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Abstract

Incremental Dynamic Analysis (IDA) is an emerging structural analysis method that offers thor-
ough seismic demand and limit-state capacity prediction capability by using a series of nonlinear
dynamic analyses under a suite of multiply scaled ground motion records. Realization of its op-
portunities is enhanced by several innovations, such as choosing suitable ground motion intensity
measures and representative structural demand measures. In addition, proper interpolation and
summarization techniques for multiple records need to be employed, providing the means for
estimating the probability distribution of the structural demand given the seismic intensity. Limit-
states, such as the dynamic global system instability, can be naturally defined in the context of
IDA. The associated capacities are thus calculated such that, when properly combined with Prob-
abilistic Seismic Hazard Analysis, they allow the estimation of the mean annual frequencies of
limit-state exceedance.

IDA is resource-intensive. Thus the use of simpler approaches becomes attractive. The IDA
can be related to the computationally simpler Static Pushover (SPO), enabling a fast and accurate
approximation to be established for single-degree-of-freedom systems. By investigating oscilla-
tors with quadrilinear backbones and summarizing the results into a few empirical equations, a new
software tool, SPO2IDA, is produced here that allows direct estimation of the summarized IDA
results. Interesting observations are made regarding the influence of the period and the backbone
shape on the seismic performance of oscillators. Taking advantage of SPO2IDA, existing method-
ologies for predicting the seismic performance of first-mode-dominated, multi-degree-of-freedom
systems can be upgraded to provide accurate estimation well beyond the peak of the SPO.

The IDA results may display quite large record-to-record variability. By incorporating elastic
spectrum information, efficient intensity measures can be created that reduce such dispersions, re-
sulting in significant computational savings. By employing either a single optimal spectral value, a
vector of two or a scalar combination of several spectral values, significant efficiency is achieved.
As the structure becomes damaged, the evolution of such optimally selected spectral values is
observed, providing intuition about the role of spectral shape in the seismic performance of struc-
tures.
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Chapter

Introduction

1.1 Motivation

Earthquake engineering has come a long way since its birth, and it still seems to grow rapidly as we
gain experience. Each time an earthquake happens, we learn something new and the profession
grows to accommodate it. Such is the case in the aftermath of the 1989 Loma Prieta and 1994
Northridge earthquakes, where we learned that sometimes a life-safe building is just not enough.

Both research and practice used to be mostly concerned with the design of structures that
would be safe, in the sense of surviving a seismic event with a minimum number of casualties.
Still, many building owners have realized the staggering costs incurred by a life-safe yet heavily
damaged and non-operational building. Replacing or rehabilitating it, means stopping its oper-
ation, relocating the people and functions that it houses and finally dealing with an expensive
construction market overwhelmed with competing projects after a major earthquake. Compare
that to the slightly increased cost of having had a structure designed to higher standards, chosen to
meet the specific needs of the (demanding) owner, and thus able to remain functional after a small
but relatively frequent event, while still being safe if a rare destructive earthquake hits.

Thus was Performance-Based Earthquake Engineering (PBEE) born, a relatively new but rap-
idly growing idea that seems to be present in all guidelines that were recently published: Vision
2000 SEAOC 1995, ATC-40 (ATC, 1996, FEMA-273 FEMA, 1997, and SAC/FEMA-350
(FEMA, 20003. In loose terms, it requires that a building be designed to meet specific perfor-
mance objectives under the action of the frequent or the rarer seismic events that it may experience
in its lifetime. So, a building with a lifetime of 50 years may be required to sustain no damages un-
der a frequent, “50% in 50 years” event, e.g., one that has a probability of 50% of being exceeded
in the next 50 years. At the same time it should be able to remain repairable, despite sustaining
some damage, during a “10% in 50 years” event and remain stable and life-safe for rare events of
“2% in 50 years”, although, subsequently, it may have to be demolished. Obviously such perfor-
mance objectives can be better tailored to a building’s function, e.g., being stricter for a hospital
that needs to remain operational even after severe events, while being more relaxed for less critical
facilities, flexible and able to suit each building owner’s needs (respecting a minimum of safety of
course).

PBEE is quite a complicated subject and has created many new challenges that need to be
overcome. We need methods to quantify structural damage (e.g., beams, columns, foundations)
and non-structural damage (e.g., partitions, glass panels), ways to estimate the number of casu-
alties, the loss of building contents, the building downtime, rehabilitation costs, even estimates
of the price inflation after a major earthquake. But before we even get there, we have to start
at the basis; we need a powerful analysis method that will accurately analyze structural models
and estimate the (distribution of) demands that any level of shaking (frequent of not) may impose

1



2 CHAPTER 1. INTRODUCTION

and, specifically, determine the level of shaking that will cause a structure to exceed a specified
limit-state, thus failing a given performance objective. In more accurate terms, we need a method
that will allow us to predict the mean annual frequency of violating the prescribed limit-states.

Several methodologies have been proposed to fulfill this role, but arguably the most promising
one is Incremental Dynamic Analysis (IDA). It takes the old concept of scaling ground motion
records and develops it into a way to accurately describe the full range of structural behavior, from
elasticity to collapse. Specifically, IDA involves subjecting a structural model to one (or more)
ground motion record(s), each scaled to multiple levels of intensity, thus producing one (or more)
curve(s) of response parameterized versus intensity level. By suitably summarizing such IDA
curves, defining limit-states and combining the results with standard Probabilistic Seismic Hazard
Analysis (PSHA), we can easily reach the goals we have set. But why stop there? IDA has great
potential and can extend far beyond being just a solution for PBEE, to provide valuable intuition
and help both researchers and professional engineers better understand the seismic behavior of
structures.

1.2 Objectives and scope

The goal of this study is to unify the concept of Incremental Dynamic Analysis and place it in a
concrete context of unambiguous definitions. Given that, this work aims to uncover the strengths
of the methodology and show how it can be applied in a practical way to deal with the issues
of PBEE. Furthermore, IDA is expanded and extended to cover larger ground. We will show its
connection with old and established seismic analysis methods, like the response modiReation
factor, or the Static Pushover Analysis (also known as the Nonlinear Static Procdeiiks,

1997. Additionally, we will use it as a tool to investigate the influence of elastic spectral shape in
the seismic behavior of structures. The ultimate goal is to establish the use of nonlinear dynamic
analyses under multiple ground motion records as the state of the art and try to encourage practice
towards that direction, away from the current use of one to three accelerograms or just the Static
Pushover.

1.3 Organization and outline

All chapters are designed to be autonomous, each being a self-contained, single paper that has
either appeared in a professional journal or is being planned as a future publication. Still, it is
suggested that one becomes acquainted with the concepts introduced by the next chapter before
skipping ahead to other material that may be of interest:

Chapter 2 establishes and defines the basic principles of Incremental Dynamic Analysis (IDA).
Despite being an altogether novel method, bits and pieces of it have appeared in the literature
in several different forms. The goal is to establish a common frame of reference and unified
terminology. First, the concept of the Intensity Measuh¢)is introduced to better describe
the scaling of a ground motion record, while the Damage Mea&ivf) (s used to measure
the structural response. Combined together they define the IDA curve that describes the
response of a structure at several levels of intensity for a given ground motion record: from
elasticity to nonlinearity and ultimately global dynamic instability. Suitable algorithms are
presented to select the dynamic analyses and form the IDA curves, while properties of the
IDA curve are looked into for both single-degree-of-freedom (SDOF) and multi-degree-of-
freedom (MDOF) structures. In addition, we discuss methods for defining limit-states on
the IDA curves and estimating their capacities. Appropriate summarization techniques for
multi-record IDA studies and the association of the IDA study with the conventional Static
Pushover (SPO) Analysis and the yield reducti®factor are also discussed. Finally in
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the framework of Performance-Based Earthquake Engineering (PBEE), the assessment of
demand and capacity is viewed through the lens of an IDA study.

Were this a car-dealership brochure, you would be looking at the shiny new Ferrari. This
mythical beast has been around for a while, you may have heard about it or seen it in
pictures, but may have felt intimidated. Now we are doing everything we can to describe it
at length, give you complete understanding of the inner workings and offer it at a greatly
reduced cost (of analysis).

Chapter 3 describes the practical use of IDA. Taking a realistic 9-story building as an example
and using the theory and observations of the previous chapter, we will generate a complete
application for PBEE assessment. We are going to take you through a step-by-step tuto-
rial of performing IDA in this representative case-study: choosing suitable ground motion
Intensity Measuresi}/ s) and representative Damage Measui2kl§), employing inter-
polation to generate continuous IDA curves, defining appropriate limit-states, estimating
the corresponding capacities and summarizing the IDA demands and capacities. Finally,
by combining such summarized results with PSHA in an appropriate probabilistic frame-
work, the mean annual frequencies of exceeding each limit-state are calculated. At first, the
reader is walked through the direct and efficient route to the final product. Then the acquired
knowledge of the process is used to contemplate the choices that we have made along the
way, highlighting the shortcuts we took and the pitfalls we have skillfully avoided.

This is practically where we take you out, sitting at the wheel of the Ferrari, for a test-drive.
See the beast, play with it and experience the thrill it delivers. Is there anything it cannot
do?

Chapter 4 investigates the connection of the IDA with the Static Pushover (SPO) for SDOF sys-
tems. An established method for analyzing structures, the SPO is clearly superseded by the
IDA, but still has a lot to offer in understanding the more complex analysis. Starting with
the simplest of all systems, the SDOF, but allowing it to have a complex force-deformation
backbone, we map the influence of the SPO, or the backbone, to the IDA. There is large
tradition in the profession to provide equations for the mean peak displacement response of
simple nonlinear oscillators, usually sporting the simplest (elastic-perfectly-plastic) back-
bones (SPOs). Here we tap into the power of IDA to take this concept one step further,
in the hope of upgrading the SPO to become a light, inexpensive alternative to the IDA.
The final product is SPO2IDA, an accurate, spreadsheet-level tool for Performance-Based
Earthquake Engineering that is available on the internet. It offers effectively instantaneous
estimation of nonlinear dynamic displacement demands and limit-state capacities, in addi-
tion to conventional strength reductiéafactors and inelastic displacement ratios, for any
SDOF system whose Static Pushover curve can be approximated by a quadrilinear back-
bone.

Even at a discount, not everybody can afford a Ferrari. So, how about using a good old
reliable Toyota, but with a brand new Ferrari-like engine? We are only going to develop the

engine now, creating a free, efficient and mass-producible replica called SPO2IDA, then let
you see how it compares with the real thing.

Chapter 5 extends the connection between SPO and IDA to MDOF structures. Taking advan-
tage of the tools generated in the previous chapter, we venture forth to apply them suit-
ably to MDOF systems, in a manner similar to existing methodologies A, 1997).
SPO2IDA allows the use of an SDOF system whose backbone closely matches the SPO of
the MDOF structure even beyond its peak. The result is a fast and accurate method to esti-
mate the seismic demand and capacity of first-mode-dominated MDOF systems. The sum-
marized IDA curves of complex structures are effortlessly generated, enabling an engineer-
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user to obtain accurate estimates of seismic demands and capacities for structural limit-states
such as immediate occupancy or global dynamic instability. Testing the method against the
full IDA for three MDOF systems shows the accuracy it can achieve, but also highlights its
limitations.

That is where we take our rejuvenated Toyota (SPO2IDA for MDOF systems) out to three
different race tracks (buildings) and have a try-out versus the Ferrari (IDA). Conclusion:
The Toyota cannot really win, but can hold its own, and performs much better that the orig-
inal car we started with. We even come up with suggestions to the “Toyota manufacturers”
(engineers who perform SPOs) on how to build their cars to better take advantage of our
new engine.

Chapter 6 discusses the influence of the elastic spectral shape to the observed dispersion in the
limit-state capacities extracted from IDA. Their record-to-record variability can be signif-
icant, but can be reduced with the introduction of efficigvits that incorporate spectral
information. While the use of inelastic spectral values can be advantageous, they need
custom-made attenuation laws to be used in a PBEE framework. Thus we focus on elastic
spectra, choosing to investigate an optimal single elastic spectral value, a vector of two, or
a scalar combination of several optimal values. The resulting dispersions are calculated for
each limit-state individually thus allowing us to observe the evolution of such optimal spec-
tral values as the structural damage increases. Most importantly, we measure the sensitivity
of suchIM s to the suboptimal selection of the spectral values, shedding some light into the
possibility ofa priori selection of an efficientV .

That's where we make some additions to our Ferrari only to realize we can make it more
efficient (almost twice the miles per gallon) and turn it into a Batmobil. Still experimental,
fresh off the works, but when we open up the throttle and unleash its power, it can take us to
seismic outer-space!

Chapter 7 summarizes the virtues but also the limitations of our methods, describing directions
for future work and improvements needed. Finally, it provides the overall conclusions and
the summary of the thesis.

Here, we praise the abilities and also put some dents to our Ferrari, Toyota and Batmobil.
We acknowledge their weaknesses and suggest how to resolve them in the future.



Chapter

Incremental Dynamic Analysis

Vamvatsikos, D. and Cornell, C. A. (2002&arthquake Engineering and Structural Dynam-
ics, 31(3): 491-514© John Wiley & Sons Limited. Reproduced with permission.

2.1 Abstract

Incremental Dynamic Analysis (IDA) is a parametric analysis method that has recently emerged in
several different forms to estimate more thoroughly structural performance under seismic loads.
It involves subjecting a structural model to one (or more) ground motion record(s), each scaled
to multiple levels of intensity, thus producing one (or more) curve(s) of response parameterized
versus intensity level. To establish a common frame of reference, the fundamental concepts are
analyzed, a unified terminology is proposed, suitable algorithms are presented, and properties of
the IDA curve are looked into for both single-degree-of-freedom (SDOF) and multi-degree-of-
freedom (MDOF) structures. In addition, summarization techniques for multi-record IDA studies
and the association of the IDA study with the conventional Static Pushover Analysis and the yield
reductionR-factor are discussed. Finally in the framework of Performance-Based Earthquake
Engineering (PBEE), the assessment of demand and capacity is viewed through the lens of an IDA
study.

2.2 Introduction

The growth in computer processing power has made possible a continuous drive towards increas-
ingly accurate but at the same time more complex analysis methods. Thus the state of the art has
progressively moved from elastic static analysis to dynamic elastic, nonlinear static and finally
nonlinear dynamic analysis. In the last case the convention has been to run one to several different
records, each once, producing one to several “single-point” analyses, mostly used for checking
the designed structure. On the other hand methods like the nonlinear static pushove {BP,O) (
1996 or the capacity spectrum methodT(C, 1996 offer, by suitable scaling of the static force
pattern, a “continuous” picture as the complete range of structural behavior is investigated, from
elasticity to yielding and finally collapse, thus greatly facilitating our understanding.

By analogy with passing from a single static analysis to the incremental static pushover, one
arrives at the extension of a single time-history analysis into an incremental one, where the seismic
“loading” is scaled. The concept has been mentioned as early as 1®atteyo(1977), and has
been cast in several forms in the work of many researchers, inclldiog and Cornel(1998
2000, Bazzurro and Corne([19944ab), Yun et al.(2002, Mehanny and Deierlei(2000, Dubina
et al. (2000, De Matteis et al(2000, Nassar and Krawinklef1991, pg.62—-155) andPsycharis
et al. (2000. Recently, it has also been adopted by the U.S. Federal Emergency Management

5
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(a) Single IDA curve versus Static Pushover

0.25 T T

G
;\3 IDA curve
n 02 i

o
)

[
n

c
o

S 015 .
Q

(O]

Q

Q

IS
[
g

2 o01f .
%]
»
e]

o

£
£ 005F .

~ .
~ ~ _ Static Pushover Curve
_ S s
S, =0.01g S~
-~
o ! | I~ |
0 0.05 0.1 0.15 0.2 0.25
maximum interstory drift ratio, 6,,,,
(b) Peak interstorey drift ratio versus storey level
20

18

16

14

12

10

storey level

0 0.01 0.02 0.03 0.04 0.05 0.06
peak interstorey drift ratio Gi

Figure 2.1: An example of information extracted from a single-record IDA study ®f & 4 sec, 20-story
steel moment-resisting frame with ductile members and connections, including global geometric nonlinear-
ities (PA) subjected to the El Centro, 1940 record (fault parallel component).
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Agency (FEMA) guidelinesREMA, 2000ab) as the Incremental Dynamic Analysis (IDA) and
established as the state-of-the-art method to determine global collapse capacity. The IDA study
is now a multi-purpose and widely applicable method and its objectives, only some of which are
evident in Figure2.1(a,b), include

1. thorough understanding of the range of response or “demands” versus the range of potential
levels of a ground motion record,

2. better understanding of the structural implications of rarer / more severe ground motion
levels,

3. better understanding of the changes in the nature of the structural response as the intensity
of ground motion increases (e.g., changes in peak deformation patterns with height, onset
of stiffness and strength degradation and their patterns and magnitudes),

4. producing estimates of the dynamic capacity of the global structural system and

5. finally, given a multi-record IDA study, how stable (or variable) all these items are from one
ground motion record to another.

Our goal is to provide a basis and terminology to unify the existing formats of the IDA study
and set up the essential background to achieve the above-mentioned objectives.

2.3 Fundamentals of single-record IDAs

As afirst step, let us clearly define all the terms that we need, and start building our methodology
using as a fundamental block the concept of scaling an acceleration time history.

Assume we are given a single acceleration time-history, selected from a ground motion data-
base, which will be referred to as the base, “as-recorded” (although it may have been pre-processed
by seismologists, e.g., baseline corrected, filtered and rotated), unscaled accelexg@raettor
with elements (1), tj = O,t1,...,th_1. To account for more severe or milder ground motions, a
simple transformation is introduced by uniformly scaling up or down the amplitudes by a scalar
A €[0,4+): ay, = A -a;. Such an operation can also be conveniently thought of as scaling the
elastic acceleration spectrum Ryor equivalently, in the Fourier domain, as scaling byhe
amplitudes across all frequencies while keeping phase information intact.

Definition 1. TheScaALE FACTOR (SH of a scaled accelerogranay,, is the non-negative scalar
A € [0,+) that producesy, when multiplicatively applied to the unscaled (natural) acceleration
time-historya; .

