e.g.,Press et al., 1986). A simple enhancement that increases
the speed of convergence to the flatline is to allow the steps to increase, for example by a factor,
resulting in a geometric series ofIM s, or by a constant, which produces a quadratic series. This is
thehunting phaseof the code where the flatline is bracketed without expending more than a few
runs.

repeat
increaseIM by the step
scale record, run analysis and extractDM (s)
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increase the step
until collapse is reached

Furthermore, to improve upon the capacity resolution, a simple enhancement is to add a step-
reducing routine, for example bisection, when collapse (e.g., non-convergence) is detected, so as
to tighten the bracketing of the flatline. This will enable a prescribed accuracy for the capacity to
be reached regardless of the demand resolution.

repeat
select anIM in the gap between the highest non-collapsing and lowest non-collapsingIM s
scale record, run analysis and extractDM (s)

until highest collapsing and lowest non-collapsingIM -gap< tolerance

Even up to this point, this method is a logical replacement for the algorithm proposed inYun
et al.(2002) and in the FEMA guidelines (FEMA, 2000a) as this algorithm is focused on optimally
locating the capacity, which is the only use made of the IDA in those two references. If we also
wish to use the algorithm for demand estimation, coming back to fill in the gaps created by the
enlarged steps is desirable to improve upon the demand resolution there.

repeat
select anIM that halves the largest gap between theIM levels run
scale record, run analysis and extractDM (s)

until largest non-collapsingIM -gap< tolerance

When all three pieces are run sequentially, they make for a more efficient procedure, ahunt
& fill tracing algorithm, described in detail byVamvatsikos and Cornell(2002b), that performs
increasingly larger leaps, attempting to bound theIM parameter space, and then fills in the gaps,
both capacity and demand-wise. It needs an initial step and a stopping rule, just like the stepping
algorithm, plus a step increasing function, a capacity and a demand resolution. The latter two can
be selected so that a prescribed number of runs is performed on each record, thus tracing each
curve with the same load of resources.

A subtle issue here is the summarization of the IDA curves produced by the algorithm. Obvi-
ously, if the same step is used for all records and if there is no need to use anotherIM , the stepping
algorithm immediately provides us with stripes ofDM at given values ofIM (e.g., Figure2.8).
So a “cross-sectional median” scheme could be implemented immediately on the output, without
any post-processing. On the other hand, a hunt & fill algorithm would produceDM values at
non-matching levels ofIM across the set of records, which necessitates the interpolation of the
resulting IDA curve to calculate intermediate values. Naturally, the same idea can be applied to
the output of any IDA tracing algorithm, even a stepping one, to increase the density of discrete
points without the need for additional dynamic analyses. Ideally, a flexible, highly non-parametric
scheme should be used. Coordinate-transformed natural splines, as presented inVamvatsikos and
Cornell (2002b), are a good candidate. Actually all the IDA curves in the figures of the paper are
results of such an interpolation of discrete points. However, before implementing any interpola-
tion scheme, one should provide a dense enough grid ofIM values to obtain a high confidence of
detecting any structural resurrections that might occur before the final flatline.

2.12 Conclusions

The results of Incremental Dynamic Analyses of structures suggest that the method can become
a valuable additional tool of seismic engineering. IDA addresses both demand and capacity of
structures. This paper has presented a number of examples of such analyses (from simple oscil-
lators to 20-story frames), and it has used these examples to call attention to various interesting
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properties of individual IDAs and sets of IDAs. In addition to the peculiarities of non-monotonic
behavior, discontinuities, “flatlining” and even “resurrection” behavior within individual IDAs,
one predominate impression left is that of the extraordinary variability from record to record of
the forms and amplitudes of the IDA curves for a single building (e.g., Figure2.7(a)). The (de-
terministic) vagaries of a nonlinear structural system under irregular input present a challenge to
researchers to understand, categorize and possibly predict. This variability also leads to the need
for statistical treatment of multi-record IDA output in order to summarize the results and in order
to use them effectively in a predictive mode, as for example in a PBEE context. The paper has
proposed some definitions and examples of a variety of issues such as these IDA properties, the
scaling variables (IM s), limit-state forms, and collapse definitions. Further we have addressed
the question of “legitimacy” of scaling records and the relationships between IDAs andR-factors
as well as between IDAs and the Static Pushover Analysis. Finally, while the computational re-
sources necessary to conduct IDAs may appear to limit them currently to the research domain,
computation is an ever-cheaper resource, the operations lend themselves naturally to parallel com-
putation, IDAs have already been used to develop information for practical guidelines (FEMA,
2000a,b), and algorithms presented here can reduce the number of nonlinear runs per record to
a handful, especially when the results of interest are not the curious details of an individual IDA
curve, but smooth statistical summaries of demands and capacities.



Chapter 3
Applied Incremental Dynamic Analysis

Vamvatsikos, D. and Cornell, C. A. (2003a).Earthquake Spectra, (in preparation).

3.1 Abstract

Presenting a practical and detailed example of how to perform Incremental Dynamic Analysis
(IDA), interpret the results and apply them to Performance-Based Earthquake Engineering. IDA
is an emerging analysis method that offers thorough seismic demand and capacity prediction ca-
pability by using a series of nonlinear dynamic analyses under a multiply scaled suite of ground
motion records. Realization of its opportunities requires several steps and the use of innovative
techniques at each one of them. Using a 9-story steel moment-resisting frame with fracturing con-
nections as a testbed, the reader is guided through each step of IDA: (1) Choosing suitable ground
motion Intensity Measures and representative Damage Measures, (2) using appropriate algorithms
to select the record scaling, (3) employing proper interpolation and (4) summarization techniques
for multiple records to estimate the probability distribution of the structural demand given the
seismic intensity and (5) defining limit-states, such as the dynamic global system instability, to
calculate the corresponding capacities. Finally, (6) the results can be used to gain intuition for
the structural behavior, highlighting the connection between the Static Pushover (SPO) and the
dynamic response, or (7) they can be integrated with conventional Probabilistic Seismic Hazard
Analysis (PSHA) to estimate mean annual frequencies of limit-state exceedance. Building upon
this detailed example based on the 9-story, a complete commentary is provided, discussing the
choices that are available to the user, and showing their implications for each step of the IDA.

3.2 Introduction

An important issue in Performance-Based Earthquake Engineering (PBEE) is the estimation of
structural performance under seismic loads, in particular the estimation of the mean annual fre-
quency (MAF) of exceeding a specified level of structural demand (e.g., the maximum, over all
stories, peak interstory drift ratioθmax) or a certain limit-state capacity (e.g., global dynamic in-
stability). A promising method that has recently risen to meet these needs is Incremental Dynamic
Analysis (IDA), which involves performing nonlinear dynamic analyses of the structural model
under a suite of ground motion records, each scaled to several intensity levels designed to force
the structure all the way from elasticity to final global dynamic instability (Vamvatsikos and Cor-
nell, 2002a).

Applying IDA to determine the performance of a structure requires several steps. First, a
proper nonlinear structural model needs to be formed, and a suite of records must be compiled.
Then, for each record, the scaling levels must be selected, the dynamic analyses run and the

26
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Table 3.1: The set of twenty ground motion records used.

No Event Station φ◦ 1 Soil2 M3 R4 (km) PGA (g)

1 Loma Prieta, 1989 Agnews State Hospital 090 C,D 6.9 28.2 0.159
2 Imperial Valley, 1979 Plaster City 135 C,D 6.5 31.7 0.057
3 Loma Prieta, 1989 Hollister Diff. Array 255 –,D 6.9 25.8 0.279
4 Loma Prieta, 1989 Anderson Dam Downstream 270 B,D 6.9 21.4 0.244
5 Loma Prieta, 1989 Coyote Lake Dam Downstream 285 B,D 6.9 22.3 0.179
6 Imperial Valley, 1979 Cucapah 085 C,D 6.5 23.6 0.309
7 Loma Prieta, 1989 Sunnyvale Colton Ave 270 C,D 6.9 28.8 0.207
8 Imperial Valley, 1979 El Centro Array #13 140 C,D 6.5 21.9 0.117
9 Imperial Valley, 1979 Westmoreland Fire Station 090 C,D 6.5 15.1 0.074
10 Loma Prieta, 1989 Hollister South & Pine 000 –,D 6.9 28.8 0.371
11 Loma Prieta, 1989 Sunnyvale Colton Ave 360 C,D 6.9 28.8 0.209
12 Superstition Hills, 1987 Wildlife Liquefaction Array 090 C,D 6.7 24.4 0.180
13 Imperial Valley, 1979 Chihuahua 282 C,D 6.5 28.7 0.254
14 Imperial Valley, 1979 El Centro Array #13 230 C,D 6.5 21.9 0.139
15 Imperial Valley, 1979 Westmoreland Fire Station 180 C,D 6.5 15.1 0.110
16 Loma Prieta, 1989 WAHO 000 -,D 6.9 16.9 0.370
17 Superstition Hills, 1987 Wildlife Liquefaction Array 360 C,D 6.7 24.4 0.200
18 Imperial Valley, 1979 Plaster City 045 C,D 6.5 31.7 0.042
19 Loma Prieta, 1989 Hollister Diff. Array 165 –,D 6.9 25.8 0.269
20 Loma Prieta, 1989 WAHO 090 –,D 6.9 16.9 0.638

1 Component 2 USGS, Geomatrix soil class 3 Moment magnitude 4 Closest distance to fault rupture

results postprocessed. Thus, we can generate IDA curves of the structural response, as measured
by a Damage Measure (DM , e.g., peak roof drift ratioθroof or θmax), versus the ground motion
intensity level, measured by an Intensity Measure (IM , e.g., peak ground acceleration, PGA, or
the 5%-damped first-mode spectral accelerationSa(T1,5%)). In turn these are interpolated for
each record and summarized over all records to estimate the distribution of demandDM given
intensity IM . Subsequently, limit-states (e.g., Immediate Occupancy or Collapse Prevention in
FEMA, 2000a,b) can be defined on each IDA curve and summarized to produce the probability of
exceeding a specified limit-state given theIM level. The final results are in a suitable format to
be conveniently integrated with a conventional PSHA hazard curve in order to calculate MAFs of
exceeding a certain limit-state capacity, or a certain demand.

Building upon this foundation, we will discuss several topics of practical interest, showing in
detail the reasons behind the choices made in our example and the advantages or disadvantages of
each. In particular, subjects like the number of runs, the algorithms used for scaling-level selec-
tion, and possible approximations used for the probabilistic calculations are going to be presented
showing their impact upon the accuracy of PBEE calculations.

3.3 Model and ground motion records

To illustrate our methodology, we will use a centerline model of a 9-story steel moment-resisting
frame designed for Los Angeles according to the 1997 NEHRP provisions (Lee and Foutch, 2002).
The model has a first-mode period ofT1 = 2.37sec and it incorporates ductile members, shear pan-
els and realistically fracturing Reduced Beam Section connections, while it includes the influence
of interior gravity columns and a first-order treatment of global geometric nonlinearities (P-∆ ef-
fects).

In addition we need a suite of ground motion records. Previous studies (Shome and Cornell,
1999) have shown that for mid-rise buildings, ten to twenty records are usually enough to provide
sufficient accuracy in the estimation of seismic demands, assuming a relatively efficientIM , like
Sa(T1,5%), is used. Consequently, we have selected a set of twenty ground motion records, listed
in Table3.1, that belong to a bin of relatively large magnitudes of 6.5 – 6.9 and moderate distances,
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all recorded on firm soil and bearing no marks of directivity; effectively they represent a scenario
earthquake.

3.4 Performing the Analysis

Once the model has been formed and the ground motion records have been selected, we need a
fast and automated way to perform the actual dynamic analyses required for IDA. This entails
appropriately scaling each record to cover the entire range of structural response, from elasticity,
to yielding, and finally global dynamic instability. Our task is made significantly easier by using
an advanced algorithm, likehunt & fill (Vamvatsikos and Cornell, 2002a). This ensures that the
record scaling levels are appropriately selected to minimize the number of required runs: Analyses
are performed at rapidly increasing levels ofIM until numerical non-convergence is encountered
(signaling global dynamic instability), while additional analyses are run at intermediateIM -levels
to sufficiently bracket the global collapse and increase the accuracy at lowerIM s. The user only
needs to specify the desired accuracy for demand and capacity, select the maximum tolerable num-
ber of dynamic analyses, and then wait for a few hours to get the results. Since the algorithm has
been implemented in software (Vamvatsikos and Cornell, 2002b) able to wrap around most exist-
ing analysis programs (e.g., DRAIN-2DX,Prakhash et al., 1992) it renders IDA almost effortless,
needing no human supervision.

As an example, we will show in detail the computations resulting to theIM -levels selected
by hunt & fill when tracing record #14 from Table3.1. To express the scaling level we need an
initial, temporary choice ofIM , and we have chosenSa(T1,5%), a decision that need not restrict
us in any way: scaling can be re-expressed in any other scalableIM (Vamvatsikos and Cornell,
2002a) that we wish after the runs are performed. Hence, inSa(T1,5%) terms, the algorithm was
configured to use an initial step of 0.1g, a step increment of 0.05g and a designated first elastic run
at 0.005g, while a maximum of 12 runs was allowed for each record. Additionally, we specified a
resolution of 10% on the global collapse capacity, i.e., we expect the model to develop numerical
non-convergence and show practically infiniteθmax at some high intensity level, and we wish
this level to be known within 10% of itsIM -value. Finally, we allowed the demand resolution,
i.e., the maximum difference between successiveIM -values, to run to its best attainable value by
expending all the 12 runs. Alternatively we could have designated some minimum satisfactory
IM -gap below which we do not wish to proceed, thus saving some runs.

Table 3.2: Sequence of runs generated by the hunt & fill tracing algorithm for record #14.

No. calculations Sa(T1,5%) (g) θmax

1 0.005 0.05%
2 0.005+0.10 0.105 0.79%
3 0.105+0.10+1×0.05 0.255 2.02%
4 0.255+0.10+2×0.05 0.455 3.01%
5 0.455+0.10+3×0.05 0.705 5.85%
6 0.705+0.10+4×0.05 1.005 +∞
7 0.705+(1.005−0.705)/3 0.805 18.83%
8 0.805+(1.005−0.805)/3 0.872 +∞
9 (0.805+0.705)/2 0.755 9.18%
10 (0.705+0.455)/2 0.580 3.27%
11 (0.455+0.255)/2 0.355 2.96%
12 (0.255+0.105)/2 0.180 1.34%

Using the above settings we get the sequence of runs shown in Table3.2. The first run is
meant to be in the elastic region. In the subsequent five runs, 2–6, we are hunting upwards till
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the first numerical non-convergence appears in the form of “infinite”θmax. Then, the dynamic
analysis algorithm does not converge thus either failing to complete the dynamic run (as happened
for this record) or producing extreme values ofθmax, say 200%. The next two runs, 7–8, are
used to better bracket the first appearance of non-convergence, closing within 10% of itsIM -value
((0.872−0.805)/0.805= 8.32%< 10%) so that the gap between highest converging and lowest
non-converging run is less that 10% of the former. Notice, that instead of placing each new run
in the middle of the gap, the algorithm places it closer to the converging run, only one third of
the way to the non-converging one. This ensures that the search will be somewhat biased towards
converging runs, which are more informative than non-converging ones (which are essentially
discarded). The rest of the runs, up to the maximum of 12, are used to fill in the IDA at lower
levels, being sequentially placed in the middle of the largestIM -gaps. Thus, the large gaps left by
the initial increasing steps to the flatline (runs 2–6), are filled in; this step increases the demand
resolution and, given enough runs, it ensures that the algorithm has not missed an earlier collapse.
Although it is a rare phenomenon in multi-degree-of-freedom structural models, certain records
may cause them to collapse for a range ofIM -values, but not for some higherIM , an event we
call structural resurrection(Vamvatsikos and Cornell, 2002a). By reducing theIM -gaps with runs
9–12, we are making sure that we have not missed such an earlier (inIM terms) global collapse
and the flatline we have found is the first one to occur.

Notice that the maximumIM -gap, i.e., the demand resolution, is about 0.13g (but less than half
on average), while theIM -difference between the highest converging and lowest non-converging
run (the capacity resolution) is much less than 10% of the highest convergingIM , about 0.06g.
Naturally, if we knew a priori the approximateIM -height of the flatline, we could use a stepping
algorithm with 12 runs and constant step of 0.1g to achieve similar results with a homogeneous
distribution of the accuracy, but this scheme would fail with the next records, producing either too
few or too many runs, due to the large record-to-record variability.

Assuming that the computational cost for each run is the same, then, the more the analyses
per record, the longer for IDA to complete but the better the accuracy. Still, with the use of such
an advanced algorithm no runs are wasted, thus 12 runs per record will suffice to strike a good
compromise between speed and accuracy. Nevertheless, it may be pointed out that performing
240 dynamic runs for a model with thousands of degrees-of-freedom is a daunting task. Yet,
even for such a complicated model, it took less than 12 hours on two 1999-era Pentium-class
processors running independently. The process is completely automated and so easily performed
overnight that actually setting up the structural model can now be expected to take substantially
more (human) time than doing the analysis, while computer time is becoming an ever-cheaper
commodity.

3.5 Postprocessing

Equally important to the analysis is the postprocessing of the resulting data and perhaps the most
important issue is selecting a suitableIM andDM . There are several issues of efficiency and suf-
ficiency associated with theIM selection (Luco and Cornell, 2004). Since there are no directivity-
influenced records in our suite and the building is of medium height (hence first-mode-dominated),
the 5%-damped first-mode spectral accelerationSa(T1,5%) will be our choice; it has been proven
to be both efficient, by minimizing the scatter in the results, requiring only a few ground motion
records to provide good demand and capacity estimates, and sufficient, as it provides a complete
characterization of the response without the need for magnitude or source-to-site distance infor-
mation (Shome and Cornell, 1999). Similarly, selecting aDM can be application-specific; for
example, the peak floor accelerations are correlated with contents’ damage and many types of non-
structural elements’ damage, while the maximum peak interstory drift ratioθmax (the maximum
over time and over all stories of the interstory drift ratios recorded during the timehistory analysis)



30 CHAPTER 3. APPLIED INCREMENTAL DYNAMIC ANALYSIS

is known to relate well (FEMA, 2000a) to global dynamic instability and several structural perfor-
mance limit-states upon which we intend to focus. Therefore,θmax will be our DM -choice. Still,
it must be emphasized that theseIM andDM choices are by no means limiting. Assuming that
additionalDM s have been recorded from the analyses, they can be substituted instead ofθmax,
and by employing the postprocessing techniques presented, the IDA data can be expressed in a
different scalableIM , without any need to rerun the dynamic analyses.

Having selected ourIM andDM , we are still faced with an abundance of IDA-generated data
that need to be sorted out and presented in meaningful ways. It is a time-consuming and challeng-
ing task that we are going to step our way through, but it can be rendered totally effortless with the
proper software. Actually, most of what follows is a direct description of the inner workings of
an automated postprocessing program (Vamvatsikos and Cornell, 2002b), whose graphical output
appears in the accompanying figures.

3.5.1 Generating the IDA curves by Interpolation

Once the desiredIM andDM values (in our caseSa(T1,5%) andθmax) are extracted from each
of the dynamic analyses, we are left with a set of discrete points for each record that reside in
the IM -DM plane and lie on its IDA curve, as in Figure3.1. By interpolating them, the entire
IDA curve can be approximated without performing additional analyses. To do so, we may use a
basic piecewise linear approximation, or the superior spline interpolation. Based on the concept of
natural, coordinate-transformed, parametric splines with a centripetal scheme for knot-selection
(Lee, 1989; Farin, 1990), a realistic interpolation can be generated that accurately represents the
real IDA curve, as shown in Figure3.1 for our example of record #14 in Table3.2. Having the
complete curve available, it is now possible to calculateDM values at arbitrary levels ofIM ,
allowing the extraction of more(IM ,DM ) points with a minimum of computation.

The spline comes inn cubic polynomial pieces and is parameterized on a single non-negative
parameter,t ∈ [0, t1]

⋃
. . .

⋃
[tn−1, tn] , wheren is the number of convergent runs/points including

the default (0,0) point, i.e.,n = 10+ 1 = 11 for record #14, Table3.2. For each value of the
parametert, and depending on the interval[ti−1, ti ] where it lies, we get two polynomials, one for
theIM (thex-variable) and one for theDM (they-variable):

{
xi(t) = axi t

3 +bxi t
2 +cxi t +dxi

yi(t) = ayi t
3 +byi t

2 +cyi t +dyi
t ∈ [ti−1, ti ] , i = 1, . . . ,n (3.1)

With the help of Equation (3.1) we can approximate theDM -value at arbitrary levels ofIM
and vice versa. All we need is to solve the appropriatexi(t) polynomial piece given the value of
x to get the parametert and then replace at the correspondingyi(t) piece to get the appropriate
y-value (DM ), i.e.,

DM = y
(
x−1(IM )

)
, (3.2)

IM = x
(
y−1(DM )

)
, (3.3)

where the -1 superscript denotes the inverse of a function. All these operations only involve
polynomials, hence they are trivial to perform, especially if properly coded in a program.

The smooth IDA curve provided by the interpolation scheme offers much to observe. Even
for the single record depicted in Figure3.1 the IDA curve is not at all simple. It starts as a
straight line in the elastic range but then shows the effect of yielding and slightly “softens” at
0.3g by displaying a tangent slope less than the elastic. Subsequently, it “hardens”, having a local
slope higher that the elastic, and the building apparently responds with almost the sameθmax≈
3% for Sa(T1,5%) in the range of 0.35g – 0.55g. Finally, the IDA curve starts softening again,
showing ever decreasing slopes, i.e., greater rates ofDM accumulation asIM increases, reaching
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Figure 3.1: The numerically-converging dynamic analysis points for record #14, Table3.2, are interpo-
lated, using both a spline and a piecewise linear approximation.
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Figure 3.2: The limit-states, as defined on the IDA curve of record #14.
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the “flatline” atSa(T1,5%) ≈ 0.81g, where the structure responds with practically “infinite”θmax

values and numerical non-convergence has been encountered during the analysis. That is when the
building has reached global dynamic instability, when a small increment in theIM -level results in
unlimited increase of theDM -response.

Observing Figure3.1, it becomes apparent that the relation ofIM (or x) andt in Equation3.1
should always be monotonically increasing. The formulation presented does not strictly enforce
this property, but a properly fitted spline will always observe this restriction. Consequently, Equa-
tion (3.2) will always return only oneDM for a givenIM . On the other hand, the relation ofDM
andt is often non-monotonic, due to the occasional hardening of IDA curves, hence Equation (3.3)
may generate more than oneIM solutions that produce a givenDM .

3.5.2 Defining Limit-States on an IDA curve

In order to be able to do the performance calculations needed for PBEE, we need to define limit-
states on the IDA curves. For our case study, we chose to demonstrate three: Immediate Oc-
cupancy (IO), Collapse Prevention (CP), both defined inFEMA (2000a,b), and global dynamic
instability (GI). For a steel moment-resisting frame with Reduced Beam Section connections, IO
is violated atθmax = 2% according toFEMA (2000a). On the other hand, CP is not exceeded
on the IDA curve until the final point where the local tangent reaches 20% of the elastic slope
(Figure3.2) or θmax = 10%, whichever occurs first inIM terms (FEMA, 2000a). The main idea is
to place the CP limit-state at a point where the IDA curve is softening towards the flatline but at
low enough values ofθmax so that we still trust the structural model. Finally, GI happens when the
flatline is reached and any increase in theIM results in practically infiniteDM response.

Calculating theIM -value of the flatline capacity is trivial, as our best estimate is actually some-
where between the highest numerically-converging run and the lowest non-converging one, as
produced by the hunt & fill algorithm. We choose to use theIM -value of the highest numerically-
converging run as the estimate, e.g.,Sa(T1,5%) = 0.81g for record #14. We could have used, for
example, the average of the highest converging and lowest non-converging run,(0.81+0.87)/2=
0.84g, but the difference is negligible and gets smaller and smaller as we increase our capacity
resolution in the hunt & fill tracing algorithm.

It is equally easy to calculate theIM -values for the IO limit-state; all we need to do is use
Equation (3.3) for DM ≡ θmax = 2%, calculate all theIM -values that produceθmax = 2% and,
if more than one, select the lowest. This is the one that signals the very first exceedance of the
limit-state for the given record. For our example of record #14 in Figure3.2, IO is violated for
Sa(T1,5%)≥ 0.26g or θmax≥ 2%.

On the other hand, the CP points are harder to generate, as we need the tangent slope (i.e.,
the first-order derivative) of the IDA curve to find points where the local stiffness is 20% of the
elastic. We also need the curvature of the IDA curve, to discard candidate points that lie on a
hardening part of the curve, rather than the desired softening. The cubic spline interpolation is by
definition twice differentiable everywhere, so if we use the prime to denote differentiation by the
interpolation-parametert and apply the chain-rule, we can generate the first two derivatives ofIM
(or x) givenDM (or y):

dx
dy

=
x ′

y ′
(3.4)

d2x
dy2 =

x ′′y ′−y ′′x ′

(y ′)3 (3.5)

According to the CP limit-state concept, we need to find the highest (inIM -value) point where
the IDA slope is equal to 20% of the elastic while the point also belongs to a softening branch.
Additionally, another candidate point is atθmax = 10%; therefore whichever comes first (inIM ),
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the slope or theθmax limit, decides capacity. Hence, we specify:

dx
dy

∣∣∣∣
t
= 0.20

dx
dy

∣∣∣∣
t=0

(3.6)

d2x
dy2

∣∣∣∣
t
< 0 (3.7)

t = y−1(10%), (3.8)

All we need to do is solve for allt satisfying Equation (3.6) and select the maximum sucht (cor-
responding to the maximumIM ) that still satisfies Equation (3.7). Then, we compare against
the minimumt that satisfies (3.8). Whichever is the smallest is thet that defines the CP point.
Following this procedure with record #14 we get:Sa(T1,5%) = 0.72g, θmax = 6.4% from Equa-
tions (3.6)–(3.7), andSa(T1,5%) = 0.76g, θmax = 10%from (3.8). By choosing the smallestt, or
equivalently the smallestIM , we end up with the first of the two points, i.e., in this case the slope
limit defines CP (Figure3.2).

3.5.3 Summarizing the IDAs

By generating the IDA curve for each record and subsequently defining the limit-state capacities,
a large amount of data can be gathered, only part of which is seen in Figure3.3. There, the IDA
curves display a wide range of behavior, showing large record-to-record variability, thus making
it essential to summarize such data and quantify the randomness introduced by the records. We
need to employ appropriate summarization techniques that will reduce this data to the distribution
of DM givenIM and to the probability of exceeding any specific limit-state given theIM level.