Note how theSF constitutes a one-to-one mapping from the original accelerogram to all its
scaled images. A value of = 1 signifies the natural accelerograrh,< 1 is a scaled-down
accelerogram, whil@ > 1 corresponds to a scaled-up one.

Although theSFis the simplest way to characterize the scaled images of an accelerogram it is
by no means convenient for engineering purposes as it offers no information of the real “power” of
the scaled record and its effect on a given structure. Of more practical use would be a measure that
would map to theSF one-to-one, yet would be more informative, in the sense of better relating to
its damaging potential.

Definition 2. A MONOTONIC SCALABLE GROUND MOTION INTENSITY MEASURE (Or sim-
ply intensity measurdM) of a scaled accelerograna, , is a non-negative scalaiV € [0, +)
that constitutes a functiorlM = f5,(A), that depends on the unscaled accelerogragm,and is
monotonicallyincreasing with the scale facto,.
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While many quantities have been proposed to characterize the “intensity” of a ground motion
record, it may not always be apparent how to scale them, e.g., Moment Magnitude, Duration,
or Modified Mercalli Intensity; they must be designated as non-scalable. Common examples
of scalable/M s are the Peak Ground AcceleratiddGA), Peak Ground Velocity, thé = 5%
damped Spectral Acceleration at the structure’s first-mode pesidth(5%)), and the normalized
factor R = A /Ajield (WhereAyieiq Signifies, for a given record and structural model, the lowest
scaling needed to cause yielding) which is numerically equivalent to the yield rediretamtor
(e.g.,Chopra 1995 for, for example, bilinear SDOF systems (see later section). Thdse
also have the property of being proportional to %€ as they satisfy the relatioMprop = A -
fa,. ON the other hand the quantim(Ty, &,b,c,d) = [Su(T1,&)]P- [Sa(cTh, €)]9 proposed by
Shome and Corne(lL999 andMehanny and Deierlei(2000 is scalable and monotonic but non-
proportional, unlesB+d = 1. Some non-monotonid/ s have been proposed, such as the inelastic
displacement of a nonlinear oscillator byico and Cornel(2004), but will not be focused upon,
so /M will implicitly mean monotonic and scalable hereafter unless otherwise stated.

Now that we have the desired input to subject a structure to, we also need some way to monitor
its state its response to the seismic load.

Definition 3. DAMAGE MEASURE (DM) or STRUCTURAL STATE VARIABLE is a hon-negative
scalar DM € [0, +] that characterizes the additional response of the structural model due to a
prescribed seismic loading.

In other words aDM is an observable quantity that is part of, or can be deduced from, the
output of the corresponding nonlinear dynamic analysis. Possible choices could be maximum
base shear, node rotations, peak story ductilities, various proposed damage indices (e.g., a global
cumulative hysteretic energy, a global Park—Ang indeng and De Leon1997) or the stability
index proposed bvehanny and Deierleir2000, peak roof drift6sef, the floor peak interstory
drift anglesé;,..., 8, of ann-story structure, or their maximum, the maximum peak interstory
drift angle Bmax = max(6s,...,6n). Selecting a suitabl®M depends on the application and the
structure itself; it may be desirable to use two or mbM s (all resulting from the same nonlinear
analyses) to assess different response characteristics, limit-states or modes of failure of interest
in a PBEE assessment. If the damage to non-structural contents in a multi-story frame needs to
be assessed, the peak floor accelerations are the obvious choice. On the other hand, for structural
damage of frame building€ax relates well to joint rotations and both global and local story
collapse, thus becoming a strob/ candidate. The latter, expressed in terms of the total drift,
instead of the effective drift which would take into account the building tilt, e&hash et al.

1992 pg.88) will be our choice oDM for most illustrative cases here, where foundation rotation
and column shortening are not severe.

The structural response is often a signed scalar; usually, either the absolute value is used or
the magnitudes of the negative and the positive parts are separately considered. Now we are able
to define the IDA.

Definition 4. A SINGLE-RECORDIDA STUDY is a dynamic analysis study of a given structural
model parameterized by the scale factor of the given ground motion time history.

Also known simply as Incremental Dynamic Analysis (IDA) or Dynamic Pushover (DPO), it
involves a series of dynamic nonlinear runs performed under scaled images of an accelerogram,
whoselM s are, ideally, selected to cover the whole range from elastic to nonlinear and finally to
collapse of the structure. The purpose is to reddhds of the structural model at each lev
of the scaled ground motion, the resulting response values often being plotted versus the intensity
level as continuous curves.

Definition 5. AnIDA CURVE is a plot of a state variable[¥M) recorded in an IDA study versus
one or morelMs that characterize the applied scaled accelerogram.
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Figure 2.2: IDA curves of aTy = 1.8 sec, 5-story steel braced frame subjected to 4 different records.

An IDA curve can be realized in two or more dimensions depending on the number of the
IM's. Obviously at least one must be scalable and it is sudiathmat is used in the conventional
two-dimensional (2D) plots that we will focus on hereafter. As per standard engineering practice
such plots often appear “upside-down” as the independent variable &/théich is considered
analogous to “force” and plotted on the vertical axis (Fig@ra)) as in stress-strain, force-
deformation or SPO graphs. As is evident, the results of an IDA study can be presented in a
multitude of different IDA curves, depending on the choiceg\ws andDM .

To illustrate the IDA concept we will use several MDOF and SDOF models as examples in the
following sections. In particular the MDOFs used arg & 4 sec 20-story steel-moment resisting
frame (Cuco and Cornell2000 with ductile members and connections, including a first-order
treatment of global geometric nonlinearitiesfRffects), al, = 2.2 sec 9-story and & = 1.3 sec
3-story steel-moment resisting frameau€o and Corne)l2000 with ductile members, fracturing
connections and B-effects, and &, = 1.8 sec 5-story steel chevron-braced frame with ductile
members and connections and realistically buckling braces includihgfifects Bazzurro and
Cornell 19941.

2.4 Looking at an IDA curve: Some general properties

The IDA study isaccelerogramandstructural modebkpecific; when subjected to different ground
motions a model will often produce quite dissimilar responses that are difficult to predict a priori.
Notice, for example, Figur2.2(a—d) where a 5-story braced frame exhibits responses ranging from

a gradual degradation towards collapse to a rapid, non-monotonic, back-and-forth twisting behav-
ior. Each graph illustrates tlllemandsmposed upon the structure by each ground motion record

at different intensities, and they are quite intriguing in both their similarities and dissimilarities.
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Figure 2.3: IDA curves of peak interstory drifts for each floor offa= 1.8 sec 5-story steel braced frame.
Notice the complex “weaving” interaction where extreme softening of floor 2 acts as a fuse to relieve those
above (3,4,5).

All curves exhibit a distinct elastic linear region that endséﬁfd(n, 5%) ~ 0.29 ander‘,’{gl(d ~
0.2% when the first brace-buckling occurs. Actually, any structural model with initially linearly
elastic elements will display such a behavior, which terminates when the first nonlinearity comes
into play, i.e., when any element reaches the end of its elasticity. The/#bfi@M of this segment
on each IDA curve will be called its elastic “stiffness” for the giveM, IM . It typically varies
to some degree from record to record but it will be the same across records for SDOF systems
and even for MDOF systems if tH#/ takes into account the higher mode effects (Lego and
Cornell 2009.

Focusing on the other end of the curves in Fig2i2 notice how they terminate at different
levels ofIM . Curve (a) sharply “softens” after the initial buckling and accelerates towards large
drifts and eventual collapse. On the other hand, curves (c) and (d) seem to weave around the elastic
slope; they follow closely the familisgqual displacementile, i.e., the empirical observation that
for moderate period structures, inelastic global displacements are generally approximately equal
to the displacements of the corresponding elastic model {elpisos and Newmayld960). The
twisting patterns that curves (c) and (d) display in doing so are successive segments of “softening”
and “hardening”, regions where the local slope or “stiffness” decreases with lildhand others
where it increases. In engineering terms this means that at times the structure experiences acceler-
ation of the rate oDM accumulation and at other times a deceleration occurs that can be powerful
enough to momentarily stop tli& accumulation or even reverse it, thus locally pulling the IDA
curve to relatively loweDM s and making it a non-monotonic function of tild (Figure2.2(d)).
Eventually, assuming the model allows for some collapse mechanism abdthesed can track
it, a final softening segment occurs when the structure accumuldtest increasingly higher
rates, signaling the onset difnamic instability This is defined analogously to static instability,
as the point where deformations increase in an unlimited manner for vanishingly small increments
in the IM . The curve then flattens out in a plateau of the maximum valu¥/ims it reaches the
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Figure 2.5: Structural resurrection on the IDA curve oTa= 1.3 sec, 3-story steel moment-resisting frame
with fracturing connections.

flatline and DM moves towards “infinity” (Figure2.2(a,b)). Although the examples shown are
based org,(T1,5%) and 6max, these modes of behavior are observable for a wide choifsbs
and/Ms.

Hardening in IDA curves is not a novel observation, having been reported before even for sim-
ple bilinear elastic-perfectly-plastic systems, e.g.(hopra(1995 pg.257-259). Still it remains
counter-intuitive that a system that showed high response at a given intensity level, may exhibit the
same or even lower response when subjected to higher seismic intensities due to excessive harden-
ing. But it is thepatternand thetiming rather than just the intensity that make the difference. As
the accelerogram is scaled up, weak response cycles in the early part of the response time-history
become strong enough to inflict damage (yielding) thus altering the properties of the structure for
the subsequent, stronger cycles. For multi-story buildings, a stronger ground motion may lead to
earlier yielding of one floor which in turn acts as a fuse to relieve another (usually higher) one,
as in Figure2.3. Even simple oscillators when caused to yield in an earlier cycle, may be proven
less responsive in later cycles that had previously caused higjfevalues (Figure?.4), perhaps
due to “period elongation”. The same phenomena account fasttbetural resurrectionan ex-
treme case of hardening, where a system is pushed all the way to global collapse (i.e., the analysis
code cannot converge, producing “numerically infinif2hs) at someM, only to reappear as
non-collapsing at a higher intensity level, displaying high response but still standing (e.g., Figure
2.5).

As the complexity of even the 2D IDA curve becomes apparent, it is only natural to examine
the properties of the curve as a mathematical entity. Assuming a mondtdnilse IDA curve
becomes dunction([0, +%) — [0, +]), i.e., any value ofM produces a single valueM, while
for any givenDM value there is at least one or more (in non-monotonic IDA curifegsy that
generate it, since the mapping is not necessarily one-to-one. Also, the IDA curve is not necessar-
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ily smooth as theDM is often defined as a maximum or contains absolute values of responses,
making it non-differentiable by definition. Even more, it may contain a (hopefully finite) number
of discontinuities, due to multiple excursions to collapse and subsequent resurrections.

2.5 Capacity and limit-states on single IDA curves

Performance levels or limit-states are important ingredients of Performance Based Earthquake
Engineering (PBEE), and the IDA curve contains the necessary information to assess them. But
we need to define them in a less abstract way that makes sense on an IDA curve, i.e., by a statement
or arule that when satisfied, signals reaching a limit-state. For example, Immediate Occupancy
(FEMA, 2000ab) is a structural performance level that has been associated with reaching a given
DM value, usually inBnhax terms, while (in FEMA 350FEMA, 20003 at least) Global Collapse

is related to théM or DM value where dynamic instability is observed. A relevant issue that then
appears is what to do when multiple points (Fig@ré(a,b)) satisfy such a rule? Which one is to

be selected?

The cause of multiple points that can satisfy a limit-state rule is mainly the hardening issue
and, in its extreme form, structural resurrection. In general, one would want to be conservative and
consider the lowest, itM terms, point that will signal the limit-state. Generalizing this concept to
the whole IDA curve means that we will discard its portion “above” the firstinterms) flatline
and just consider only points up to this first sign of dynamic instability.

Note also that for most of the discussion we will be equating dynamic instability to numeri-
cal instability in the prediction of collapse. Clearly the non-convergence of the time-integration
scheme is perhaps the safest and maybe the only numerical equivalent of the actual phenomenon
of dynamic collapse. But, as in all models, this one can suffer from the quality of the numerical
code, the stepping of the integration and even the round-off error. Therefore, we will assume that
such matters are taken care of as well as possible to allow for accurate enough predictions. That
being said, let us set forth the most basic rules used to define a limit-state.

First comes theDM-based rule which is generated from a statement of the format: “If
DM > Cpp then the limit-state is exceeded” (Fig@réya)). The underlying concept is usually that
DM is a damage indicator, hence, when it increases beyond a certain value the structural model is
assumed to be in the limit-state. Such value€gy; can be obtained through experiments, theory
or engineering experience, and they may not be deterministic but have a probability distribution.
An example is th@max = 2% limit that signifies the Immediate Occupancy structural performance
level for steel moment-resisting frames (SMRFs) with type-1 connections in the FEMA guidelines
(FEMA, 20008. Also the approach used Ibyehanny and DeierleifR000 is another case where
a structure-specific damage index is use®&6 and when its reciprocal is greater than unity, col-
lapse is presumed to have occurred. Such limits may have randomness incorporated, for example,
FEMA 350 FEMA, 20003 defines a local collapse limit-state by the valudgfx that induces a
connection rotation sufficient to destroy the gravity load carrying capacity of the connection. This
is defined as a random variable based on tests, analysis and judgment for each connection type.
Even a uniqueCpy value may imply multiple limit-state points on an IDA curve (e.g., Figure
2.6(a)). This ambiguity can be handled by an ad hoc, specified procedure (e.g., by conservatively
defining the limit-state point as the lowd#t ), or by explicitly recognizing the multiple regions
conforming and non-conforming with the performance level. Ti\d-based rules have the ad-
vantage of simplicity and ease of implementation, especially for performance levels other than
collapse. In the case of collapse capacity though, they may actually be a sign of model deficiency.
If the model is realistic enough it ought to explicitly contain such information, i.e., show a collapse
by non-convergence instead of by a fink&1 output. Still, one has to recognize that such models
can be quite complicated and resource-intensive, while numerics can often be unstable. Hence
DM -based collapse limit-state rules can be quite useful. They also have the advantage of being
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Figure 2.6: Two different rules producing multiple capacity points foka= 1.3 sec, 3-story steel moment-
resisting frame with fracturing connections. TB#&/ rule, where thedDM is Bnay, is set aCpy = 0.08 and
the IM rule uses th0%slope criterion.
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consistent with other less severe limit-states which are more naturally identifi¥d irerms, e.g.,
6max-

The alternativdM-based rule is primarily generated from the need to better assess collapse
capacity, by having a single point on the IDA curve that clearly divides it to two regions, one
of non-collapse (lowefM) and one of collapse (highéM). For monotonicIM s, such a rule
is generated by a statement of the form: IM > Cjy then the limit-state is exceeded” (Figure
2.6(b)). A major difference with the previous category is the difficulty in prescribi@gavalue
that signals collapse for all IDA curves, so it has to be done individually, curve by curve. Still, the
advantage is that it clearly generates a single collapse region, and the disadvantage is the difficulty
of defining such a point for each curve in a consistent fashion. In general, such a rule results in
both IM and DM descriptions of capacity. A special (extreme) case is taking the “final” point of
the curve as the capacity, i.e., by using the (lowest) flatline to define capadity erms), where
all of the IDA curve up to the first appearance of dynamic instability is considered as non-collapse.

The FEMA (20003 20% tangent slope approach is, in effect/&hbased rule; théast point
on the curve with a tangent slope equal to 20% of the elastic slope is defined to be the capacity
point. The idea is that the flattening of the curve is an indicator of dynamic instability (i.e., the
DM increasing at ever higher rates and accelerating towards “infinity”). Since “infinity” is not a
possible numerical result, we content ourselves with pulling back to a r&g.@fncrease equal
to five times the initial or elastic rate, as the place where we mark the capacity point. Care needs
to be exercised, as the possible “weaving” behavior of an IDA curve can provide several such
points where the structure seems to head towards collapse, only to recover at a somewhat higher
IM level, as in Figur@.6(b); in principle, these lower points should thus be discarded as capacity
candidates. Also the non-smoothness of the actual curve may prove to be a problem. As mentioned
above, the IDA curve is at best piecewise smooth, but even so, approximate tangent slopes can be
assigned to every point along it by employing a smooth interpolation. For sceptics this may also be
thought of as a discrete derivative on a grid of points that is a good “engineering” approximation
to the “rate-of-change”.

The above mentioned simple rules are the building blocks to construct composite rules, i.e.,
composite logical clauses of the above types, most often joined by logical OR operators. For
example, when a structure has several collapse modes, not detectable by @8ihdgtes ad-
vantageous to detect global collapse with an OR clause for each individual mode. An example is
offshore platforms where pile or soil failure modes are evident in deck drift while failures of braces
are more evident in maximum peak inter-tier drift. The first —Hh terms — event that occurs is
the one that governs collapse capacity. Another case is Global Collapse capacity, which as defined
by FEMA in FEMA (2000ab) is in fact an OR conjunction of the 20% slofid -based rule and a
Cpm = 10% DM -based rule, wherg,(T1,5%) andBmnax are thelM andDM of choice. If either of
the two rules obtains, it defines capacity. This means that the 20% stiffness detects impending col-
lapse, while the 10% cap guards against excessive valugs.findicative of regions where the
model may not be trustworthy. As@M description of capacity is proposed, this definition may
suffer from inaccuracies, since close to the flatline a wide rang¥wfvalues may correspond to
only a small range of\Vl s, thus making the actual value DM selected sensitive to the quality of
IDA curve tracing and to the (ad hoc) 20% value. If, on the other hanéiadescription is used,
the rule becomes more robust. This is a general observation for collapse capacity; it appears that
it can be best expressed/i terms.

2.6 Multi-record IDAs and their summary

As should be evident by now, a single-record IDA study cannot fully capture the behavior a build-
ing may display in a future event. The IDA can be highly dependent on the record chosen, so a
sufficient number of records will be needed to cover the full range of responses. Hence, we have
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to resort to subjecting the structural model to a suite of ground motion records.

Definition 6. AMULTI-RECORDIDA STUDY is a collection of single-record IDA studies of the
same structural model, under different accelerograms.

Such a study, correspondingly produces sets of IDA curves, which by sharing a common
selection ofIM's and the sam®M, can be plotted on the same graph, as in Figuéa) for a
5-story steel braced frame.