The limit-state capacities can be easily summarized into some central value (e.g., the mean or
the median) and a measure of dispersion (e.g., the standard deviation, or the difference between
two fractiles). Consequently, we have chosen to calculate the 16%, 50% and 84% fractile values of
DM (DM c

16%, DM c
50% andDM c

84% respectively) andIM (IM c
16%, IM c

50% andIM c
84% respectively)

for each limit-state, as shown in Table3.3, and also graphically depicted in Figure3.4. For ex-
ample, reading off Table3.3, at Sa(T1,5%) = 0.83g or equivalently atθmax = 0.10, 50% of the
ground motion records have forced the 9-story structure to violate CP.

Table 3.3: Summarized capacities for each limit-state.

Sa(T1,5%) (g) θmax

IM c
16% IM c

50% IM c
84% DM c

16% DM c
50% DM c

84%

IO 0.18 0.27 0.33 0.02 0.02 0.02
CP 0.57 0.83 1.29 0.07 0.10 0.10
GI 0.74 0.91 1.35 +∞ +∞ +∞

There are several methods to summarize the IDA curves, but the cross-sectional fractiles are
arguably the most flexible and robust with respect to the infiniteDM s introduced by the flatlines
(Vamvatsikos and Cornell, 2002a). Using the spline interpolation we can generate stripes ofDM -
values at arbitrary levels of theIM ; each stripe contains twentyDM -values, one for each record,
that may be finite or even infinite when a record has already reached its flatline at a lowerIM -level.
By summarizing theDM -values for each stripe into their 16%, 50% and 84% percentiles, we get
fractile values ofDM givenIM that are in turn interpolated for each fractile to generate the 16%,
50% and 84% fractile IDA curves, shown in Figure3.4. For example, givenSa(T1,5%) = 0.4g,
16% of the records produceθmax≤ 2.3%, 50% of the recordsθmax≤ 2.5%and 84%θmax≤ 6.5%.
Under suitable assumptions of continuity and monotonicity of the IDA curves (as shown at a
later section), the fractiles can also be used in the inverse way, e.g., in order to generate demand
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Figure 3.3: All twenty IDA curves and the associated limit-state capacities. The IO limit is at the intersec-
tion of each IDA with theθmax = 2% line, the CP limit is represented by the dots, while GI occurs at the
flatlines.
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Figure 3.4: The summary of the IDA curves and corresponding limit-state capacities into their 16%, 50%
and 84% fractiles.
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θmax= 4%, 84% of the records need to be scaled at levelsSa(T1,5%)≥ 0.31g, 50% of the records
at Sa(T1,5%)≥ 0.52g and 16% atSa(T1,5%)≥ 0.76g. Consequently, the 16%, 50% and 84% IO
points and GI flatlines actually reside on the 84%, 50% and 16% IDA curves respectively, a direct
result of the definition of these limit-states. On the other hand, no such general property exists for
the CP points, but experience has shown that they usually lie quite close and often on top of their
corresponding fractile IDAs, just like the other limit-state points.
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Figure 3.5: Hazard curve for the Van Nuys Los Angeles site, forSa(2.37s,5%).

3.5.4 PBEE calculations

One of the goals of PBEE is producing MAFs of exceedance for the limit-states. This can be
easily accomplished with the summarized results that have been calculated so far, especially if one
considers the formats proposed by SAC/FEMA (FEMA, 2000a,b) or by the Pacific Earthquake
Engineering Research Center (Cornell and Krawinkler, 2000). The process invariably involves
calculating the MAF of exceeding values of the chosenIM , readily available forSa(T1,5%) from
conventional PSHA, and appropriately integrating with the conditional probabilities of exceed-
ing each limit-state (given theIM or DM level) to produce the desired MAFs of limit-state ex-
ceedance. It is a relatively straightforward method that has been described in extent, for example,
by Cornell et al.(2002).

Here we will perform such calculations using a form of the framing equation adopted by the
Pacific Earthquake Engineering Research Center (Cornell and Krawinkler, 2000; Vamvatsikos and
Cornell, 2002a),

λ (DV ) =
∫∫

G(DV |DM ) |dG(DM |IM )| |dλ (IM )| (3.9)

To simplify the above equation and the ones to follow, we will loosely useλ (X), F(X) andG(X)
to denote the MAF function, cumulative distribution function (CDF) and the complementary CDF
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(CCDF), respectively, of their arguments. For example,λ (X) actually meansλX(x) and is a dif-
ferent function fromλ (Y)≡ λY(y).

In this paper we have generally usedSa(T1,5%) for theIM andθmax asDM for the limit-states
of interest. The decision variable,DV , here is simply a scalar “indicator variable”:DV = 1 if the
limit-state is exceeded (and zero otherwise).λ (IM ) ≡ λIM (x) is the conventional hazard curve,
i.e., the MAF ofIM exceeding, say,x. |dG(DM |IM )| is the differential of the (conditional) CCDF
of DM givenIM , or fDM |IM (y|x)dy, i.e., it is the probabilistic characterization of the distribution
of DM givenIM , offered by the fractile IDAs. Finally in the limit-state (LS) case, when on the left-
hand side of Equation (3.9) we seek the MAF of exceeding the limit-state,λ (DV=1) = λ (0) = λLS

andG(0|DM) becomes simply the probability that the capacityDM c is less than some level of the
DM ; so G(0|DM ) = F(DM c|DM), whereF(DM c|DM) is the CDF ofDM c, i.e., the statistical
characterization of theDM -value of capacity, as offered, e.g., by the fractiles ofDM -capacity.

Thus, for our purposes, we can modify Equation (3.9) to become:

λLS =
∫∫

G(0|DM ) |dG(DM |IM )| |dλ (IM )|

=
∫ DM=+∞

DM=0
F(DM c|DM )

{∫ IM=+∞

IM=0

∣∣∣∣
dG(DM |IM )

dDM

∣∣∣∣
∣∣∣∣
dλ (IM )

dIM

∣∣∣∣ dIM
}

dDM

=
∫ DM=+∞

DM=0
F(DM c|DM )

∣∣∣∣
dλ (DM )

dDM

∣∣∣∣ dDM (3.10)

where the integration overIM in the braces needs to be carried out either numerically or by an
appropriate analytic approximation (Cornell et al., 2002) to produce the absolute value of theDM
hazard gradient|dλ (DM)/dDM |. Then we can proceed to integrate overDM and estimateλLS.
If, on the other hand, we first integrate-out theDM , then we can rewrite the above equation to use
theIM -value of capacity:

λLS =
∫

G(0|IM ) |dλ (IM )|

=
∫ IM=+∞

IM=0
F(IM c|IM )

∣∣∣∣
dλ (IM )

dIM

∣∣∣∣ dIM (3.11)

where the quantity in the absolute value is theIM hazard gradient andF(IM c|IM ) is the CDF of
theIM -value of limit-state capacity. In this case, all quantities in Equation (3.11) are known, and
only one integration is needed to calculateλLS.

We can proceed to the MAF calculations using either theDM -form (Equation3.10) or the
pureIM -form (Equation3.11). There are several issues of compatibility with current guidelines
(e.g.,FEMA, 2000a) that may dictate the use of theDM -approach, otherwise theIM -form is more
attractive, as it needs only one integration rather than two; hence, it will be our method of choice.
Still, it must be emphasized that either of the two approaches should provide the exact same
results if the integrations are performed with sufficient accuracy (see alsoJalayer and Cornell,
2002). These are just two ways to the same goal, and the choice lies with the user.

The MAF calculations for any of the two approaches can be carried out either numerically or
with an analytical approximation. If a high degree of accuracy is desired, a trapezoidal rule can
be employed to directly integrate Equation (3.11). All we need to do is assign1/20 probability
to each of the 20 records, then derive the empirical CDF of theIM-value of capacity and numeri-
cally integrate with values of the hazard curve slope, calculated either by differentiating a smooth
interpolation or by simply reading them off Figure3.5. On the other hand, if we make some rea-
sonable approximations, Equation (3.11) can be analytically integrated (Shome and Cornell, 1999;
Cornell et al., 2002). We only need to assume that theIM -values of capacity are lognormally dis-
tributed and then approximate theIM -hazard curve by fitting a straight line in the log-log space,
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λ (IM ) = k0IM −k, either by a global regression, same for all limit-states, or by a local fit at the
medianIM -capacity for each limit-state. Then we arrive at the equation

λLS = λ (IM c
50%) ·exp

(
1
2
(k ·Sln IM c)2

)
(3.12)

whereSln IM c =
(
ln IM c

50%− ln IM c
16%

)
is (approximately) the standard deviation of the natural

logarithm of theIM -capacity.

Table 3.4: MAFs of exceedance for each limit-state, calculated both numerically from Equation (3.11) and
with the approximate analytical form (3.12), using either a global or a local fit to theIM -hazard curve.

IO CP GI

numerical 0.019 0.0004 0.00010
analytical (global fit) 0.017 0.0002 0.00003
analytical (local fit) 0.008 0.0005 0.00040

As an example, the MAFs of exceeding each of the three limit-states (IO, CP and GI) were
calculated using both the approximate analytic approach (with either the global or the local fit
to the hazard curve) and the “exact” numerical integration (Table3.4). In general, it seems that
by approximating the hazard curve with a global fit, the MAFs are consistently underestimated.
On the other hand, the local fit seems to cause overestimation for all limit-states but IO. The
approximations may sometimes miss the MAFs by a factor of three or get as close as 10%. Still, the
large record-to-record variability coupled with the limited size of our suite of twenty records may
generate considerable standard errors around these estimates, possibly making the approximate
results statistically indistinguishable from the exact MAF for some limit-states. This is an issue
that is going to be investigated in a later section.

3.5.5 Taking advantage of the data: SPO versus IDA

Beyond the essential calculations needed for PBEE, there is much more information that we could
easily glean out of the IDA by taking a closer look at the results and plotting them in new ways.
For example, Figure3.6displays a story-to-story profile of the median peak interstory drift ratios
at severalSa(T1,5%)-levels. As the intensity increases, then, in a median sense across all records,
the fifth floor seems to accumulate most of the deformation. On the other hand, in Figure3.7 the
individual story drift IDA curves are plotted for record #1, showing a record-specific picture of
the odd-numbered stories. Most interesting for this record is the sudden change of behavior that
occurs aroundSa(T1,5%) = 0.82g, when the top floors suddenly start accumulating more and more
deformation asIM increases, while the previously leading lower floors are held back, displaying
almost constant peak interstory drifts.

It is also very informative to visually compare on the same figure the Static Pushover (SPO)
curve (also known as the Nonlinear Static Procedure curve, e.g.,FEMA, 1997) versus the median
(50%-fractile) IDA. Since the SPO curve usually comes in base shear versusθroof (peak roof drift
ratio) coordinates, it needs to be transformed intoIM andDM axes. In our case, theθmax response
can be easily extracted from the SPO analysis results, while the base shear can be converted to
acceleration units by dividing with the building mass times some (ad hoc) factor chosen to make
the curves match in their elastic range. This can be achieved for our structure by dividing the base
shear with 85% of the total building mass (which is very close to the ratio of the first modal over
the total mass). By thus plotting the two curves together, as pictured in Figure3.8, we see that
they correspond to each other. The elastic region of the IDA matches the SPO by construction,
and the post-yield non-negative SPO segment corresponds to a continuation of the elastic region
in the IDA, where the IDA is following the familiar “equal displacement” rule for moderate period
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Figure 3.6: The median peak interstory drift ratios for all stories at several specifiedSa(T1,5%) levels.
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Figure 3.8: The SPO curve generated from an inverse-triangle (maximum force at roof) load pattern versus
the median IDA.

structures (Veletsos and Newmark, 1960). When the SPO turns into a negative slope, the IDA
softens and acquires a local slope less than the initial elastic, that gradually decreases till the IDA
becomes flat. Essentially, the ending of the SPO at zero strength signals the end of the IDA by the
flatline.

The question then arises as to why this relationship exists. Some light can be shed on this
issue if we simplify the problem and think in terms of a single-degree-of-freedom system with
a force-deformation backbone that has the shape of the building’s SPO curve. Then we need to
realize that in terms of dynamics, where the IDA is concerned, an ascending part of the “back-
bone” generally means a “dynamically stable” part while a descending branch corresponds to a
“dynamically unstable” part (e.g.,Macrae and Kawashima, 1997). For each dynamic run theθmax

value serves as an indicator of whether the building has remained completely in the ascending
parts (approximatelyθmax < 5% in Figure3.8) or it has ventured into the descending branch as
well. So, for lowerIM s, approximatelySa(T1,5%) < 0.6 g in Figure3.8, the building (in a me-
dian sense, i.e., for at least 50% of the records) oscillates along the ascending part of its “SPO
backbone” thus the increase inθmax is controlled and stable in the median. But for higherIM s
the building (in a median sense again) also sustains more and more cycles in the descending part
of the “SPO backbone”, thus the medianθmax increases uncontrollably towards infinity. This can
help us understand why the behavior of the median IDA changes so drastically when the median
θmax is higher than 5%, as it shifts from an ascending to a descending branch. On the contrary,
the median IDA remains virtually indifferent when this moderate period structure passes from the
elastic part to the non-negative post-yield segment of the SPO, since both are ascending branches.

Observing these facts, one could stipulate that some more direct, perhaps quantitative rules
may be devised to connect the two curves. Actually, one such attempt has been tried out both for
single (Vamvatsikos and Cornell, 2004c) and multi-degree-of-freedom systems (Vamvatsikos and
Cornell, 2004b) with encouraging results.
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3.6 Discussion of choices and their influence on IDA

We took the reader through a direct, hands-on example of how to perform IDA and apply it for the
purposes of PBEE. At each step we had to make some choices, e.g., how to set up the dynamic
analysis algorithm, what tracing algorithm and interpolation scheme to use, how to summarize the
IDAs (using stripes given theIM instead of stripes given theDM ) or how many records and how
many runs per record to allow. Still, we chose not to focus on such details; instead we proceeded by
making seemingly ad hoc choices. Now, armed with the knowledge of the complete IDA process,
we can discuss such choices, explain the reasons behind them and understand their influence to
the final results.

3.6.1 Numerical convergence

The details of the analysis and the structural model play an important role in generating accu-
rate IDA curves. Especially in the region of global dynamic instability, the very existence of the
flatline and the associated numerical non-convergence may often generate several accuracy prob-
lems. Ideally, the structural model would be composed of (numerically) robust and well-tested
elements, while the dynamic analysis algorithm should be able to accurately track the structural
response through, e.g., yielding events, sharp strength drops, load redistribution and geometric
nonlinearities; it would fail to converge only when the structure has exhausted its reserves to be-
come dynamically unstable, thus correctly matching global dynamic instability with numerical
non-convergence. Unfortunately, most algorithms and element models have not really been de-
signed or tested to operate in such extreme ranges of behavior. As a result, some records may
cause a premature non-convergence, creating a characteristic halting of the IDA curve which does
not resemble a flatline.

All the flatlines in our model normally occur beyondθmax = 12%(Figure3.3), meaning that
the model can remain stable at least up to suchθmax-values. Still, in our initial attempt to trace the
IDA curves, two of the twenty records failed prematurely, atθmax≈ 2%, barely past the end-of-
elasticity value ofθmax≈ 1%. The main reason is the use of a large, complex model with many
degrees of freedom, plus the adoption of the fracturing connection model (Shi and Foutch, 1997)
with sharp strength drops that probably tend to destabilize the solution algorithm of DRAIN-2DX
(Prakhash et al., 1992). Further confirmation is provided by the SPO-to-IDA connection, asθmax

values in the order of 2% are still on the ascending branch of the SPO in Figure3.8, thus deemed
unable to cause collapse. Actually, each IDA curve should be able to behave stably at least up to
the start of the SPO’s negative slope, at aboutθmax = 7%. Still, this comparison should not be
carried too far; while the SPO ends atθmax = 37%, the post-peak part of the SPO is often very
load-pattern dependent, and an arbitrary load pattern may result in very optimisticθmax values that
do not reflect the dynamic behavior (Vamvatsikos and Cornell, 2004b).

Such illegitimate and premature collapses are thus relatively easily identified, either by looking
at the SPO or at the IDAs of other records, but how are they to be fixed? Of course, if the model or
the elements or the algorithm are deficient in the first place, the situation is hopeless. Experience
has shown that this is not the case with the well-tested DRAIN-2DX; it is more a problem of
correctly setting up the analysis parameters, rather than anything else. The best strategy is to
tweak the analysis knobs, e.g., reduce the integration time-step, adopt a variable-step solution
or experiment with the parameters of the event-to-event solver. In our case-study, the dynamic
analyses of the two problematic records had to be repeated at a reduced time-step, one-fourth
instead of one-half of the acceleration timehistory time-step, thus easily resolving convergence
issues. Note that after such false, premature collapses are dealt with, then further (reasonable)
changes in the parameters of the solution algorithm will make only small arbitrary changes to the
IDA results. For example, it has been found empirically that changing the integration time-step
can incur arbitrary changes of up to 10% to the flatline heights, where, surprisingly, smaller steps
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do not necessarily mean more stability (i.e., higher flatline heights). This is simply the effect of
small errors piling up on each step of the time-integration that may affect convergence when the
structure is close to the flatline, sometimes causing it to collapse a bit earlier and sometimes not.
This is the reason why when tracing each record we specified a capacity resolution of only 10%;
a better accuracy does not have much meaning in the presence of these analysis uncertainties.

Such inaccuracies remain relatively insignificant when good analysis software is used. Ac-
tually, we cannot stress enough the need for reliable, bug-free algorithms and well-tested, robust
element models. Such tools are exactly what makes the difference in such analyses, especially for
the limit-states close to global dynamic instability, and when available, with only a little attention
to the analysis details allow us to easily obtain accurate IDA curves.

3.6.2 Choice of Tracing Algorithm

When tracing the IDA curve for each record, the choice of theIM -level for each run is a decision
left to the automated tracing algorithm that we use. We have theoretically argued about the superi-
ority of the hunt & fill algorithm versus the use of a constantIM -step (i.e., the stepping algorithm)
in Vamvatsikos and Cornell(2002a), so it is time to see in detail what the true differences really
are when both are applied to the 9-story structure.

Before we proceed, keep in mind that given the same structural model, analysis program and
computing platform, still not all runs are equal in computational cost. In general, the closer the run
is to the flatline (either at a lower or a higherIM ) the longer it takes to complete the analysis. On
the other hand, both converging and non-converging runs that are far away from the flatline will
be significantly faster, as convergence or non-convergence will be achieved within a minimum of
iterations. Still, when comparing the tracing algorithms, we will assume that the intent is to trace
the whole IDA curve and a similar amount of runs will be spent both high and low in the curve
(in IM terms). Thus, looking at each record as a whole, the total amount of runs (converging and
non-converging alike) spent for it provide a very accurate idea of the computational time needed,
while the number of converging runs accurately describes the accuracy achieved.

Table 3.5: Comparing the sensitivity to parameters of the stepping versus the hunt & fill algorithm.

Algorithm Parameter (g) Total C+NC1 min C 2 max C2 average C2

stepping 0.05 475 11 45 22.8
(step-size sensitivity) 0.075 318 7 30 14.9

0.1 244 5 22 11.2
0.2 128 2 11 5.4
0.3 87 1 7 3.4

hunt & fill 0.05 280 12 13 12.2
(initial-step sensitivity) 0.1 280 12 13 12.2

0.2 280 11 13 12.0
0.3 280 11 12 11.8

hunt & fill 0.025 280 11 13 12.4
(step-increment sensitivity) 0.05 280 12 13 12.2

0.1 280 11 13 12.0
0.2 280 11 13 11.9

1 Converging and non-converging runs for all records 2 Converging runs per record

The most important task that a user faces when applying either of the two algorithms is setting
up their parameters correctly. For the stepping algorithm, the only parameter is the step size, while
for the hunt & fill the most important ones are the initial step, the step increment and the allowed
number of runs per record. Both algorithms were used to trace the IDAs of the 9-story structure for
the suite of 20 records, using various settings for their parameters, the results shown in Table3.5.
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Obviously, changing the step size of the stepping algorithm generates huge differences in the total
number of runs. Still, if we let the minimum number of converging runs generated for any of the
20 records be our standard for accuracy, we need at least a step size of 0.05g, or 475 runs to get at
least 11 runs per record and reach the standards of hunt & fill. Also, if we do not set the stepping
size correctly, we either get too few or too many runs, the resolution easily dropping to 1 or 2
runs in the worst case, if we happen to set a step size of 0.2g or 0.3g. On the other hand, we can
change the initial step or the step increment for the hunt & fill within a wide range, increasing
them or reducing them by 2 or 4 times, and the hunting algorithm remains practically unchanged,
constantly providing at least 11 converging runs per record. In essence, it has the right knobs to
be tuned to the tolerance limits that we wish and allows us to do the runs the way we want, not the
way nature decides through the records.

Still, one may notice that if we over-increase the initial step or the step increment, then the
accuracy starts to slowly drop, as the algorithm overshoots the flatline by a lot and spends many
non-converging runs to find its way down. But still the effect is minor, not overwhelming. Notice
also that keeping both parameters relatively small seems to improve accuracy both on average and
in the minimum. Still, we should not decrease them too much because as the steps become smaller
we are risking expending all the allotted runs before reaching the flatline.

Coming back to our example, in Table3.2, we usedSa(T1,5%) to measure theIM -value for
our runs. Why not anotherIM ? We could have used pretty much any monotonic and scalable
IM (Vamvatsikos and Cornell, 2002a) that we might want, but the less efficient it is, the further
dispersed the IDA flatlines would be, and we would start having some resolution discrepancies
within tracing, i.e., a greater difference between the observed number of minimum and maximum
convergent runs per record in our suite. By using at leastSa(T1,5%), we are assured that our algo-
rithm, be it hunt & fill or stepping, will be efficient for a wide range of conditions. If another, more
efficient IM appears that can drastically reduce the record-to-record flatline variability, then the
hunt & fill would only marginally benefit, but the stepping algorithm would significantly improve.
In conclusion, the hunt & fill procedure desensitizes IDA from theIM selection and the setting of
the algorithm’s parameters, easily achieving the desired resolution, in contrast to the very sensitive
stepping algorithm. Additionally, it fixes the number of total runs performed, so we can plan ahead
and assign enough computers to run in parallel so the IDA is computed in time.

3.6.3 Interpolation issues

By interpolating the discrete points to generate each record’s IDA curve we are gaining one enor-
mous advantage: we do not need to have our runs in stripes of the sameIM -level. The conse-
quences are very important. First, this allows us to use the hunt & fill algorithm instead of the
stepping one, thus gaining in all the aspects described previously. Second, it allows us to express
the IDA results in anyIM . All we need is to calculate the newIM for each run, re-plot the IDA
curves and re-interpolate versus the newIM . In this way, IDA becomes truly independent of the
IM used for tracing, allowing us to reuse the same data again and again, without needing to run
any more analyses.

But why use complex spline schemes instead of the simpler linear interpolation? In Figures3.9
and3.10, we present a comparison of the linear and the spline interpolation scheme, pitted against
each other for a given number of converging runs. We have tweaked the hunt & fill tracing so that
in all cases the flatline is accurately reached with the same number of runs, and then the algorithm
is allowed to fill in the gaps using up to a total of 4, 6, 8 or 18 runs. Unless we are only interested
in the flatline, 4 converging runs are just too few to capture the IDA adequately, regardless of the
interpolation scheme used. Clever postprocessing cannot make up for gross data gaps. On the
other hand, if we allow only 2 more runs, for a total of 6, the results are markedly better, but only
if we are using a spline scheme. Had we used 6 linearly interpolated runs we would be grossly
underestimating the CP limit-state capacity, finding a capacity point at onlySa(T1,5%) = 0.63g,
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Figure 3.9: Linearly interpolated IDA curve for record #14, traced with a different total number of con-
verging runs.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

maximum interstory drift ratio, θ 
max

"f
irs

t−
m

od
e"

 s
pe

ct
ra

l a
cc

el
er

at
io

n 
S

a(T
1,5

%
) 

(g
)

4 conv. runs 
6 conv. runs 
8 conv. runs 
18 conv. runs

Figure 3.10: Spline-interpolated IDA curve for record #14, traced with a different total number of converg-
ing runs.
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θmax = 4% instead of the correct 0.72g and 6.4%. At 8 and 18 runs, the spline interpolations are
practically indistinguishable, while the linear ones are close enough but still can be told apart. In
conclusion, if we allow enough runs, the interpolation scheme doesn’t really matter, both schemes
will provide good results. On the other hand, if we use too few runs, it doesn’t really matter again
because both schemes are going to give us bad results. But there is a gray area in between, where
using a better and smarter interpolation can make the difference to increase the accuracy in our
final IDA curve. In retrospect, this is precisely what gives us confidence to reduce the allotted
number of runs and save on computational resources.

3.6.4 Sensitivity of the limit-state capacities to their definition

Several limit-states were defined on the IDA curves, often through the use of ad hoc rules. For
example, the IO limit-state was defined atθmax = 2%, while the CP limit-state was based on
the arbitrary 20% fraction of the elastic slope (or stiffness) and the additionalθmax = 10% limit
(FEMA, 2000a). On the other hand, the GI limit-state was unambiguously defined to be on the
flatline of the IDA, being subject to no such arbitrary rules. Therefore, it is of interest to investigate
the sensitivity of the summarizedIM , DM capacities to these choices, both for the IO and the CP
limit-state.

For the IO limit-state, the simplicity of the definition makes it easy to understand what is
happening. If we look at Figure3.4, it is obvious that IO is occurring in the “equal displacement”
region of the fractile IDAs, i.e., the fractiles are almost straight lines resembling a continuation of
the elastic segment. In turn, this means that moderate changes to the defining value for IO, i.e.,
from θmax = 2%to 1% or 3% will proportionately increase or decrease theIM andDM values of
capacity.

On the other hand, the definition of the CP limit-state is quite more complicated. The elas-
tic stiffness fraction controls how much the IDA has to soften, i.e., how close to the flatline it
can come, before CP is reached. Hence, increasing this fraction will force the CP points (e.g.,
Figure 3.3) to move to lowerIM s andDM s. The influence of theθmax = 10% limit is more
straightforward. It enforces a rigid limit on the capacity points, restricting theθmax value they
can reach, i.e., it is another way to restrict the CP points from coming close to the flatline. Ac-
tually, in our case of the 9-story building, Figure3.3, it becomes obvious that by changing the
θmax = 10%limit to, say, 8% or 12%, theIM -value of capacity will only slightly change, but the
DM -value will be highly influenced, the 50% and 84%θmax capacities actually becoming 8% or
12% respectively.

To show the combined influence of the two rules on the CP limit-state, the fraction of the
elastic stiffness has been varied from 10% to 60% and the resulting fractileSa(T1,5%), θmax ca-
pacities have been plotted, both when theθmax = 10%rule is imposed (Figure3.11(b)) and when
it is not (Figure3.11(a)). In the latter case, theIM capacity becomes relatively sensitive, almost
linearly, to the elastic stiffness fraction. TheDM capacity is even more sensitive, decreasing in
a geometric fashion as the fraction increases. This makes absolute sense given the shape of the
IDAs (Figure3.3); close to global collapse, each IDA softens towards the flatline, hence, as the
slope-fraction decreases, the CPIM capacity approaches the flatlineIM -height. On the other
hand, theDM capacity is destabilized by the same flattening, since by definition, in the vicinity of
the flatline, small changes in the elastic stiffness fraction result to large changes of theDM -value.

If we include theθmax = 10% limit, as in Figure3.11(b), both theIM and especially the
DM capacity are stabilized, as this hard upper limit simply cuts off all higher values. Further-
more, this limit seems to drastically reduce theDM -capacity dispersion, at all levels of the elastic
stiffness fraction. Obviously, several records now have the same CP limit-stateDM capacity,
namelyθmax = 10%. Therefore, the 10% limit makes the CP capacity more stable, but no less
arbitrary, as theθmax = 10% limit is often the governing rule. Actually, looking at the tables in
FEMA (2000a,b) it becomes obvious that 10% is often the quoted medianθmax-capacity for all
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(a) ResultingSa(T1,5%) andθmax capacities when theθmax = 10%limit is not imposed.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.5

1

1.5

2

ca
pa

ci
ty

 in
 S

a(T
1,5

%
) 

(g
)

Elastic stiffness fraction 

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.05

0.1

0.15

0.2

0.25

0.3

ca
pa

ci
ty

 in
 θ

m
ax

Elastic stiffness fraction 

84%
50%
16%

(b) ResultingSa(T1,5%) andθmax capacities when theθmax = 10%limit is imposed.

Figure 3.11: The sensitivity of the fractile (16%, 50% and 84%)Sa(T1,5%) andθmax capacities for the CP
limit-state to the elastic stiffness fraction used (20% is the standard byFEMA, 2000a). The results are less
sensitive if theθmax = 10%limit is used.
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but the tallest buildings. Is, then, this arbitrarily imposedθmax = 10%a problem? From an MAF-
sensitivity point-of-view, the answer is negative. In Equation3.11 it becomes apparent that it is
only theIM -value of capacity that truly matters. As we have observed, at least for this structure,
the IM -value of CP-capacity is only mildly sensitive to the definition of the rules, thus yielding
similarly mildly sensitive MAFs. Even if the calculation is done using theDM -form in Equa-
tion (3.10), assuming that the integrations are accurately performed, the conclusions will still be
the same.

There are also several other details and corresponding sensitivity issues in the implementation
of the CP limit-state definition, that may or may not make a difference. For example, inYun et al.
(2002) the 20% fraction is applied to the median elastic stiffness of all records and the resulting
reduced stiffness is used for the capacity point estimation. On the other hand, we have used the
20% fraction on the elastic stiffness of each individual record to define its CP capacity. In this case,
the summarized capacities show negligible difference between the two approaches. On the other
hand, inYun et al.(2002) CP is defined to occur at the first point where the IDA curve softens
to 20% of the (median) elastic slope, while we use the last point where it reaches the reduced
stiffness. This may make a large difference for some records that alternatively harden and soften
before global collapse, and may be interpreted as another sign of sensitivity to the CP definition.
Still, for reasons explained inVamvatsikos and Cornell(2002a), we believe it is more consistent
with the CP limit-state concept to use the last rather than the first such point, thus resolving this
problem.
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Figure 3.12: Summarization into fractiles ofIM givenDM versus fractiles ofDM givenIM .

3.6.5 Summarization givenIM or DM

When summarizing the IDA curves, we decided to use stripes ofDM given levels ofIM , instead
of stripes ofIM given DM . It often becomes an issue in the literature (e.g.,Miranda, 2001),
whether one should summarize givenIM or DM . The first approach can be thought of providing
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Figure 3.13: Two stripes, one givenDM and one givenIM , converging on the same median (the star). The
records are No.18,5,19,6,9,10,13 from the highest to the lowestIM at θmax = 4%.

the distribution of demandDM that a given level of intensityIM can generate in the structure,
while the latter is the distribution of intensitiesIM that are required to produce a given level of
damageDM . Clearly, if we use the mean and standard deviation to summarize such stripes, the
results will be very different between the two approaches (e.g.,Miranda, 2001). When fractiles
are employed, though, this is not so; as shown in Figure3.12, the 16%, 50% and 84% fractiles
givenIM (Sa(T1,5%)) almost perfectly match the 84%, 50% and 16% fractiles respectively, given
DM (θmax).

The reasons behind this surprising fact become apparent in Figure3.13. There, we have se-
lected a subset of only seven records and have generated a (vertical) stripe ofIM s givenDM ≡
θmax = 4%. The median falls on the fourth, the middle of the seven curves, and is estimated to
beSa(T1,5%) = 0.53g (represented by a star). A (horizontal) stripe givenIM is generated at this
precise level and, remarkably, the medianDM given Sa(T1,5%) = 0.53g is found to lie on the
same IDA curve, right at the star, atθmax= 4%. To better illustrate this, we use white dots for IDA
crossings on the left of the horizontal stripe and on the top of the vertical, but black dots at the
bottom of the vertical or to the right of the horizontal. Local continuity and monotonicity assure
that any IDA curve can only have two dots of the same color, i.e., each IDA curve will remain on
the same side of the median curve.

Of course, it often happens that IDA curves are neither continuous, nor monotonic as due to
hardening increasedIM s may sometimes produce lower or the sameDM -response (Figure3.1).
But even then, significant discrepancies (e.g., serious hardening in several curves at the same
time) must occur to influence the robust fractiles, thus only slightly disturbing the matching of the
fractiles givenDM and givenIM , and only in isolated places.

Why then are the 50% and 84% flatlines in Figure3.12 not exactly matching? In the case
of the seven curves in Figure3.13, the median is conveniently falling right on the fourth of the
seven curves. Since in Figure3.12 a sample of 20 records is used, none of the three fractiles
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matches one of 20 curves. In that case, there are several ways to approximate the fractiles, and
the one that we use involves linear interpolation between the closest two curves. For example, for
20 records, the median is calculated as the average of the 10th and the 11th record, as ordered
on the relevant stripe. Obviously such interpolation generates different results givenIM or DM .
This problem becomes more apparent close to the flatline, where for summarization givenDM we
always have finite values ofIM to interpolate, while for the summarization givenIM , one of the
closest two records produces infiniteDM (which cannot be used for interpolation). If we use a
larger sample, such discrepancies are reduced and eventually eliminated. Similarly, we could use
another method to approximate the fractiles, e.g., select the lower of the two points that we use
for the interpolation and similarly eliminate the problem. In any case, given the record-to-record
variability, the fractiles are close enough and increasing the sample size they will actually converge
to the same curves, no matter what method we use to estimate them.

3.6.6 Sensitivity to the record suite size

The IDA curves display significant record-to-record variability, as becomes obvious in Figure3.3.
It is only natural to investigate the accuracy of the results given the limited sample size of twenty
records. Traditional analytical forms are difficult to implement for the fractiles or the MAFs, hence
we turn to the bootstrap method (Efron and Tibshirani, 1993) to fill this gap. Application of the
bootstrap involves sampling with replacement from the twenty records to generate an arbitrary
number of alternate record suites and a corresponding number of summarized capacities or MAF
estimates. From such samples of estimates, one can easily calculate the standard error or confi-
dence intervals of the desired coverage (e.g., percentile bootstrap confidence intervals) for both
fractile IM , DM capacities and MAFs.

Table 3.6: MedianIM andDM capacities for each limit-state, shown versus the bootstrapped standard
error and the 90% confidence interval on the median estimate.

Sa(T1,5%) (g) θmax

IM c
50% SE1 90% CI2 DM c

50% SE1 90% CI2

IO 0.27 0.02 [0.24, 0.30] 0.02 - -
CP 0.83 0.14 [0.72, 1.13] 0.10 0.004 [0.09, 0.10]
GI 0.91 0.17 [0.75, 1.20] +∞ - -
1 Standard Error 2 Confidence Interval

The bootstrap estimate of the standard error, plus a 90% bootstrap confidence interval on the
medianIM andDM limit-state capacities appear on Table3.6. It becomes obvious that using
only 20 records provides a relatively accurate estimate of the capacity values for this structure;
the medianIM capacities show very small dispersion that predictably increases for limit-states
closer to global dynamic instability. We should expect comparable, albeit higher, standard errors
(and wider confidence intervals) for the 16% and 84% fractiles, as they are closer to the edges
of the sample and thus relatively more variable. On the other hand, the fractileDM capacities
have practically negligible standard error. In the case of IO and GI, this is a direct result of their
definition, as they both lie at fixed values ofθmax (2% and+∞ respectively). Similarly, the median
DM capacity for CP is almost always dominated by theθmax = 10%rule, drastically reducing its
dispersion. Again, this difference in the standard errors does not imply that using theDM -based
form (Equation3.10) instead of theIM -based (Equation3.11), will result in higher confidence
(less dispersion) in the MAFs estimate. The results should be identical even in this aspect when
using any of the two approaches.

The influence of the number of records becomes more apparent if we realize that the standard
error of the mean estimate (and approximately of the median as well) tends to fall of with a rate of
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Table 3.7: MAFs for each limit-state, calculated both numerically and with the approximate analytical form
(global or local fit). The bootstrapped standard error and 90% confidence interval on the MAF estimate are
also presented. Additionally, we test the hypothesis that the approximateλLS is equal to the exact at the
95% confidence level.

limit-state method λLS SE1 90% CI2 “equal” to exact?

IO exact 0.019 0.011 [0.007, 0.04]
global 0.017 > 1000 [0.005, 0.33] yes
local 0.008 2.5 [0.004, 0.04] yes

CP exact 0.0004 0.0002 [0.0002, 0.0009]
global 0.0002 0.0008 [0.0001, 0.0004] yes
local 0.0005 > 1000 [0.0001, 0.7] yes

GI exact 0.0001 0.00007 [0.0001, 0.0003]
global 0.00003 0.00006 [0.00001, 0.00002] yes
local 0.0004 > 1000 [0.00003, 160] yes

1 Standard Error 2 Confidence Interval

1/
√

n wheren is the number of records (e.g.,Benjamin and Cornell, 1970). Hence, quadrupling
the number of records to use a total ofn= 80, results in only half the dispersion, while decreasing
it by a factor of four, to use onlyn = 5, will (approximately) double the dispersion.

How do the standard errors in the fractile capacities translate to the estimates of the MAFs?
By applying the bootstrap to both the “exact” numerical (Equation3.11) and the approximate
analytic form (Equation3.12) with either a local or a global fit to the hazard curve, we get the
results shown in Table3.7. As seen from the “exact” results, the limited sample of 20 records
causes standard errors in the order of 50% in the estimates of theλLS for all limit-states. On
the other hand, the approximation through Equation (3.12) considerably increases the standard
error; in some cases it is in the order of 200% but sometimes the approximation totally fails and
considerably overestimates the MAF. For the IO limit-state, it is the approximation with a global
fit that may be destabilized, while at the CP and GI limit-state, it is the local fit that may become
highly inaccurate. What happens is that individual bootstrap samples violate the assumptions
needed to derive Equation (3.12); in some cases theIM -capacities are not nearly lognormally
distributed and in other cases either the global or the local fit fail to capture the shape of the hazard
curve.

The bootstrap also offers us a way to investigate the accuracy of the approximate versus the
“exact” calculation of the MAFs, given that we have only used 20 records. By bootstrapping
the difference of the “exact” minus the approximate MAFs, a 95% confidence interval can be
generated for each limit-state. If the interval contains zero, then, at the 95% confidence level,
we cannot reject the hypothesis that the analytical and the numerical method produce the same
results. As seen in Table3.7, given the record-to-record variability and the limited sample size,
the approximate results cannot be distinguished from the exact ones for any limit-state. In general,
as long as we take care not to violate the stated assumptions, Equation (3.12) will provide good
estimates.

3.7 Conclusions

The step-by-step practical application of Incremental Dynamic Analysis has been demonstrated
for a 9-story steel moment-resisting frame. By using publicly available software it has become
almost trivial to perform the analysis, interpolate the IDA curves, estimate limit-state capacities
and summarize the results into a format that can be easily integrated with modern PBEE frame-
works. IDA offers a complete methodology to handle the abundant data from numerous analyses
and extract useful conclusions. Still, the attention to detail is important: How many records, how
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many runs per record, how well interpolated, the use of approximations, are just some of the is-
sues that can make a difference in the accuracy of the final IDA results. The methods that have
been presented are designed to strike a favorable compromise between speed and accuracy and
thus resolve such issues. Perhaps, the single most important thing to remember is the wealth of
information that can be found in IDA if only we take advantage of ever-cheaper computing power
and automated methods to investigate the structure’s behavior.
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Chapter 4
Direct Estimation of the Seismic Demand
and Capacity of Oscillators with
Multi-Linear Static Pushovers through
Incremental Dynamic Analysis

Vamvatsikos, D. and Cornell, C. A. (2003b).Earthquake Engineering and Structural Dynam-
ics, (in preparation).

4.1 Abstract

SPO2IDA is introduced, a new software tool that is capable of practically instantaneously recreat-
ing the seismic behavior of oscillators with complex multi-linear backbones at almost any period.
Essentially, it provides a direct connection between the Static Pushover (SPO) curve and the results
of Incremental Dynamic Analysis (IDA), a computer-intensive procedure that offers thorough (de-
mand and capacity) prediction capability by using a series of nonlinear dynamic analyses under a
suitably scaled suite of ground motion records. To achieve this, the seismic behavior of numer-
ous single-degree-of-freedom (SDOF) systems is investigated through IDA. The oscillators are
of moderate period with pinching hysteresis and feature backbones ranging from simple bilinear
to complex quadrilinear with an elastic, a hardening and a negative-stiffness segment plus a final
residual plateau that terminates with a drop to zero strength. The results of the analysis are sum-
marized into their 16%, 50% and 84% fractile IDA curves. By appropriately reducing the fractile
IDAs down to a few parameters and finding the simplest backbones that can mimic the seismic
performance of more complex ones, we introduce a unique and efficient way to treat the backbone
shape. The vast economies that are realized in the number of backbones to be investigated allow
us an easy extension to the all-periods pinching model, opening the way to similar extensions
designed to cover other aspects of SDOF systems. The final product is SPO2IDA, an accurate,
spreadsheet-level tool for Performance-Based Earthquake Engineering that is freely available on
the internet. It offers effectively instantaneous estimation of demands and limit-state capacities,
in addition to conventional strength reductionR-factors and inelastic displacement ratios, for any
SDOF system whose SPO curve can be approximated by such a quadrilinear backbone.

4.2 Introduction

Of great interest in Performance-Based Earthquake Engineering (PBEE) is the accurate estimation
of the seismic demand and capacity of structures. To accomplish the task several important meth-
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ods have emerged, a promising one being Incremental Dynamic Analysis (IDA), a parametric anal-
ysis method that estimates seismic demand and capacity by subjecting the structural model to sev-
eral ground motion records, each scaled to multiple levels of intensity (Vamvatsikos and Cornell,
2002a). Still, the need for simplified methods for professional practice remains, and the rational
choice has often been the use of results stemming from the dynamic analysis of single-degree-of-
freedom (SDOF) approximations to the multi-degree-of-freedom (MDOF) structural model. Such
methods often use an oscillator with a backbone curve that mimics the Static Pushover (SPO, also
known as Nonlinear Static Procedure) curve of the MDOF structure (e.g.,FEMA, 1997). However,
most systematic demand research efforts have not progressed further than using an oscillator with
a bilinear backbone, allowing only for either positive (Nassar and Krawinkler, 1991; Lee et al.,
1999) or negative (Al-Sulaimani and Roessett, 1985) post-yield stiffness or, still more simply,
elastic perfectly-plastic behavior (Riddell and Newmark, 1979; Newmark and Hall, 1982; Vidic
et al., 1994; Miranda, 2000), while few, if any, attempts have been made to quantify its dynamic,
global-instability collapse capacity (e.g.,FEMA, 2000a). As an extension to existing procedures,
it is only natural to apply the IDA method to SDOF systems featuring a variety of backbones and
to attempt to quantify the resulting demands and capacities in a handful of comparatively simple
empirical equations.
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Figure 4.1: The backbone to be investigated and its five controlling parameters.

4.3 Methodology

To study the influence of the SPO curve on the dynamic behavior, we have chosen a piecewise
linear backbone that is composed of up to four segments (Figure4.1). A full quadrilinear backbone
starts elastically, yields at ductilityµ = 1 and hardens at a slopeah ∈ [0,1), then at ductilityµc ∈
(1,+∞) turns negative at a slopeac ∈ [−∞,0), but is revived atµr = µc+(1− r +(µc−1)ah)/|ac|
by a residual plateau of heightr ∈ [0,1], only to fracture and drop to zero strength atµ f ∈ [1,+∞).
By suitably varying the five parameters,ah, µc, ac, r and µ f , almost any (bilinear, trilinear or
quadrilinear) shape of the SPO curve may easily be matched.

To fully investigate the dynamic behavior of a single SDOF model, we will use IDA for a
suite of thirty ground motion records (Table4.1) that have been selected to represent a scenario
earthquake; the moment magnitude is within the range of 6.5 – 6.9, they have all been recorded on
firm soil (USGS type C or B) and show no directivity effects. IDA involves performing a series
of nonlinear dynamic analyses for each record by scaling it to several levels of intensity that are
suitably selected to uncover the full range of the model’s behavior: elastic, yielding, non-linear
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Table 4.1: The suite of thirty ground motion records used.

No Event Station φ◦ 1 Soil2 M3 R4 (km) PGA (g)

1 Loma Prieta, 1989 Agnews State Hospital 090 C,D 6.9 28.2 0.159
2 Northridge, 1994 LA, Baldwin Hills 090 B,B 6.7 31.3 0.239
3 Imperial Valley, 1979 Compuertas 285 C,D 6.5 32.6 0.147
4 Imperial Valley, 1979 Plaster City 135 C,D 6.5 31.7 0.057
5 Loma Prieta, 1989 Hollister Diff. Array 255 –,D 6.9 25.8 0.279
6 San Fernando, 1971 LA, Hollywood Stor. Lot 180 C,D 6.6 21.2 0.174
7 Loma Prieta, 1989 Anderson Dam Downstream 270 B,D 6.9 21.4 0.244
8 Loma Prieta, 1989 Coyote Lake Dam Downstream 285 B,D 6.9 22.3 0.179
9 Imperial Valley, 1979 El Centro Array #12 140 C,D 6.5 18.2 0.143
10 Imperial Valley, 1979 Cucapah 085 C,D 6.5 23.6 0.309
11 Northridge, 1994 LA, Hollywood Storage FF 360 C,D 6.7 25.5 0.358
12 Loma Prieta, 1989 Sunnyvale Colton Ave 270 C,D 6.9 28.8 0.207
13 Loma Prieta, 1989 Anderson Dam Downstream 360 B,D 6.9 21.4 0.24
14 Imperial Valley, 1979 Chihuahua 012 C,D 6.5 28.7 0.27
15 Imperial Valley, 1979 El Centro Array #13 140 C,D 6.5 21.9 0.117
16 Imperial Valley, 1979 Westmoreland Fire Station 090 C,D 6.5 15.1 0.074
17 Loma Prieta, 1989 Hollister South & Pine 000 –,D 6.9 28.8 0.371
18 Loma Prieta, 1989 Sunnyvale Colton Ave 360 C,D 6.9 28.8 0.209
19 Superstition Hills, 1987 Wildlife Liquefaction Array 090 C,D 6.7 24.4 0.18
20 Imperial Valley, 1979 Chihuahua 282 C,D 6.5 28.7 0.254
21 Imperial Valley, 1979 El Centro Array #13 230 C,D 6.5 21.9 0.139
22 Imperial Valley, 1979 Westmoreland Fire Station 180 C,D 6.5 15.1 0.11
23 Loma Prieta, 1989 Halls Valley 090 C,C 6.9 31.6 0.103
24 Loma Prieta, 1989 WAHO 000 -,D 6.9 16.9 0.37
25 Superstition Hills, 1987 Wildlife Liquefaction Array 360 C,D 6.7 24.4 0.2
26 Imperial Valley, 1979 Compuertas 015 C,D 6.5 32.6 0.186
27 Imperial Valley, 1979 Plaster City 045 C,D 6.5 31.7 0.042
28 Loma Prieta, 1989 Hollister Diff. Array 165 –,D 6.9 25.8 0.269
29 San Fernando, 1971 LA, Hollywood Stor. Lot 090 C,D 6.6 21.2 0.21
30 Loma Prieta, 1989 WAHO 090 –,D 6.9 16.9 0.638

1 Component 2 USGS, Geomatrix soil class 3 moment magnitude 4closest distance to fault rupture

inelastic and finally global dynamic instability. Each dynamic analysis can be represented by at
least two scalars, an Intensity Measure (IM ), which corresponds to the scaling factor of the record
(e.g., the strength reduction factorR= Sa(T1,5%)/Sy

a(T1,5%), which is equal to the 5%-damped
first-mode spectral accelerationSa(T1,5%) normalized by its value that causes first yield) and a
Damage Measure (DM ), which monitors the structural response of the model (e.g., peak ductility
µ).

By suitably interpolating between the runs that were performed for a given record, we can plot
on theDM -IM axes an IDA curve for each record, e.g., Figure4.2(a). Each curve ends with a
characteristic “flatline” which indicates that theDM rapidly increases towards “infinite” values
for small changes in theIM , thus signalling global dynamic instability and defining the global-
collapse capacity at theIM where the IDA curve effectively becomes flat. Such “capacity points”
are visible as black dots in Figure4.2(a). A set of IDA curves can be summarized into 16%, 50%
and 84% cross-sectional fractile IDAs of responseµ given the intensityRor Rgivenµ, depending
on how the cross-sections of the curves are taken, e.g., at specified levels ofR or µ (Vamvatsikos
and Cornell, 2002a). Fortunately, under suitable assumptions of continuity and monotonicity, the
x%-fractile IDA µx%(R) (x∈ {16,50,84}) of µ givenR, will be identical (or nearly identical if the
assumptions are slightly violated,Vamvatsikos and Cornell, 2004a) to the(100−x%)-fractile IDA
R(100−x%)(µ) of Rgivenµ as shown in Figure4.2(b). As a direct result, if we similarly summarize
the capacity points, the(100−x%) global-instability collapse capacity will always appear on the
flatline of thex%-fractile IDA of µ givenR (Figure4.2(c)).

By thus summarizing the fractile IDA curves, we get both a characterization of the distri-
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Figure 4.2: Generating the fractile IDA curves and capacities from dynamic analyses versus estimating
them by SPO2IDA for an SPO withah = 0.3, µc = 2, ac =−2, r = 0.5, µ f = 5.

bution of R given µ and µ given R. While the individual IDAs are highly variable and often
non-monotonic, i.e., higher values ofRdo not necessarily correspond to higher values ofµ (Vam-
vatsikos and Cornell, 2002a), the fractiles are much smoother and empirically are found to be
almost always monotonic. They are thus suitable to be modeled with relatively simple functions.

If we choose to plot the SPO of the SDOF system onµ versusR= F/Fy axes (whereF is the
total base shear andFy its value that causes first yield) we can make it appear versus the summa-
rized IDA curves on the same graph (Vamvatsikos and Cornell, 2002a), as in Figure4.2(c). Such
a comparison shows that the SPO and the fractiles are composed of the same number of corre-
sponding and distinguishable segments. Moreover, each segment has its own nature. The elastic
segment of the SPO naturally coincides with the elastic IDA region for all three fractiles, while
the yielding and hardening of the SPO forces the 16%, 84% IDAs to branch uniformly around the
median which approximately follows the familiar “equal displacement” rule (µ ≈ R) for moder-
ate (and long) periods (Veletsos and Newmark, 1960). The SPO’s negative stiffness appears as a
characteristic flattening of all three IDAs that stops when the residual plateau is activated, causing
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the “revival” of the IDA curves towards higherR-values. Ultimately, all IDA curves submit to
the SPO fracturing, thus signaling collapse by producing a flatline (and the corresponding fractile
capacity point).

This consistent behavior makes it is possible to approximate each separate segment of the IDA
by its prominent features, e.g., the height of the flatline or the slope and intercept of a fitted line.
By examining a large enough population of SDOF systems with different shapes of the backbone,
we can track the evolution of the features of each segment, and subsequently model them as a
function of the SPO parameters. Thus, we are able to generate almost the same fractile IDAs
and capacities (within some acceptable tolerance) without needing to repeat the multiple dynamic
analyses. This set of rules and equations will be collectively called the SPO2IDA tool, a typical
example of its accuracy visible in Figure4.2(d).

However, the complexity of the backbone has forced us to initially limit the scope of our
investigation by choosing SDOF systems that share an identical moderately pinching hysteresis
model with no cyclic deterioration (Nassar and Krawinkler, 1991), having viscous damping of
ξ = 5% and a moderate period ofT1 = 0.92sec. The results will thus be a good approximation
for the moderate period range, and will provide a good basis for an extension to shorter and
longer periods. Still, the full investigation of a five-dimensional space of parameters requires
a staggering amount of dynamic analyses, especially since the parameters do not influence the
IDAs independently of each other. Nevertheless, there are several facts that allow us to reduce
the size of the problem. First, since we are measuring thepeakductility, at any given value of
µ the IDA will only be influenced by the segments of the SPO backbone that appear at lesser or
equal ductilities. This would not be true if we were monitoring, say, permanent deformation. So,
in fitting the hardening branch, the negative stiffness is of no consequence, while in fitting the
negative branch, the plateau plays no part. Therefore, we can cut the problem into smaller pieces,
as we only need to investigate a bilinear elastic-hardening, a trilinear elastic-hardening-negative
but still, a full quadrilinear for the plateau. Even then, we may not have to go all the way, even
for the plateau. The idea is that some of the SPO parameters may be redundant, so their influence
can be summarized in only one or two new parameters which combine them. In effect this means
that (for the same damping and period) we are going to search for “equivalent backbones”, in the
sense that such oscillators would share very similar dynamic behavior in the region of interest, as
manifested by their displaying the same fractile IDAs.

When modeling the IDA features we will use least-squares fits of polynomials, either in the
linear or in the log-domain. To simplify the expressions to follow, we will represent linear com-
binations of functionsp(y1, . . . ,yk) of given variablesy1, . . . ,yk, as a sum∑i bx%,i pi (y1, . . . ,yk),
where the appropriate functionspi and coefficientsbx%,i (corresponding to thex%-fractile) will be
provided in tables.

As a general principle, note that the relatively small number of records, the record-to-record
variability and the fitting error, combine to introduce some noise which tends to become larger
as the ductility response itself increases. So we will generally fit elaborate models but only as
complex as the noise in the IDA results allows. Still, as we try to interpolate as closely as possible
given the noise, we are risking eliciting criticism for “overfitting” (in the sense that a simpler
model would do only a little worse). The idea is to provide as a complete and objective model as
the record-to-record noise allows, and in retrospect observe it and simplify it enough to satisfy the
arithmo-phobic users.