Definition 7. An IDA CURVE SET is a collection of IDA curves of the same structural model
under different accelerograms, that are all parameterized on the $&tae@ndDM.

While each curve, given the structural model and the ground motion record, is a completely
defined deterministic entity, if we wish to take into account the inherent randomness with respect
to what record the building might experience, we have to bring a probabilistic characterization
into play. The IDA given the structural model and a statistical population of records is no longer
deterministic; it is aandom ling or a random functiodM = f(IM) (for a single, monotonic
IM). Then, just as we are able to summarize a suite of records by having, for example, mean,
median, and 16%, 84% response spectra, so we can define mean, median and 16%, 84% IDA
curves (e.g., Figur@.7(b)) to (marginally) summarize an IDA curve set. We, therefore, need
methods for estimating statistics of a sample of 2D random lines (assuming alghgle topic
of Functional Data AnalysisRamsay and Silvermai996. They conveniently fall in two main
categories.

First are the parametric methods. In this case a parametric model bihgiven thelM is
assumed, each line is separately fit, providing a sample of parameter values, and then statistics of
the parameters are obtained. Alternatively a parametric model of the m@Magiven thelM
can be fit to all the lines simultaneously. As an example, consider the 2-parameter, power-law
modelBmax = a - [Sa(Tl,S%)]ﬁ introduced byShome and Corne(lL999, which under the well-
documented assumption of lognormality of the conditional distributiofak given Sy(T1,5%),
often provides a simple yet powerful description of the curves, allowing some important analytic
results to be obtained#élayer and Cornel2002 Cornell et al, 2002. This is a general property
of parametric methods; while they lack the flexibility to accurately capture each curve, they make
up by allowing simple descriptions to be extracted.

On the other end of the spectrum are the non-parametric methods, which mainly involve the
use of “scatterplot smoothers” like the running mean, running medliagssor the smoothing
spline Hastie and Tibshiranil990. Perhaps the simplest of them all, the running mean with
a zero-length window (or cross-sectional mean), involves simply calculating values biMhe
at each level offM and then finding the average and standard deviatioDMf given the M
level. This works well up to the point where the first IDA curve reaches capacity, \biién
becomes infinite, and so does the mean IDA curve. Unfortunately most smoothers suffer from
the same problem, but the cross-sectional median, or cross-sectional fractile is, in general, more
robust. Instead of calculating means at edighlevel, we now calculate sample medians, 16%
and 84% fractiles, which become infinite only when collapse occurs in 50%, 84% and 16% of the
records respectively. Another advantage is that under suitable assumptions (e.g., continuity and
monotonicity of the curves), the line connecting #3¢ fractiles of DM given IM is the same as
the one connecting thd 00— x)% fractiles ofIM given DM . Furthermore, this scheme fits nicely
with the well-supported assumption of lognormal distributio®gfx given S,(T1,5%), where the
median is the natural “central value” and the 16%, 84% fractiles correspond to the median times
grdispersion \where “dispersion” is the standard deviation of the logarithms of the valladsyer
and Cornell2002.

Finally, a variant for treating collapses is proposeddtwme and Corne{R000, where the
conventional moments are used to characterize non-collapses, thus removing the problem of in-
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Figure 2.7: An IDA study for thirty records on d; = 1.8 sec, 5-story steel braced frame, showing (a) the
thirty individual curves and (b) their summary (16%, 50% and 84%) fractile curves (in log-log scale).
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finities, while the probability of collapse given thH® is summarized separately by a logistic
regression.

A simpler, yet important problem is the summarizing of the capacities of a samilewtes,
expressed either iPM (e.g.,{C4 },i=1...N)or IM (e.g.,{Céa(Tlﬁ%)}, i=1...N) terms.
Since there are neither random lines nor infinities involved, the problem reduces to conventional
sample statistics, so we can get means, standard deviations or fractiles as usual. Still, the observed
lognormality in the capacity data, often suggests the use of the medlarq§ €];506) OF Cgmax)
estimated either as the 50% fractile or as the antilog of the mean of the Iogarlthms and the stan-
dard deviation of the logarithms as dispersion. Finally, when considering limit-state probability
computations (see section below), one needs to address potential dependence (e.g., correlation)
between capacity and demand. Limited investigation to date has revealed little if any systematic
correlation betwee®M capacity andM demand (giveriM ).

2.7 The IDA in a PBEE framework

The power of the IDA as an analysis method is put to use well in a probabilistic framework, where
we are concerned with the estimation of the annual likelihood of the event that the demand exceeds
the limit-state or capacit¢. This is the likelihood of exceeding a certain limit-state, or of failing

a performance level (e.g., Immediate Occupancy or Collapse Preven&&ia, 20003, within

a given period of time. The calculation can be summarized in the framing equation adopted by the
Pacific Earthquake Engineering Cent€o(nell and Krawinkler2000

)\(DV):/ G(DV|DM) [dG(DM |IM )] [dA (IM )] 2.1)

in which IM , DM and DV are vectors of intensity measures, damage measures and “decision
variables” respectively. In this paper we have generally used stdlgfe.g., Si(T1,5%)) and

DM (e.g.,6max) for the limit-state case of interest. The decision variable here is simply a scalar
“indicator variable”: DV = 1 if the limit-state is exceeded (and zero otherwisg)./M) is the
conventional hazard curve, i.e., the mean annual frequenky @xceeding, say. The quantity

|dA (x)| = |dA (x) /dx| dxis its differential (i.e.]dA (x) /dX| is the mean rate densitydG(DM |IM)|

is the differential of the (conditional) complementary cumulative distribution function (CCDF)
of DM given IM, or fppm(y[X)dy. In the previous sections we discussed the statistical char-
acterization of the random IDA lines. These distributions are precisely this characterization of
|dG(DM |IM)|. Finally in the limit-state case, when on the left-hand side of Equagidl) (ve

seekA (DV=1) = A(0), G(0|DM) becomes simply the probability that the capa€itis less than

some level of theDM, say,y; so G(0|DM) = Fc(y), whereRg(y) is the cumulative distribution
function ofC, i.e., the statistical characterization of capacity, also discussed at the end of the pre-
vious section. In the global collapse case, capacity estimates also come from IDA analyses. In
short, save for the seismicity characterizatia/M), given an intelligent selection dM, DM

and structural model, the IDA produces, in arguably the most comprehensive way, precisely the
information needed both for PBEE demand characterization and for global collapse capacity char-
acterization.

2.8 Scaling legitimacy andM selection

As discussed above, we believe there is useful engineering insight to be gained by conducting
individual and sets of IDA studies. However, concern is often expressed about the “validity” of
DM results obtained from records that have been scaled (up or down), an operation that is not
uncommon both in research and in practice. While not always well expressed, the concern usually
has something to do with “weaker” records not being “representative” of “stronger” ones. The
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issue can be more precisely stated in the context of the last two sections as: will the median (or any
other statistic ofDM obtained from records that have been scaled to some lev# @fstimate
accurately the media®PM of a population of unscaled records all with that same levdivbf
Because of current record catalog limitations, where few records of any single/fiviavel can
be found, and because we have interest usually in a rani}é &vels (e.g., in integrations such
as Equation4.1)), it is both more practical and more complete to ask: will the (regression-like)
function medianDM versus/M obtained from scaled records (whether via IDAs or otherwise)
estimate well that same function obtained from unscaled records? There is a growing body of
literature related to such questions that is too long to summarize hereSeame and Cornell
1998 1999. An example of such a comparison is given in Figi@from Bazzurro et al(1998,
where the two regressions are so close to one another that only one was plotted by the authors.
Suffice it to say that, in general, the answer to the question depends on the structud8/ the
the IM and the population in mind. For example, the answer is “yes” for the case pictured in
Figure2.8, i.e., for a moderate period (1 sec) steel frame, for witdd is maximum interstory
drift and IM is first-mode-period spectral acceleration, and for a fairly general class of records
(moderate to large magnituded, all but directivity-influenced distanceR, etc.). On the other
hand, for all else equal excefiy defined now a$?GA, the answer would be “no” for this same
case. Why? Because such a (first-mode dominated) structure is sensitive to the strength of the
frequency content near its first-mode frequency, which is well characterized ISy(thsec5%)
but not by PGA, and as magnitude changes, spectral shape changes implying that the average
ratio of S;(1 sec5%) to PGA changes with magnitude. Therefore the scaled-record median drift
versusPGA curve will depend on the fractions of magnitudes of different sizes present in the
sample, and may or may not represent well such a curve for any (other) specified population of
maghnitudes. On the other hand, tté first-mode spectral acceleration will no longer work well
for a tall, long-period building that is sensitive to shorter periods, again because of spectral shape
dependence on magnitude.

There are a variety of questions of efficiency, accuracy and practicality associated with the wise
choice of thelM for any particular application (e.d.uco and Cornell2004), but it can generally
be said here that if thBV has been chosen such that the regressidéfjointly on IM, M and
R is found to be effectively independent®f andR (in the range of interest), then, yes, scaling of
records will provide good estimates of the distributiordd#! given /M . Hence we can conclude
that scaling is indeed (in this sense) “legitimate”, and finally that IDAs provide accurate estimates
of DM given IM statistics (as required, for example, for PBEE use;B&ezurro et al(1998,
Shome and Corne{lL999.

IDA studies may also bring a fresh perspective to the larger question of the effétive
choice. For example, smaller dispersior¥ givenIM implies that a smaller sample of records
and fewer nonlinear runs are necessary to estimate méarversusiM . Therefore, a desir-
able property of a candidat®/ is small dispersion. Figur2.9 shows IDAs from a 9-story steel
moment-resisting frame in which tH&M is Bnax and thelM is either (a)PGA or (b) Su(T1,5%).
The latter produces a lower dispersion over the full rang@Mf values, as the IDA-based results
clearly display. Furthermore, the IDA can be used to study how well (with what dispersion) partic-
ular IM s predict collapse capacity; aged(T1,5%) appears preferable 8GA for this structure
as the dispersion dM values associated with the “flatlines” is less in the former case.

2.9 The IDA versus theR-factor

A popular form of incremental seismic analysis, especially for SDOF oscillators, has been that
leading to the yield reductioR-factor (e.g.,Chopra 1995. In this case the record is left un-

scaled, avoiding record scaling concerns; instead, the yield force (or yield deformation, or, in
the multi-member MDOF case, the yield stress) of the model is scaled down from that level that
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coincides with the onset of inelastic behavior. If both are similarly normalized (e.qg., ductility =
deformation/yield-deformation arid= Sy(T1,5%) /% (T1,5%)), the results of this scaling and
those of an IDA will be identical for those classes of systems for which such simple structural
scaling is appropriate, e.g., most SDOF models, and certain MDOF models without axial-force—
moment interaction, without second-or-higher-order geometric nonlinearities, etc. One might
argue that these cases of common results are another justification for the legitimacy of scaling
records in the IDA. It can be said that the difference betweerRtfaetor and IDA perspectives

is one of design versus assessment. For design one has an allowable ductility in mind and seeks
the design yield force that will achieve this; for assessment one has a fixed design (or existing
structure) in hand and seeks to understand its behavior under a range of potential future ground
motion intensities.

2.10 The IDA versus the Nonlinear Static Pushover

The common incremental loading nature of the IDA study and the SPO suggests an investigation
of the connection between their results. As they are both intended to describe the same structure,
we should expect some correlation between the SPO curve and any IDA curve of the building
(Figure2.1), and even more so between the SPO and the summarized (median) IDA curve, as the
latter is less variable and less record dependent. Still, to plot both on the same graph, we should
preferably express the SPO in thd, DM coordinates chosen for the summarized IDA. While
someDMs (e.g.,6hax) can easily be obtained from both the static and the dynamic analysis, it
may not be so natural to convert the' s, e.g., base shear 8(T;,5%). The proposed approach

is to adjust the “elastic stiffness” of the SPO to be the same as that of the IDA, i.e., by matching
their elastic segments. This can be achieved in the aforementioned example by dividing the base
shear by the building mass, which is all that is needed for SDOF systems, times an appropriate
factor for MDOF systems.

The results of such a procedure are shown in FigRré§a,b) where we plot the SPO curve,
obtained using a first-mode force pattern, versus the median IDA for a 20-story steel moment-
resisting frame with ductile connections and for a 5-story steel braced frameSy§ingb%) and
Bmax coordinates. Clearly both the IDA and the SPO curves display similar rand2®l ofalues.

The IDA always rises much higher than the SPOM terms, however. While a quantitative
relation between the two curves may be difficult, deserving further study 8egeviratna and
Krawinkler, 1997, qualitatively we can make some, apparently, quite general observations that
permit inference of the approximaséapeof the median IDA simply by looking at the SPO.

1. By construction, the elastic region of the SPO matches well the IDA, including the first sign
of nonlinearity appearing at the same valuegfand DM for both.

2. A subsequent reduced, but still non-negative stiffness region of the SPO correlates on the
IDA with the approximate “equal-displacement” rule (for moderate-period structures) (
letsos and Newmarkl960, i.e., a near continuation of the elastic regime slope; in fact
this near-elastic part of the IDA is often preceded byaadeningportion (Figure2.1Q(@)).
Shorter-period structures will instead display some softening.

3. A negative slope on the SPO translates teaténing) region of the IDA, which can lead to
collapse, i.e., IDA flat-lining (Figur2.1Q(@)), unless it is arrested by a non-negative segment
of the SPO before it reaches zerdM terms (Figure2.1Qb)).

4. A non-negative region of the SPO that follows after a negative slope that has caused a signifi-
cant/M drop, apparently presents itself in the IDA as a new, modified “equal-displacement”
rule (i.e., an near-linear segment that lies on a secant) that has lower “stiffness” than the elas-
tic (Figure2.1Qb)).
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Figure 2.10: The median IDA versus the Static Pushover curve for (B)-a 4 sec, 20-story steel moment-

"first-mode" spectral acceleration S,(T,, 5%) (9)

“first-mode" spectral acceleration S (T;, 5%) (9)
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(a) IDA versus Static Pushover for a 20-storey steel moment resisting frame
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2.11 IDA Algorithms

Despite the theoretical simplicity of an IDA study, actually performing one can potentially be
resource intensive. Although we would like to have an almost continuous representation of IDA
curves, for most structural models the sheer cost of each dynamic nonlinear run forces us to think
of algorithms designed to select an optimal grid of disctitevalues that will provide the desired
coverage. The density of a grid on the curve is best quantified in terms dfthalues used,

the objectives being: a higlemand resolutiarachieved by evenlgpreadingthe points and thus
having no gap in outM values larger than some tolerance, and a kgtacity resolutionwhich

calls for aconcentratiorof points around the flatline to bracket it appropriately, e.g., by having a
distance between the highest (in termdMf) “non-collapsing” run and the lowest “collapsing”

run less than some tolerance. Here, by collapsing run we mean a dynamic analysis performed at
somelM level that is determined to have caused collapse, either by satisfying some collapse-rule
(IM or DM based, or more complex) or simply by failing to converge to a solution. Obviously, if
we allow only a fixed number of runs for a given record, these two objectives compete with one
another.

In a multi-record IDA study, there are some advantages to be gained by using information from
the results of one record to adapt the grid of points to be used on the next. Even without exploiting
these opportunities, we can still design efficient methods to tackle each record separately that are
simpler and more amenable to parallelization on multiple processors. Therefore we will focus on
thetracing of single IDA curves.

Probably the simplest solution isteppingalgorithm, where théV is increased by a constant
step from zero to collapse, a version of which is also describ&drnret al.(2002. The end result
is a uniformly-spaced (i) grid of points on the curve. The algorithm needs only a pre-defined
step value and a rule to determine when to stop, i.e., when a run is collapsing.

repeat

increasdM by the step

scale record, run analysis and extrBdy (s)
until collapse is reached

Although it is an easily programmable routine it may not be cost-efficient as its quality is
largely dependent on the choice of tiid step. Even if information from previously processed
ground motion records is used, the step size may easily be too large or too small for this record.
Even then, the variability in the “height” (ilM terms) of the flatline, which is both accelerogram
and/M dependent, tends to unbalance the distribution of runs; IDA curves that reach the flatline
at alow/M level receive fewer runs, while those that collapse at higielevels get more points.

The effect can be reduced by selecting a gtidd e.g.,S:(T1,5%) instead ofPGA, asIM s with
higher DM variability tend to produce more widely dispersed flatlines (Fig2u®. Another
disadvantage is the implicit coupling of the capacity and demand estimation, as the demand and
the capacity resolutions are effectively the same and equal to the step size.

Trying to improve upon the basis of the stepping algorithm, one can use the ideas on searching
techniques available in the literature (eRyess et al1986. A simple enhancement that increases
the speed of convergence to the flatline is to allow the steps to increase, for example by a factor,
resulting in a geometric series Bl s, or by a constant, which produces a quadratic series. This is
the hunting phasef the code where the flatline is bracketed without expending more than a few
runs.

repeat
increasdM by the step
scale record, run analysis and extrBd (s)
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increase the step
until collapse is reached

Furthermore, to improve upon the capacity resolution, a simple enhancement is to add a step-
reducing routine, for example bisection, when collapse (e.g., non-convergence) is detected, so as
to tighten the bracketing of the flatline. This will enable a prescribed accuracy for the capacity to
be reached regardless of the demand resolution.

repeat
select an'M in the gap between the highest non-collapsing and lowest non-collaidgisg
scale record, run analysis and extrBdy (s)

until highest collapsing and lowest non-collapsiMj-gap< tolerance

Even up to this point, this method is a logical replacement for the algorithm propo¥ed in
et al.(2002 and in the FEMA guidelinesHEMA, 20003 as this algorithm is focused on optimally
locating the capacity, which is the only use made of the IDA in those two references. If we also
wish to use the algorithm for demand estimation, coming back to fill in the gaps created by the
enlarged steps is desirable to improve upon the demand resolution there.

repeat
select an'M that halves the largest gap between ftelevels run
scale record, run analysis and extrBdy (s)

until largest non-collapsingV -gap < tolerance

When all three pieces are run sequentially, they make for a more efficient procedung, a
& fill tracing algorithm, described in detail tfMamvatsikos and Corne{R002h, that performs
increasingly larger leaps, attempting to bound fileparameter space, and then fills in the gaps,
both capacity and demand-wise. It needs an initial step and a stopping rule, just like the stepping
algorithm, plus a step increasing function, a capacity and a demand resolution. The latter two can
be selected so that a prescribed number of runs is performed on each record, thus tracing each
curve with the same load of resources.