4.4 Moderate period pinching model

4.4.1 Fitting the hardening branch of the IDA

Fitting the hardening part is the easiest task, and actually several attempts have been done in
the past (Nassar and Krawinkler, 1991; Lee et al., 1999; Miranda, 2000), sometimes for a wider
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variety of parameters (e.g., site conditions, cyclic strength deterioration etc.) than what we will
use here. Since this fit only involves a single parameter,ah, it is relatively straightforward; we will
assume a second-order polynomial model in the log-space to fit the fractile ductilities givenR, and
subsequently calculate and fit the resulting coefficients for several values of the hardening slope
ah. This procedure produces for each of the three fractile IDAs the following model

ln µx% = βx% lnR+ γx% ln2R, R∈ (1,R(100−x)%(µc)] (4.1)

where βx%, γx% = ∑
i

bx%,i pi (ah) , for any ah ∈ [0,0.9)

where the coefficients and functions can be conveniently found in Table4.2. An example of its
application is found in Figure4.2(d)for 1 < µ ≤ 2.

Table 4.2: Coefficients and functions needed for the IDA hardening part in Equation (4.1).

bx%,i for βx% bx%,i for γx%

x% = 16% 50% 84% 16% 50% 84%
1 0.6164 0.7132 1.0024 0.1454 0.2928 0.4003
ah -0.1697 -0.0415 1.5907 -0.1394 -0.6415 -3.0742
a2

h 1.3103 1.5158 -7.1722 -0.2576 0.0347 9.7763
a3

h -1.9551 -2.5525 10.3472 0.6156 0.9604 -12.8813
a4

h 1.2201 1.3921 -4.8024 -0.3707 -0.6620 5.8376

The results are actually only mildly dependant onah, especially for low ductilities. So we can
roughly approximate the median IDA by the “equal displacement rule”, under whichµ50%(R)≈R,
and generate the 16%, 84% fractiles as the edges of a 60%-wide band centered on the median (in
the log-space), i.e.,µ(50±34)%(R)≈ µ50%(R)1±0.3 ≈ R1±0.3.
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Figure 4.3: An elastic-hardening-negative backbone and the two extremes of its “equivalent” set.

4.4.2 Fitting the negative branch of the IDA

Negative stiffness is found in SPOs of structures such as non-ductile reinforced-concrete frames,
braced steel frames, moment-resisting steel frames with fracturing connections and P-∆ sensitive
systems. The most prominent feature of the negative branch is the characteristic flattening of
the summarized IDAs which results in a flatline unless it is arrested by the residual plateau, as
seen in Figure4.2(c), for 2 < µ ≤ 2.4. By accurately capturing this feature, the entire branch
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could be modeled as a continuous convex curve that smoothly departs from the hardening segment
at ductility µc to blend into the flatline atµend = µc + (1+ ahµc− ah)/|ac|. Still, appropriately
modeling the negative branch flatline requires a trilinear (elastic-hardening-negative) backbone
that involves three independent parameters (ac, ah andµc). Conveniently enough, it was found
empirically that this flatline height and, even more, the complete negative part of the IDA are very
similar for the set of backbones that have coincident negative branches, like those in Figure4.3.
Actually, the flatline height among such an equivalent set varies only a little and always in a
consistent linearly increasing fashion between the two extremes, i.e., theah = 0 and theah = 1
cases where the negative branch starts atµeq = µc + ah(µc− 1)/|ac|, andµpeak= (µc|ac|+ 1+
ah(µc− 1))/(1+ |ac|) respectively. So we only need to model the capacities for the extreme
values ofah and linearly interpolate in-between. The final recommended model becomes:

R(100−x)%(µend) = R(100−x)%(µc)

+
(

eβx%−1
)[

leq
(100−x)% +ah

(
µpeak− leq

(100−x)%

)]
, (4.2)

leq
(100−x)% = (µeq)γx%, for anyac ∈ [−4,−0.01], ah ∈ [0,1), µc ∈ [1,9] (4.3)

whereβx%,γx% = ∑
i

bx%,i pi(ac)

where the coefficients are found in Table4.3.

Table 4.3: Coefficients and functions needed for the flatline of the IDA softening part in Equation (4.2).

bx%,i for βx% (y = ln |ac|) bx%,i for γx% (y = |ac|)
x% = 16% 50% 84% 16% 50% 84%
y−1 0 0 0 -0.5111 -0.3817 -0.4118
1 0.2252 0.3720 0.6130 -0.6194 -0.3599 -0.2610
y -0.1850 -0.3023 -0.4392 0.0928 -0.0019 -0.0070
y2 0.1039 0.1056 0.0847 0.0163 0.0186 0.0158

As a first, simpler approximation for moderate values of the negative slopeac, one may assume
that in log-space the 16% and 84% flatlines are roughly 30%-lower and 30%-higher than the
median, i.e.,R(50±34)%(µend) = R50%(µend)1±0.3.

4.4.3 Fitting the residual part of the IDA

The residual plateau in the SPO is encountered, for example, in braced frames or fracturing
moment-resisting frames. Only limited inspection of such models has appeared in the literature
(e.g.,Stear and Bea, 1999). The effect of the SPO residual plateau is to “revive” the IDA, allow it
to escape the flatline and move on to higherR-values, in an almost linear-system-like fashion, e.g.,
Figure4.2(c) for 3 < µ < 5. We can model this prominent feature by a linear model in the log-
space and capture this entire IDA region by a continuous convex curve that smoothly rises from
the flatline. This would have been a difficult model, depending on all five backbone parameters,
but for the empirical finding that in this region of the IDA, the full quadrilinear model displays
virtually the same behavior as an equivalent trilinear (elastic-negative-plateau) model that has the
same negative slopeac, but sports a reduced plateau height ofreq = r/(1+ ah(µc− 1)). Actu-
ally, req is the residual plateau height of the full model but measured relative to the peakR-value,
Rmax = 1+ah(µc−1), reached by the SPO (Figure4.3), instead of relative to the yield strength.
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This revelation leaves us with only two influential parameters,ac andreq, resulting in the model:

ln µx% = βx% + γx% lnR, R∈ (
R(100−x)%(µr),R(100−x)%(µ f )

]
(4.4)

where βx%, γx% = ∑
i

bx%,i pi
(
ac, req

)
,

for any ac ∈ [−4,−0.01], req∈ [0.05,0.90]

where the coefficients can be found in Table4.4. An example of this model’s application can be
seen in Figure4.2(d)for 3 < µ ≤ 5.

Table 4.4: Coefficients and functions needed for fitting the IDA residual part in Equation (4.4).

bx%,i for βx% bx%,i for γx%

x% = 16% 50% 84% 16% 50% 84%
1 -0.3615 0.2391 0.9557 1.1022 1.0846 1.0176

ln |ac| -0.0729 -0.0297 -0.0696 0.0180 0.0081 0.0203
ln req -0.4557 -0.4907 -0.4759 0.1111 0.1218 0.1086

ln req· ln |ac| -0.0372 -0.0272 -0.0308 0.0136 0.0086 0.0061

By observing the results, one can derive that the median IDA does behave much like a secant
linear segment that takes on smaller slopes asreq decreases, eventually becoming one with the
flatline induced by the negative branch of the SPO. So, by restricting ourselves to (quite practical)
ductilities of 10 or less, the modeling could be further simplified if one decides to model the
residual branch of the median IDA as a secant by assumingγ50% = 1, while generating the 16%,
84% fractiles as a 100%-wide band centered on the median (in the log-space), i.e.,µ(50±34)%(R)≈
µ50%(R)1±0.5 ≈ β50% ·R1±0.5. The existing table ofβ50% coefficients, although not optimal, can
still be used for this approximation, since the difference is negligible.

4.4.4 Joining the pieces: The SPO2IDA tool

We have separately modeled the three segments but we have chosen to keep track of only the
flattening caused by the negative SPO and the “secant” caused by the residual. To join them into
smooth and continuous curves that accurately resemble the fractile IDAs we need two “filleting
curves” that will connect the negative branch flatline to the hardening and the “secant”. We can
choose to neglect such details and linearly extend all three pieces to a point of mutual interception,
which is usually accurate enough. Alternatively, we can generate splines through a knot-insertion
algorithm (Farin, 1990), which provides a smooth transition from segment to segment, while at
the same time offering computational simplicity and robustness, as it preserves convexity and can
be made to be monotonic (as the fractile IDAs are empirically known to be). Once this step has
been completed, we have an almost complete description of the IDA for any ductility, modeled
as an invertible one-to-one function of eitherµ or R, a choice left to the user as an advantage of
the equivalency of the fractiles givenR or µ. We are only missing the final flatline, caused by the
SPO’s ending at ductilityµ f . This can be accurately and easily modeled in the IDAs by adding
a flatline at heightR(100−x)%(µ f ), simultaneously producing the(100− x)%-fractile of global-
collapse capacity. By implementing in software the modeling and joining of the IDA segments we
have generated the SPO2IDA tool, available in a spreadsheet or as an online internet application
(Vamvatsikos, 2001), and it does a remarkable job of reproducing the real behavior of oscillators,
as demonstrated in Figure4.2(d).
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Figure 4.4: Demonstrating SPO2IDA: the median demand and collapse capacity as the SPO changes.
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4.4.5 Illustrative Results and Observations

The ease of computation provided by such a tool, plus the unique perspective offered by the IDA-
versus-SPO picture, can offer remarkable intuition into the seismic behavior of systems. As a
demonstration of the SPO2IDA tool, we present Figure4.4, an array of cases to briefly study the
influence of the backbone on the seismic demand and capacity. In each figure we select a basic
backbone, vary one or two of its parameters and then generate the median IDA responses and the
corresponding global instability collapse-capacities for each case. Figure4.4(a)shows the benefit
of delaying the negative branch of the SPO and allowing hardening to reach higher ductilities.
Each increase inµc allows the median to stay on “equal displacement” longer, proportionally in-
creasing the capacity. On the other hand, in Figure4.4(b), radically changing the hardening slope
ah but keeping an identical negative branch generates an equivalent set of trilinear SPOs, whose
capacities only slightly increase withah. Actually, the difference in the capacity is small enough to
be within the noise in the fitted data, so the resulting capacities are not strictly increasing withah.
Decreasing the negative slopeac in Figure4.4(c)has a beneficial effect when no residual plateau
is present, as the milder slopes allow higher capacities. Still, if we include an extensive enough
residual plateau (Figure4.4(d)), the benefits of the milder slope are restricted to the somewhat
lower µ-demands that may influence some earlier limit-states; the global instability collapse ca-
pacity is almost the same for all cases, as the backbones have the samereq, therefore the milderac’s
are providing only a small advantage. Figure4.4(e)shows the benefits of increasing the residual
plateau that consequently increases the slope of the “secant” that the IDA follows, thus improving
capacities and decreasing the demands. And finally, Figure4.4(f) shows the obvious advantage of
allowing higher fracturing ductilitiesµ f . The value ofµ f literally decides where to terminate the
IDA, at times fully negating the effect of the plateau if it becomes too small; atµ f = 4 the IDA
hardly receives any benefit from the plateau. As intuitive or surprising as some of the pictures in
Figure4.4may be, they are only a glimpse of what our new tool can really do.

4.4.6 SPO2IDA error estimates for moderate periods

Since the SPO2IDA tool is based on fitting over only a small subset of the SDOF backbones it
can simulate, just showing the fitting error over the sample of oscillators that we have used would
greatly underestimate the true prediction error. In order to be objective we have generated a large
separate test sample of randomly chosen bilinear, trilinear and quadrilinear backbones, that were
analyzed both through full IDA and SPO2IDA. Thus, for each backbone and each of the threex%-
fractiles we are presented with two IDA curves, the “real” curveR(100−x)%(µ) and the approximate
R̂(100−x)%(µ), or equivalently expressed inµ givenRcoordinates,µx%(R) versusµ̂x%(R).

We are interested in knowing the error in two different settings: error in estimating a demand
µ given a certain level on intensityR and error in estimating a capacityR given a certain level
of demandµ. In both cases, theabsolutedifference between exact and approximate results tends
to increase rapidly when we progress further into the nonlinear range, making this measure un-
suitable. We choose instead to quantify the errors by integrating therelative absolutedifference
of each approximatex%-fractile IDA curve versus the real one over their length, either inµ or R
coordinates accordingly, a concept similar to the one used byLee et al.(1999):

(εR)x% =
∫ µ f

0

∣∣R(100−x)%(µ)− R̂(100−x)%(µ)
∣∣

R(100−x)%(µ)
dµ (4.5)

(εµ)x% =
∫ Rf

0

|µx%(R)− µ̂x%(R)|
µx%(R)

dR (4.6)

In each case, the fractile-capacity error(εR)x% is calculated over the full demand spectrum from
zero toµ f , and the fractile-demand error(εµ)x% is similarly calculated up toRf , where either of
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the two curves compared flatlines first.

Table 4.5: Average fractile-demand and fractile-capacity errors for moderate periods and a variety of
backbone shapes, as caused by the fitting in SPO2IDA and by the record-to-record variability in IDA.

SPO2IDA 10 records 30 records

x% = 16% 50% 84% 16% 50% 84% 16% 50% 84%

elastic-hardening
εR 0.02 0.01 0.02 0.11 0.07 0.07 0.06 0.04 0.04
εµ 0.01 0.01 0.02 0.06 0.06 0.09 0.04 0.03 0.05

elastic-hardening-negative
εR 0.02 0.03 0.03 0.09 0.06 0.06 0.05 0.03 0.03
εµ 0.02 0.03 0.03 0.07 0.05 0.06 0.04 0.03 0.04

elastic-hardening-negative-plateau
εR 0.16 0.14 0.18 0.20 0.12 0.13 0.12 0.08 0.07
εµ 0.09 0.11 0.18 0.20 0.18 0.23 0.11 0.11 0.14

What is more important to the user than just an error measure is an assessment of how large is
SPO2IDA’s estimation error, caused by imperfect fitting, as compared to the full IDA estimation
error caused by the record-to-record variability when using a limited sample of records. To provide
such a standard for comparison, we will use the bootstrap method (Efron and Tibshirani, 1993) to
estimate the equivalent(εR)x% and(εµ)x% error that one would expect to encounter when using
only 10 or 30 randomly chosen records from the same scenario earthquake. According to the
bootstrap principle, the original 30 records are sampled with replacement to generate numerous
alternate samples of 10 and 30 records, which are then applied to each of the randomly-chosen
backbones, thus resulting to a large number of alternate estimates of the fractile IDAs for each test-
case. Then, using the original 30-record suite results as “exact”, the average (over all bootstrap
samples)(εR)x% and(εµ)x% are calculated, as shown in Table4.5.

Before we interpret these results, it is important to understand that SPO2IDA was based on the
30-record IDA, thus its error, as calculated in the table, comesin addition to the error induced by
record-variability in the 30-record fractile IDAs, i.e., SPO2IDA cannot be more accurate than a 30-
record IDA. Still, if the additional (fitting induced) error it incurs is small enough, it will disappear
(as when taking the square root of sum of squares of the two errors) under the considerable (record-
variability induced) error in estimating the fractiles with a 30-record IDA. Thus, by comparing
the (εR)x% and (εµ)x% of SPO2IDA versus the average such errors due to the record-to-record
variability, we observe that SPO2IDA can estimate the fractile demands or capacities with an error
comparable to the record-to-record noise around the 10-record full IDA results. This means that
statistically, the difference between the full IDA and SPO2IDA results is on average insignificant
when only 10 records are used. If 30 records are employed for IDA, SPO2IDA again performs
very well for all backbones except the complex quadrilinears where it has, on average, an error
somewhat more significant, but still comparable to the record-to-record induced noise. All in all,
SPO2IDA is proven to be remarkably accurate, able to outperform the 10-record full IDA and in
many cases match the 30-record IDA.

Naturally, the values in Table4.5do not tell the whole story, as they describe the performance
of SPO2IDA averaged over numerous backbone shapes and over the length (either inRor µ terms)
of the fractile curves. Some individual backbone shapes may be captured better than others and
within the curves themselves some segments may be more accurately matched. As evident from
Table4.5, the error tends to increase for more complex backbones. This is caused by the cascading
of the models, i.e., as more segments are added to the backbone, each additional segment relies
on the accuracy achieved in the previous ones. Thus, the more complex our backbone, the more
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error we should expect in the later segments (e.g., the residual plateau). But even within the same
segment of the curve, the distribution of the error is not homogeneous, neither for the full IDA,
nor for the SPO2IDA. In the IDA results, as the ductility increases beyond yielding, the record-to-
record variability and the error it induces increase as well. This, in turn, introduces higher noise in
the fitted data, thus making the fitted equations less accurate at higher ductilities. So, in general,
one should expect errors lower than average at low ductilities and higher than average at high
ductilities for both methods. Finally, since we have relied on regression to fit the IDA curves, just
like all fits these equations will perform better in the middle of the fitted dataset and worse at the
edges (Weisberg, 1985). So, one should generally expect higher errors closer to the edges where
some fits are least accurate, e.g., atac = −0.01 for Equation4.2 or at req = 0.9 andac = −0.01
in Equation4.4. All such observations taken into consideration, there are some combinations of
backbone parameters that may cause SPO2IDA to produce a mediocre estimate for some segment
of the IDA, but in our experience even these cases are rare.

4.5 Extension to all-periods pinching model

Up to now we have described a procedure used to obtain the fractile IDA curves of a fairly limited
model. Still, this can be easily extended to other periods, dampings, or hysteretic models. What
we have really introduced above is a methodology that permits the accurate modeling of the SDOF
fractile IDA curves for complex backbones by investigating only a small number of them. If one
wishes to capture the behavior of a different SDOF system, or use a different suite of ground
motion records, all that is needed is repeating the above three fits for the hardening, negative and
residual part to include the new parameters. As an example, we are going to extend SPO2IDA to
both short and long periods, still using the same suite of 30 records, moderately pinching hysteresis
and viscous damping ofξ = 5%. The overall concept will be precisely the same as for the moderate
periods, simply the necessary coefficients will be given by more complicated equations that, in
addition to the backbone parameters, will now include the oscillator periodT.

Unfortunately, the oscillator period influences each of the backbone regions in a complex,
coupled way, that makes it impossible to assume independence. So, where we had mostly one
or two dimensional fits, now we will have two and three dimensional ones. This fact increases
the number of oscillators that we have to investigate by an order of magnitude, and unfortunately
no fancy methods can help us further reduce the dimensionality of the problem. Still, the same
fundamental results that we employed previously to reduce the number of backbones investigated
are not period dependent, i.e., the equivalency of the backbones is found to be valid for the short
and long periods as well.

4.5.1 Fitting the hardening branch of the IDA

Several researchers have provided similar fits for wide period ranges but most have focused on just
the elastic-perfectly-plastic model (Newmark and Hall, 1982; Miranda, 2000), while even those
who have gone beyond that have only a limited coverage of the hardening slopeah (Nassar and
Krawinkler, 1991), or consider the effect ofah to be independent of periodT (Lee et al., 1999).
On the other hand, we will make no such simplifications. Using Equation (4.1), which accurately
captures the shape of the hardening part of the IDA, all we need to do is provide fits for the
coefficientsβx% andγx% that depend both onT andah.

lnβx% = ∑
i

bx%,i px%,i(ah,T), ln(γx% +1) = max

(
∑

i

bx%,i pi(ah,T) , 0

)
, (4.7)

for any ah ∈ [0,0.9],T ∈ [0.2s,4s]
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where the coefficientsbx%,i and corresponding functions can be conveniently found in Table4.6.

Table 4.6: Coefficients needed for the IDA hardening part in Equation (4.7).

bx%,i for βx% bx%,i for γx%

x% = 16% 50% 84% 16% 50% 84%
ln−1(T +1) -0.1520 -0.1985 -0.6344 0.1925 0.3689 0.9434

1 -0.5027 -0.0955 0.2649 0.1246 0.0480 0.0277
lnT -0.0542 -0.0316 0.0818 -0.1045 -0.1747 -0.4226
ln2T 0.0181 0.0291 -0.1250 0.0605 0.1364 0.3241

ah ln−1(T +1) -0.1520 -0.1985 -0.6344 0.1925 0.3689 0.9434
ah 0.8058 0.3737 -0.0954 -0.1989 -0.2105 -0.0297

ah lnT 0.2037 0.2334 0.5720 -0.0822 -0.1916 -0.5081
ah ln2T -0.2572 -0.3683 -0.5508 0.1711 0.3816 0.5662

a0.5
h ln−1(T +1) -0.1520 -0.1985 -0.6344 0.1925 0.3689 0.9434

a0.5
h -0.3675 -0.3041 -0.1600 0.0713 0.1533 -0.0010

a0.5
h lnT -0.1520 -0.1985 -0.6344 0.1925 0.3689 0.9434

a0.5
h ln2T 0.2258 0.3128 0.6418 -0.2237 -0.4964 -0.8851

As expected, the results are similar in the moderate and long period range, the median follow-
ing the “equal displacement” rule, but the situation is much different in the short period domain.
In that region there is significant dependance on bothah andT, making any simplifications of the
above equations quite difficult.

4.5.2 Fitting the negative branch of the IDA

Again, using Equations (4.2) and (4.3) we only need to fit and redefine the coefficientsβx% and
γx% so that they depend both onT andac:

βx% = ∑
i

bx%,i pi(ac,T), γx% = min

(
∑

i

bx%,i pi(ac,T),1

)
(4.8)

for anyac ∈ [−4,−0.02], T ∈ [0.2s,4s]

where the coefficients and relevant functions are found in Table4.7.

Table 4.7: Coefficients needed for the flatline of the IDA softening part in Equation (4.8).

bx%,i for βx% bx%,i for γx%

x% = 16% 50% 84% 16% 50% 84%
1 0.2391 0.3846 0.5834 1 -0.2508 -0.2762 -0.2928

lnT 0.0517 0.0887 0.1351 |ac| -0.5517 -0.1992 -0.4394
ln |ac| -1.2399 -1.3531 -1.4585 a2

c 0.0941 -0.0031 0.0683
ln |ac| lnT -0.0976 -0.1158 -0.1317 |ac|−1 0.0059 0.0101 0.0131

ln2 |ac| 0.0971 0.1124 0.1100 lnT 0.1681 0.2451 0.1850
ln2 |ac| lnT 0.0641 0.0501 0.0422 |ac| lnT 0.1357 -0.0199 0.1783

ln3 |ac| -0.0009 0.0041 0.0056 a2
c lnT -0.0127 0.0091 -0.0305

ln3 |ac| lnT 0.0072 0.0067 0.0074 |ac|−1 lnT 0.0010 -0.0075 -0.0066
ln2T -0.1579 -0.0135 0.0027

|ac| ln2T 0.2551 -0.0841 0.0447
a2

c ln2T -0.0602 0.0222 -0.0151
|ac|−1 ln2T 0.0087 -0.0003 -0.0025
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4.5.3 Fitting the residual part of the IDA

Similarly, by using the equivalent residual concept, only three influential parameters exist,ac, req

andT, resulting in the same model as in Equation (4.4), only now we will define new coefficients:

βx%, γx% = ∑
i

bx%,i pi(ac, req,T), (4.9)

for any ac ∈ [−4,−0.05], req∈ [0.05,0.90], T ∈ [0.2s,4s]

where the coefficients can be found in Table4.8.

Table 4.8: Coefficients needed for fitting the IDA residual part in Equation (4.9).

bx%,i for βx% bx%,i for γx%

x% = 16% 50% 84% 16% 50% 84%
1 -0.2226 0.1401 0.7604 1.0595 1.0635 1.0005

ln |ac| -0.0992 -0.0817 -0.1035 0.0236 0.0177 0.0283
ln req -0.4537 -0.5091 -0.5235 0.1237 0.1466 0.1607

ln req· ln |ac| -0.0398 -0.0236 -0.0287 0.0111 0.0048 -0.0004
ln r−1

eq 0.0829 -0.0364 -0.0174 -0.0023 0.0102 0.0021
ln r−1

eq · ln |ac| 0.0193 -0.0126 -0.0118 0.0008 0.0019 0.0035
lnT -0.1831 -0.2732 -0.5651 -0.0881 -0.1044 -0.1276

lnT · ln |ac| -0.0319 0.0015 0.0437 -0.0077 -0.0137 -0.0413
lnT · ln req 0.1461 0.1101 0.0841 -0.0239 -0.0090 -0.0085

lnT · ln req· ln |ac| -0.0227 -0.0045 0.0159 0.0025 -0.0014 -0.0198
lnT · ln r−1

eq -0.0108 0.0333 0.0033 0.0082 -0.0003 0.0037
lnT · ln r−1

eq · ln |ac| -0.0081 -0.0000 0.0033 0.0007 -0.0013 -0.0043
ln2T 0.1660 0.1967 0.0929 0.0317 0.0038 0.0673

ln2T · ln |ac| -0.0124 -0.0304 0.0130 0.0006 0.0065 0.0074
ln2T · ln req 0.0273 0.0396 0.0580 -0.0173 -0.0484 -0.0737

ln2T · ln req· ln |ac| -0.0167 -0.0209 -0.0144 0.0056 0.0068 0.0255
ln2T · ln r−1

eq -0.0182 0.0311 0.0221 0.0007 -0.0112 -0.0073
ln2T · ln r−1

eq · ln |ac| -0.0097 -0.0047 0.0007 0.0004 0.0008 0.0005

4.5.4 Illustrative Results and Observations

Using splines to connect the above presented three fits and to integrate them into SPO2IDA, we
have generated a tool that can accurately capture the behavior of a complex quadrilinear backbone
for a wide range of periods, from 0.2s to 4s (Vamvatsikos, 2002). An example of its application is
presented in Figure4.5. Therein the median IDA curve of an elastic-hardening-negative-plateau
backbone is recreated for several oscillator periods. Starting from at a moderate period ofT = 1s,
the flatline happens atR≈ 4.1, but if we decrease the period down toT = 0.3s, we observe that
the IDA becomes more aggressive; softening commences at very low values ofRand the flatline is
reached very quickly, atR≈ 2.7 for T = 0.3s. On the other end, when the period is increased, the
median IDA is “milder”, it rises and straightens out, staying longer on the “equal displacement”
rule, i.e., on theµ = R line. Thus, the flatline is greatly delayed, occurring atR≈ 5.5 at T = 4s.
Obviously, the oscillator period has a significant effect on the flatline but also on all the features of
the fractile IDAs. The only exception appears for moderate and long periods in the region where
the backbone is still hardening. There the median IDA follows the equal displacement rule and
thus becomes insensitive to the (moderate or long) period. As observed at least for the median in
Figure4.5, SPO2IDA is now able to capture all such period-dependent effects.
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Figure 4.5: Median IDAs for a backbone withah = 0.2, µc = 2, ac = −0.5, r = 0.5, µ f = 6 but varying
periods.

4.5.5 SPO2IDA error estimates for all periods

Similarly to the moderate period model, we have generated a separate test-sample of various os-
cillators with randomly generated backbones and periods. Then we performed a calculation of
the fractile demand and capacity errors(εµ)x% and(εR)x% according to Equations (4.5)–(4.6) both
shown in Table4.9. Therein we have also included the bootstrapped(εµ)x% and(εR)x% values for
a full IDA with 10 and 30 records.

Once again, the SPO2IDA error is, practically speaking, comparable to the error induced by the
record-to-record variability in a full 30-record IDA for all cases, except the last, the quadrilinear
one. Again, the most complex of the backbones is harder to capture, but still, the SPO2IDA error
remains within reasonable limits.

Table 4.9: Average fractile-demand and fractile-capacity errors for short, moderate and long periods and a
variety of backbone shapes, as caused by the fitting in SPO2IDA and by the record-to-record variability in
IDA.

SPO2IDA 10 records 30 records

x% = 16% 50% 84% 16% 50% 84% 16% 50% 84%

elastic-hardening
εR 0.04 0.04 0.05 0.09 0.07 0.09 0.06 0.04 0.05
εµ 0.02 0.03 0.04 0.06 0.06 0.09 0.04 0.04 0.06

elastic-hardening-negative
εR 0.05 0.04 0.05 0.08 0.06 0.09 0.05 0.04 0.04
εµ 0.05 0.03 0.04 0.07 0.07 0.10 0.04 0.04 0.04

elastic-hardening-negative-plateau
εR 0.20 0.18 0.20 0.21 0.16 0.18 0.14 0.10 0.12
εµ 0.19 0.24 0.26 0.20 0.17 0.24 0.12 0.12 0.15

The same observations apply here as in the moderate period range; the errors in Table4.9are
averaged over numerous backbones, periods and along each individual fractile curve. Therefore,
individual cases may perform better or worse than the posted values. The only difference from the
moderate period case is the additional consideration of period. Generally, in the short period range,
the record-to-record variability is higher thus degrading the accuracy of both IDA and SPO2IDA.
Still, barring some isolated below-average-accuracy estimates, the results are very reliable.



66 CHAPTER 4. SPO2IDA FOR SDOF SYSTEMS

10
−1

10
0

0.5

1

1.5

2

2.5

3

3.5

period (s)

in
el

as
tic

 d
is

p.
 r

at
io

, C
µ

spo2ida  
real data

µ = 6 

µ = 1.5

(a) Results from IDA versus SPO2IDA

10
−1

10
0

0.5

1

1.5

2

2.5

3

3.5

period (s)

in
el

as
tic

 d
is

p.
 r

at
io

, C
µ

µ = 6 

µ = 1.5 

(b) Results fromMiranda(2000)

Figure 4.6: Comparing estimates of meanCµ ratios generated by SPO2IDA for the special elastic-perfectly-
plastic case versus the real data and results fromMiranda(2000) for µ = 1.5,2,3,4,5,6.

4.6 From the IDA to the inelastic displacement ratios

On a more practical aspect, SPO2IDA can directly produceR-factors and inelastic displacement
ratios, often used in seismic guidelines (e.g.,FEMA, 1997). The direct mapping of theµ-given-R
to theR-given-µ fractiles effortlessly provides fractileR-factors. Similarly, one can easily generate
(Cµ)x%, the x%-fractile of inelastic to elastic displacement ratio givenµ, and(CR)x%, the x%-
fractile of inelastic to elastic displacement ratio givenR, as defined inMiranda(2001). Actually
the fractiles of the two ratios are equivalent as(Cµ)x% = (CR)x% = µx%(R)/R= µ/R(100−x)%(µ).
By modeling the fractiles in SPO2IDA we can use the same fits to generate theR-factors and both
the inelastic displacement ratios; had we chosen to model the mean response, we would need a
separate fit for each of the three quantities (Miranda, 2001).

On the other hand, instead of the fractiles, the meanR-factors or mean inelastic displacement
ratios may be of interest. IfE[·] is the expectation operator, then we want to estimateE[R], E[Cµ ] =
µE[1/R] for a given value ofµ andE[CR] = E[µ]/R for a given value ofR. Actually, for values
of R higher than any of the flatlines,E[µ] and correspondinglyE[CR] become infinite. At lower
R-values the distribution ofµ givenR is approximately lognormal (Shome and Cornell, 1999) and
so is the distribution ofR given µ for any µ-value. In those ranges we can use the properties of
the lognormal distribution (e.g.,Benjamin and Cornell, 1970) to show that

E[R] = R50%(µ) ·exp

(
1
2

σ2
lnR

)
, σlnR =

1
2

(lnR84%(µ)− lnR16%(µ)) (4.10)

E[CR] =
E[µ]

R
=

µ50%(R)
R

·exp

(
1
2

σ2
ln µ

)
, σln µ =

1
2

(ln µ84%(R)− ln µ16%(R)) (4.11)

E[Cµ ] = µE

[
1
R

]
=

µ
R50%(µ)

·exp

(
1
2

σ2
− lnR

)
, σ− lnR = σlnR (4.12)

In Figure4.6(a)we have used Equation (4.12) to calculate averageCµ ratios using SPO2IDA
for an elastic-perfectly-plastic system over a range of periods from 0.1s to 3s using SPO2IDA. On
the same figure we also plot the averageCµ calculated directly from the 30 record suite through
IDA, without the use of any approximation or fit. Clearly, the SPO2IDA results closely match
the exact ones, except perhaps for the shortest of periods. As a further comparison, we have
recreated in Figure4.6(b)theCµ results from the proposed equation inMiranda(2000), generated
for an elastic-perfectly-plastic model with kinematic hardening, using over 200 records that have
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a wide magnitude and source-to-site distance range, and that were all recorded on firm soil. As
expected, the results are comparable everywhere but in the short period range, where the record-to-
record variability is maximum. Of course, such a specialized fit should be expected to outperform
SPO2IDA, having much less error, especially in the short periods. Still, our tool is proven to
be suited to many applications, even beyond estimating the fractile IDAs that it was originally
designed for.
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Figure 4.7: Viscous damping has negligible influence, as shown for moderate periods for a backbone with
ah = 0.3, µc = 2, ac =−2, r = 0.5, µ f = 5.

4.7 Influence of other SDOF parameters

By mostly focusing on the oscillator backbone we have restricted our modeling effort in several
other aspects; ground motion records were selected from a narrow magnitude and distance bin
and correspond to firm soil only, while hysteresis-wise, we have only considered a 5% damped,
moderately pinching model. Do these choices seriously restrict SPO2IDA, or can the results be
applied in cases beyond what we have considered?

Regarding the selection of the records, the issue of magnitude, source-to-site distance and soil
site appear. It has been well documented in the literature that the elastic-perfectly-plastic and the
elastic-hardening system results (meanR-factor,Cµ andCR) are not significantly influenced by
magnitude, except maybe in the shortest of periods (Ruiz-Garcia and Miranda, 2003), or distance,
unless near-fault directivity is an issue (e.g.,Miranda, 2000; Nassar and Krawinkler, 1991). Actu-
ally, several researchers have found evidence of significant difference between forward-directivity
and non-directivity influenced records (Cuesta and Aschheim, 2001; Baez and Miranda, 2000),
while a recent study byChopra and Chintanapakdee(2001), proposes modifyingR-µ-T relation-
ships to account for such effects. In that case, SPO2IDA needs to be upgraded before being applied
when directivity matters. On the other hand, regarding soil-site issuesMiranda(2000) has found
little dependance within different firm soil sites. ButMiranda(1993) andRahnama and Krawin-
kler (1993) confirm that soft soil sites can be significantly different and their effect needs to be
taken into account when applicable. Obviously, this effect has not been taken into consideration
for SPO2IDA.

As for the details of the oscillator itself, at least viscous damping does not seem to be an
important issue. As shown in Figure4.7, at least for moderate and long periods, there is, practically
speaking, little or no difference in the actual normalized responseR, µ of systems that have the
same backbone, but damping ratios as low as 2% or as high as 8%.

The oscillator hysteresis is another problem, and we have only used a moderately pinching
model; we have not considered the influence of the degree of pinching nor the use of other models
that otherwise account for pinching, e.g., modified Clough, or models that totally dismiss pinching
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(a) Three hysteresis models for elastic-perfectly-plastic
system,ah = 0, T = 1s.
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(b) Three hysteresis models for elastic-negative,ac =
−0.2, T = 1s.
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(c) Kinematic hysteresis for elastic-negative system,ac =
−0.2, T = 1s for record #29 at intensityR= 2.4.
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Figure 4.8: The different effect of the hysteresis model on oscillators with elastic-perfectly-plastic and
elastic-negative backbones.

and stiffness degradation, e.g., the kinematic model used with the standard elastic-perfectly-plastic
system (for the details of the models see, e.g.,Rahnama and Krawinkler, 1993). For an elastic-
perfectly-plastic backbone (Figure4.8(a)) the effect is practically negligible, as the three models
generate the same median (and similarly all fractile) IDA curves. This is not the case for the
elastic-negative backbone, as seen in Figure4.8(b). The median IDA (and actually any individual
IDA curve) of the kinematic shows consistently higherµ-demands and lowerR-capacities ver-
sus the two peak-oriented models, which are almost the same. The reason is that the kinematic
model cannot maintain full loops when on the descending branch of the backbone, as seen in
Figure4.8(c); when the oscillator unloads and subsequently reloads it remains on the same elas-
tic slope that leads it quickly back to the negative backbone, not allowing any hysteretic energy
absorption, an effect also observed byMahin and Lin(1983), Rahnama and Krawinkler(1993),
Krawinkler and Seneviratna(1998). On the other hand, the pinching model is able to display the
more realistic full loops of Figure4.8(d), a behavior that is similarly matched by the modified
Clough model, thus both having quite similar median (and also all fractile) IDAs in Figure4.8(b).
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In general, once we go past the peak of the backbone, the hysteretic model may indeed become
an important parameter, and previous sensitivity studies on just elastic-perfectly-plastic backbones
will not be adequate.

Another issue that may influence SPO2IDA is that the hysteretic model used has no cyclic
deterioration features, i.e., if subjected to cycles of the same deformation amplitude the hysteretic
loops will not change or deteriorate in any way. InRahnama and Krawinkler(1993) there appears
some evidence that cyclic deterioration may play a significant role, i.e., severe cyclic strength
deterioration seems to be increasing the demands. On the other hand, (Gupta and Kunnath, 1998)
have qualitatively investigated such effects and found them to be more pronounced at the lower
periods (less that 0.5s), where the numerous high frequency cycles can emphasize the details of
the hysteretic model, causing enough large loading-unloading cycles to induce significant strength
deterioration.

In conclusion, the degree of pinching, the cyclic deterioration and other such hysteretic details
may or may not be important but they are mostly confined to the level of the SDOF system. When
the ultimate goal of a tool like SPO2IDA is actually approximating the response of a first-mode-
dominated MDOF building (Vamvatsikos and Cornell, 2004b), in a manner similar toFEMA
(1997), then it becomes questionable whether focusing on such details makes sense. While the os-
cillator backbone can be modeled after the MDOF SPO curve, it is hard to capture other hysteretic
characteristics of the MDOF in the equivalent SDOF. And even when a methodology is devised
that allows such assessments, a study byFoutch and Shi(1998) has found small effect of such
details of the hysteretic modeling of connections in steel moment resisting frames to the response
of MDOF systems. In our opinion, it seems a greater priority to investigate directivity and soft
soils rather than focus on the smaller details of hysteresis.

4.8 Conclusions

A complete methodology has been presented that accurately accounts for the effect of the back-
bone on the seismic behavior of an oscillator with arbitrary period. The investigated backbone
shapes range from simple bilinear to complex quadrilinear with an elastic, a hardening and a
negative-stiffness segment plus a final residual plateau that terminates with a drop to zero strength.
Long hardening segments are found to significantly improve performance, while their slope has
only a small effect. On the other hand, the steeper the slope of the negative-stiffness segment, the
higher the demands and the lower the capacities past the peak of the backbone. Residual plateaus
that are higher in terms of strength or longer in terms of ductility, both benefit the post-peak per-
formance. Finally, the oscillator period significantly influences the effect of all segments except
the hardening one in the moderate or long period ranges. Several different backbone shapes were
found to produce similar dynamic behavior. Thus, the required number of backbone shapes to
be investigated is drastically reduced, allowing the effect of a complete quadrilinear backbone to
be captured with only a handful of regressions. In accordance, a number of equations have been
proposed, defining a flexible, publicly available, software tool for performing fast assessments of
the (median and dispersion of) demand and capacity of virtually any oscillator. Thus, an engineer-
user is able to effortlessly get an accurate, spreadsheet-level estimate of the performance of the
oscillator without having to perform the costly analyses, providing ready insights into the relative
advantages and disadvantages of possible design or retrofit alternatives.
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4.10 Appendix: The SPO2IDA algorithm

Here we provide the exact details of the algorithm that actually constructs the fractile curves
in SPO2IDA from the three fitted segments. The only user input is the five parameters of the
backboneah, µc, ac, r, µ f and the periodT (if applicable). Before we start, we need to determine
which of the three parts (hardening, negative, residual) are going to be needed for the backbone.
For example, ifµ f is equal toµc then no negative or residual part need to be plotted, similarly, if
r = 0 the residual does not exist. Once that is decided we can proceed to generate each individual
part.

First, we generate the elastic part for each line. This is really straightforward and actually the
same for all fractiles. Then, we append the hardening part. The only twist to this is calculating
theR-value where the hardening stops, but this can be easily done by solving for each fractile the
second-order Equation (4.1) for R, givenµ = µc, to get

lnR(100−x)%(µc) =





−βx% +
√

β 2
x% +4γx% ln µc

2γx%
if γx% 6= 0

ln µc

βx%
if γx% = 0

(4.13)

Then it is trivial to calculate the hardening part directly from Equation (4.1). Additionally, to
facilitate the smooth fit with the negative part, it is also useful to calculate the slope of the IDA (in
the log-log domain) at the end of the hardening,sx%(µc) = βx% + γx% lnR(100−x)%(µc).

for eachx%-fractile IDA
generate the elastic part as a straight line(µ,R) = (0,0) . . .(1,1)
get theβx%, γx% coefficients for the hardening branch
calculatelnR(100−x)%(µc)
selectN equidistant pointsRi ∈ (1,R(100−x)%(µc)], i = 1. . .N
calculate the correspondingµi = exp(βx% lnRi + γx% ln2Ri), i = 1. . .N
calculate slope-at-endsx%(µc)

end

To generate the negative part we need some way for a smooth transition from the hardening
to the flatline that will be induced by the negative if the residual does not exist. True to our
cascading-models principle, we will note that indeed, up to ductilityµr the IDA will behave as if
the residual did not exist, so it makes sense to ignore it in this part. As discussed previously we
will use the repeated-midpoint insertion spline for this purpose (Farin, 1990). All we need is to
supply acontrol polygonand the algorithm will generate a smooth curve that tangentially touches
the midpoint of each segment of the polygon. So if we let

ln µ int
x% =

[
lnR(100−x)%(µend)− lnR(100−x)%(µc)

]
sx%(µc)+ ln µc, (4.14)

then the points

(µ,R) =




2lnµc− ln µ int
x% 2lnR(100−x)%(µc)− lnR(100−x)%(µend)

ln µ int
x% lnR(100−x)%(µend)

2lnµend− ln µ int
x% lnR(100−x)%(µend)


 (4.15)

define the appropriate control polygon. All we need is to fit the spline to this polygon and it will
blend the hardening segment nicely into the flatline atµend. Since we may have a residual segment
following, we would want to truncate this spline atµr and also calculate the slope at that point
(e.g., through finite differences) to fit the next segment.
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for eachx%-fractile IDA
estimateR(100−x)%(µend) from Equation (4.2)
define the control polygon
fit a spline to the polygon in the log-log domain
calculateN points(ln µ, lnR) on the fitted spline, spanning the range fromµc to µr

transform them to the linear domain
calculate the slope-at-end of the segmentsx%(µr)

end

Finally we are left with the residual plateau part. The fits provide us only with the linear
behavior (in log-log) at ductilities beyondµr , so we need again a smooth transition from the
relatively flat segment caused by the negative part. If we calculate theβx%, γx% coefficients from
Equation (4.4), then we can calculate the ductility at the intersection of the tangent at the end of
the negative-branch with the residual-plateau “secant” line:

lnRmid
(100−x)% =

ln µr −sx%(µr) lnR(100−x)%(µr)−βx%

γx%−sx%(µr)
(4.16)

ln µmid
x% = βx% + γx% lnRmid

(100−x)% (4.17)

Then the tangent and the secant provide the following control polygon that allows a smooth spline
fit in the log-log domain:

(µ,R) =




2lnµr − ln µmid
x% 2lnR(100−x)%(µr)− lnRmid

(100−x)%
ln µ int

x% lnRmid
(100−x)%

3lnµmid
x% 3lnµmid

x% −βx%)/γx%


 (4.18)

All we need to do is calculate this transition part with the spline and then add as many points
as we need along the linear (in log-log) segment provided by the residual-plateau fit to reach the
fracturing at ductilityµ f . The final touch is adding a flatline atµ f :

for eachx%-fractile IDA
estimateβx%, γx% from Equation (4.4) or Equation (4.9)
define the control polygon
fit a spline to the polygon in the log-log domain
calculateN points(ln µ, lnR) on the fitted spline, spanning the range fromµr to µ f

transform them to the linear domain
append a flatline, as a linear segment(µ,R) = (µ f ,R(100−x)%(µ f )) . . .(+∞,R(100−x)%(µ f ))

end

If we plot the points that we have calculated, we will get graphs of the fractile IDAs, just like
the figures presented earlier.



Chapter 5
Direct estimation of the seismic demand
and capacity of MDOF systems through
Incremental Dynamic Analysis of an
SDOF approximation

Vamvatsikos, D. and Cornell, C. A. (2003c).ASCE Journal of Structural Engineering, (in
preparation).

5.1 Abstract

Introducing a fast and accurate method to estimate the seismic demand and capacity of first-mode-
dominated multi-degree-of-freedom systems in regions ranging from near-elastic to global col-
lapse. This is made possible by exploiting the connection between the Static Pushover (SPO) and
the Incremental Dynamic Analysis (IDA). While the computer-intensive IDA would require sev-
eral nonlinear dynamic analyses under multiple suitably-scaled ground motion records, the sim-
pler SPO helps approximate the multi-degree-of-freedom system with a single-degree-of-freedom
oscillator whose backbone matches the structure’s SPO curve far beyond its peak. Similar method-
ologies exist but they usually employ oscillators with a bilinear backbone. In contrast, the empir-
ical equations implemented in the SPO2IDA software allow the use of a complex quadrilinear
backbone shape. Thus, the entire summarized IDA curves of the resulting system are effortlessly
generated, enabling an engineer-user to obtain accurate estimates of seismic demands and ca-
pacities for limit-states such as immediate occupancy or global dynamic instability. Using three
multi-story buildings as case studies, the methodology is favorably compared to the full IDA.

5.2 Introduction

At the core of Performance-Based Earthquake Engineering (PBEE) lies the accurate estimation
of the seismic demand and capacity of structures, a task that several methods are being pro-
posed to tackle. One of the promising candidates is IDA (Vamvatsikos and Cornell, 2002a), a
computer-intensive procedure that has been incorporated in modern seismic codes (e.g.,FEMA,
2000a) and offers thorough demand and capacity prediction capability, in regions ranging from
elasticity to global dynamic instability, by using a series of nonlinear dynamic analyses under suit-
ably multiply-scaled ground motion records. Still, professional practice favors simplified meth-
ods, mostly using single-degree-of-freedom (SDOF) models that approximate the multi-degree-of-
freedom (MDOF) system’s behavior by matching its SPO curve, coupled with empirical equations

72
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Figure 5.1: The 16%, 50%, 84% fractile IDAs and
limit-state capacities.
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Figure 5.2: The median IDA compared against the
SPO generated by an inverted-triangle load pattern.

derived for such oscillators to rapidly obtain a measure of the seismic demand (e.g.,Fajfar and
Fischinger, 1988; Fajfar and Gaspersic, 1996; FEMA, 1997). Such procedures could be extended
to reach far into the nonlinear range and approximate the results of IDA, but they use oscillators
with bilinear backbones that only allow for elastic perfectly-plastic behavior, and occasionally
positive or negative post-yield stiffness (e.g.,Miranda, 2000; Nassar and Krawinkler, 1991; Al-
Sulaimani and Roessett, 1985). With the emergence of the SPO2IDA software (Vamvatsikos and
Cornell, 2004d), empirical relations for full quadrilinear backbones are readily available, which,
when suitably applied to the MDOF SPO, allow us to accurately approximate the full IDA and
investigate the connection between the structure’s SPO curve and its seismic behavior.

5.3 IDA fundamentals

To illustrate our methodology, we will perform IDA for a centerline model of a 9-story steel-
moment resisting frame designed for Los Angeles according to the 1997 NEHRP provisions (Lee
and Foutch, 2002). The model incorporates ductile members, shear panels and realistically fractur-
ing Reduced Beam Section connections, while it includes the influence of interior gravity columns
and a first-order treatment of global geometric nonlinearities (P-∆ effects). Essentially, it is a first-
mode-dominated structure that has its fundamental mode at a period ofT1 = 2.3 sec, accounting
for 84.3% of the total mass, hence allowing for some significant sensitivity to higher modes.

We have also compiled a suite of twenty ground motion records that have been selected to rep-
resent a scenario earthquake (Vamvatsikos and Cornell, 2004a); the moment magnitude is within
the range of 6.5 – 6.9, they have all been recorded on firm soil and show no directivity effects. IDA
involves performing a series of nonlinear dynamic analyses for each record by scaling it to sev-
eral levels of intensity that are suitably selected to uncover the full range of the model’s behavior:
from elastic to yielding and nonlinear inelastic, finally leading to global dynamic instability. Each
dynamic analysis can be characterized by at least two scalars, an Intensity Measure (IM ), which
represents the scaling factor of the record (e.g., the 5%-damped first-mode spectral acceleration
Sa(T1,5%)) and a Damage Measure (DM ), which monitors the structural response of the model
(e.g., maximum, over all stories, peak interstory drift ratioθmax or peak roof drift ratioθroof).

By suitably interpolating between the results of the dynamic analyses, we can plot on theDM -
IM axes an IDA curve for each record. The twenty IDA curves that are thus produced can then
be summarized into the 16%, 50% and 84% fractiles, as presented in Figure5.1and explained in
detail byVamvatsikos and Cornell(2004a). Additionally, limit-states such as Immediate Occu-
pancy (IO) and Collapse Prevention (CP) (FEMA, 2000a), or the global dynamic instability (GI,
evident by the characteristic flattening, termed theflatline, on each IDA) can be easily defined on



74 CHAPTER 5. SPO2IDA FOR MDOF SYSTEMS

the curves. Finally, by combining the results of IDA with Probabilistic Seismic Hazard Analysis
within a proper framework (e.g.,Cornell et al., 2002; Vamvatsikos and Cornell, 2002a), we can
estimate the mean annual frequencies (MAFs) of exceeding each limit-state, one of the ultimate
goals of PBEE. Still, the calculation of the full, twenty-record IDA for this model requires about 24
hours of computing on a single 1999-era processor, something that may be beyond the practicing
engineer.

A path to a simpler solution appears if we choose to plot the SPO of the MDOF system onθmax

versusSa(T1,5%) axes, where the total base shear is divided by the total mass and scaled to match
the elastic part of the IDA by an appropriate factor (that is equal to one for SDOF systems). By thus
plotting the SPO curve versus the median IDA curve on the same graph (Figure5.2), we observe
that both curves are composed of the same number of corresponding and distinguishable segments
(Vamvatsikos and Cornell, 2002a). The elastic segment of the SPO coincides by design with the
elastic IDA region, having the sameelastic stiffness, while the yielding and hardening of the SPO
(evident by its non-negative slope up to the peak) forces the median IDA to approximately follow
the familiarequal displacementrule for moderate period structures (Veletsos and Newmark, 1960)
by maintaining the same slope as in the elastic region. Past the peak, the SPO’s negative stiffness
appears as a characteristic flattening of the IDA, the flatline, that eventually signals global collapse
when the SPO curve reaches zero strength. This apparent qualitative connection of the SPO and
the IDA drives our research effort to provide a simple procedure that will use the (relatively easy-
to-obtain) SPO plus some empirical quantitative rules to estimate the fractile IDAs for a given
structure, providing the IDA curves at a fraction of the IDA computations.

5.4 SPO2IDA for SDOF systems

Based on the established principle of using SDOF oscillators to approximate MDOF systems, we
have investigated the SPO-to-IDA connection for simple oscillators. The SDOF systems studied
were of short, moderate and long periods with moderately pinching hysteresis and 5% viscous
damping, while they featured backbones ranging from simple bilinear to complex quadrilinear
with an elastic, a hardening and a negative-stiffness segment plus a final residual plateau that ter-
minated with a drop to zero strength. The oscillators were analyzed through IDA and the resulting
curves were summarized into their 16%, 50% and 84% fractile IDA curves which were in turn
fitted by flexible parametric equations (Vamvatsikos and Cornell, 2004d). Having compiled the
results into the SPO2IDA tool, available online (Vamvatsikos, 2002), an engineer-user is able to
effortlessly get an accurate estimate of the performance of virtually any oscillator without having
to perform the costly analyses, almost instantaneously recreating the fractile IDAs in normalized
coordinates ofR= Sa(T1,5%)/Sy

a(T1,5%) (whereSy
a(T1,5%) is theSa(T1,5%)-value to cause first

yield) versus ductilityµ.

5.5 SPO2IDA for MDOF Systems

Adopting an approach similar to FEMA 273 (FEMA, 1997) we can use the SDOF IDA results
generated by SPO2IDA to approximate the seismic behavior of the first-mode-dominated MDOF
system. This entails using an SDOF oscillator having the structure’s fundamental period, whose
backbone closely matches the SPO of the MDOF building. The resulting fractile IDA curves for
the SDOF system only need to be properly rescaled from theirR, µ coordinates to predict the
fractile θroof IDAs and additionally, using the SPO, can be transformed to estimate the fractile
θmax IDAs. While the methodology may seem straightforward, the ability of SPO2IDA to extend
the results well into the SPO’s post-peak region pushes the method to its limits and poses several
challenges that have to be overcome.
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Figure 5.4: The most-damaging of the four SPO
curves, shown in bothθroof andθmax terms.
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5.5.1 Defining the SPO

While for an SDOF system the SPO is uniquely defined, this is not the case for the MDOF;
depending on the load pattern selection, one may generate several different SPO curves, as evident
in Figure5.3. Therein we have plotted theθroof SPOs for the 9-story building subjected to four
different load patterns, producing four quite different SPOs. Beginning from the outermost SPO
to the innermost, we observe the following:

1. A load pattern that is proportional to the first-mode shape times the story masses is the most
optimistic of the four, as it predicts the highest strength and roof drift ratio,θroof ≈ 0.32,
before system collapse occurs.