A subtle issue here is the summarization of the IDA curves produced by the algorithm. Obvi-
ously, if the same step is used for all records and if there is no need to use dhbiliee stepping
algorithm immediately provides us with stripesBM at given values ofM (e.g., Figure2.8).

So a “cross-sectional median” scheme could be implemented immediately on the output, without
any post-processing. On the other hand, a hunt & fill algorithm would pro@AMevalues at
non-matching levels ofM across the set of records, which necessitates the interpolation of the
resulting IDA curve to calculate intermediate values. Naturally, the same idea can be applied to
the output of any IDA tracing algorithm, even a stepping one, to increase the density of discrete
points without the need for additional dynamic analyses. Ideally, a flexible, highly non-parametric
scheme should be used. Coordinate-transformed natural splines, as pres®¥atadatsikos and
Cornell (20021, are a good candidate. Actually all the IDA curves in the figures of the paper are
results of such an interpolation of discrete points. However, before implementing any interpola-
tion scheme, one should provide a dense enough gritf ofalues to obtain a high confidence of
detecting any structural resurrections that might occur before the final flatline.

2.12 Conclusions

The results of Incremental Dynamic Analyses of structures suggest that the method can become
a valuable additional tool of seismic engineering. IDA addresses both demand and capacity of

structures. This paper has presented a number of examples of such analyses (from simple oscil-
lators to 20-story frames), and it has used these examples to call attention to various interesting
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properties of individual IDAs and sets of IDAs. In addition to the peculiarities of non-monotonic
behavior, discontinuities, “flatlining” and even “resurrection” behavior within individual IDAs,

one predominate impression left is that of the extraordinary variability from record to record of
the forms and amplitudes of the IDA curves for a single building (e.g., Figui@)). The (de-
terministic) vagaries of a nonlinear structural system under irregular input present a challenge to
researchers to understand, categorize and possibly predict. This variability also leads to the need
for statistical treatment of multi-record IDA output in order to summarize the results and in order
to use them effectively in a predictive mode, as for example in a PBEE context. The paper has
proposed some definitions and examples of a variety of issues such as these IDA properties, the
scaling variablesI|/ s), limit-state forms, and collapse definitions. Further we have addressed
the question of “legitimacy” of scaling records and the relationships between IDAR-faxtors

as well as between IDAs and the Static Pushover Analysis. Finally, while the computational re-
sources necessary to conduct IDAs may appear to limit them currently to the research domain,
computation is an ever-cheaper resource, the operations lend themselves naturally to parallel com-
putation, IDAs have already been used to develop information for practical guidefiE®44
2000ab), and algorithms presented here can reduce the number of nonlinear runs per record to
a handful, especially when the results of interest are not the curious details of an individual IDA
curve, but smooth statistical summaries of demands and capacities.



Chapter

Applied Incremental Dynamic Analysis

Vamvatsikos, D. and Cornell, C. A. (2003&arthquake Spectrdin preparation).

3.1 Abstract

Presenting a practical and detailed example of how to perform Incremental Dynamic Analysis
(IDA), interpret the results and apply them to Performance-Based Earthquake Engineering. IDA
is an emerging analysis method that offers thorough seismic demand and capacity prediction ca-
pability by using a series of nonlinear dynamic analyses under a multiply scaled suite of ground
motion records. Realization of its opportunities requires several steps and the use of innovative
techniques at each one of them. Using a 9-story steel moment-resisting frame with fracturing con-
nections as a testbed, the reader is guided through each step of IDA: (1) Choosing suitable ground
motion Intensity Measures and representative Damage Measures, (2) using appropriate algorithms
to select the record scaling, (3) employing proper interpolation and (4) summarization techniques
for multiple records to estimate the probability distribution of the structural demand given the
seismic intensity and (5) defining limit-states, such as the dynamic global system instability, to
calculate the corresponding capacities. Finally, (6) the results can be used to gain intuition for
the structural behavior, highlighting the connection between the Static Pushover (SPO) and the
dynamic response, or (7) they can be integrated with conventional Probabilistic Seismic Hazard
Analysis (PSHA) to estimate mean annual frequencies of limit-state exceedance. Building upon
this detailed example based on the 9-story, a complete commentary is provided, discussing the
choices that are available to the user, and showing their implications for each step of the IDA.

3.2 Introduction

An important issue in Performance-Based Earthquake Engineering (PBEE) is the estimation of
structural performance under seismic loads, in particular the estimation of the mean annual fre-
guency (MAF) of exceeding a specified level of structural demand (e.g., the maximum, over all
stories, peak interstory drift ratiéa) or a certain limit-state capacity (e.g., global dynamic in-
stability). A promising method that has recently risen to meet these needs is Incremental Dynamic
Analysis (IDA), which involves performing nonlinear dynamic analyses of the structural model
under a suite of ground motion records, each scaled to several intensity levels designed to force
the structure all the way from elasticity to final global dynamic instabiltgnivatsikos and Cor-
nell, 20023.

Applying IDA to determine the performance of a structure requires several steps. First, a
proper nonlinear structural model needs to be formed, and a suite of records must be compiled.
Then, for each record, the scaling levels must be selected, the dynamic analyses run and the

26



3.3. MODEL AND GROUND MOTION RECORDS

Table 3.1: The set of twenty ground motion records used.

27

No | Event Station 1 Soif M3 R*(km) PGA(g) ‘

1 Loma Prieta, 1989 Agnews State Hospital 090 Cc,D 6.9 28.2 0.159
2 Imperial Valley, 1979 Plaster City 135 CD 6.5 317 0.05

3 Loma Prieta, 1989 Hollister Diff. Array 255 -D 6.9 25.8 0.27

4 Loma Prieta, 1989 Anderson Dam Downstream 270 B,D 6.9 21.4 0.244
5 Loma Prieta, 1989 Coyote Lake Dam Downstream 285 B,D 6.9 22.3 0.179
6 Imperial Valley, 1979 Cucapah 085 CD 65 23.6 0.309
7 Loma Prieta, 1989 Sunnyvale Colton Ave 270 Cc,D 6.9 28.8 0.207
8 Imperial Valley, 1979 El Centro Array #13 140 CD 6.5 21.9 0.117
9 Imperial Valley, 1979 Westmoreland Fire Station 090 CD 6.5 15.1 0.074
10 | Loma Prieta, 1989 Hollister South & Pine 000 -D 6.9 28.8 0.371
11 | Loma Prieta, 1989 Sunnyvale Colton Ave 360 Cc,D 6.9 28.8 0.209
12 | Superstition Hills, 1987  Wildlife Liquefaction Array 090 CD 6.7 24.4 0.18
13 | Imperial Valley, 1979 Chihuahua 282 Cc,D 6.5 28.7 0.25
14 | Imperial Valley, 1979 El Centro Array #13 230 CD 65 21.9 0.139
15 | Imperial Valley, 1979 Westmoreland Fire Station 180 CD 6.5 15.1 0.110
16 | Loma Prieta, 1989 WAHO 000 -D 6.9 16.9 0.37

17 | Superstition Hills, 1987  Wildlife Liquefaction Array 360 CD 6.7 24.4 0.20
18 | Imperial Valley, 1979 Plaster City 045 CD 6.5 31.7 0.04
19 | Loma Prieta, 1989 Hollister Diff. Array 165 -D 6.9 25.8 0.26
20 | Loma Prieta, 1989 WAHO 090 —-D 6.9 16.9 0.63

1 Component 2 USGS, Geomatrix soil class 3 Moment magnitude 4 Closest distance to fault rupture

results postprocessed. Thus, we can generate IDA curves of the structural response, as measured
by a Damage Measur®\, e.g., peak roof drift rati@® oot OF Bmax), Versus the ground motion
intensity level, measured by an Intensity Measuié ,(e.g., peak ground acceleration, PGA, or

the 5%-damped first-mode spectral accelera8g(i;,5%)). In turn these are interpolated for

each record and summarized over all records to estimate the distribution of dé&hamgven

intensity IM. Subsequently, limit-states (e.g., Immediate Occupancy or Collapse Prevention in
FEMA, 2000ab) can be defined on each IDA curve and summarized to produce the probability of
exceeding a specified limit-state given thié level. The final results are in a suitable format to

be conveniently integrated with a conventional PSHA hazard curve in order to calculate MAFs of
exceeding a certain limit-state capacity, or a certain demand.

Building upon this foundation, we will discuss several topics of practical interest, showing in
detail the reasons behind the choices made in our example and the advantages or disadvantages of
each. In particular, subjects like the number of runs, the algorithms used for scaling-level selec-
tion, and possible approximations used for the probabilistic calculations are going to be presented
showing their impact upon the accuracy of PBEE calculations.

3.3 Model and ground motion records

To illustrate our methodology, we will use a centerline model of a 9-story steel moment-resisting
frame designed for Los Angeles according to the 1997 NEHRP providieesand Foutc/2002).
The model has a first-mode periodiaf= 2.37 sec and it incorporates ductile members, shear pan-
els and realistically fracturing Reduced Beam Section connections, while it includes the influence
of interior gravity columns and a first-order treatment of global geometric nonlinearitiasetP-
fects).

In addition we need a suite of ground motion records. Previous stusliest(e and Cornell
1999 have shown that for mid-rise buildings, ten to twenty records are usually enough to provide
sufficient accuracy in the estimation of seismic demands, assuming a relatively effidiclite
Sa(T1,5%), is used. Consequently, we have selected a set of twenty ground motion records, listed
in Table3.1, that belong to a bin of relatively large magnitudes of 6.5 — 6.9 and moderate distances,
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all recorded on firm soil and bearing no marks of directivity; effectively they represent a scenario
earthquake.

3.4 Performing the Analysis

Once the model has been formed and the ground motion records have been selected, we need a
fast and automated way to perform the actual dynamic analyses required for IDA. This entails
appropriately scaling each record to cover the entire range of structural response, from elasticity,
to yielding, and finally global dynamic instability. Our task is made significantly easier by using
an advanced algorithm, likeunt & fill (Vamvatsikos and Cornel20023. This ensures that the
record scaling levels are appropriately selected to minimize the number of required runs: Analyses
are performed at rapidly increasing levelsibf until numerical non-convergence is encountered
(signaling global dynamic instability), while additional analyses are run at intermédtatevels
to sufficiently bracket the global collapse and increase the accuracy atlevgerThe user only
needs to specify the desired accuracy for demand and capacity, select the maximum tolerable num-
ber of dynamic analyses, and then wait for a few hours to get the results. Since the algorithm has
been implemented in softwarggmvatsikos and Corngl2002 able to wrap around most exist-
ing analysis programs (e.g., DRAIN-2DXrakhash et gl1992 it renders IDA almost effortless,
needing no human supervision.

As an example, we will show in detail the computations resulting toltMhdevels selected
by hunt & fill when tracing record #14 from TabB1 To express the scaling level we need an
initial, temporary choice ofM, and we have chose®(T1,5%), a decision that need not restrict
us in any way: scaling can be re-expressed in any other scdlb{&amvatsikos and Cornell
20023 that we wish after the runs are performed. Henc&,ifT1,5%) terms, the algorithm was
configured to use an initial step of 0.1g, a step increment of 0.05g and a designated first elastic run
at 0.005¢g, while a maximum of 12 runs was allowed for each record. Additionally, we specified a
resolution of 10% on the global collapse capacity, i.e., we expect the model to develop numerical
non-convergence and show practically infinflgax at some high intensity level, and we wish
this level to be known within 10% of it8V -value. Finally, we allowed the demand resolution,
i.e., the maximum difference between successifevalues, to run to its best attainable value by
expending all the 12 runs. Alternatively we could have designated some minimum satisfactory
IM -gap below which we do not wish to proceed, thus saving some runs.

Table 3.2: Sequence of runs generated by the hunt & fill tracing algorithm for record #14.

No. calculations Sa(T1,5%) () Brmax
1 0.005 0.05%
2 0.005+0.10 0.105 0.79%
3 0.105+0.10+1x0.05 0.255 2.02%
4  0.255+0.10+2x 0.05 0.455 3.01%
5 0.455+0.10+3x 0.05 0.705 5.85%
6 0.705+0.10+4x 0.05 1.005 +-00
7 0.705+ (1.005—0.705)/3 0.805 18.83%
8 0.805+(1.005-0.805)/3 0.872 +00
9 (0.805+0.705)/2 0.755 9.18%
10 (0.705+0.455)/2 0.580 3.27%
11 (0.455+0.255)/2 0.355 2.96%
12 (0.255+0.105)/2 0.180 1.34%

Using the above settings we get the sequence of runs shown in 3abldhe first run is
meant to be in the elastic region. In the subsequent five runs, 2—6, we are hunting upwards till
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the first numerical non-convergence appears in the form of “infiritgx. Then, the dynamic
analysis algorithm does not converge thus either failing to complete the dynamic run (as happened
for this record) or producing extreme values @, say 200%. The next two runs, 7-8, are
used to better bracket the first appearance of non-convergence, closing within 10¥/ef/atue
((0.872—0.805)/0.805= 8.32% < 10%) so that the gap between highest converging and lowest
non-converging run is less that 10% of the former. Notice, that instead of placing each new run
in the middle of the gap, the algorithm places it closer to the converging run, only one third of
the way to the non-converging one. This ensures that the search will be somewhat biased towards
converging runs, which are more informative than non-converging ones (which are essentially
discarded). The rest of the runs, up to the maximum of 12, are used to fill in the IDA at lower
levels, being sequentially placed in the middle of the largdsgaps. Thus, the large gaps left by

the initial increasing steps to the flatline (runs 2—6), are filled in; this step increases the demand
resolution and, given enough runs, it ensures that the algorithm has not missed an earlier collapse.
Although it is a rare phenomenon in multi-degree-of-freedom structural models, certain records
may cause them to collapse for a rangdMf-values, but not for some highé¥l, an event we

call structural resurrectior{Vamvatsikos and Corne20023. By reducing théM -gaps with runs

9-12, we are making sure that we have not missed such an earlidf @ierms) global collapse

and the flatline we have found is the first one to occur.

Notice that the maximurfii -gap, i.e., the demand resolution, is about 0.13g (but less than half
on average), while th#V -difference between the highest converging and lowest non-converging
run (the capacity resolution) is much less than 10% of the highest convdigingbout 0.06g.
Naturally, if we knew a priori the approximat#/ -height of the flatline, we could use a stepping
algorithm with 12 runs and constant step of 0.1g to achieve similar results with a homogeneous
distribution of the accuracy, but this scheme would fail with the next records, producing either too
few or too many runs, due to the large record-to-record variability.

Assuming that the computational cost for each run is the same, then, the more the analyses
per record, the longer for IDA to complete but the better the accuracy. Still, with the use of such
an advanced algorithm no runs are wasted, thus 12 runs per record will suffice to strike a good
compromise between speed and accuracy. Nevertheless, it may be pointed out that performing
240 dynamic runs for a model with thousands of degrees-of-freedom is a daunting task. Yet,
even for such a complicated model, it took less than 12 hours on two 1999-era Pentium-class
processors running independently. The process is completely automated and so easily performed
overnight that actually setting up the structural model can now be expected to take substantially
more (human) time than doing the analysis, while computer time is becoming an ever-cheaper
commaodity.

3.5 Postprocessing

Equally important to the analysis is the postprocessing of the resulting data and perhaps the most
important issue is selecting a suitaltdé andDM . There are several issues of efficiency and suf-
ficiency associated with thé/ selection Luco and Cornell2004). Since there are no directivity-
influenced records in our suite and the building is of medium height (hence first-mode-dominated),
the 5%-damped first-mode spectral accelerafigi;, 5%) will be our choice; it has been proven

to be both efficient, by minimizing the scatter in the results, requiring only a few ground motion
records to provide good demand and capacity estimates, and sufficient, as it provides a complete
characterization of the response without the need for magnitude or source-to-site distance infor-
mation Shome and Cornelll999. Similarly, selecting &M can be application-specific; for
example, the peak floor accelerations are correlated with contents’ damage and many types of non-
structural elements’ damage, while the maximum peak interstory drift 6atie (the maximum

over time and over all stories of the interstory drift ratios recorded during the timehistory analysis)



30 CHAPTER 3. APPLIED INCREMENTAL DYNAMIC ANALYSIS

is known to relate wellFEMA, 20003 to global dynamic instability and several structural perfor-
mance limit-states upon which we intend to focus. Therefég, will be our DM -choice. Still,

it must be emphasized that theld¢ and DM choices are by no means limiting. Assuming that
additional DM s have been recorded from the analyses, they can be substituted instiag, of

and by employing the postprocessing techniques presented, the IDA data can be expressed in a
different scalabléM , without any need to rerun the dynamic analyses.

Having selected out andDM, we are still faced with an abundance of IDA-generated data
that need to be sorted out and presented in meaningful ways. It is a time-consuming and challeng-
ing task that we are going to step our way through, but it can be rendered totally effortless with the
proper software. Actually, most of what follows is a direct description of the inner workings of
an automated postprocessing prografanivatsikos and Cornel2002h, whose graphical output
appears in the accompanying figures.

3.5.1 Generating the IDA curves by Interpolation

Once the desiredV and DM values (in our cas&,(T;,5%) and 6,4y are extracted from each
of the dynamic analyses, we are left with a set of discrete points for each record that reside in
the IM-DM plane and lie on its IDA curve, as in FiguBl By interpolating them, the entire
IDA curve can be approximated without performing additional analyses. To do so, we may use a
basic piecewise linear approximation, or the superior spline interpolation. Based on the concept of
natural, coordinate-transformed, parametric splines with a centripetal scheme for knot-selection
(Lee 1989 Farin, 1990, a realistic interpolation can be generated that accurately represents the
real IDA curve, as shown in Figurg1 for our example of record #14 in Tab&2 Having the
complete curve available, it is how possible to calculdtd values at arbitrary levels aiV,
allowing the extraction of moréM, DM ) points with a minimum of computation.
The spline comes in cubic polynomial pieces and is parameterized on a single non-negative
parametert € [0,t1]J...U[th—1,tn] , wheren is the number of convergent runs/points including
the default (0,0) point, i.en = 10+ 1 = 11 for record #14, Tabl&.2 For each value of the
parametet, and depending on the interal 1,t;] where it lies, we get two polynomials, one for
theIM (thex-variable) and one for thBM (they-variable):
3 2
{X'(t)_ax't3+bx't2+cx't+dx' teftint], i=41,...,n (3.1)
Vi(t) = ayit” + byit“ +cyit +dy;

With the help of Equation3.1) we can approximate thBM -value at arbitrary levels oV
and vice versa. All we need is to solve the appropr@te polynomial piece given the value of
x to get the parametdrand then replace at the correspondjn@) piece to get the appropriate
y-value OM), i.e.,

DM =y (x *(IM)), (3.2)
IM =x(y*(DM)), (3.3)

where the -1 superscript denotes the inverse of a function. All these operations only involve
polynomials, hence they are trivial to perform, especially if properly coded in a program.