2. If instead of just the first mode we use a Square-Root-Sum-of-Squares (SRSS) combination
of the first two mode shapes we get the second most optimistic curve, where the maximum
strength has dropped significantly, but the roof drift ratio at collapse remainsθroof≈ 0.32.

3. By changing the load pattern at the peak of the previous SPO to a uniform one, i.e., a shape
that is directly proportional to the story masses and resembles an SRSS of the first two mode
shapes of the damaged structure at the peak of the SPO, we uncover a severer drop towards
collapse, with zero-strength occurring atθroof≈ 0.24.

4. If instead of the uniform we impose in the post-peak region the inverse of the pre-peak
SRSS pattern (the minimum force now being at the roof-level), it surprisingly produces the
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severest SPO of all, with global collapse happening atθroof ≈ 0.11, almost one third of the
prediction generated by the pure first-mode load pattern.

In essence, the choice of the load pattern has a significant effect on the calculated SPO curve
for large levels of deformation and, evidently, each of the four possible realizations pictured in
Figure5.3will produce a different estimate for the seismic demands and capacities. As shown for
simple oscillators byVamvatsikos and Cornell(2004d), if we progress from the outermost SPO to
the innermost one, the estimates ofDM -demands past the SPO peak will monotonically increase,
and correspondingly the estimatedIM -capacity for any limit-state that lies beyond the peak will
decrease.

So, how is one to choose among the four SPOs? Since we have the full IDA results, we can
compare the deformed shapes of the structure produced by the various SPOs versus the IDA. While
the median IDA deformed shape shows that in the post-peak region most of the deformations are
concentrated on the upper floors, only the innermost (most-damaging) of the four SPOs manages
to produce a similar deformation pattern. The other three load patterns seem to concentrate defor-
mations mostly at the lower floors, thus not forcing the structure through the same path to collapse
as the dynamic analysis does. We should expect that this most-damaging, worst-case SPO will
provide a good approximation to the behavior of the 9-story structure during a nonlinear dynamic
analysis.

Such a conclusion can be generalized to structures other than the particular 9-story; it makes
sense to assume that a structure under seismic excitation will collapse following the weakest-link,
most-damaging, least-energy path. On the other hand, the use of a rigid load pattern will, in
general, constrain the deformed shape of the structure, allowing it to withstand higher lateral loads
and carry them to higher ductilities. Hence, we suggest that the SDOF oscillator whose backbone
mimics the worst-case SPO will most accurately approximate the dynamic behavior of the true
MDOF model. Specifically, we should expect that in the post-peak region, the further an SPO lies
from the worst-case one, the more unconservative results it will produce; i.e., SPOs that envelop
the worst-case one, when they are used as basis for the calculations of our method, they will
generate upper-bound estimates of limit-state capacities and lower-bound estimates of demands.
Hence, we choose to focus on the most-damaging of the four SPOs for all the calculations that
follow.

Unfortunately, there is no obvious recipe to help us arrive at the worst-case SPO. It is hard
to predict in advance what load pattern will be the most appropriate, especially if one does not
have a priori the dynamic analysis results to confirm that the dynamic and static deformed shapes
match. Fully adaptive schemes may prove to be able to find the least-energy path to collapse,
several candidates having been proposed at least byKrawinkler and Seneviratna(1998), Gupta and
Kunnath(2000) andAntoniou et al.(2002), but none of the proposed schemes has been sufficiently
tested and verified in the post-peak region, where good accuracy matters the most for all limit-
states that lie close to global dynamic instability (e.g., CP and GI). A simpler, viable solution for
regular structures involves using a pattern proportional to the SRSS of several mode shapes times
the story masses or a code-supplied pattern, at most up to the peak of the SPO (i.e.,θroof ≈ 0.02
or θmax≈ 0.04 in Figure5.4), and consequently testing at least three configurations in the post-
peak region: Continuing the pre-peak pattern (i.e., maximum force is at the roof), changing to
a uniform or using the inverse of the pre-peak pattern (maximum force at the first story). By
performing these three basic pushovers we get sufficiently broad coverage and can pick a load
pattern that will provide a good enough approximation to the overall most damaging, worst-case
SPO.

Once we have an acceptable estimate of the worst-caseθroof SPO, it is a simple matter to
approximate it with a piecewise-linear backbone, in this case a trilinear elastic-hardening-negative
model (Figure5.5), and process it through SPO2IDA. Instantaneously we will get estimates of
the fractile IDAs (normalized toR andµ) for the SDOF with the matching trilinear backbone, as



5.5. SPO2IDA FOR MDOF SYSTEMS 77

shown in Figure5.6.

5.5.2 Estimating the IDA elastic stiffness

SPO2IDA will provide us with accurate estimates of the SDOF system fractile IDAs, but the results
will be in dimensionlessR versusµ coordinates and need to be properly scaled toSa(T1,5%)
versusθroof or θmax axes. Therefore, we need to determine for eachx%-fractile,x∈ {16,50,84},
the values ofSa(T1,5%), θroof andθmax that correspond to its yield point, namelySy

a,x%(T1,5%),
θ y

roof,x% andθ y
max,x%. Obviously, for an SDOF system, this task is trivial; the backbone directly

provides the yield displacement (same for all fractiles), while it also offers the yield base shear,
which when divided by the total mass will result to the value ofSy

a(T1,5%) (again, common for all
fractiles). This is much harder for an MDOF system, mainly due to the effect of the higher modes;
some records will force the structure to yield earlier and some later, at varying levels ofIM and
DM . The problem can be simplified if we assume that the SPO accurately captures at least the
median valueθ y

roof,50% and that all fractiles IDAs yield at about the same value ofSy
a,x%(T1,5%).

This assumption is not strictly true for MDOF systems and it becomes highly accurate only if the
first mode is dominant but, in general, it is more than enough for our purposes. In this case, we
only need to estimate the elastic stiffness (IM /DM ) of the medianθroof andθmax IDA, or, even
better, the elastic stiffness of all three fractileθroof andθmax IDAs, kroof,x% andkmax,x% respectively.

Since such a task involves dynamic linear elastic analysis, it can be easily performed with a
minimum of computations. The direct way is to select a suitable suite of records and perform
elastic response spectrum or timehistory analysis for each record to determine theθroof andθmax

response. Then, we can estimate the 16%, 50% and 84% fractiles of the sample of elastic stiff-
nesses,Sa(T1,5%)/θroof andSa(T1,5%)/θmax, calculated for each ground motion.

A simpler method appears if we approximate the medianθroof andθmax elastic stiffness by
dividing any elastic SPO level of base shear by the total building mass times the corresponding
elasticθroof or θmax value respectively. This is the same operation one would perform for an SDOF
system, hence we cannot recover information about the variability in the elastic stiffnesses. There-
fore, we are forced to assume thatkroof,x% = kroof,50%andkmax,x% = kmax,50%, which is accurate only
when higher modes are negligible. This is the same assumption adopted for the standard Nonlinear
Static Procedure, e.g.,Fajfar and Fischinger(1988), Fajfar and Gaspersic(1996), FEMA (1997),
although, in that case, normalization is done by the first mode mass rather than the total, something
that usually makes very little difference.

Obviously, only the first method is an exact calculation of the elastic IDA stiffnesses, and
hence is the method of choice for the calculations to follow. The simpler method reduces the
computational load, but in a manner similar toFEMA (1997), it neglects the variability in the
elastic stiffness. This reduces its accuracy and restricts its usefulness to shorter buildings with
insignificant higher mode effects. Ultimately, the selection of the estimating procedure is a trade-
off between speed and accuracy, and depends solely on each user’s needs.

5.5.3 Putting it all together

Having determined the appropriate elastic stiffnesses for the fractile IDAs, all that remains is
to properly de-normalize and scale the SPO2IDA results, fromR versusµ coordinates, into
Sa(T1,5%) versusθroof and θmax axes. Since the SPO has been approximated with a trilinear
elastic-hardening-negative model (Figure5.5), its yield-point values of base shear,θroof andθmax,
namelyFy, θ y

roof,spo andθ y
max,spo, are readily available. As explained previously, we will assume

that eachx%-fractile IDA, x∈ {16,50,84}, yields at the same value ofSy
a,x%(T1,5%), but at dif-
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(b) SPO2IDA estimatedθroof fractile curves
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(d) SPO2IDA estimatedθmax fractile curves

Figure 5.7: Generating the fractile IDAs from nonlinear dynamic analyses versus the MDOF SPO2IDA
approximation for the 9-story building.

ferentθ y
roof,x% andθ y

max,x%, hence, for allx∈ {16,50,84} we get:

Sy
a,x%(T1,5%) = θ y

roof,spo·kroof,50%, (5.1)

θ y
roof,x% = Sy

a,x%(T1,5%)/kroof,x% (5.2)

θ y
max,x% = Sy

a,x%(T1,5%)/kmax,x% (5.3)

Using Equations (5.1–5.3), we can easily rescale the results of SPO2IDA and bring them into
properSa(T1,5%) versusθroof axes to generate theθroof fractile IDAs, as seen in Figure5.7(b),
which clearly compare very well against the real IDAs in Figure5.7(a).

If all that we want is an estimate of theIM -capacity for global dynamic instability of the struc-
ture, we need not proceed further. On the other hand, to estimate other limit-state capacities (e.g.,
IO or CP), we need the IDAs expressed in otherDM s, usuallyθmax. The SPO curve actually pro-
vides the means for such a transformation thanks to the directθroof-to-θmax mapping it establishes
when expressed inθroof andθmax coordinates (Figure5.4), a concept that has been used at least
in FEMA 273 (FEMA, 1997). The variation that we propose involves shifting theDM axes of
the SPO for eachx%-fractile, scaling the elasticθroof values of the SPO byθ y

roof,x%/θ y
roof,spo and

shifting the inelasticθroof values byθ y
roof,x%− θ y

roof,spo. By performing the equivalent operation
to theθmax SPO values, i.e., scaling the elasticθmax by θ y

max,x%/θ y
max,spoand shifting the inelastic
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values byθ y
max,x%−θ y

max,spo, we provide a customθroof-to-θmax mapping that will correctly trans-
form demands for each fractile, recognizing the variability in elastic stiffness. Of course, were it
possible to get the equivalent of a “fractile SPO”, by tracing in some way the force-deformation
path that the structure would follow for 16%, 50% and 84% of the ground motion records, such
transformations would not be needed. In the absence of such data, we use this method to roughly
approximate such fractile SPOs, at least in the elastic range.

The results are visible in Figure5.7(d)and compare favorably with the real IDA estimates in
Figure5.7(c). Indeed, the estimated IDAs seem to slightly overestimate capacities and underesti-
mate demands, mostly an effect of higher modes plus having just an approximation rather than the
real worst-case SPO. For example, the post-peak load pattern cannot take advantage of the sharp
drops due to connection fracturing that clearly appear (Figure5.4), but instead allows the structure
to recover. A more adaptive pattern would probably do better. Still, even this rough approximation
is good enough considering the roughly±20%standard error (estimated by bootstrapping,Efron
and Tibshirani, 1993) that exists in estimating the fractiles from the twenty-record full IDA.

On the other hand, regarding ease-of-computation, if we assume that a single 1999-era pro-
cessor is used, the analysis time is reduced from 24 hours for the MDOF IDA, to only several
minutes for the SPO and the elastic response spectrum analyses, not to mention the practically
instantaneous SPO2IDA procedure. Thus, we have achieved a fast and inexpensive estimate of the
MDOF dynamic behavior at only a small cost in accuracy, the results, at least for this structure, ly-
ing within the statistical error (caused by the record-to-record variability) of estimating the fractile
IDAs from MDOF nonlinear dynamic analyses with twenty ground motion records.

5.6 Application to a 5-story braced frame

Let us now test the proposed procedure on a different structure, using a centerline model of aT1 =
1.8 sec 5-story steel chevron-braced frame with ductile members and connections but realistically
buckling braces including P-∆ effects (Bazzurro and Cornell, 1994b). For this building, the higher
modes are practically insignificant, thus there is little or no ambiguity about the shape of the
backbone. It suffices to use a load pattern that is proportional to the first mode shape times the
story masses, thus getting the SPO curve shown in Figure5.8 in θroof andθmax coordinates.

Taking advantage of the SPO2IDA tool, theθroof SPO curve is closely matched with a trilinear
elastic-negative-plateau model (Figure5.9). Finally, by combining the results from SPO2IDA with
the fractile elastic stiffnesses, we generate the approximateθroof andθmax fractile IDAs. Using the
same suite of records as for the 9-story, the IDA curves are calculated and summarized in their
16%, 50% and 84% fractiles. By comparing the trueθroof fractile IDAs in Figure5.10(a)versus
the approximate results in Figure5.10(b), it becomes apparent that they are in excellent agreement.
Similarly, theθmax fractile IDAs in Figure5.10(c)are accurately captured by the approximate
results, shown in Figure5.10(d). Clearly, as we should expect for such a building with insignificant
higher modes, the proposed procedure is a very cost-effective way to approximate the IDA results.
But what happens at the other end, for a tall structure with significant higher mode effects?

5.7 Application to a 20-story moment frame

In order to test the limits of our method, we decided to use it on a tall structure, heavily influenced
by higher modes. Our choice was a centerline model of a 20-story steel moment-resisting frame
(Luco and Cornell, 2000) with ductile members and connections that includes the influence of
the interior gravity columns plus a first-order treatment of global geometric nonlinearities (P-∆
effects). Its first mode has a period ofT1 = 4 sec and accounts for 80.2% of the total mass, placing
this structure beyond the realm of first-mode-dominated buildings. Once more, the structure is
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Figure 5.8: The most-damaging SPO curve for
the 5-story building, shown in bothθroof andθmax

terms.
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Figure 5.9: Approximating the 5-storyθroof SPO
with a trilinear model.
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(a) Full IDA θroof fractile curves
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(b) SPO2IDA estimatedθroof fractile curves
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(c) Full IDA θmax fractile curves
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(d) SPO2IDA estimatedθmax fractile curves

Figure 5.10: Generating the fractile IDAs from nonlinear dynamic analyses versus the MDOF SPO2IDA
approximation for the 5-story building.
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Figure 5.11: The most-damaging SPO curve for
the 20-story building, shown in bothθroof andθmax

terms.
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Figure 5.12: Approximating the 20-storyθroof SPO
with a trilinear model.

analyzed through IDA for the same suite of records used previously, the resulting fractile IDA
curves to be used as the standard for comparison.

First of all, the worst-case SPO needs to be determined. Surprisingly, this is an easy task,
compared with the previously examined 9-story building. Because of the height of the structure,
the massive P-∆ effects are dominating and quickly push the structure towards global collapse.
There is only one path to collapse, and almost all reasonable load patterns will force the structure
to take it. Hence, a simple load pattern proportional to the first modal shape times the story
masses is adequate to capture the worst-case SPO, even beyond its peak, the resulting curve shown
in Figure5.11 in θroof andθmax coordinates. Comparing versus the IDA, we can confirm again
that the worst-case SPO and the IDA produce similar deformation patterns, concentrating most
deformation at the lower stories of this building.

Using a trilinear elastic-hardening-negative backbone, we can accurately capture theθroof SPO
(Figure5.12), then use SPO2IDA and the fractile elastic stiffnesses to reach the results shown in
Figures5.13(b) and 5.13(d). By comparing them versus the real fractile IDA curves, in Fig-
ures5.13(a)and5.13(c), one notices several striking differences and similarities. Theθroof IDAs
are relatively well estimated. There is some overestimation ofθroof demands in the near-elastic
region, as the MDOF system is capable of high hardening that the SDOF system cannot reproduce,
still, in the region near collapse, theθroof IDAs are almost perfectly matched. On the other hand,
the proposed method largely overestimates theθmax IDA demands and correspondingly underes-
timates theSa(T1,5%)-values of capacities, especially for limit-states in the near-elastic domain,
but maintains good accuracy close to global collapse. It seems that the higher modes are influenc-
ing the accuracy of the approximation, reducing it in the near-elastic range but not close to global
collapse.

It is well known that it is very difficult to capture the higher mode effects with just the SPO
(Krawinkler and Seneviratna, 1998). Theθroof response is somewhat insensitive to them because
of its global nature, but local damage measures, likeθmax, are not, thus making it very difficult
to capture the correctθroof-to-θmax mapping with just the SPO. For example, even in the elastic
range, the ratio of the elastic stiffnesses of the medianθroof to the medianθmax IDA is about 1.5.
This means that at any level ofSa(T1,5%), the medianθmax is about 50% higher than the median
θroof, i.e., a high degree of deformation localization exists even in the elastic region. On the other
hand, the equivalent ratio for the SPO produced with the first-mode load pattern is only 1.3; much
less localization is predicted by the static analysis than the dynamic. Even more so, this ratio for
the 84%θroof andθmax IDAs is almost 2, which explains why the estimation seems to suffer away
from the median in the near-elastic region. Such differences are a direct manifestation of higher
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(b) SPO2IDA estimatedθroof fractile curves
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(d) SPO2IDA estimatedθmax fractile curves

Figure 5.13: Generating the fractile IDAs from nonlinear dynamic analyses versus the MDOF SPO2IDA
approximation for the 20-story building.

modes and cannot be possibly captured by the SPO. This fundamental deficiency of the SPO is
precisely the reason why our prediction of theθmax fractile IDAs, especially in the near-elastic
domain, is not as good for this building. Still, adaptive SPO procedures may better capture the
θroof-to-θmax connection, maybe even the variability, and if indeed they are proven to do so, the
method described here will highly benefit from their use.

Despite such limitations of the SPO, when nearing global dynamic instability even the elusive
θmax fractile IDAs are almost perfectly captured. It seems that even such a complex structure can
be accurately modeled by an SDOF system close to collapse. While in the elastic or near-elastic
region all the modes are interacting to create a complex behavior, as damage accumulates, some of
the dominant frequencies seem to be “silenced” and the structure becomes more predictable, more
first-“mode” dominated. Some evidence appears if we calculate the eigenvalues from the tangent
stiffness matrix at several points along the SPO curve. Then, we observe that the first-eigenvalue
mass steadily increases, from 80.4% of the total mass in elasticity to more than 90.2% at the peak
of the SPO. The most probable cause is that the element yielding, buckling or fracturing gener-
ates preferred paths of structural deformation, providing locations where most of the deformation
concentrates. Thus, the building becomes somewhat less complex, preferring to vibrate in a mode
defined by the combination of those damaged elements. We can only assume that such damage
can simplify our structure’s behavior and an SDOF system with the proper backbone seems to be
able to capture that.
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5.8 Limit-state capacity estimation using the MDOF SPO2IDA

Apparently, the SPO2IDA approximation provides reasonable estimates, within the limitations of
the SPO, for the fractile IDA curves of all three buildings that we have examined. Having these
results at our disposal we can follow the same steps as we did for the full IDA to perform PBEE
calculations; the only difference is that we have to calculate the summarizedIM -capacities for
the defined limit-states (IO, CP and GI) directly on the fractile IDAs instead of estimating them
individually on each record’s IDA curve and then summarize them (Vamvatsikos and Cornell,
2004a).

This is straightforward for the IO and GI limit-states (Vamvatsikos and Cornell, 2004a); their
fractile capacities reside on the fractile IDAs (e.g., Figure5.1), so we only need to calculate the
values ofSc

a,x%(T1,5%) where eachx%-fractile IDA, x ∈ {16,50,84}, reachesθmax = 0.02 to
violate the IO limit-state, or reaches the flatline for GI. On the other hand, the CP limit-state
points do not necessarily lie on the fractile IDAs, e.g., Figure5.1, but, in most cases, they are
quite close (Vamvatsikos and Cornell, 2004a). Therefore, we propose to apply the SAC/FEMA
definition of the CP limit-state point (FEMA, 2000a) directly to the fractile IDAs and thus estimate
the fractile CP capacity points. The final results are shown for all three buildings on Table5.1.

Table 5.1: Comparing the real and estimated 16%, 50% and 84%Sc
a(T1,5%) capacities over three limit-

states for each of the studied structures. Note that the 5-story reaches global collapse quite early, so the GI
and CP limit-states coincide.

16% (g) 50% (g) 84% (g)

Real Est Real Est Real Est
IO 0.61 0.75 1.02 1.05 1.43 1.55

5-story CP&GI 1.43 1.84 2.23 2.72 4.04 4.26
IO 0.18 0.14 0.27 0.20 0.33 0.24

9-story CP 0.57 0.58 0.83 0.88 1.29 1.31
GI 0.74 0.64 0.91 0.95 1.35 1.37
IO 0.12 0.08 0.16 0.10 0.21 0.15

20-story CP 0.23 0.22 0.34 0.35 0.53 0.57
GI 0.26 0.26 0.39 0.40 0.63 0.61

Table 5.2: Comparing the real and estimated 16%, 50% and 84%θmax-value of capacity for the CP limit-
state for each of the studied structures.

16% 50% 84%

Real Est Real Est Real Est
5-story CP 0.05 0.05 0.05 0.05 0.05 0.05
9-story CP 0.07 0.10 0.10 0.10 0.10 0.10
20-story CP 0.05 0.10 0.06 0.10 0.07 0.10

By comparing the full IDA versus the approximate results in Table5.1, it becomes obvious
that the proposed method manages to perform very well for a variety of buildings and for each of
the three limit-states. Even for the 20-story building, only the IO limit-state is seriously hampered
by the approximation, simply an effect of IO happening at the near-elastic region of the IDA where
the structure is toughest to predict, as explained earlier. As presented inVamvatsikos and Cornell
(2004a), theseIM -values are actually all that we need, coupled with conventional Probabilistic
Seismic Hazard Analysis, to get estimates for the MAF of limit-state exceedance. Hence, from
the results of Table5.1, we should expect that the MDOF SPO2IDA method can provide quite
accurate MAF predictions.

If we want to use an alternative format similar to FEMA 350 (FEMA, 2000a), we need instead
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the DM -values of the capacity points. For IO the appropriateDM -value is 0.02, by definition,
while for GI it is +∞. For the CP limit-state the results are listed in Table5.2, where it becomes
obvious that the SPO2IDA estimates are quite accurate, except perhaps for the 20-story build-
ing. Still, the actual estimate of the MAF of the CP limit-state exceedance will not be as bad as
indicated by these results; assuming that the appropriateDM -based integrations are accurately
carried through, they should provide the same result with theIM -based ones (Jalayer and Cornell,
2002; Vamvatsikos and Cornell, 2004a). These somewhat higher estimates ofDM capacity for the
20-story are tempered by equally high estimates ofDM demand, in the end producing accurate
estimates of MAFs. Using eitherDM or IM -based frameworks, the MDOF SPO2IDA procedure
can be used to easily calculate the MAF of exceeding a limit-state, even for higher mode influenced
buildings in the case that we restrict ourselves to the near-collapse region.

5.9 Sensitivity to user choices

The SPO2IDA method for MDOF structures has proven to be quite accurate. Still, several ques-
tions may be raised, regarding the sensitivity of the capacities displayed in Tables5.1 and5.2 to
the average user’s choices when applying the proposed methodology.

Obviously, the largest effect comes from finding or missing the right SPO. When the structure
fails due to a global failure mode, e.g., due to P-∆ like the 20-story building, or it has insignificant
higher mode effects, e.g., like the 5-story building, then the right SPO should be easy to calculate.
Almost any reasonable load pattern, e.g., one proportional to the first mode shape times the story
masses, will suffice. If, on the other hand, there are significant higher mode effects and the struc-
ture fails mainly due to a succession of local events, e.g., connections fractured or braces buckling,
then it is much tougher to find the worst-case SPO. One needs only use the SPO2IDA tool to un-
derstand the large influence of the backbone on the IDA (Vamvatsikos and Cornell, 2004d), and
realize that no estimation beyond the SPO peak will be accurate without the right SPO. In such
cases, it is important to use several, preferably adaptive, load patterns and, in the absence of a
proven automated method, use trial and error to select the best of the tried patterns.

Assuming we have found the rightθroof, θmax SPO, like in our examples, we now have to fit
the first with a multilinear model. Obviously, there are many trilinear models that we could use
instead of the ones in Figures5.4, 5.8 and5.11. Would using them change the final results? It
is recommended that one becomes familiar with the SPO2IDA tool and understand the influence
of the backbone to the SDOF fractile IDAs (Vamvatsikos and Cornell, 2004d). This greatly helps
realize the implications of how to best fit theθroof SPO. For example, the backbone’s hardening
slope is not as important, while the negative slope greatly influences global collapse. Therefore,
care should be exercised to always fit theθroof SPO closer where it matters most to achieve the most
accurate results. Even so, the quadrilinear model offered by SPO2IDA allows much flexibility, and
as was the case with all our examples, the shape of theθroof SPO can be reasonably captured. In
that case, no major differences should be expected in the final results.

Another important issue is the estimation of the elastic stiffness. Up to now we have relied
on the direct estimation from elastic timehistory analysis for each record. How much accuracy
will one sacrifice by using a simpler method, and what are the implications for the estimates of
capacities?

Since the normalized SPO2IDA results for the SDOF fractiles are scaled exclusively by the
median elasticθroof stiffness,kroof,50%, its value directly influences theIM -estimates of capacity
for all limit-states. As a direct effect of Equations (5.1)-(5.3), if all the otherkroof,x%, kmax,x%

were accurately predicted butkroof,50% was overestimated or underestimated byα%, we will see
a proportionalα% overestimation or underestimation of all limit-state capacities. Intuitively, this
can be understood if we realize that the value ofkroof,50% determines the scaling of the vertical
IM -axis for the fractile IDAs. Similarly, the five other elastic stiffnesses control the scaling of the
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horizontalDM -axis. Therefore, errors in calculating them have an effect only on limit-states other
than GI, as they cannot influence the height of the flatlines. What they do influence is theθroof

andθmax values of the IDAs, thus causing limit-states like IO and CP to appear earlier or later (in
IM -terms) than normal. Thus, it makes sense to be accurate in our estimates of allkroof,x% and
kmax,x% values.

Keeping these observations in mind, let us investigate the accuracy of the proposed methods.
Obviously, if higher modes cannot be neglected, then the direct method is the only one that can
be used. It is by far the best way to estimate the variability in the elastic stiffnesses, caused by the
higher modes. If, though, higher modes are deemed unimportant or we are only interested in the
median capacities, we can use the simpler method to get rapid estimates with little computational
effort. The estimateskroof,50% and kmax,50%, as obtained by the two methods, are compared in
Table5.3, where it becomes obvious that the simpler method performs remarkably well, even for
the 20-story building. At most, it overestimateskroof,50% by 15%, but in the tall structures it misses
kmax,50% by almost 30%, something that should be expected asθroof is a localDM , more influenced
by the (neglected) higher modes.

Table 5.3: Comparing the median IDA elasticθroof andθmax stiffnesses, as estimated by several different
methods for the three structures.