The smooth IDA curve provided by the interpolation scheme offers much to observe. Even
for the single record depicted in FiguBl the IDA curve is not at all simple. It starts as a
straight line in the elastic range but then shows the effect of yielding and slightly “softens” at
0.3g by displaying a tangent slope less than the elastic. Subsequently, it “hardens”, having a local
slope higher that the elastic, and the building apparently responds with almost thégame
3% for Si(T1,5%) in the range of 0.35g — 0.55g. Finally, the IDA curve starts softening again,
showing ever decreasing slopes, i.e., greater ratEdbficcumulation agVl increases, reaching
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the “flatline” atS;(T1,5%) ~ 0.81g, where the structure responds with practically “infini€ayax
values and numerical non-convergence has been encountered during the analysis. That is when the
building has reached global dynamic instability, when a small increment ilMhlevel results in
unlimited increase of th®M -response.

Observing Figure.1, it becomes apparent that the relationMf (or X) andt in Equation3.1
should always be monotonically increasing. The formulation presented does not strictly enforce
this property, but a properly fitted spline will always observe this restriction. Consequently, Equa-
tion (3.2) will always return only onédOM for a given/M . On the other hand, the relation bV
andt is often non-monotonic, due to the occasional hardening of IDA curves, hence Eq@agjon (
may generate more than ol solutions that produce a giveénM .

3.5.2 Defining Limit-States on an IDA curve

In order to be able to do the performance calculations needed for PBEE, we need to define limit-
states on the IDA curves. For our case study, we chose to demonstrate three: Immediate Oc-
cupancy (l0), Collapse Prevention (CP), both define&MA (2000gb), and global dynamic
instability (Gl). For a steel moment-resisting frame with Reduced Beam Section connections, 10
is violated atBmax = 2% according td-EMA (20003. On the other hand, CP is not exceeded

on the IDA curve until the final point where the local tangent reaches 20% of the elastic slope
(Figure3.2) or Bmnax = 10%, whichever occurs first iM terms FEMA, 20003. The main idea is

to place the CP limit-state at a point where the IDA curve is softening towards the flatline but at
low enough values dfinax SO that we still trust the structural model. Finally, Gl happens when the
flatline is reached and any increase in tireresults in practically infinitddM response.

Calculating thdM -value of the flatline capacity is trivial, as our best estimate is actually some-
where between the highest numerically-converging run and the lowest non-converging one, as
produced by the hunt & fill algorithm. We choose to usefiffevalue of the highest numerically-
converging run as the estimate, e®(T1,5%) = 0.81g for record #14. We could have used, for
example, the average of the highest converging and lowest non-convergiri@.8in; 0.87) /2 =
0.84g, but the difference is negligible and gets smaller and smaller as we increase our capacity
resolution in the hunt & fill tracing algorithm.

It is equally easy to calculate tH&/ -values for the 10 limit-state; all we need to do is use
Equation 8.3) for DM = Bnax = 2%, calculate all theM -values that producémnax = 2% and,
if more than one, select the lowest. This is the one that signals the very first exceedance of the
limit-state for the given record. For our example of record #14 in Fi@u2elO is violated for
Sa(T1,5%) > 0.269 Of Omax > 2%.

On the other hand, the CP points are harder to generate, as we need the tangent slope (i.e.,
the first-order derivative) of the IDA curve to find points where the local stiffness is 20% of the
elastic. We also need the curvature of the IDA curve, to discard candidate points that lie on a
hardening part of the curve, rather than the desired softening. The cubic spline interpolation is by
definition twice differentiable everywhere, so if we use the prime to denote differentiation by the
interpolation-parameterand apply the chain-rule, we can generate the first two derivativég of
(or x) givenDM (ory):

dx x’
d2X x”y’ _y//X/
Y v

According to the CP limit-state concept, we need to find the highesgW#value) point where
the IDA slope is equal to 20% of the elastic while the point also belongs to a softening branch.
Additionally, another candidate point is 8t.x = 10% therefore whichever comes first (i),
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the slope or théax limit, decides capacity. Hence, we specify:

00 & (3.6)
dy | dyli_o

d?x

2|, <0 (3.7)
t =y 1(10%), (3.8)

All we need to do is solve for atl satisfying Equation3.6) and select the maximum sutlgcor-
responding to the maximuriM) that still satisfies Equatior3(7). Then, we compare against
the minimumt that satisfies3.8). Whichever is the smallest is thehat defines the CP point.
Following this procedure with record #14 we g&(T1,5%) = 0.72g, Bmax = 6.4% from Equa-
tions 3.6)—(3.7), andS,(T1,5%) = 0.769, Bmax = 10%from (3.8). By choosing the smallestor
equivalently the smallesM , we end up with the first of the two points, i.e., in this case the slope
limit defines CP (Figur&.2).

3.5.3 Summarizing the IDAs

By generating the IDA curve for each record and subsequently defining the limit-state capacities,
a large amount of data can be gathered, only part of which is seen in Bgur€here, the IDA

curves display a wide range of behavior, showing large record-to-record variability, thus making

it essential to summarize such data and quantify the randomness introduced by the records. We
need to employ appropriate summarization techniques that will reduce this data to the distribution
of DM givenIM and to the probability of exceeding any specific limit-state giventthdevel.

The limit-state capacities can be easily summarized into some central value (e.g., the mean or
the median) and a measure of dispersion (e.g., the standard deviation, or the difference between
two fractiles). Consequently, we have chosen to calculate the 16%, 50% and 84% fractile values of
DM (DMZey,, DM<y, and DM, respectively) andM (IM $go,, IMSoq, andIM§ o, respectively)
for each limit-state, as shown in Tal#e3, and also graphically depicted in Figused. For ex-
ample, reading off Tabl8.3, at S;(T;,5%) = 0.83g or equivalently abnax = 0.10, 50% of the
ground motion records have forced the 9-story structure to violate CP.

Table 3.3: Summarized capacities for each limit-state.

Sa(TL 5%) (g) emax
IMlCG% IMEO% IM§4% DMfG% DMSCO% DM§4%
10 0.18 0.27 0.33 0.02 0.02 0.02
CP 0.57 0.83 1.29 0.07 0.10 0.10
Gl 0.74 0.91 1.35 +00 +00 -0

There are several methods to summarize the IDA curves, but the cross-sectional fractiles are
arguably the most flexible and robust with respect to the infibités introduced by the flatlines
(Vamvatsikos and Cornel20023. Using the spline interpolation we can generate stripd3idf
values at arbitrary levels of th ; each stripe contains twenfyM -values, one for each record,
that may be finite or even infinite when a record has already reached its flatline at @aVbverel.

By summarizing theddM -values for each stripe into their 16%, 50% and 84% percentiles, we get
fractile values oDM givenIM that are in turn interpolated for each fractile to generate the 16%,
50% and 84% fractile IDA curves, shown in Figusel. For example, givers,(T1,5%) = 0.4g,

16% of the records produd®,ax < 2.3%, 50% of the record€max < 2.5% and 84%6yax < 6.5%.

Under suitable assumptions of continuity and monotonicity of the IDA curves (as shown at a
later section), the fractiles can also be used in the inverse way, e.g., in order to generate demand
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Bmax = 4%, 84% of the records need to be scaled at le8g(3;,5%) > 0.31g, 50% of the records

at $3(T1,5%) > 0.52g and 16% af,(T1,5%) > 0.76g. Consequently, the 16%, 50% and 84% IO
points and Gl flatlines actually reside on the 84%, 50% and 16% IDA curves respectively, a direct
result of the definition of these limit-states. On the other hand, no such general property exists for
the CP points, but experience has shown that they usually lie quite close and often on top of their
corresponding fractile IDAs, just like the other limit-state points.

-1

10 7 T T T T

mean annual frequency of exceedance

"first-mode" spectral acceleration Sa(Tl,S%) @)

Figure 3.5: Hazard curve for the Van Nuys Los Angeles site, $9(2.37s,5%).

3.5.4 PBEE calculations

One of the goals of PBEE is producing MAFs of exceedance for the limit-states. This can be
easily accomplished with the summarized results that have been calculated so far, especially if one
considers the formats proposed by SAC/FEMZMA, 20003gb) or by the Pacific Earthquake
Engineering Research Centé&drnell and Krawinkler2000. The process invariably involves
calculating the MAF of exceeding values of the cho#dn readily available fofS;(T1,5%) from
conventional PSHA, and appropriately integrating with the conditional probabilities of exceed-
ing each limit-state (given thBV or DM level) to produce the desired MAFs of limit-state ex-
ceedance. ltis a relatively straightforward method that has been described in extent, for example,
by Cornell et al.(2002.

Here we will perform such calculations using a form of the framing equation adopted by the
Pacific Earthquake Engineering Research Ceerriell and Krawinkler200Q Vamvatsikos and
Cornell 20023,

A(DV)://G(DV\DM) 1dG(DM |IM)] [dA (IM)| (3.9)

To simplify the above equation and the ones to follow, we will looselyAgé), F(X) andG(X)
to denote the MAF function, cumulative distribution function (CDF) and the complementary CDF
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(CCDF), respectively, of their arguments. For examplgX) actually mean3x(x) and is a dif-
ferent function fromA (Y) = Ay(y).

In this paper we have generally us®dT;, 5%) for the IM and6ynaxasDM for the limit-states
of interest. The decision variablBV, here is simply a scalar “indicator variableV = 1 if the
limit-state is exceeded (and zero otherwis&}IM ) = Ay (x) is the conventional hazard curve,
i.e., the MAF ofIM exceeding, say. |dG(DM |IM )| is the differential of the (conditional) CCDF
of DM givenIM, or fppm(y[X) dy, i.e., it is the probabilistic characterization of the distribution
of DM givenIM , offered by the fractile IDAs. Finally in the limit-state (LS) case, when on the left-
hand side of EquatiorB(9) we seek the MAF of exceeding the limit-stadé DV=1) = A (0) = A.s
andG(0|DM) becomes simply the probability that the capaéiyl € is less than some level of the
DM; soG(0|DM) = F(DM€|DM), whereF (DM°¢|DM) is the CDF of DM€, i.e., the statistical
characterization of th®M -value of capacity, as offered, e.g., by the fractile®M -capacity.

Thus, for our purposes, we can modify EquatiBrdf to become:

ALS://G(oyDM) IdG(DM|IM)] [dA (IM))|

DM= -+ M=+ | dG(DM |IM )| |dA (IM)
- C
= M0 F(DM |DM){/IM—O dDM dM dIM}dDM
DM=+4o d/\ (DM)
_ C R
= [ FOM |DM)‘ — ‘dDM (3.10)

where the integration ovdM in the braces needs to be carried out either numerically or by an
appropriate analytic approximatio@g¢rnell et al, 2002 to produce the absolute value of tbé/
hazard gradiendA (DM)/dDM |. Then we can proceed to integrate oV and estimaté, s.

If, on the other hand, we first integrate-out &1, then we can rewrite the above equation to use
the IM -value of capacity:

)\LS:/G(O\IM) 1dA (IM)]

IM=+
= F(IMC|IM) ‘
IM=0

dA(IM)
dim

' diM (3.11)

where the quantity in the absolute value is the hazard gradient anél(IM €|IM ) is the CDF of
the IM -value of limit-state capacity. In this case, all quantities in Equatiohlj are known, and
only one integration is needed to calculate.

We can proceed to the MAF calculations using either Bidd-form (Equation3.10 or the
pureIM -form (Equation3.11). There are several issues of compatibility with current guidelines
(e.g.,FEMA, 20004 that may dictate the use of tifisVl -approach, otherwise thH#f -form is more
attractive, as it needs only one integration rather than two; hence, it will be our method of choice.
Still, it must be emphasized that either of the two approaches should provide the exact same
results if the integrations are performed with sufficient accuracy (seeJalager and Cornell
2002. These are just two ways to the same goal, and the choice lies with the user.

The MAF calculations for any of the two approaches can be carried out either numerically or
with an analytical approximation. If a high degree of accuracy is desired, a trapezoidal rule can
be employed to directly integrate Equatidh1). All we need to do is assigh/20 probability
to each of the 20 records, then derive the empirical CDF otth&alue of capacity and numeri-
cally integrate with values of the hazard curve slope, calculated either by differentiating a smooth
interpolation or by simply reading them off Figues. On the other hand, if we make some rea-
sonable approximations, Equatidh1l) can be analytically integrate@fiome and Cornell 999
Cornell et al, 2002. We only need to assume that thié -values of capacity are lognormally dis-
tributed and then approximate tie -hazard curve by fitting a straight line in the log-log space,
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A(IM) = koIM X, either by a global regression, same for all limit-states, or by a local fit at the
median/M -capacity for each limit-state. Then we arrive at the equation

1
ALs = A (IMgg) 'eXp<2<k'S|nIM°)2) (3.12)

where §pmec = (InIMgo%—InIMf6%) is (approximately) the standard deviation of the natural
logarithm of thelM -capacity.

Table 3.4: MAFs of exceedance for each limit-state, calculated both numerically from Equatitiy &nd
with the approximate analytical forn3(2), using either a global or a local fit to ttikf -hazard curve.

10 CP Gl

numerical 0.019 0.0004 0.00010
analytical (global fit) 0.017 0.0002 0.00003
analytical (local fity 0.008 0.0005 0.00040

As an example, the MAFs of exceeding each of the three limit-states (10, CP and GI) were
calculated using both the approximate analytic approach (with either the global or the local fit
to the hazard curve) and the “exact” numerical integration (Tabfe In general, it seems that
by approximating the hazard curve with a global fit, the MAFs are consistently underestimated.
On the other hand, the local fit seems to cause overestimation for all limit-states but 10. The
approximations may sometimes miss the MAFs by a factor of three or get as close as 10%. Still, the
large record-to-record variability coupled with the limited size of our suite of twenty records may
generate considerable standard errors around these estimates, possibly making the approximate
results statistically indistinguishable from the exact MAF for some limit-states. This is an issue
that is going to be investigated in a later section.

3.5.5 Taking advantage of the data: SPO versus IDA

Beyond the essential calculations needed for PBEE, there is much more information that we could
easily glean out of the IDA by taking a closer look at the results and plotting them in new ways.
For example, Figur8.6 displays a story-to-story profile of the median peak interstory drift ratios

at severab,(T1,5%)-levels. As the intensity increases, then, in a median sense across all records,
the fifth floor seems to accumulate most of the deformation. On the other hand, in Bigtie
individual story drift IDA curves are plotted for record #1, showing a record-specific picture of
the odd-numbered stories. Most interesting for this record is the sudden change of behavior that
occurs arouné; (T, 5%) = 0.82g, when the top floors suddenly start accumulating more and more
deformation agM increases, while the previously leading lower floors are held back, displaying
almost constant peak interstory drifts.

It is also very informative to visually compare on the same figure the Static Pushover (SPO)
curve (also known as the Nonlinear Static Procedure curve FEYIA, 1997) versus the median
(50%-fractile) IDA. Since the SPO curve usually comes in base shear \@gsugpeak roof drift
ratio) coordinates, it needs to be transformed iIMoandDM axes. In our case, théy,,x response
can be easily extracted from the SPO analysis results, while the base shear can be converted to
acceleration units by dividing with the building mass times some (ad hoc) factor chosen to make
the curves match in their elastic range. This can be achieved for our structure by dividing the base
shear with 85% of the total building mass (which is very close to the ratio of the first modal over
the total mass). By thus plotting the two curves together, as pictured in R3ggjreve see that
they correspond to each other. The elastic region of the IDA matches the SPO by construction,
and the post-yield non-negative SPO segment corresponds to a continuation of the elastic region
in the IDA, where the IDA is following the familiar “equal displacement” rule for moderate period
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structures Veletsos and Newmarki960. When the SPO turns into a negative slope, the IDA
softens and acquires a local slope less than the initial elastic, that gradually decreases till the IDA
becomes flat. Essentially, the ending of the SPO at zero strength signals the end of the IDA by the
flatline.
The question then arises as to why this relationship exists. Some light can be shed on this
issue if we simplify the problem and think in terms of a single-degree-of-freedom system with
a force-deformation backbone that has the shape of the building’s SPO curve. Then we need to
realize that in terms of dynamics, where the IDA is concerned, an ascending part of the “back-
bone” generally means a “dynamically stable” part while a descending branch corresponds to a
“dynamically unstable” part (e.gMacrae and Kawashima997). For each dynamic run th8,ax
value serves as an indicator of whether the building has remained completely in the ascending
parts (approximatel¥nax < 5% in Figure3.8) or it has ventured into the descending branch as
well. So, for lowerIM s, approximatelyg,(T1,5%) < 0.6 g in Figure3.8, the building (in a me-
dian sense, i.e., for at least 50% of the records) oscillates along the ascending part of its “SPO
backbone” thus the increase f,.« is controlled and stable in the median. But for higihers
the building (in a median sense again) also sustains more and more cycles in the descending part
of the “SPO backbone”, thus the mediéq.x increases uncontrollably towards infinity. This can
help us understand why the behavior of the median IDA changes so drastically when the median
Bmax is higher than 5%, as it shifts from an ascending to a descending branch. On the contrary,
the median IDA remains virtually indifferent when this moderate period structure passes from the
elastic part to the non-negative post-yield segment of the SPO, since both are ascending branches.
Observing these facts, one could stipulate that some more direct, perhaps quantitative rules
may be devised to connect the two curves. Actually, one such attempt has been tried out both for
single Yamvatsikos and Corngl20049 and multi-degree-of-freedom systenv&nvatsikos and
Cornell 20048 with encouraging results.



40 CHAPTER 3. APPLIED INCREMENTAL DYNAMIC ANALYSIS

3.6 Discussion of choices and their influence on IDA

We took the reader through a direct, hands-on example of how to perform IDA and apply it for the
purposes of PBEE. At each step we had to make some choices, e.g., how to set up the dynamic
analysis algorithm, what tracing algorithm and interpolation scheme to use, how to summarize the
IDAs (using stripes given th#V instead of stripes given thBM) or how many records and how

many runs per record to allow. Still, we chose not to focus on such details; instead we proceeded by
making seemingly ad hoc choices. Now, armed with the knowledge of the complete IDA process,
we can discuss such choices, explain the reasons behind them and understand their influence to
the final results.

3.6.1 Numerical convergence

The details of the analysis and the structural model play an important role in generating accu-
rate IDA curves. Especially in the region of global dynamic instability, the very existence of the
flatline and the associated numerical non-convergence may often generate several accuracy prob-
lems. Ideally, the structural model would be composed of (numerically) robust and well-tested
elements, while the dynamic analysis algorithm should be able to accurately track the structural
response through, e.g., yielding events, sharp strength drops, load redistribution and geometric
nonlinearities; it would fail to converge only when the structure has exhausted its reserves to be-
come dynamically unstable, thus correctly matching global dynamic instability with numerical
non-convergence. Unfortunately, most algorithms and element models have not really been de-
signed or tested to operate in such extreme ranges of behavior. As a result, some records may
cause a premature non-convergence, creating a characteristic halting of the IDA curve which does
not resemble a flatline.

All the flatlines in our model normally occur beyoithax = 12% (Figure 3.3), meaning that
the model can remain stable at least up to sigh-values. Still, in our initial attempt to trace the
IDA curves, two of the twenty records failed prematurelyBaty ~ 2%, barely past the end-of-
elasticity value offhax ~ 1%. The main reason is the use of a large, complex model with many
degrees of freedom, plus the adoption of the fracturing connection m®kieh(d Foutch1997)
with sharp strength drops that probably tend to destabilize the solution algorithm of DRAIN-2DX
(Prakhash et §11992. Further confirmation is provided by the SPO-to-IDA connectiorfas
values in the order of 2% are still on the ascending branch of the SPO in B thus deemed
unable to cause collapse. Actually, each IDA curve should be able to behave stably at least up to
the start of the SPQO’s negative slope, at abéwiy = 7%. Still, this comparison should not be
carried too far; while the SPO ends &,.x = 37% the post-peak part of the SPO is often very
load-pattern dependent, and an arbitrary load pattern may result in very optipistialues that
do not reflect the dynamic behavidfgmvatsikos and Cornel20045.

Such illegitimate and premature collapses are thus relatively easily identified, either by looking
at the SPO or at the IDAs of other records, but how are they to be fixed? Of course, if the model or
the elements or the algorithm are deficient in the first place, the situation is hopeless. Experience
has shown that this is not the case with the well-tested DRAIN-2DX; it is more a problem of
correctly setting up the analysis parameters, rather than anything else. The best strategy is to
tweak the analysis knobs, e.g., reduce the integration time-step, adopt a variable-step solution
or experiment with the parameters of the event-to-event solver. In our case-study, the dynamic
analyses of the two problematic records had to be repeated at a reduced time-step, one-fourth
instead of one-half of the acceleration timehistory time-step, thus easily resolving convergence
issues. Note that after such false, premature collapses are dealt with, then further (reasonable)
changes in the parameters of the solution algorithm will make only small arbitrary changes to the
IDA results. For example, it has been found empirically that changing the integration time-step
can incur arbitrary changes of up to 10% to the flatline heights, where, surprisingly, smaller steps
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do not necessarily mean more stability (i.e., higher flatline heights). This is simply the effect of
small errors piling up on each step of the time-integration that may affect convergence when the
structure is close to the flatline, sometimes causing it to collapse a bit earlier and sometimes not.
This is the reason why when tracing each record we specified a capacity resolution of only 10%;
a better accuracy does not have much meaning in the presence of these analysis uncertainties.
Such inaccuracies remain relatively insignificant when good analysis software is used. Ac-
tually, we cannot stress enough the need for reliable, bug-free algorithms and well-tested, robust
element models. Such tools are exactly what makes the difference in such analyses, especially for
the limit-states close to global dynamic instability, and when available, with only a little attention
to the analysis details allow us to easily obtain accurate IDA curves.

3.6.2 Choice of Tracing Algorithm

When tracing the IDA curve for each record, the choice ofliielevel for each run is a decision

left to the automated tracing algorithm that we use. We have theoretically argued about the superi-
ority of the hunt & fill algorithm versus the use of a constivitstep (i.e., the stepping algorithm)

in Vamvatsikos and Corne{R0023, so it is time to see in detail what the true differences really
are when both are applied to the 9-story structure.

Before we proceed, keep in mind that given the same structural model, analysis program and
computing platform, still not all runs are equal in computational cost. In general, the closer the run
is to the flatline (either at a lower or a high& ) the longer it takes to complete the analysis. On
the other hand, both converging and non-converging runs that are far away from the flatline will
be significantly faster, as convergence or non-convergence will be achieved within a minimum of
iterations. Still, when comparing the tracing algorithms, we will assume that the intent is to trace
the whole IDA curve and a similar amount of runs will be spent both high and low in the curve
(in IM terms). Thus, looking at each record as a whole, the total amount of runs (converging and
non-converging alike) spent for it provide a very accurate idea of the computational time needed,
while the number of converging runs accurately describes the accuracy achieved.

Table 3.5: Comparing the sensitivity to parameters of the stepping versus the hunt & fill algorithm.

Algorithm Parameter (g) Total C+NE minC2 max C? average G
stepping 0.05 475 11 45 22.8
(step-size sensitivity) 0.075 318 7 30 14.9
0.1 244 5 22 11.2
0.2 128 2 11 5.4
0.3 87 1 7 3.4
hunt & fill 0.05 280 12 13 12.2
(initial-step sensitivity) 0.1 280 12 13 12.2
0.2 280 11 13 12.0
0.3 280 11 12 11.8
hunt & fill 0.025 280 11 13 12.4
(step-increment sensitivity) 0.05 280 12 13 12.2
0.1 280 11 13 12.0
0.2 280 11 13 11.9

1 Converging and non-converging runs for all records 2 Converging runs per record

The most important task that a user faces when applying either of the two algorithms is setting
up their parameters correctly. For the stepping algorithm, the only parameter is the step size, while
for the hunt & fill the most important ones are the initial step, the step increment and the allowed
number of runs per record. Both algorithms were used to trace the IDAs of the 9-story structure for
the suite of 20 records, using various settings for their parameters, the results shown iB.5able
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Obviously, changing the step size of the stepping algorithm generates huge differences in the total
number of runs. Still, if we let the minimum number of converging runs generated for any of the
20 records be our standard for accuracy, we need at least a step size of 0.05g, or 475 runs to get at
least 11 runs per record and reach the standards of hunt & fill. Also, if we do not set the stepping
size correctly, we either get too few or too many runs, the resolution easily dropping to 1 or 2
runs in the worst case, if we happen to set a step size of 0.2g or 0.3g. On the other hand, we can
change the initial step or the step increment for the hunt & fill within a wide range, increasing
them or reducing them by 2 or 4 times, and the hunting algorithm remains practically unchanged,
constantly providing at least 11 converging runs per record. In essence, it has the right knobs to
be tuned to the tolerance limits that we wish and allows us to do the runs the way we want, not the
way nature decides through the records.

Still, one may notice that if we over-increase the initial step or the step increment, then the
accuracy starts to slowly drop, as the algorithm overshoots the flatline by a lot and spends many
non-converging runs to find its way down. But still the effect is minor, not overwhelming. Notice
also that keeping both parameters relatively small seems to improve accuracy both on average and
in the minimum. Still, we should not decrease them too much because as the steps become smaller
we are risking expending all the allotted runs before reaching the flatline.

Coming back to our example, in TalbBe2, we usedS,(T1,5%) to measure théV -value for
our runs. Why not anotheM ? We could have used pretty much any monotonic and scalable
IM (Vamvatsikos and Cornel20023 that we might want, but the less efficient it is, the further
dispersed the IDA flatlines would be, and we would start having some resolution discrepancies
within tracing, i.e., a greater difference between the observed number of minimum and maximum
convergent runs per record in our suite. By using at I8k ,5%), we are assured that our algo-
rithm, be it hunt & fill or stepping, will be efficient for a wide range of conditions. If another, more
efficient IM appears that can drastically reduce the record-to-record flatline variability, then the
hunt & fill would only marginally benefit, but the stepping algorithm would significantly improve.

In conclusion, the hunt & fill procedure desensitizes IDA from M#eselection and the setting of

the algorithm’s parameters, easily achieving the desired resolution, in contrast to the very sensitive
stepping algorithm. Additionally, it fixes the number of total runs performed, so we can plan ahead
and assign enough computers to run in parallel so the IDA is computed in time.

3.6.3 Interpolation issues

By interpolating the discrete points to generate each record’s IDA curve we are gaining one enor-
mous advantage: we do not need to have our runs in stripes of the/bésiexel. The conse-
guences are very important. First, this allows us to use the hunt & fill algorithm instead of the
stepping one, thus gaining in all the aspects described previously. Second, it allows us to express
the IDA results in anyM . All we need is to calculate the nelM for each run, re-plot the IDA
curves and re-interpolate versus the né. In this way, IDA becomes truly independent of the

IM used for tracing, allowing us to reuse the same data again and again, without needing to run
any more analyses.

But why use complex spline schemes instead of the simpler linear interpolation? In Hdures
and3.1Q we present a comparison of the linear and the spline interpolation scheme, pitted against
each other for a given number of converging runs. We have tweaked the hunt & fill tracing so that
in all cases the flatline is accurately reached with the same number of runs, and then the algorithm
is allowed to fill in the gaps using up to a total of 4, 6, 8 or 18 runs. Unless we are only interested
in the flatline, 4 converging runs are just too few to capture the IDA adequately, regardless of the
interpolation scheme used. Clever postprocessing cannot make up for gross data gaps. On the
other hand, if we allow only 2 more runs, for a total of 6, the results are markedly better, but only
if we are using a spline scheme. Had we used 6 linearly interpolated runs we would be grossly
underestimating the CP limit-state capacity, finding a capacity point atQfily, 5%) = 0.63g,
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Bmax = 4% instead of the correct 0.72g and 6.4%. At 8 and 18 runs, the spline interpolations are
practically indistinguishable, while the linear ones are close enough but still can be told apart. In
conclusion, if we allow enough runs, the interpolation scheme doesn't really matter, both schemes
will provide good results. On the other hand, if we use too few runs, it doesn’t really matter again
because both schemes are going to give us bad results. But there is a gray area in between, where
using a better and smarter interpolation can make the difference to increase the accuracy in our
final IDA curve. In retrospect, this is precisely what gives us confidence to reduce the allotted
number of runs and save on computational resources.

3.6.4 Sensitivity of the limit-state capacities to their definition

Several limit-states were defined on the IDA curves, often through the use of ad hoc rules. For
example, the 10 limit-state was defined &ax = 2%, while the CP limit-state was based on

the arbitrary 20% fraction of the elastic slope (or stiffness) and the additinpal= 10% limit
(FEMA, 20003. On the other hand, the Gl limit-state was unambiguously defined to be on the
flatline of the IDA, being subject to no such arbitrary rules. Therefore, itis of interest to investigate
the sensitivity of the summarizdt¥ , DM capacities to these choices, both for the 10 and the CP
limit-state.

For the IO limit-state, the simplicity of the definition makes it easy to understand what is
happening. If we look at Figuré.4, it is obvious that IO is occurring in the “equal displacement”
region of the fractile IDASs, i.e., the fractiles are almost straight lines resembling a continuation of
the elastic segment. In turn, this means that moderate changes to the defining value for 10, i.e.,
from Bmax = 2%to 1% or 3% will proportionately increase or decreaselieand DM values of
capacity.

On the other hand, the definition of the CP limit-state is quite more complicated. The elas-
tic stiffness fraction controls how much the IDA has to soften, i.e., how close to the flatline it
can come, before CP is reached. Hence, increasing this fraction will force the CP points (e.g.,
Figure 3.3) to move to lowerIMs andDMs. The influence of th@y,.x = 10% limit is more
straightforward. It enforces a rigid limit on the capacity points, restricting@hg value they
can reach, i.e., it is another way to restrict the CP points from coming close to the flatline. Ac-
tually, in our case of the 9-story building, FiguBe3, it becomes obvious that by changing the
Bmax = 10%limit to, say, 8% or 12%, théM -value of capacity will only slightly change, but the
DM -value will be highly influenced, the 50% and 8494.x capacities actually becoming 8% or
12% respectively.

To show the combined influence of the two rules on the CP limit-state, the fraction of the
elastic stiffness has been varied from 10% to 60% and the resulting fragtiig 5%), Omax ca-
pacities have been plotted, both when éigx = 10%rule is imposed (Figur8.11(b) and when
it is not (Figure3.11(a). In the latter case, thiM capacity becomes relatively sensitive, almost
linearly, to the elastic stiffness fraction. TiBV capacity is even more sensitive, decreasing in
a geometric fashion as the fraction increases. This makes absolute sense given the shape of the
IDAs (Figure 3.3); close to global collapse, each IDA softens towards the flatline, hence, as the
slope-fraction decreases, the @R capacity approaches the flatlii&f -height. On the other
hand, theDM capacity is destabilized by the same flattening, since by definition, in the vicinity of
the flatline, small changes in the elastic stiffness fraction result to large changedfftivalue.

If we include thebyax = 10% limit, as in Figure3.11(b) both the/M and especially the
DM capacity are stabilized, as this hard upper limit simply cuts off all higher values. Further-
more, this limit seems to drastically reduce D&/ -capacity dispersion, at all levels of the elastic
stiffness fraction. Obviously, several records now have the same CP limiti3tdteapacity,
namelyBnax = 10% Therefore, the 10% limit makes the CP capacity more stable, but no less
arbitrary, as théax = 10% limit is often the governing rule. Actually, looking at the tables in
FEMA (2000ab) it becomes obvious that 10% is often the quoted me@jap-capacity for all
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but the tallest buildings. Is, then, this arbitrarily impo$iadyx = 10%a problem? From an MAF-
sensitivity point-of-view, the answer is negative. In Equatiohl it becomes apparent that it is
only theIM -value of capacity that truly matters. As we have observed, at least for this structure,
the IM -value of CP-capacity is only mildly sensitive to the definition of the rules, thus yielding
similarly mildly sensitive MAFs. Even if the calculation is done using W& -form in Equa-
tion (3.10, assuming that the integrations are accurately performed, the conclusions will still be
the same.

There are also several other details and corresponding sensitivity issues in the implementation
of the CP limit-state definition, that may or may not make a difference. For exampleniat al.
(2002 the 20% fraction is applied to the median elastic stiffness of all records and the resulting
reduced stiffness is used for the capacity point estimation. On the other hand, we have used the
20% fraction on the elastic stiffness of each individual record to define its CP capacity. In this case,
the summarized capacities show negligible difference between the two approaches. On the other
hand, inYun et al.(2002 CP is defined to occur at the first point where the IDA curve softens
to 20% of the (median) elastic slope, while we use the last point where it reaches the reduced
stiffness. This may make a large difference for some records that alternatively harden and soften
before global collapse, and may be interpreted as another sign of sensitivity to the CP definition.
Still, for reasons explained Mamvatsikos and Corne{P0023, we believe it is more consistent
with the CP limit-state concept to use the last rather than the first such point, thus resolving this
problem.
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Figure 3.12: Summarization into fractiles dM given DM versus fractiles oDM givenIM .

3.6.5 Summarization givenlM or DM

When summarizing the IDA curves, we decided to use stripgg\dfgiven levels of/M , instead
of stripes ofIM given DM. It often becomes an issue in the literature (eMirandg 20010),
whether one should summarize givih or DM. The first approach can be thought of providing
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records are No0.18,5,19,6,9,10,13 from the highest to the |aWEsit Bmax = 4%.

the distribution of deman®M that a given level of intensityM can generate in the structure,
while the latter is the distribution of intensitiés! that are required to produce a given level of
damageDM. Clearly, if we use the mean and standard deviation to summarize such stripes, the
results will be very different between the two approaches (Miganda 2001). When fractiles
are employed, though, this is not so; as shown in Figui&, the 16%, 50% and 84% fractiles
givenIM (Si(T1,5%)) almost perfectly match the 84%, 50% and 16% fractiles respectively, given
DM (6Gmax)-

The reasons behind this surprising fact become apparent in F3gL8e There, we have se-
lected a subset of only seven records and have generated a (vertical) sttype givenDM =
Brnax = 4%. The median falls on the fourth, the middle of the seven curves, and is estimated to
be S,(T1,5%) = 0.53g (represented by a star). A (horizontal) stripe giVhis generated at this
precise level and, remarkably, the medi2a given S;(T1,5%) = 0.53g is found to lie on the
same IDA curve, right at the star, 8.« = 4%. To better illustrate this, we use white dots for IDA
crossings on the left of the horizontal stripe and on the top of the vertical, but black dots at the
bottom of the vertical or to the right of the horizontal. Local continuity and monotonicity assure
that any IDA curve can only have two dots of the same color, i.e., each IDA curve will remain on
the same side of the median curve.

Of course, it often happens that IDA curves are neither continuous, nor monotonic as due to
hardening increasel/ s may sometimes produce lower or the sabid-response (Figurs.1).
But even then, significant discrepancies (e.g., serious hardening in several curves at the same
time) must occur to influence the robust fractiles, thus only slightly disturbing the matching of the
fractiles givenDM and given/M , and only in isolated places.

Why then are the 50% and 84% flatlines in FigGr&2 not exactly matching? In the case
of the seven curves in Figu&13 the median is conveniently falling right on the fourth of the
seven curves. Since in FiguBl12 a sample of 20 records is used, none of the three fractiles
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matches one of 20 curves. In that case, there are several ways to approximate the fractiles, and
the one that we use involves linear interpolation between the closest two curves. For example, for
20 records, the median is calculated as the average of the 10th and the 11th record, as ordered
on the relevant stripe. Obviously such interpolation generates different results/igivenDM .