5-story (g) 9-story (g) 20-story (g)

kroof,50% kmax,50% kroof,50% kmax,50% kroof,50% kmax,50%

direct 118.2 90.0 12.6 9.7 11.2 7.4
base shear / mass 114.5 84.6 14.2 13.0 12.0 9.9

50% spectrum 118.2 90.0 18.3 3.0 5.6 0.3
“scaled” 50% spectrum 118.2 90.0 18.7 3.0 6.2 0.3

Looking for an intermediate alternative to the above suggested procedures, the estimates for
kroof,50% andkmax,50% are presented for a seemingly reasonable method; elastic spectrum response
analysis is performed using the median spectrum of the unscaled suite of records used for IDA.
As shown in Table5.3, this is not worth the extra calculations as it badly misses the correct values
for all but the most first-mode-dominated building. This is to be expected, as the median spectrum
does not necessarily provide the median response for true MDOF structures. Even more so, the
16% or 84% spectra will not provide the 16% or 84% response.

To further prove this point, an “improvement” of the above method is used, where all spectra
are first scaled to the sameSa(T1,5%)-value and then the median spectrum is generated. Again,
the results are less than satisfactory for all but the 5-story building, but even then, the base shear
over mass approach is much simpler and almost as accurate.

5.10 Conclusions

A new method has been presented that can approximate the seismic demands and capacities of
first-mode-dominated MDOF structures for their entire range of behavior, from elasticity to global
dynamic instability. Based on the Static Pushover (SPO) and building upon software able to accu-
rately predict the Incremental Dynamic Analysis (IDA) curves for SDOF systems, it can estimate,
with reasonable accuracy, the fractile IDA curves of first-mode-dominated MDOF systems. Sev-
eral novel concepts are derived in the process, perhaps the most important being the worst-case,
most-damaging SPO. It often needs carefully selected load patterns to emerge, yet it is the worst-
case SPO that best captures the path that leads to global collapse, thus allowing accurate prediction
of the IDA results. Equally interesting is the apparent “simplification” that occurs in MDOF sys-
tems near global collapse. This permits SDOF systems with appropriate backbones to capture
the onset of global dynamic instability even for higher-mode-influenced structures. Combining all
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these observations, we can conclude that simply by using the appropriate SPO curve plus, perhaps,
a few elastic response spectrum analyses, the engineer-user is able to generate accurate predictions
of the seismic behavior of complex MDOF structures within a fraction of the time needed for a
full IDA.
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Chapter 6
Investigating the influence of elastic
spectral shape on limit-state capacities
through IDA

6.1 Introduction

The IDA curves and, correspondingly, the limit-state capacities display large record-to-record
variability, even for the simplest of structures, as evident in the previous chapters. This observed
dispersion is closely connected to theIM used; someIM s are moreefficientthan others, better
capturing and explaining the differences from record to record, thus bringing the results from all
records closer together. Compare, for example, Figures2.9(a) and2.9(b) (Chapter2), where PGA
is proven to be deficient relative toSa(T1,5%) in expressing limit-state capacities, as it increases
their dispersion, practically everywhere on the IDAs. On the other hand, even the improvement
achieved bySa(T1,5%) still leaves something to be desired, as dispersions are in the order of 30%
or more.

Why should we search for such a betterIM ? There is a clear computational advantage if we
can select ita priori, before the IDA is performed. By reducing the variability in the IDA curves,
we need fewer records to achieve a given level of confidence in estimating the fractileIM -values
of limit-state capacities. Typically, a reduction to theIM -capacity dispersion by a factor of two
means that we need four times fewer records to achieve the same confidence in the results, as
explained in Chapter3. Obviously, the computational savings can be enormous.

Additionally, it is speculated that increasing the efficiency of theIM , may also lead to im-
provedsufficiencyas well. A sufficientIM produces the same distribution of demands and capac-
ities independently of the record selection, e.g., there is no bias in the fractileIM -capacities if we
select records with low rather than high magnitudes or if the records do or do not contain direc-
tivity pulses (Luco and Cornell, 2004). The goals of efficiency and sufficiency are not necessarily
tied together as the former aims at reducing the variability in the IDA results while the latter at
reducing (or eliminating) their dependance on record characteristics other than theIM . Still, using
a more efficientIM will bring the results from all records closer, and similarly bring close the IDA
curves of records coming from different magnitudes or containing different directivity pulses, thus
reducing the importance of any magnitude or directivity dependance.

While Sa(T1,5%) is found to be sufficient for first-mode-dominated, moderate period struc-
tures when directivity is not present (Shome and Cornell, 1999), it is not necessarily so for other
cases (Luco and Cornell, 2004). Therefore, it is important to try and improve ourIM s beyond
the capabilities ofSa(T1,5%). Figure6.1 may provide some clues; therein we have plotted the
5%-damped acceleration spectra of the 30 records in Table4.1, normalized bySa(3.98s,5%), i.e.,

87



88 CHAPTER 6. ELASTIC SPECTRAL SHAPE FOR CAPACITIES

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

−1

0

1

2

3

4

period, T (s)

lo
g 

S
a(T

,5
%

)

Figure 6.1: The 5%-damped elastic acceleration spectra for thirty records, normalized to the first-mode
period of the 20-story building.

the value ofSa(T1,5%) at the first period of the 20-story building used in Chapter5. There is
obviously much variability in the individual spectra that cannot be captured by justSa(T1,5%). A
structure is not always dominated by a single frequency, and even then, when the structure sus-
tains damage its properties change. Thus, spectral regions away from the elastic first-mode period,
T1, may become more influential. By taking the differences in the individual spectral shapes into
account, we may be able to reduce the variability in the IDA curves and come up with an overall
betterIM .

Such information may be incorporated into theIM by using appropriate inelastic spectral
values (Luco and Cornell, 2004). This seems to be a promising method, as it directly incorporates
the influence of the record on an oscillator that can yield and experience damage in a way similar
to the structure. Still, in the context of PBEE, the use of inelastic spectral values requires new,
custom-made attenuation relationships. On the other hand, using the elastic spectral values allows
the use of the attenuation laws available in the literature. Therefore, there is still much to be gained
from the use ofIM s based on elastic spectra.

Actually, studies byShome and Cornell(1999), Carballo and Cornell(2000), Mehanny and
Deierlein (2000) andCordova et al.(2000) have shown that the elastic spectral shape can be a
useful tool in determining an improvedIM . Shome and Cornell(1999) found that the inclusion
of spectral values at the second-mode period (T2) and at the third-mode (T3), namelySa(T2,5%)
andSa(T3,5%), significantly improved the efficiency ofSa(T1,5%) for tall buildings. Carballo
and Cornell(2000) observed greatly reduced variability in theDM demands when spectral shape
information was included by compatibilizing a suite of records to their median elastic spectrum.
In addition,Mehanny and Deierlein(2000) andCordova et al.(2000) observed an improvement
in the efficiency ofSa(T1,5%) when an extra period, longer than the first-mode was included by
employing anIM of the formSa(T1,5%)1−β Sa(c·T1,5%)β (with suggested valuesβ = 0.5, c= 2).
Additionally, they presented some evidence suggesting that sufficiency may be improved as well,
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since the newIM made the IDA curves of several near-fault records practically indistinguishable,
regardless of the directivity-pulse period. Motivated by such encouraging results, we are going to
use the methodology and tools developed in Chapters2 and3 to better investigate the potential of
incorporating elastic spectral shape information toIM s to reduce the dispersion in IDA results.

6.2 Methodology

We will employ three different structures for our investigation into the potential use of the elastic
acceleration spectrum. These will be theT1 = 1.8s 5-story steel braced-frame, theT1 = 2.4s 9-story
steel moment-resisting frame and theT1 = 4s 20-story steel moment-resisting frame, all introduced
in Chapter5. For each one we will use the suite of 30 records introduced in Chapter4, Table4.1
to perform IDA and we will proceed to define numerous limit-states, each at a givenθmax value,
to represent the capacity of the structure at successive damaged states. Finally, the appropriate
Sc

a(T1,5%)-values will be calculated, i.e., the values ofSa(T1,5%)-capacity for each record and
each limit-state. The ultimate goal is to minimize the dispersion in theIM -capacities for each
limit-state individually by selecting appropriate spectral values or functions of spectral values to
be theIM . As a measure of the dispersion we will use the standard deviation of the logarithm of the
IM -capacities, which is a natural choice for values that are approximately lognormally distributed
(e.g.,Shome and Cornell, 1999).

Fortunately, no further dynamic analyses are needed to perform this dispersion-minimization;
all we need to do is to transform each limit-state’sSc

a(T1,5%)-values in the coordinates of the trial
IM s and calculate their new dispersion. For example, if we want the dispersion of the capacities
in PGA terms, then for each unscaled record (or at a scale factor of one) we know both the PGA
andSa(T1,5%)-values and the former can be appropriately scaled by the same factor that the value
of Sc

a(T1,5%) implies; e.g., for the 20-story building, the unscaled record #1 of Table4.1 has
Sa(T1,5%) = 0.044g and PGA= 0.159g, while global instability occurs atSc

a(T1,5%) = 0.40g,
representing a scale factor of0.40/0.044≈ 9.1. Hence, theIM -capacity at the global instability
limit-state in PGA terms is PGAc = 9.1 ·0.159= 1.45g. Similarly we can accomplish such trans-
formations for anyIM based on elastic spectral values. Thus, we are taking full advantage of the
observations in Chapter3, by appropriately postprocessing the existing dynamic runs instead of
performing new ones.

The adopted approach in evaluating the candidateIM s is very different from the one used
by Shome and Cornell(1999), Mehanny and Deierlein(2000), Cordova et al.(2000) andLuco
and Cornell(2004). There, the focus is on demands, i.e.,DM -values, all four studies looking for a
single “broad-range”IM that will improve efficiency for all damage levels of a given structure. On
the other hand, our search will be more focused, zeroing on each limit-state separately to develop
a “narrow-range”IM that will better explain the given limit-state rather than all of them. Thus,
we are able to follow the evolution of suchIM s as damage increases in the structure, hopefully
gaining valuable intuition in the process. Still, since we use onlyθmax to define the structural
limit-states, our observations may or may not be applicable when limit-states are defined on other
structural response measures (e.g., peak floor accelerations).

Regarding the choice ofIM s to use, we will start by investigating single spectral coordinates.
This does not constitute an investigation of spectralshapeper se as it focuses on the use of just one
value at one period. Still, it will provide a useful basis as we expand our trialIM s to include vectors
and scalar combinations of several spectral values. In all cases the focus will be on the efficiency
gained by incorporating elastic spectrum information in each of the above ways. Another issue of
interest is the robustness offered by eachIM , i.e., how much efficiency it retains when the user
selects spectral values other than those chosen by the dispersion-minimization process. This is an
important question when trying to identifya priori an appropriateIM in order to take advantage of
its efficiency and use fewer records in the analysis. We are not aiming to provide the final answer
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(d) Global Instability

Figure 6.2: Dispersion of theSc
a(τ,5%)-values versus periodτ for four different limit-states for the 5-story

building.
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Figure 6.3: The fractile IDA curves and capacities for four limit-states (Figure6.2) of the 5-story building.
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for the besta priori IM , but rather to investigate the efficiency and the potential for practical
implementation offered by several promising candidates.

6.3 Using a single spectral value

The use of a single spectral value, usually at the first-mode of the structure, i.e.,Sa(T1,5%), has
seen widespread use for IDAs, having being incorporated into theFEMA (2000a,b) guidelines and
used throughout most of our research. Obviously, it is an accurate measure for SDOF systems or
first-mode-dominated structures in the elastic range. But when higher modes are important or the
structure deforms into the nonlinear range, it may not be optimal. There seems to be a consensus
that when structures are damaged and move into the nonlinear region, period lengthening will
occur (e.g.,Cordova et al., 2000). In that sense, there may be some merit in looking for elastic
spectral values at longer, or in general different, periods than the first-mode. Therefore we will
conduct a search, across all periods in the spectrum, to determine the one that most reduces the
variability in theIM -values of limit-state capacities.

Some representative results are shown in Figure6.2for the 5-story building, for limit-states at
four levels ofθmax (Figure6.3), namely 0.01% (elastic), 0.7% (early inelastic), 1% (highly non-
linear) and+∞ (global instability). The structure has obviously insignificant higher modes, since
Sa(T1,5%) produces practically zero dispersion for the capacities in the elastic region. As the
structure becomes progressively more damaged, the optimal period moves away fromT1, length-
ening to higher values as expected. Initially, only a narrow band of periods around the optimal
τ display low dispersions. When close to global collapse, this band around the optimal period
increases so that any period from 2s to 4s will achieve low dispersion, at most 30% compared to
about 40% when usingSa(T1,5%). A summary of the results is shown in Figure6.4, where the
optimal period is shown versus theθmax-value of all the limit-states considered, while the best
achieved dispersion is presented in Figure6.5, compared against the dispersion when using PGA
andSa(T1,5%). As observed before, the optimal period increases after yielding, fromτ = T1 to
τ = 2.4s. Similarly, the dispersion increases for all threeIM s in Figure6.5, but with the use of the
optimal period, the efficiency is improved, at least by 40% compared toSa(T1,5%).

Similar results for the 9-story building are presented in Figure6.6, for the limit-states appear-
ing in Figure6.7atθmax equal to 0.5% (elastic), 5% (inelastic), 10% (close to global collapse) and
+∞ (global instability). The building has significant higher modes, as evident in Figure6.6(a),
since the first mode is not optimal even in the elastic region. While all three modes,T1, T2 andT3,
seem to locally produce some dispersion reduction, the overall best single period is somewhere
between theT1 andT2, at τ ≈ 1.2s. As damage increases, the optimal period lengthens to higher
values, to finally settle close toT1 when global instability occurs. In Figure6.8, the results are
summarized for all limit-states, showing the gradual lengthening of the optimal period. Similarly,
in Figure6.9the optimal dispersion thus achieved is compared versus the results when using PGA
andSa(T1,5%). Remarkably, only in the elastic and near-elastic region does this single optimal
spectral value provide some improvement, in the order of 10%. Close to global collapse, no gains
are realized overSa(T1,5%).

For the 20-story structure, the results for four limit-states are shown in Figure6.10, for θmax

equal to 0.5% (elastic), 2% (near-elastic), 10% (close to global collapse) and+∞ (global instabil-
ity); each limit-state is shown versus the fractile IDAs in Figure6.11. This is a building where
higher modes are even more important, and by looking at Figure6.10(a), it seems that, at least
initially, the second-mode period,T2, manages to explain more thanT1 in the dispersion of theIM
capacity values. The limit-states are defined onθmax, the maximum of the story drifts, which often
appears in the upper stories at low ductilities and is thus quite sensitive to the higher frequencies.
As damage increases, the optimal period moves away fromT2 and at global collapse reaches a
value somewhere in the middle ofT1 andT2, at aboutτ ≈ 2.5s. In Figure6.12the summarized
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Figure 6.4: The optimal periodτ as it evolves withθmax for the 5-story building.
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Figure 6.6: Dispersion of theSc
a(τ,5%) values versus periodτ for four different limit-states for the 9-story

building.
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Figure 6.7: The fractile IDA curves and capacities for four limit-states (Figure6.6) of the 9-story building.
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Figure 6.8: The optimal periodτ as it evolves withθmax for the 9-story building.
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results confirm the above observations for the limit-states defined on all values ofθmax and, sim-
ilarly to the 9-story, only small reductions in dispersion are realized with the use of one spectral
coordinate, as seen in Figure6.13. At least, in this case, using a single optimal period seems to
achieve somewhat better performance thanSa(T1,5%) close to global collapse.

Summarizing our observations, the use of a single spectral value seems to offer some benefits,
but mostly to structures with insignificant higher modes. For such structures, it seems relatively
easy to identify the optimal period, as it is invariably an appropriately lengthened value of the
first-mode periodT1. One could almost say that practically any (reasonably) lengthened first-mode
period will work well. On the other hand, when higher modes are present, one spectral value is
probably not enough. There do exist specific periods that one can use to reduce the variability, but
they appear in a very narrow range and are difficult to pinpoint as damage increases. It would be
difficult to pick a priori a single period for such structures as a slight miss will probably penalize
the dispersion considerably.

Most probably, the reason behind this apparent difficulty is that even into the nonlinear range
the structure is sensitive to more than one frequency. Thus, our attempt to capture this effect
with just one period results in the selection of some arbitrary spectral coordinate that happens
to provide the right “mix” of spectral values at the significant frequencies. Looking at all the
previous figures, it becomes obvious that missing by a little bit will again, in most cases, pump
up the dispersion significantly. Obviously, this one period is not a viable solution for any but the
structures dominated by the first-mode. On the other hand, the introduction of another spectral
value, to form a vector or an appropriate scalar combination of two periods, might prove better.

6.4 Using a vector of two spectral values

The use of more than one discrete spectral value necessitates the development of a framework
for the use of vectorIM s. While the definitions set forth inVamvatsikos and Cornell(2002a)
(Chapter2) do provide for a vectorIM , up to now, there has been no formal framework developed
on how to postprocess and summarize such IDAs. So, before we proceed with our spectral shape
investigation, we will propose a methodology to deal with vectorIM s.

6.4.1 Postprocessing IDAs with vectorIM s

The most important thing that we must keep in mind is that the IDA per se remains unchanged,
and no need exists to rerun the results that we have acquired; this is all about postprocessing,
as explained in Chapter3. On the other hand, there are some conceptual differences between a
scalar and a vector ofIM s. Since theIM must in both cases represent the scaling of the ground
motion record, the scalarIM had to be scalable, i.e., be a function of the scale factor of the record
(Vamvatsikos and Cornell, 2002a, Chapter2). However, for a vector ofIM s it would be redundant
and often confusing if more than one of the elements were scalable. Hence, we will focus on
vectors where only one of the elements can be scaled, while the others are scaling-independent.
That is not to say, for example, that when we haveSa(T1,5%) in a vector, other spectral values are
not acceptable. Rather, we will replace such extra spectral values by their ratio overSa(T1,5%)
(and similarly normalize any other scalableIM ); thus, we convey only the additional information
that the new elements in the vector bring in with respect to our primary scalable (scalar)IM . In
this case it is quite precise to speak of this additional information (one or more additional spectral
ratios) as reflecting the influence of spectral shape (rather than the amplitude of the record).

Following a similar procedure as for a single scalableIM , we will use splines to interpolate
the discrete IDA runs for each record versus the scalableIM from the vector (Vamvatsikos and
Cornell, 2002a, Chapter2). Then, we can plot the IDA curves for all records versus the elements of
the vector, as in Figure6.14for the 5-story braced frame and a vector ofSa(T1,5%) (scalable) and
the spectral ratioRsa(1.5,T1) = Sa(1.5T1,5%)/Sa(T1,5%) (non-scalable). Contrary to the usual



96 CHAPTER 6. ELASTIC SPECTRAL SHAPE FOR CAPACITIES

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 T1 T2 T3

 θ
max

 = 0.005

period, τ (s)

di
sp

er
si

on
 o

f I
M

 c
ap

ac
iti

es

(a) Elastic region

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 T1 T2 T3

 θ
max

 = 0.02

period, τ (s)

di
sp

er
si

on
 o

f I
M

 c
ap

ac
iti

es
(b) θmax = 0.02

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 T1 T2 T3

 θ
max

 = 0.1

period, τ (s)

di
sp

er
si

on
 o

f I
M

 c
ap

ac
iti

es

(c) θmax = 0.1

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 T1 T2 T3

 θ
max

 = 1.427

period, τ (s)

di
sp

er
si

on
 o

f I
M

 c
ap

ac
iti

es

(d) Global Instability

Figure 6.10: Dispersion of theSc
a(τ,5%)-values versus periodτ for four limit-states of the 20-story build-

ing.
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building.
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Figure 6.12: The optimal periodτ as it evolves withθmax for the 20-story building.
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Figure 6.14: The thirty IDA curves for the 5-story building inSa(T1,5%) andRsa(1.5,T1) coordinates.
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Figure 6.15: The median IDA surface for the 5-story building inSa(T1,5%) andRsa(1.5,T1) coordinates.
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practice of plotting theIM on the vertical axis, we will now plot bothIM s on the two horizontal
axes and put theDM on the vertical one, to visually separate the “input” from the “output”. As a
consequence, the flatlines are now vertical lines, rather than horizontal ones.

Still, we are able to interpolate for only the scalableIM , while for the non-scalable one we
are left with separate, discrete curves. We need to take an extra step here and make the results
continuous in the otherIM as well, which is why we will introduce summarization at this point.
However, we are not able to use cross-sectional fractiles, as we did for singleIM s in Chapter3.
That would require several values ofDM at each level of the non-scalableIM , practically impos-
sible with a limited number of records. However, we can use symmetric-neighborhood running
fractiles (Hastie and Tibshirani, 1990) with a given window length to achieve the same purpose.
The optimal window length can be chosen, e.g., through cross-validation (Efron and Tibshirani,
1993), or by adopting a reasonable fraction of the sample size. In our case, we selected 30%
of the sample size, i.e., used the0.3×30= 9 symmetrically closest records to approximate the
fractile value for each level of the non-scalableIM . The resulting median IDAsurfaceappears in
Figure6.15.

Now is the time to define limit-state capacities. It can be easily done usingDM -based rules for
all limit-states, withθmax = +∞ resulting in the flatlines for global instability. Imagine horizontal
planes, each for a givenDM -value, cutting the IDA surface. The results can be easily visualized
as contours of the fractile IDA surface, seen in Figure6.16for the median. Obviously, now the
median capacity for a given limit-state is not a single point, as for scalarIM s, rather a line, as
the ones appearing in Figure6.16. As an example, we are showing in Figure6.17the 16%, 50%
and 84% capacity lines for a limit-state atθmax = 1.6%, close to the onset of global instability.
These correspond to our best estimate of the 16%, 50% and 84% vectorIM -value of the limit-state
capacity. For example, if several records hadRsa(1.5,T1) = 1.2, then if scaled toSa(T1,5%)≈ 0.5g
(to reach the 16% capacity line) only 16% of them would cause the structure to violate the limit-
state, and they would have to be scaled to onlySa(T1,5%) ≈ 0.6g for 84% of them to cause
limit-state exceedance. On the other hand, if another set of records were comparatively less rich
in the longer periods, e.g., ifRsa(1.5,T1) = 0.5, they would have to be scaled toSa(T1,5%) ≈ 1g
to cause 50% of the records to violate this same limit-state.

In retrospect, notice that we have slightly altered the “standard” IDA post-processing, as de-
fined byVamvatsikos and Cornell(2002a, 2004a) (Chapters2 and3). For scalarIM s, we would
first define limit-states points on each IDA, and then summarize, while for vectorIM s it is advan-
tageous to reverse these steps. Keep in mind though that if we are using onlyDM -based rules
for the definition of limit-states, as we do here, then we can similarly reverse these steps for the
scalarIM . The results will be exactly the same, as explained in Chapter3: the(100−x)%-fractile
IDA limit-state capacities for Immediate Occupancy and Global Instability (and all otherDM -
based limit-states) reside on thex%-fractile IDAs. On the other hand, this is not the case for the
FEMA-350 (FEMA, 2000a) definition of the Collapse Prevention limit-state. It is partially based
on the change of the slope of the IDA (Vamvatsikos and Cornell, 2002a) (Chapter2), therefore it
is clearly not a simpleDM -based limit-state.

As a final note, it is important to observe how we were forced to introduce summarization
over windows rather than stripes. By introducing an extraIM , we may have explained some of
the variability in the capacities but we have also increased the dimensionality of the sample space,
thus the data is more sparse. Where we used to have 30 points for each level (stripe) of the scalable
IM , we now have only a few points for whole regions of the unscalableIM . Obviously, we cannot
keep introducing extra dimensions, otherwise we will be facing extreme lack-of-data problems.
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Figure 6.16: Median contours for thirty IDA curves for the 5-story building inSa(T1,5%) andRsa(1.5,T1)
coordinates. Their color indicates the level ofθmax as shown in the color bar.
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6.4.2 Collapsing a vector to a scalar

By observing the contours in Figure6.16 it becomes obvious that a power law relation can be
employed to approximate each one:

Sc
a(T1,5%)≈ aRsa(1.5,T1)b (6.1)

wherea, b are the fitted coefficients.
Even though theb-value is not consistent for all limit-states, as the contours have higher cur-

vature for higherDM -values, we can still specify some reasonableb-value that will be adequate
for several of them. In that case, we can rewrite Equation (6.1) as

a≈ Sc
a(T1,5%) ·Rsa(1.5,T1)−b (6.2)

and interpret it as follows: by multiplyingSc
a(T1,5%) capacity values byRsa(1.5,T1)−b, we can

bring them closer, almost to an (arbitrary) constant. In other words,Sa(T1,5%)Rsa(1.5,T1)−b is
a scalarIM that will retain much of the vectorIM ’s ability to reduce dispersion in limit-state
capacities. How much reduction it will achieve will depend on our ability to select a properb-
value and the goodness-of-fit of Equation6.1to the contour.

Not surprisingly, it is such a form thatShome and Cornell(1999), Mehanny and Deierlein
(2000) andCordova et al.(2000) have used to create a new, more effective scalarIM . While the
idea there was mostly driven by the need to be able to use existing attenuation laws to create
hazard curves for the newIM (Cordova et al., 2000), they have come very close to an accurate
approximation to the contour shape, at least for this first-mode-dominated structure.

6.4.3 Investigating the vector of two spectral values

Clearly, for the 5-story building with negligible higher modes, using a vector instead of a scalar
IM produces very impressive results. The introduction ofRsa(1.5,T1) provides significant insight
to the seismic behavior of the 5-story, as seen in Figure6.16; whenRsa(1.5,T1) > 1, as its period
lengthens, the damaged structure falls in a more aggressive part of the spectrum and is forced
to fail at earlierSa(T1,5%) levels, exhibiting rapid softening. On the other hand, if the ratio is
less than one, the period lengthening helps to relieve the structure allowing the IDA to harden and
reach higher flatlines (in terms of theSa(T1,5%)). Actually, the less aggressive the record is (lower
Rsa(1.5,T1)) the more the IDA hardens. The introduction of the extraIM has helped explain some
of the record-to-record variability in theSa(T1,5%) capacities for almost any level ofDM , i.e., for
any limit-state.

Additional studies show that such results are not very sensitive to the spectral ratio that we
choose to use. At least for the 5-story building, almost any such lengthened period will provide
some explanation of the variability in capacity. On the other hand though, it may not be so for other
buildings. As shown in Figures6.18and6.19, whereRsa(1.5,T1) is also used, it yields little or no
additional information for the 9-story and 20-story building respectively. If on the other hand, we
use another spectral coordinate, at a period lower thanT1, some additional resolution is gained,
but the shape of the contours may no longer be a power-law, as seen in Figure6.20 for the 20-
story whenRsa(0.5,T1) is used in addition toSa(T1,5%) (where0.5T1 ≈ 1.5T2 for this building).
Still, even for these complex buildings, there exist periods that explain well the variability and
even show the familiar, power-law shape of the contours, as shown for the 9-story when we use
Rsa(0.7,T1) (where0.7T1 ≈ 2T2 for the 9-story), Figure6.21, and even the 20-story when we
introduceRsa(0.3,T1) in Figure6.22(where0.3T1 ≈ T2 for the 20-story). Clearly, there is great
potential in using the power-law form, but the question remains whether the appropriate periods
for its use are easy to determine, especiallya priori.
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Figure 6.18: Median contours for the 9-story building inSa(T1,5%) andRsa(1.5,T1) coordinates. Little
has been gained by using a vector.
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Figure 6.19: Median contours for the 20-story building inSa(T1,5%) andRsa(1.5,T1) coordinates. They
are colored by the value ofθmax. In this case, the use of a vector has only a small influence.
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Figure 6.20: Median contours for the 20-story building inSa(T1,5%) andRsa(0.5,T1) coordinates. They
are colored by the value ofθmax. Some variability is explained but the contours are not simple.