This problem becomes more apparent close to the flatline, where for summarizatiobyivere

always have finite values @M to interpolate, while for the summarization givév , one of the

closest two records produces infinii/ (which cannot be used for interpolation). If we use a
larger sample, such discrepancies are reduced and eventually eliminated. Similarly, we could use
another method to approximate the fractiles, e.g., select the lower of the two points that we use
for the interpolation and similarly eliminate the problem. In any case, given the record-to-record
variability, the fractiles are close enough and increasing the sample size they will actually converge
to the same curves, no matter what method we use to estimate them.

3.6.6 Sensitivity to the record suite size

The IDA curves display significant record-to-record variability, as becomes obvious in Bigure

It is only natural to investigate the accuracy of the results given the limited sample size of twenty
records. Traditional analytical forms are difficult to implement for the fractiles or the MAFs, hence
we turn to the bootstrap methoBfton and Tibshirani1993 to fill this gap. Application of the
bootstrap involves sampling with replacement from the twenty records to generate an arbitrary
number of alternate record suites and a corresponding humber of summarized capacities or MAF
estimates. From such samples of estimates, one can easily calculate the standard error or confi-
dence intervals of the desired coverage (e.g., percentile bootstrap confidence intervals) for both
fractile IM, DM capacities and MAFs.

Table 3.6: MedianIM and DM capacities for each limit-state, shown versus the bootstrapped standard
error and the 90% confidence interval on the median estimate.

SH(TLS%) (9) Bmax
IMSo, SE'  90% CP DM&y,, SE'  90% CP
IO 0.27 0.02 [0.24,0.30] 0.02 - -
CP 083 0.14 [0.72,1.13] 0.10  0.004 [0.09, 0.10]
Gl 091 0.17 [0.75,1.20] +00 - -

1 Standard Error 2 Confidence Interval

The bootstrap estimate of the standard error, plus a 90% bootstrap confidence interval on the
median/M and DM limit-state capacities appear on Taldé. It becomes obvious that using
only 20 records provides a relatively accurate estimate of the capacity values for this structure;
the median/M capacities show very small dispersion that predictably increases for limit-states
closer to global dynamic instability. We should expect comparable, albeit higher, standard errors
(and wider confidence intervals) for the 16% and 84% fractiles, as they are closer to the edges
of the sample and thus relatively more variable. On the other hand, the frAdtileapacities
have practically negligible standard error. In the case of 10 and GlI, this is a direct result of their
definition, as they both lie at fixed values@f.x (2% and+ respectively). Similarly, the median
DM capacity for CP is almost always dominated by fhgx = 10%r ule, drastically reducing its
dispersion. Again, this difference in the standard errors does not imply that usibtMheased
form (Equation3.10 instead of theM -based (EquatioB.11), will result in higher confidence
(less dispersion) in the MAFs estimate. The results should be identical even in this aspect when
using any of the two approaches.

The influence of the number of records becomes more apparent if we realize that the standard
error of the mean estimate (and approximately of the median as well) tends to fall of with a rate of
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Table 3.7: MAFs for each limit-state, calculated both numerically and with the approximate analytical form
(global or local fit). The bootstrapped standard error and 90% confidence interval on the MAF estimate are
also presented. Additionally, we test the hypothesis that the approximats equal to the exact at the

95% confidence level.

limit-state  method ALs SE 90% CP “equal” to exact?

10 exact 0.019 0.011 [0.007, 0.04]
global 0.017 >1000 [0.005, 0.33] yes
local  0.008 2.5 [0.004, 0.04] yes

CP exact 0.0004 0.0002 [0.0002, 0.0009]
global  0.0002 0.0008  [0.0001, 0.0004] yes
local  0.0005 >1000  [0.0001,0.7] yes

Gl exact 0.0001 0.00007 [0.0001, 0.0003]
global  0.00003 0.00006 [0.00001, 0.00002] yes
local  0.0004 >1000  [0.00003, 160] yes

1 Standard Error 2 Confidence Interval

1/,/n wheren is the number of records (e.@®enjamin and Cornelll970. Hence, quadrupling
the number of records to use a totalhof 80, results in only half the dispersion, while decreasing
it by a factor of four, to use onlg = 5, will (approximately) double the dispersion.

How do the standard errors in the fractile capacities translate to the estimates of the MAFs?
By applying the bootstrap to both the “exact” numerical (EquaBatl) and the approximate
analytic form (Equatior8.12 with either a local or a global fit to the hazard curve, we get the
results shown in Tabl8.7. As seen from the “exact” results, the limited sample of 20 records
causes standard errors in the order of 50% in the estimates af ¢hfor all limit-states. On
the other hand, the approximation through Equati®i? considerably increases the standard
error; in some cases it is in the order of 200% but sometimes the approximation totally fails and
considerably overestimates the MAF. For the 1O limit-state, it is the approximation with a global
fit that may be destabilized, while at the CP and Gl limit-state, it is the local fit that may become
highly inaccurate. What happens is that individual bootstrap samples violate the assumptions
needed to derive Equatio.(2; in some cases thBV -capacities are not nearly lognormally
distributed and in other cases either the global or the local fit fail to capture the shape of the hazard
curve.

The bootstrap also offers us a way to investigate the accuracy of the approximate versus the
“exact” calculation of the MAFs, given that we have only used 20 records. By bootstrapping
the difference of the “exact” minus the approximate MAFs, a 95% confidence interval can be
generated for each limit-state. If the interval contains zero, then, at the 95% confidence level,
we cannot reject the hypothesis that the analytical and the numerical method produce the same
results. As seen in Tabl&7, given the record-to-record variability and the limited sample size,
the approximate results cannot be distinguished from the exact ones for any limit-state. In general,
as long as we take care not to violate the stated assumptions, Equafidnwill provide good
estimates.

3.7 Conclusions

The step-by-step practical application of Incremental Dynamic Analysis has been demonstrated
for a 9-story steel moment-resisting frame. By using publicly available software it has become
almost trivial to perform the analysis, interpolate the IDA curves, estimate limit-state capacities
and summarize the results into a format that can be easily integrated with modern PBEE frame-
works. IDA offers a complete methodology to handle the abundant data from numerous analyses
and extract useful conclusions. Still, the attention to detail is important: How many records, how
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many runs per record, how well interpolated, the use of approximations, are just some of the is-
sues that can make a difference in the accuracy of the final IDA results. The methods that have
been presented are designed to strike a favorable compromise between speed and accuracy and
thus resolve such issues. Perhaps, the single most important thing to remember is the wealth of
information that can be found in IDA if only we take advantage of ever-cheaper computing power
and automated methods to investigate the structure’s behavior.
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Chapter

Direct Estimation of the Seismic Demand
and Capacity of Oscillators with
Multi-Linear Static Pushovers through
Incremental Dynamic Analysis

Vamvatsikos, D. and Cornell, C. A. (2003larthquake Engineering and Structural Dynam-
ics, (in preparation).

4.1 Abstract

SPO2IDA is introduced, a new software tool that is capable of practically instantaneously recreat-
ing the seismic behavior of oscillators with complex multi-linear backbones at almost any period.
Essentially, it provides a direct connection between the Static Pushover (SPO) curve and the results
of Incremental Dynamic Analysis (IDA), a computer-intensive procedure that offers thorough (de-
mand and capacity) prediction capability by using a series of nonlinear dynamic analyses under a
suitably scaled suite of ground motion records. To achieve this, the seismic behavior of numer-
ous single-degree-of-freedom (SDOF) systems is investigated through IDA. The oscillators are
of moderate period with pinching hysteresis and feature backbones ranging from simple bilinear
to complex quadrilinear with an elastic, a hardening and a negative-stiffness segment plus a final
residual plateau that terminates with a drop to zero strength. The results of the analysis are sum-
marized into their 16%, 50% and 84% fractile IDA curves. By appropriately reducing the fractile
IDAs down to a few parameters and finding the simplest backbones that can mimic the seismic
performance of more complex ones, we introduce a unique and efficient way to treat the backbone
shape. The vast economies that are realized in the number of backbones to be investigated allow
us an easy extension to the all-periods pinching model, opening the way to similar extensions
designed to cover other aspects of SDOF systems. The final product is SPO2IDA, an accurate,
spreadsheet-level tool for Performance-Based Earthquake Engineering that is freely available on
the internet. It offers effectively instantaneous estimation of demands and limit-state capacities,
in addition to conventional strength reductiBifactors and inelastic displacement ratios, for any
SDOF system whose SPO curve can be approximated by such a quadrilinear backbone.

4.2 Introduction

Of great interest in Performance-Based Earthquake Engineering (PBEE) is the accurate estimation
of the seismic demand and capacity of structures. To accomplish the task several important meth-
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ods have emerged, a promising one being Incremental Dynamic Analysis (IDA), a parametric anal-
ysis method that estimates seismic demand and capacity by subjecting the structural model to sev-
eral ground motion records, each scaled to multiple levels of intengyyatsikos and Cornell

20023. Still, the need for simplified methods for professional practice remains, and the rational
choice has often been the use of results stemming from the dynamic analysis of single-degree-of-
freedom (SDOF) approximations to the multi-degree-of-freedom (MDOF) structural model. Such
methods often use an oscillator with a backbone curve that mimics the Static Pushover (SPO, also
known as Nonlinear Static Procedure) curve of the MDOF structure FEHIA, 1997). However,

most systematic demand research efforts have not progressed further than using an oscillator with
a bilinear backbone, allowing only for either positivéassar and Krawinklerl991; Lee et al,

1999 or negative Al-Sulaimani and Roessett 985 post-yield stiffness or, still more simply,
elastic perfectly-plastic behavioR{ddell and Newmark1979 Newmark and HaJl1982 Vidic

et al, 1994 Mirandg 2000, while few, if any, attempts have been made to quantify its dynamic,
global-instability collapse capacity (e.gcfEMA, 2000g. As an extension to existing procedures,

it is only natural to apply the IDA method to SDOF systems featuring a variety of backbones and

to attempt to quantify the resulting demands and capacities in a handful of comparatively simple
empirical equations.
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Figure 4.1: The backbone to be investigated and its five controlling parameters.

4.3 Methodology

To study the influence of the SPO curve on the dynamic behavior, we have chosen a piecewise
linear backbone that is composed of up to four segments (FiglixeA full quadrilinear backbone

starts elastically, yields at ductility = 1 and hardens at a slopg € [0,1), then at ductilityu. €

(1,+o0) turns negative at a slogg € [—,0), butis revived apy = e+ (1—r+ (Uc—1)an)/|ac|

by a residual plateau of height [0, 1], only to fracture and drop to zero strengttuate [1, +).

By suitably varying the five parametera,, L, ac, r and us, almost any (bilinear, trilinear or
quadrilinear) shape of the SPO curve may easily be matched.

To fully investigate the dynamic behavior of a single SDOF model, we will use IDA for a
suite of thirty ground motion records (Tabdel) that have been selected to represent a scenario
earthquake; the moment magnitude is within the range of 6.5 — 6.9, they have all been recorded on
firm soil (USGS type C or B) and show no directivity effects. IDA involves performing a series
of nonlinear dynamic analyses for each record by scaling it to several levels of intensity that are
suitably selected to uncover the full range of the model's behavior: elastic, yielding, non-linear
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Table 4.1: The suite of thirty ground motion records used.
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No | Event Station 1 Soil M3 R*(km) PGA(g)
1 | Loma Prieta, 1989 Agnews State Hospital 090 CD 6.9 28.2 0.159
2 Northridge, 1994 LA, Baldwin Hills 090 BB 6.7 31.3 0.239
3 Imperial Valley, 1979 Compuertas 285 CD 65 32.6 0.147
4 | Imperial Valley, 1979 Plaster City 135 CD 6.5 317 0.05)
5 Loma Prieta, 1989 Hollister Diff. Array 255 -D 6.9 25.8 0.279
6 | San Fernando, 1971 LA, Hollywood Stor. Lot 180 CD 6.6 21.2 0.174
7 Loma Prieta, 1989 Anderson Dam Downstream 270 BD 6.9 21.4 0.244
8 Loma Prieta, 1989 Coyote Lake Dam Downstream 285 B,D 6.9 22.3 0.179
9 Imperial Valley, 1979 El Centro Array #12 140 CD 6.5 18.2 0.143
10 | Imperial Valley, 1979 Cucapah 085 CD 65 23.6 0.309
11 | Northridge, 1994 LA, Hollywood Storage FF 360 CcD 6.7 25.5 0.358
12 | Loma Prieta, 1989 Sunnyvale Colton Ave 270 CD 6.9 28.8 0.207
13 | Loma Prieta, 1989 Anderson Dam Downstream 360 BD 6.9 21.4 0.24
14 | Imperial Valley, 1979 Chihuahua 012 Cc,D 6.5 28.7 0.27
15 | Imperial Valley, 1979 El Centro Array #13 140 CD 6.5 21.9 0.117
16 | Imperial Valley, 1979 Westmoreland Fire Station 090 CD 6.5 15.1 0.074
17 | Loma Prieta, 1989 Hollister South & Pine 000 -D 6.9 28.8 0.371
18 | Loma Prieta, 1989 Sunnyvale Colton Ave 360 CD 6.9 28.8 0.209
19 | Superstition Hills, 1987  Wildlife Liquefaction Array 090 CD 6.7 24.4 0.18
20 | Imperial Valley, 1979 Chihuahua 282 Cc,D 6.5 28.7 0.254
21 | Imperial Valley, 1979 El Centro Array #13 230 CD 65 21.9 0.139
22 | Imperial Valley, 1979 Westmoreland Fire Station 180 C,D 65 15.1 0.11
23 | Loma Prieta, 1989 Halls Valley 090 Cc,C 69 31.6 0.108
24 | Loma Prieta, 1989 WAHO 000 -,D 6.9 16.9 0.37
25 | Superstition Hills, 1987  Wildlife Liquefaction Array 360 CD 6.7 24.4 0.2
26 | Imperial Valley, 1979 Compuertas 015 CD 65 32.6 0.186
27 | Imperial Valley, 1979 Plaster City 045 CD 6.5 31.7 0.04p
28 | Loma Prieta, 1989 Hollister Diff. Array 165 -D 6.9 25.8 0.269
29 | San Fernando, 1971 LA, Hollywood Stor. Lot 090 C.D 6.6 21.2 0.21
30 | Loma Prieta, 1989 WAHO 090 -D 69 16.9 0.638

1 Component

2 USGS, Geomatrix soil class

3 moment magnitude

“4closest distance to fault rupture

inelastic and finally global dynamic instability. Each dynamic analysis can be represented by at
least two scalars, an Intensity Measuid §, which corresponds to the scaling factor of the record
(e.g., the strength reduction factRre= S,(Ty,5%) /S (T1,5%), which is equal to the 5%-damped
first-mode spectral accelerati®(T1,5%) normalized by its value that causes first yield) and a
Damage Measurdj\1), which monitors the structural response of the model (e.g., peak ductility
H).

By suitably interpolating between the runs that were performed for a given record, we can plot
on theDM-IM axes an IDA curve for each record, e.g., Figdrg(a) Each curve ends with a
characteristic “flatline” which indicates that tti&\V rapidly increases towards “infinite” values
for small changes in théV, thus signalling global dynamic instability and defining the global-
collapse capacity at thidf where the IDA curve effectively becomes flat. Such “capacity points”
are visible as black dots in Figude2(a) A set of IDA curves can be summarized into 16%, 50%
and 84% cross-sectional fractile IDAs of respopsgiven the intensityR or R given i, depending
on how the cross-sections of the curves are taken, e.g., at specified leRats pf(Vamvatsikos
and Cornell 20023. Fortunately, under suitable assumptions of continuity and monotonicity, the
x%-fractile IDA Lyxos(R) (X € {16,50,84}) of u givenR, will be identical (or nearly identical if the
assumptions are slightly violatedamvatsikos and Corne20043 to the(100— x%)-fractile IDA
Ri100-x) (1) of Rgiven i as shown in Figuré.2(b) As a direct result, if we similarly summarize
the capacity points, thel00— x%) global-instability collapse capacity will always appear on the
flatline of thex%-fractile IDA of u givenR (Figure4.2(c).

By thus summarizing the fractile IDA curves, we get both a characterization of the distri-
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(c) The fractile IDAs from (b) versus the SPO curve

3
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(d) The fractile IDAs, as estimated by SPO2IDA

Figure 4.2: Generating the fractile IDA curves and capacities from dynamic analyses versus estimating
them by SPO2IDA for an SPO with, = 0.3, uc =2,a. = —-2,r =0.5, us =5.

bution of R given 4 and u given R. While the individual IDAs are highly variable and often
non-monotonic, i.e., higher valuesRfdo not necessarily correspond to higher valueg ¢fam-
vatsikos and Cornell20023, the fractiles are much smoother and empirically are found to be
almost always monotonic. They are thus suitable to be modeled with relatively simple functions.

If we choose to plot the SPO of the SDOF systenuorersusR = F /FY axes (wheré- is the
total base shear arfe¥ its value that causes first yield) we can make it appear versus the summa-
rized IDA curves on the same grap¥efmvatsikos and Cornel0023, as in Figuret.2(c) Such
a comparison shows that the SPO and the fractiles are composed of the same number of corre-
sponding and distinguishable segments. Moreover, each segment has its own nature. The elastic
segment of the SPO naturally coincides with the elastic IDA region for all three fractiles, while
the yielding and hardening of the SPO forces the 16%, 84% IDAs to branch uniformly around the
median which approximately follows the familiar “equal displacement” rule«(R) for moder-
ate (and long) periodd/letsos and Newmarl960. The SPO’s negative stiffness appears as a
characteristic flattening of all three IDAs that stops when the residual plateau is activated, causing
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the “revival” of the IDA curves towards highd®-values. Ultimately, all IDA curves submit to
the SPO fracturing, thus signaling collapse by producing a flatline (and the corresponding fractile
capacity point).