6.5 Using a power-law form with two or three spectral values

Motivated by the power-law form that the contours take on many occasions, we have decided to
directly investigate its application as an improvedIM . Formally, we intend to perform a search for
the optimally efficientIM of the form

IM ≡ Sa(τa,5%)1−β Sa(τb,5%)β

= Sa(τa,5%)
[

Sa(τb,5%)
Sa(τa,5%)

]β
(6.3)

whereτa andτb are arbitrary periods andβ ∈ [0,1]. Notice the difference withShome and Cornell
(1999) who constrain both periods to beT1 andT2 respectively, orMehanny and Deierlein(2000)
andCordova et al.(2000), who chose to constrain one of the periods to beT1. Instead, we intend
to let the optimization find the best values,τa, τb andβ .

Additionally, we will investigate a power-law form containing three spectral values or, equiv-
alently, a single spectral value and two spectral ratios:

IM ≡ Sa(τa,5%)1−β−γ Sa(τb,5%)β Sa(τc,5%)γ

= Sa(τa,5%)
[

Sa(τb,5%)
Sa(τa,5%)

]β [
Sa(τc,5%)
Sa(τa,5%)

]γ
(6.4)

whereτa, τb andτc are arbitrary periods,β ,γ ∈ [0,1] andβ + γ ≤ 1.
The optimal two periods for the 5-story building appear in Figure6.23over a range of limit-

states from elasticity to global collapse. At elasticity, the two periods converge to the first mode,
T1, since the structure has practically no higher mode effects. As damage increases, one of the
periods hovers close toT1, while the other is increasing and fluctuates about 50% higher. The
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Figure 6.21: Median contours for the 9-story building inSa(T1,5%) andRsa(0.7,T1) coordinates. They
are colored by the value ofθmax. The use of a vector is beneficial, and the contours have power-law shape.
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Figure 6.22: Median contours for the 20-story building inSa(T1,5%) andRsa(0.3,T1) coordinates. They
are colored by the value ofθmax. The use of a vector is beneficial, and the contours have power-law shape.
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Figure 6.23: The two optimal periodsτa, τb as they evolve withθmax for the 5-story building.
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Figure 6.24: The dispersions for optimalSa(τa,5%)1−β Sa(τb,5%)β versusSa(T1,5%) and PGA for the
5-story building.
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Figure 6.25: The three optimal periodsτa, τb, τc as they evolve withθmax for the 5-story building.
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Figure 6.26: The dispersions for optimalSa(τa,5%)1−β−γ Sa(τb,5%)β Sa(τc,5%)γ versus the dispersions
for PGA andSa(T1,5%) for the 5-story building.
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Figure 6.27: The 84% fractile of the suboptimal dispersion when using a single spectral value versus a
power-law combination of two or three periods for the 5-story building. For comparison, the dispersion
achieved bySa(T1,5%) and the optimal three-periods power-law is also shown.

optimal value ofβ is always about 0.5, favoring equal weighting of the two periods. Comparing
Figures6.5 and6.24it becomes obvious that the use of two spectral values reduces the capacity
dispersion by a small amount relative to the use of a single (optimal) value. WhileSa(T1,5%)
would achieve about 40% dispersion and a single optimal period would reduce this to 25%, the
use of two periods only brings it down to 20%.

If we introduce a third spectral value for the 5-story through Equation6.4, then we come
up with the three optimal periods shown in Figure6.25for a range of damage-states. Again, in
elasticity, the three periods converge atT1 and then they slowly separate. One period stays at about
T1 and the rest gradually increase. When close to global collapse the second one is 50% higher
and the third 100% higher thanT1. Again, equal weighting seems to be the rule for all limit-states
since the optimal values areβ ≈ γ ≈ 1/3. The dispersion reduction is even less spectacular than
before (Figure6.26), reaching a level of just 18% at global collapse compared to the 20% of the
two spectral values. Clearly, we have reached the limits of what the elastic spectral shape can do
for this building. As expected, when higher modes are insignificant, one, maybe two, periods will
be enough to determine an improved, near-optimalIM , cutting down dispersion by a factor of two
relative toSa(T1,5%). Adding more complexity to theIM does not seem to help efficiency, as the
system is not that complex itself.

When practically implementing suchIM s before the dynamic analyses are performed, it is
important that efficiency remains high even when not using the (unknowna priori) optimal pe-
riods. To investigate the sensitivity of the proposed scalarIM s we have simulated random user
choices for the period(s) used for the single spectral value or the power-law combinations of two
or three values. The user is supposed to have picked periods uniformly distributed within±20%
of the optimal values for eachIM and to have selected equal weighting of spectral values in the
power-law (i.e.,β = 1/2 or β = γ = 1/3). Such simulations are repeated numerous times for each
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limit-state (i.e., value ofθmax) and the achieved suboptimal dispersion is calculated for eachIM .
In Figure6.27we are plotting the 84%-fractile of the suboptimal dispersion for the single period
and the two power-law combinations versus theθmax definition of each limit-state; i.e., we are fo-
cusing on a worse-than-average scenario. For comparison, the dispersion when usingSa(T1,5%)
and when using the optimal three periods power-law is also shown. Obviously, the largest effect
for the 5-story is in the elastic region, where not usingT1 is a very bad choice in all cases. In the
nonlinear range, missing the optimal period seriously degrades the performance of a singleIM ,
bringing its dispersion to about 30%, a fact also observed in Figure6.2. On the other hand, the
two and three period combinations perform relatively well, managing to keep a dispersion of about
25% and 20%. Again, just as when using a vector of two spectral values, the power-law form is
quite stable, even more so than using a single spectral value, hence relatively large changes away
from the optimal periods do not significantly influence the dispersion reduction of the power-law
IM . Practically, in the post-yield region, using the first mode plus e.g., a 50% increased period,
with β = 0.5 (i.e., equal weight on both spectral values) will in general produce good results.
Actually these conclusions are quite in agreement withCordova et al.(2000).

In the case of the 9-story building, the two optimal periods appear in Figure6.28and the three
best in Figure6.30. In the first case, the smaller period seems to stay atT2 while the higher one
starts fromT1 and increases to some higher value, only to return back toT1 again. For the three
periods, the results seem to favor one period atT1, another atT2 and a third at about twiceT1.
Similarly to the 5-story, equal weighting is the optimal strategy for bothIM s and almost all limit-
states. With either two or three periods, as seen in Figures6.29and6.31, the dispersion reduction
is about the same. Actually, the dispersion drops from 40% for one optimal period (or even for
justSa(T1,5%)), to less than 25–30% when two or more periods are used. Again, it seems that two
spectral values are enough for this first-mode-dominated building and clearly better than just one.

What is of more value though is that the efficiency of the two or three-elementIM is very stable
relative to the choices of the periods and theβ , γ weights. In Figure6.32we plot the results of
the previously described sensitivity analysis for the 9-story. Clearly, using only one (suboptimal)
period is often worse or at most as good as when usingSa(T1,5%), as observed in Figure6.6 as
well. On the other hand, with two or three periods, equally weighted in a power-law form, theIM
is considerably more robust and relatively reasonable efficiency is maintained. If we follow our
observations and set one value aroundT1, another at aboutT2 and maybe a third 50% or 100%
higher thanT1, then weigh them equally (β = 1/2 or β = γ = 1/3), a dispersion of about 30% is
easily achieved in contrast to the elusive single optimal period.

Figure6.33shows the best two periods for the 20-story building. One seems to stay somewhere
in the middle ofT2 andT3 while the other is a lengthened version of the first mode, perhaps by
30–50%. The picture is clearer for the three best periods in Figure6.35, where each seems to be
a (roughly) 50% lengthened version of one of the three elastic modes,T1, T2 andT3. The optimal
weights are roughly equal for all two or three periods. The dispersion reduction is significant
in both cases, reaching down to 25% versus the 35% achieved by a single optimal period or the
40% of Sa(T1,5%) (Figure6.34, 6.36). While the use of three periods rather than two seems to
offer little benefit, actually it makes theIM quite easier to define. Additionally the results of
the sensitivity analysis in Figure6.37suggest that efficiency remains relatively high when three
suboptimal periods are employed, versus two or one. Simply by increasing all three elastic periods
by some reasonable percentage and employing equal weights (β = γ = 1/3) works fine for all
limit-states, achieving dispersions in the order of 30%.

In conclusion, it seems that the use of the power-law form with two or three spectral values
helps even when the higher modes are significant. Actually, the more significant they are, the more
periods we might want to include. The benefit is not so much in the reduction of dispersion, rather
in the robustness of theIM and the ability to identify ita priori. Further investigation of more
structures is needed before some concrete proposals are made, but the concept looks promising.
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Figure 6.28: The two optimal periodsτa, τb as they evolve withθmax for the 9-story building.
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Figure 6.29: The dispersions for optimalSa(τa,5%)1−β Sa(τb,5%)β versusSa(T1,5%) and PGA for the
9-story building.
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Figure 6.30: The three optimal periodsτa, τb, τc as they evolve withθmax for the 9-story building.
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Figure 6.31: The dispersions for optimalSa(τa,5%)1−β−γ Sa(τb,5%)β Sa(τc,5%)γ versus the dispersions
for PGA andSa(T1,5%) for the 9-story building.
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Figure 6.32: The 84% fractile of the suboptimal dispersion when using a single spectral value versus a
power-law combination of two or three periods for the 9-story building. For comparison, the dispersion
achieved bySa(T1,5%) and the optimal three-periods power-law is also shown.

6.6 Using all spectral values

The problems encountered with all previous attempts to use the spectral shape mainly stem from
the fact that we were looking for distinct “perfect” periods. This in part made the problem quite
more difficult, as we were trying to describe the full spectral shape with only one or two values.
We might want to use more information from the spectral shape than just two discrete values, and
this hopefully will open up some easier paths. Still, visualizing such a vector would be hard, and it
would be equally difficult to have enough data to fill the extra dimensions. On the other hand, the
collapsed form of the vector to a scalar suggests an easier way to approach this problem. Including
more spectral coordinates in Equation (6.1) is relatively straightforward, while finding the right
β , γ-coefficients may be handled by standard linear regression methods, penalized to reflect the
sample size limitations.

Taking one step further, there exist methods in statistics that can treat each record’s spectrum as
a single, functional predictor, thus taking into consideration the shape of the full spectrum and use
it as a predictor for limit-state capacity. In formal terms we are proposing the use of a functional
linear model (Ramsay and Silverman, 1996) that will use each record’s spectrum to predict a scalar
response, i.e., its limit-stateSc,i

a (T1,5%)-capacity derived from the IDA curve of thati-th record.
In essence, we are proposing the use of the linear functional model

lnSc,i
a (T1,5%) = α +

∫ te

ts
β (τ) ln

[
Sa(τ ,5%)
Sa(T1,5%)

]
dτ + εi (6.5)

whereα is the regression intercept,β (τ) is the regression coefficient function,ts andte are the
starting and ending periods that bound the spectral region of interest and, finally,εi are the inde-
pendent and normally distributed errors (with a mean of zero).
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Figure 6.33: The two optimal periodsτa, τb as they evolve withθmax for the 20-story building.
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Figure 6.34: The dispersions for optimalSa(τa,5%)1−β Sa(τb,5%)β versusSa(T1,5%) and PGA for the
20-story building.
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Figure 6.35: The three optimal periodsτa, τb, τc as they evolve withθmax for the 20-story building.
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Figure 6.36: The dispersions for optimalSa(τa,5%)1−β−γ Sa(τb,5%)β Sa(τc,5%)γ versus the dispersions
for PGA andSa(T1,5%) for the 20-story building.
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Figure 6.37: The 84% fractile of the suboptimal dispersion when using a single spectral value versus a
power-law combination of two or three periods for the 20-story building. For comparison, the dispersion
achieved bySa(T1,5%) and the optimal three-periods power-law is also shown.

This can be thought as a conventional multivariate linear regression model, only we can have
an infinite number of predictors, or degrees of freedom, in our fitting. Of course, having infinite
parameters and only a finite number of responses, allows such a model to actually interpolate the
responses, if we choose so. This would not provide a meaningful estimator, but can be reme-
died by sufficiently smoothing the coefficient functionβ (τ) at a level easily found through cross-
validation. We end up with a model to predict limit-state capacities, that can be easily imagined to
be of the same power-law form as the one we have introduced to collapse the vector of twoIM s
into a scalar in Equation (6.1). If we use a trapezoidal rule to perform the integration, then we can
write Equation (6.5) as:

lnSc,i
a (T1,5%)≈ α +

n

∑
j=1

β (τi) ln

[
Sa(τi ,5%)
Sa(T1,5%)

]
∆τ ⇔

Sc,i
a (T1,5%)≈ eα

n

∏
j=1

[
Sa(τi ,5%)
Sa(T1,5%)

]β (τi)∆τ
⇔

eα ≈ Sc,i
a (T1,5%)

n

∏
j=1

[
Sa(τi ,5%)
Sa(T1,5%)

]−β (τi)∆τ
(6.6)

Equation (6.6) allows us to define a newIM , of similar form to Equation (6.2), that now uses
practically the whole spectrum to explain (and reduce) the record-to-record variability. Similarly
to the collapsed vector form, as described inCordova et al.(2000), it is expected that hazard curves
can be easily determined for such anIM without the need of new attenuation relationships.

But why expand to such a complicatedIM ? We have performed such a functional linear fit for
the global instability capacities of the 20-story building, for the spectral coordinates withints =
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Figure 6.38: The regression coefficient functionβ (τ) at global dynamic instability for the 20-story build-
ing.

0.1s andte = 6s, and have plotted the coefficient functionβ (τ) in Figure6.38; it precisely explains
the influence of every spectral coordinate on the flatline capacity. We can think ofβ (τ) as a
weight function, where its absolute value at each period provides us with the degree of the period’s
significance to capacity. As it appears, the importance of spectral coordinates is highest for periods
longer than the first mode (high|β (τ)|-values), while it decreases rapidly for periods lower than
the second mode (low|β (τ)|-values). The simplicity of the shape suggests that we can probably
provide some generala priori suggestions for the coefficient function that will provide relatively
efficient IM s. Note, that we need not match the actual values of the coefficient function, only its
shape, as we are not interested in capacity-prediction, only in capacity dispersion reduction.

Again, the realized gains may not lie as much with dispersion reduction as with robustness.
TheIM suggested by the fit reduces all capacity dispersions for all limit-states by approximately
50% relative toSa(T1,5%), almost to similar amounts as the power-law form with three periods.
Only further investigations can prove whether this functional model will prove more useful or
robust than the simpler power-law form. Still, it may help us identify spectral regions of interest
and characterize structures in a very simple way.

6.7 Conclusions

Providing more efficient Intensity Measures (IM s) is a useful exercise, both in reducing the num-
ber of records needed for PBEE calculations but also in improving our understanding of the seismic
behavior of structures. The observed record-to-record dispersion in the limit-stateIM -capacities
can be practically halved by taking advantage of elastic spectrum information. Several methods ex-
ist to incorporate elastic spectral values inIM s. One could use a single optimally selected spectral
value, a vector of two or a power-law combination of several spectral values. While all candi-
dates seem to achieve similar degrees of efficiency, not all of them are suitable for usea priori;
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it may be quite difficult to select the appropriate periods (or spectral values) before we complete
our dynamic analyses. Using a single optimal spectral value is practical only for buildings with
insignificant higher modes. On the other hand, when the influence of higher modes is significant,
spectralshapebecomes important. Then, using two or even three spectral values seems to help
both the efficiency and the robustness of theIM to the suboptimal selection of periods. Still,
before suchIM s are adopted, significant work remains to be done; we need to investigate more
structures and more ground motion records, probably ones with important local spectral features,
e.g., soft soil or directivity influence. Thus we will be able to better select the appropriateIM that
will be both efficient and sufficient for a given structure and site.



Chapter 7
Conclusions

7.1 Summary

In the preceding chapters we have defined Incremental Dynamic Analysis (IDA) and used it to
investigate various aspects of the seismic performance of structures.

Chapter2 provides a concrete theoretical basis for IDA, fully describing the process of per-
forming multiple nonlinear dynamic analyses under a suite of multiply-scaled ground motion
records. The Intensity Measure (IM ) was introduced to quantify the scaling of a ground mo-
tion record and the Damage Measure (DM ) was used to record its response, generating an IDA
curve for each record in theIM , DM plane. Observing such curves revealed large record-to-record
variability but also several interesting aspects of structural behavior. The equal displacement rule
was found to be applicable for moderate and long period structures in the near elastic region.
Additionally the phenomena of non-monotonic behavior, discontinuities, hardening, softening,
flatlining and even resurrection behavior were observed in individual curves. On each IDA curve
limit-states were defined using a variety of methods or rules. Using cross-sectional fractiles the
IDA curves where summarized into the 16%, 50% and 84% IDA curves, and the capacities were
summarized into their 16%, 50% and 84%DM or IM values. Further we have addressed the
question of “legitimacy” of scaling records and the relationships between IDAs andR-factors as
well as between IDAs and the Static Pushover (SPO) Analysis. A significant connection appeared
between the IDA and the SPO; individual segments of the SPO (e.g., elastic, positive-stiffness,
negative-stiffness, residual plateau) correspond to unique segments of the IDA (e.g., elastic, equal
displacement, softening, secant at reduced stiffness). Finally, algorithms were presented that can
significantly reduce the number of nonlinear runs per record. All in all, IDA was shown to provide
useful intuition into the seismic behavior of structures.

In Chapter3we looked into the practical application of IDA to a 9-story steel moment-resisting
frame, using the methods presented in the previous chapter to produce a complete example and
commentary for applying IDA to PBEE. Publicly available software is used to perform the anal-
ysis, interpolate the IDA curves, estimate limit-state capacities and summarize the results into a
format that can be easily integrated with modern PBEE frameworks. The final goal is estimating
the mean annual frequency of exceeding certain limit-states. We pay special attention to the details
of the practical implementation: how many records, how many runs per record, how the curves
are interpolated, the use of approximations in the probabilistic calculations. These are just some
of the subjects that we investigate, and they are all found to influence the accuracy of the final
IDA results. The methods that have been presented are designed to strike a favorable compromise
between speed and accuracy and thus resolve such issues. Perhaps, the single most important thing
to remember is the wealth of information that can be found in IDA if only we take advantage of
ever-cheaper computing power and automated methods to investigate the structure’s behavior.

117
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In Chapter4 the SPO2IDA tool was developed to provide rapid estimation of the seismic
performance of oscillators with complex backbones and arbitrary periods. The investigated back-
bone shapes range from simple bilinear to complex quadrilinear with an elastic, a hardening and a
negative-stiffness segment plus a final residual plateau that terminates with a drop to zero strength.
Using a suite of thirty ground motion records, IDA was performed for numerous such backbone
shapes and the summarized IDA curves were extracted for each individual case, yielding inter-
esting observations. Long hardening segments are found to significantly improve performance,
while their slope has only a small effect. On the other hand, the steeper the slope of the negative-
stiffness segment, the higher the demands and the lower the capacities past the peak of the back-
bone. Residual plateaus that are higher in terms of strength or longer in terms of ductility, both
benefit the post-peak performance. Finally, the oscillator period significantly influences the effect
of all segments except the hardening one in the moderate or long period ranges. Several different
backbone shapes were found to produce similar dynamic behavior. Thus, the required number
of backbone shapes to be investigated is drastically reduced, allowing the effect of a complete
quadrilinear backbone to be captured with only a handful of regressions. In accordance, a number
of equations have been proposed, defining a flexible, publicly available, software tool (SPO2IDA)
for performing fast assessments of the (median and dispersion of) demand and capacity of virtu-
ally any oscillator. Using SPO2IDA we can effortlessly get accurate estimates of the performance
of the oscillator without having to perform the costly analyses, providing ready insights into the
relative advantages and disadvantages of possible design or retrofit alternatives.

In Chapter5 we employed SPO2IDA in conjunction with the SPO for direct approximation
of the MDOF seismic behavior. This method can estimate the seismic demands and capacities
of first-mode-dominated MDOF structures for their entire range of behavior, from elasticity to
global dynamic instability. Based on the SPO and building upon software able to accurately pre-
dict the Incremental Dynamic Analysis (IDA) curves for SDOF systems, it can estimate, with
reasonable accuracy, the fractile IDA curves of first-mode-dominated MDOF systems. Similar
existing methodologies usually employ bilinear oscillators. The use of SPO2IDA enables us to
extend them well beyond the peak of the SPO. Several novel concepts are derived in the process,
perhaps the most important being the worst-case, most-damaging SPO. Sometimes, carefully se-
lected load patterns are needed to estimate it, but the worst-case SPO best captures the path that
leads to global collapse. Thus it allows accurate prediction of the IDA results. Equally interesting
is the apparent “simplification” that occurs in MDOF systems near global collapse. This permits
SDOF systems with appropriate backbones to capture the onset of global dynamic instability even
for higher-mode-influenced structures. Combining all these observations, we can conclude that
simply by using the appropriate SPO curve plus, perhaps, a few elastic response spectrum analy-
ses, the engineer-user is able to generate accurate predictions of the seismic behavior of complex
MDOF structures within a fraction of the time needed for a full IDA.

Finally, in Chapter6, the limit-state capacities estimated by IDA were used as a tool to re-
search the effect of the elastic spectrum on structural performance and its ability to improveIM -
efficiency. Providing more efficient Intensity Measures (IM s) is a useful exercise, both in reducing
the number of records needed for PBEE calculations but also in improving our understanding of
the seismic behavior of structures. The observed record-to-record dispersion in the limit-stateIM -
capacities can be practically halved by taking advantage of elastic spectrum information. Several
methods exist to incorporate elastic spectral values inIM s. We chose to use a single optimally
selected spectral value, a vector of two or a power-law combination of several spectral values.
While all candidates seem to achieve similar degrees of efficiency, not all of them are suitable
for usea priori; it may be quite difficult to select the appropriate periods (or spectral values) be-
fore we complete our dynamic analyses. Using a single optimal spectral value is practical only
for buildings with insignificant higher modes. On the other hand, when the influence of higher
modes is significant, spectralshapebecomes important. Then, using two or even three spectral
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values seems to help both the efficiency and the robustness of theIM to the suboptimal selection
of periods. Still, before suchIM s are adopted, significant work remains to be done; we need to
investigate more structures and more ground motion records, probably ones with important local
spectral features, e.g., soft soil or directivity influence. Thus we will be able to better select the
appropriateIM that will be both efficient and sufficient for a given structure and site.

7.2 Limitations and Future Work

All the work presented revolves around IDA and is limited in all the ways that IDA is. Thus,
the single most important issue is the concept of ground motion record scaling. There certainly
exist structures for which scaling is “legitimate”, e.g., moderate period buildings in sites with
no directivity whenSa(T1,5%) is theIM (Shome and Cornell, 1999). Still the issue is far from
resolved. Structures that have short or long fundamental period, have significant higher modes
or exist in sites influenced by near-fault directivity, are candidates for causing problems. That is
not to say that in these case the results coming from IDA over a given suite of records will not
be legitimate, rather that care should be taken to remove the dependence on record characteristics
other than theIM used.

The obvious way to do so is to properly select the ground motion records a priori, before per-
forming IDA. Another, easier-to-implement method would be the introduction of a sufficientIM ,
as attempted byLuco and Cornell(2004) andCordova et al.(2000). A sufficient IM would be
able to remove the possible bias, bringing together the results from records with different charac-
teristics, like magnitude or forward-directivity. Or, one could try to properly weigh each record
according to its contribution to the total hazard, as found by disaggregation; thus, record-selection
can be exercised a posteriori. Obviously, there are several candidate methods and more work needs
to be directed to this area before the scaling issue is resolved.

IDA is also limited by the very structural model, analysis algorithms and element models
that it uses and all the assumptions incorporated therein. Therefore, it has the unique advantage
of growing as the power of our modeling and our computational abilities evolve, but it is also
hampered by their limits. For example, in many of the results shown herein, there exist damaged
but still stable structures at roof drifts in excess of 5%. This is a conclusion that many professionals
and researchers may seriously question. It is important to understand that this is exactly what
current models can predict. Only the comparison with better models, observations in the field
and lab experiments will prove or refute them. But the point is that we are focusing only on the
method, and we anticipate that it will remain unchanged as the models improve.

Thus, we await with great anticipation structural models that will include all the important
factors that we have left out: the introduction of soil-structure interaction, the expansion of models
to three-dimensional structures simultaneously subjected to more than one component of ground
motion and the inclusion of more structural elements (e.g., stairwell and partitions) or improved
element models that can show e.g., axial failure of columns and shear failure of beams. Until then,
IDA will be limited to what has been incorporated to structural models so far.

The approximation of IDA by SPO2IDA is hampered by several additional problems. At the
SDOF-level, it is the consideration of directivity, soft soil and the characteristics of the hysteretic
model that limit its application, as explained in detail in Chapter4. In the MDOF case, we have
also inherited the limitations of the SPO, especially its inability to capture the influence of higher
modes. These further constrain the accuracy we can achieve with SPO2IDA in the near elastic
and nonlinear region, although, remarkably, not in the global collapse domain. Also, further
work is needed to test and maybe modify the methodology for buildings with stiffness or strength
irregularities along their height or within a story. One could easily assume that it may become
quite challenging to find the worst-case SPO, or some equivalent SPO that would give the best
prediction.
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Finally, the use of the elastic spectral shape to reduce the dispersion of capacities in the non-
linear range carries all the problems of using elastic information to predict inelastic results. The
inelastic spectral shape will probably be a better bet in the long-term, but the cost comes in the
face of the building-specific attenuation laws needed.

7.3 Overall Conclusions

IDA has proved a useful tool, and can be part of both the short and long-term future of PBEE.
It helps quantify the seismic performance of structures, and in the form of the summarized IDA
curves and theIM -capacities it provides a remarkably useful foundation to develop important
intuition and create new approaches to PBEE. Built upon this very foundation, the SPO2IDA tool
has proven both accurate and useful for understanding how a structural design may help or hinder
the seismic performance both for SDOF but also for MDOF structures. In a similar way we have
developed the investigation of the elastic spectral shape. Its potential to explain the record-to-
record variability in capacity is promising and can help resolve many problems. Naturally, these
methods have limitations but they are not insurmountable and we anticipate that future research
will address them appropriately.
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