This consistent behavior makes it is possible to approximate each separate segment of the IDA
by its prominent features, e.g., the height of the flatline or the slope and intercept of a fitted line.
By examining a large enough population of SDOF systems with different shapes of the backbone,
we can track the evolution of the features of each segment, and subsequently model them as a
function of the SPO parameters. Thus, we are able to generate almost the same fractile IDAs
and capacities (within some acceptable tolerance) without needing to repeat the multiple dynamic
analyses. This set of rules and equations will be collectively called the SPO2IDA tool, a typical
example of its accuracy visible in Figude2(d)

However, the complexity of the backbone has forced us to initially limit the scope of our
investigation by choosing SDOF systems that share an identical moderately pinching hysteresis
model with no cyclic deterioratiorNassar and Krawinklerl991), having viscous damping of
¢ = 5% and a moderate period df = 0.92sec. The results will thus be a good approximation
for the moderate period range, and will provide a good basis for an extension to shorter and
longer periods. Still, the full investigation of a five-dimensional space of parameters requires
a staggering amount of dynamic analyses, especially since the parameters do not influence the
IDAs independently of each other. Nevertheless, there are several facts that allow us to reduce
the size of the problem. First, since we are measuringp#ekductility, at any given value of
u the IDA will only be influenced by the segments of the SPO backbone that appear at lesser or
equal ductilities. This would not be true if we were monitoring, say, permanent deformation. So,
in fitting the hardening branch, the negative stiffness is of no consequence, while in fitting the
negative branch, the plateau plays no part. Therefore, we can cut the problem into smaller pieces,
as we only need to investigate a bilinear elastic-hardening, a trilinear elastic-hardening-negative
but still, a full quadrilinear for the plateau. Even then, we may not have to go all the way, even
for the plateau. The idea is that some of the SPO parameters may be redundant, so their influence
can be summarized in only one or two new parameters which combine them. In effect this means
that (for the same damping and period) we are going to search for “equivalent backbones”, in the
sense that such oscillators would share very similar dynamic behavior in the region of interest, as
manifested by their displaying the same fractile IDAs.

When modeling the IDA features we will use least-squares fits of polynomials, either in the
linear or in the log-domain. To simplify the expressions to follow, we will represent linear com-
binations of function(yx,...,Yyk) of given variablesys, ..., Yk, as a sunt; by, pi (Y1, - - -, Yk).
where the appropriate functiopsand coefficient®yei (corresponding to thee-fractile) will be
provided in tables.

As a general principle, note that the relatively small number of records, the record-to-record
variability and the fitting error, combine to introduce some noise which tends to become larger
as the ductility response itself increases. So we will generally fit elaborate models but only as
complex as the noise in the IDA results allows. Still, as we try to interpolate as closely as possible
given the noise, we are risking eliciting criticism for “overfitting” (in the sense that a simpler
model would do only a little worse). The idea is to provide as a complete and objective model as
the record-to-record noise allows, and in retrospect observe it and simplify it enough to satisfy the
arithmo-phobic users.

4.4 Moderate period pinching model

4.4.1 Fitting the hardening branch of the IDA

Fitting the hardening part is the easiest task, and actually several attempts have been done in
the past Nassar and Krawinkled 991, Lee et al, 1999 Miranda 2000, sometimes for a wider
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variety of parameters (e.g., site conditions, cyclic strength deterioration etc.) than what we will
use here. Since this fit only involves a single paramatgit is relatively straightforward; we will
assume a second-order polynomial model in the log-space to fit the fractile ductilitiesRymed
subsequently calculate and fit the resulting coefficients for several values of the hardening slope
an. This procedure produces for each of the three fractile IDAs the following model

IN oo = BeooINR+ Bo6IN®R,  RE (L, R100-xo(He)] (4.1)
where  Bae, Yoo = ) buosipi(an), foranya, €0,0.9)
|

where the coefficients and functions can be conveniently found in FaBleAn example of its
application is found in Figurd.2(d)for 1 < u < 2.

Table 4.2: Coefficients and functions needed for the IDA hardening part in Equatidh (

byos,i for Bros bxoe,i fOr Yxoe
X% = 16% 50% 84% 16% 50% 84%
1 0.6164 0.7132 1.0024 0.1454 0.2928 0.4003
an -0.1697 -0.0415 1.5907 -0.1394 -0.6415 -3.0742
aﬁ 1.3103 1.5158 -7.1722 -0.2576  0.0347 9.7763
aﬁ -1.9551 -2.5525 10.3472 0.6156 0.9604 -12.8813
aﬁ 1.2201 1.3921 -4.8024 -0.3707 -0.6620 5.8376

The results are actually only mildly dependantagnespecially for low ductilities. So we can
roughly approximate the median IDA by the “equal displacement rule”, under whighR) ~ R,
and generate the 16%, 84% fractiles as the edges of a 60%-wide band centered on the median (in
the log-space), i.epso.3406(R) ~ Hsoo(R)1 03 ~ RI03,
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Figure 4.3: An elastic-hardening-negative backbone and the two extremes of its “equivalent” set.

4.4.2 Fitting the negative branch of the IDA

Negative stiffness is found in SPOs of structures such as non-ductile reinforced-concrete frames,
braced steel frames, moment-resisting steel frames with fracturing connectiong\ssehBitive
systems. The most prominent feature of the negative branch is the characteristic flattening of
the summarized IDAs which results in a flatline unless it is arrested by the residual plateau, as
seen in Figuret.2(c) for 2 < u < 2.4. By accurately capturing this feature, the entire branch
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could be modeled as a continuous convex curve that smoothly departs from the hardening segment
at ductility . to blend into the flatline atiena = Hc+ (1+ anllc — @) /|ac|. Still, appropriately
modeling the negative branch flatline requires a trilinear (elastic-hardening-negative) backbone
that involves three independent parameters &, and ;). Conveniently enough, it was found
empirically that this flatline height and, even more, the complete negative part of the IDA are very
similar for the set of backbones that have coincident negative branches, like those ind&jure
Actually, the flatline height among such an equivalent set varies only a little and always in a
consistent linearly increasing fashion between the two extremes, i.ey, thd and thea, = 1

cases where the negative branch starigegt= Lc + an(pec — 1)/|ac|, and ppeak= (Hc|ac| + 1+
an(pHc—1))/(1+ |ac|) respectively. So we only need to model the capacities for the extreme
values ofa, and linearly interpolate in-between. The final recommended model becomes:

R(100-x)%(Hend) = R(100-x)9%(Hc)

- (eBX% - 1) [I(loch)%"'ah (“peak |(1qowx)%>} 7 (4.2)
I itbo_x% = (Heq)*™,  for anyac € [~4,-0.01], an € [0,1), ke € [1.9) (4.3)
whereBus, Yoo = z byas,i Pi (ac)

where the coefficients are found in TaldlS.

Table 4.3: Coefficients and functions needed for the flatline of the IDA softening part in Equatign (

byosi for Beoe (Y =Infacl) bos,i fOr Yoo (Y= lacl)
X% = 16% 50% 84% 16% 50% 84%
y*l 0 0 0 -0.5111 -0.3817 -0.4118
1 0.2252 0.3720 0.6130 -0.6194 -0.3599 -0.2610
y -0.1850 -0.3023 -0.4392 0.0928 -0.0019 -0.0070
y2 0.1039 0.1056 0.0847 0.0163 0.0186 0.0158

As a first, simpler approximation for moderate values of the negative ajgpae may assume
that in log-space the 16% and 84% flatlines are roughly 30%-lower and 30%-higher than the
median, i.e.R(s0134)96( Hend) = Rs09(Mend) =02,

4.4.3 Fitting the residual part of the IDA

The residual plateau in the SPO is encountered, for example, in braced frames or fracturing
moment-resisting frames. Only limited inspection of such models has appeared in the literature
(e.g.,Stear and Bedl999. The effect of the SPO residual plateau is to “revive” the IDA, allow it

to escape the flatline and move on to higReralues, in an almost linear-system-like fashion, e.g.,
Figure4.2(c)for 3 < u < 5. We can model this prominent feature by a linear model in the log-
space and capture this entire IDA region by a continuous convex curve that smoothly rises from
the flatline. This would have been a difficult model, depending on all five backbone parameters,
but for the empirical finding that in this region of the IDA, the full quadrilinear model displays
virtually the same behavior as an equivalent trilinear (elastic-negative-plateau) model that has the
same negative slop&, but sports a reduced plateau heightgf=r/(1+an(uc —1)). Actu-

ally, reqis the residual plateau height of the full model but measured relative to theRpeslke,

Rmax= 1+ an(uc — 1), reached by the SPO (Figuded), instead of relative to the yield strength.
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This revelation leaves us with only two influential parametagsindreq, resulting in the model:

Inthos = Broo + ¥ssINR, Re€ (Ri10o-x96(Hr), Riaoo-xo(Ht)] (4.4)
where B, Yoo = ) Dasi Pi (ac,req) ,
|

for any ac € [-4,—0.01], req€ [0.05,0.90

where the coefficients can be found in TaBld. An example of this model’s application can be
seen in Figuré.2(d)for 3 < p <5.

Table 4.4: Coefficients and functions needed for fitting the IDA residual part in Equadiai. (

bxoe,i for Buos Byos,i fOr Yaoe
X% = 16% 50% 84% 16% 50% 84%

1 -0.3615 0.2391 0.9557 1.1022 1.0846 1.0176
In|ac| -0.0729 -0.0297 -0.0696 0.0180 0.0081 0.0203
INreq -0.4557 -0.4907 -0.4759 0.1111 0.1218 0.1086

INreqg-In EN -0.0372 -0.0272 -0.0308 0.0136 0.0086 0.0061

By observing the results, one can derive that the median IDA does behave much like a secant
linear segment that takes on smaller slopesegslecreases, eventually becoming one with the
flatline induced by the negative branch of the SPO. So, by restricting ourselves to (quite practical)
ductilities of 10 or less, the modeling could be further simplified if one decides to model the
residual branch of the median IDA as a secant by assumpgyg= 1, while generating the 16%,

84% fractiles as a 100%-wide band centered on the median (in the log-spac)sd:&4(R) ~
Usos(R) 02 ~ Bsges- RS, The existing table ofsoy, coefficients, although not optimal, can
still be used for this approximation, since the difference is negligible.

4.4.4 Joining the pieces: The SPO2IDA tool

We have separately modeled the three segments but we have chosen to keep track of only the
flattening caused by the negative SPO and the “secant” caused by the residual. To join them into
smooth and continuous curves that accurately resemble the fractile IDAs we need two “filleting
curves” that will connect the negative branch flatline to the hardening and the “secant”. We can
choose to neglect such details and linearly extend all three pieces to a point of mutual interception,
which is usually accurate enough. Alternatively, we can generate splines through a knot-insertion
algorithm Earin, 1990, which provides a smooth transition from segment to segment, while at
the same time offering computational simplicity and robustness, as it preserves convexity and can
be made to be monotonic (as the fractile IDAs are empirically known to be). Once this step has
been completed, we have an almost complete description of the IDA for any ductility, modeled
as an invertible one-to-one function of eitheior R, a choice left to the user as an advantage of

the equivalency of the fractiles givéhor (. We are only missing the final flatline, caused by the
SPO'’s ending at ductilityis. This can be accurately and easily modeled in the IDAs by adding

a flatline at heigh®R(100-x)% (L), simultaneously producing thel00— x)%-fractile of global-
collapse capacity. By implementing in software the modeling and joining of the IDA segments we
have generated the SPO2IDA tool, available in a spreadsheet or as an online internet application
(Vamvatsikos2001), and it does a remarkable job of reproducing the real behavior of oscillators,
as demonstrated in Figude2(d)
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Figure 4.4: Demonstrating SPO2IDA: the median demand and collapse capacity as the SPO changes.
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4.45 lllustrative Results and Observations

The ease of computation provided by such a tool, plus the unique perspective offered by the IDA-
versus-SPO picture, can offer remarkable intuition into the seismic behavior of systems. As a
demonstration of the SPO2IDA tool, we present Figlie an array of cases to briefly study the
influence of the backbone on the seismic demand and capacity. In each figure we select a basic
backbone, vary one or two of its parameters and then generate the median IDA responses and the
corresponding global instability collapse-capacities for each case. Hgl@shows the benefit

of delaying the negative branch of the SPO and allowing hardening to reach higher ductilities.
Each increase ip. allows the median to stay on “equal displacement” longer, proportionally in-
creasing the capacity. On the other hand, in Figu#éb) radically changing the hardening slope

an but keeping an identical negative branch generates an equivalent set of trilinear SPOs, whose
capacities only slightly increase wi#ly. Actually, the difference in the capacity is small enough to

be within the noise in the fitted data, so the resulting capacities are not strictly increasirag.with
Decreasing the negative slopgin Figure4.4(c)has a beneficial effect when no residual plateau

is present, as the milder slopes allow higher capacities. Still, if we include an extensive enough
residual plateau (Figuré.4(d), the benefits of the milder slope are restricted to the somewhat
lower u-demands that may influence some earlier limit-states; the global instability collapse ca-
pacity is almost the same for all cases, as the backbones have thesgaherefore the mildea's

are providing only a small advantage. Figdrd(e)shows the benefits of increasing the residual
plateau that consequently increases the slope of the “secant” that the IDA follows, thus improving
capacities and decreasing the demands. And finally, Fifyd(& shows the obvious advantage of
allowing higher fracturing ductilitiegts. The value ofus literally decides where to terminate the

IDA, at times fully negating the effect of the plateau if it becomes too small;; at 4 the IDA

hardly receives any benefit from the plateau. As intuitive or surprising as some of the pictures in
Figure4.4may be, they are only a glimpse of what our new tool can really do.

4.4.6 SPO2IDA error estimates for moderate periods

Since the SPO2IDA tool is based on fitting over only a small subset of the SDOF backbones it
can simulate, just showing the fitting error over the sample of oscillators that we have used would
greatly underestimate the true prediction error. In order to be objective we have generated a large
separate test sample of randomly chosen bilinear, trilinear and quadrilinear backbones, that were
analyzed both through full IDA and SPO2IDA. Thus, for each backbone and each of thgdtihree
fractiles we are presented with two IDA curves, the “real” cUR¥@o_x)o,(H) and the approximate
Qlo&x)%(u), or equivalently expressed pngivenR coordinatesgi,(R) versusiyo(R).

We are interested in knowing the error in two different settings: error in estimating a demand
U given a certain level on intensifg and error in estimating a capaciR/given a certain level
of demandu. In both cases, thabsolutedifference between exact and approximate results tends
to increase rapidly when we progress further into the nonlinear range, making this measure un-
suitable. We choose instead to quantify the errors by integratingethive absolutalifference
of each approximate¥o-fractile IDA curve versus the real one over their length, either or R
coordinates accordingly, a concept similar to the one usddbyet al.(1999:

L |R<10f%x)%(ll) - ﬁ(lOO—x)%(IJ)‘

(€r)x% _/0 Ri200 (1) du (4.5)
R ks (R) — flxos (R)|

(Su)x% _/0 le%(R) dr (4.6)

In each case, the fractile-capacity erfeg)x is calculated over the full demand spectrum from
zero topy, and the fractile-demand errég,, )y is similarly calculated up t&s, where either of
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the two curves compared flatlines first.

Table 4.5: Average fractile-demand and fractile-capacity errors for moderate periods and a variety of
backbone shapes, as caused by the fitting in SPO2IDA and by the record-to-record variability in IDA.

SPO2IDA 10 records 30 records
xX%= 16% 50% 84% 16% 50% 84% 16% 50% 84%

elastic-hardening
&R 0.02 0.01 0.02 0.11 0.07 0.07 0.06 0.04 0.04
&u 0.01 0.01 0.02 0.06 0.06 0.09 0.04 0.03 0.05

elastic-hardening-negative
&R 0.02 0.03 0.03 0.09 0.06 0.06 0.05 0.03 0.03
Eu 0.02 0.03 0.03 0.07 0.05 0.06 0.04 0.03 0.04

elastic-hardening-negative-plateau
&R 0.16 0.14 0.18 0.20 0.12 0.13 0.12 0.08 0.07
&y 0.09 0.11 0.18 0.20 0.18 0.23 0.11 0.11 0.14

What is more important to the user than just an error measure is an assessment of how large is
SPO2IDA's estimation error, caused by imperfect fitting, as compared to the full IDA estimation
error caused by the record-to-record variability when using a limited sample of records. To provide
such a standard for comparison, we will use the bootstrap meBfoah(and Tibshiranil993 to
estimate the equivalentr)xe, and (£y)xe error that one would expect to encounter when using
only 10 or 30 randomly chosen records from the same scenario earthquake. According to the
bootstrap principle, the original 30 records are sampled with replacement to generate numerous
alternate samples of 10 and 30 records, which are then applied to each of the randomly-chosen
backbones, thus resulting to a large number of alternate estimates of the fractile IDAs for each test-
case. Then, using the original 30-record suite results as “exact”, the average (over all bootstrap
samples) &r)xx and(&y)xe are calculated, as shown in Tallé.

Before we interpret these results, it is important to understand that SPO2IDA was based on the
30-record IDA, thus its error, as calculated in the table, comeslditionto the error induced by
record-variability in the 30-record fractile IDAs, i.e., SPO2IDA cannot be more accurate than a 30-
record IDA. Still, if the additional (fitting induced) error it incurs is small enough, it will disappear
(as when taking the square root of sum of squares of the two errors) under the considerable (record-
variability induced) error in estimating the fractiles with a 30-record IDA. Thus, by comparing
the (&r)x and (&,)xw 0of SPO2IDA versus the average such errors due to the record-to-record
variability, we observe that SPO2IDA can estimate the fractile demands or capacities with an error
comparable to the record-to-record noise around the 10-record full IDA results. This means that
statistically, the difference between the full IDA and SPO2IDA results is on average insignificant
when only 10 records are used. If 30 records are employed for IDA, SPO2IDA again performs
very well for all backbones except the complex quadrilinears where it has, on average, an error
somewhat more significant, but still comparable to the record-to-record induced noise. All in all,
SPO2IDA is proven to be remarkably accurate, able to outperform the 10-record full IDA and in
many cases match the 30-record IDA.

Naturally, the values in Tabk.5do not tell the whole story, as they describe the performance
of SPO2IDA averaged over numerous backbone shapes and over the length (&tbieniterms)
of the fractile curves. Some individual backbone shapes may be captured better than others and
within the curves themselves some segments may be more accurately matched. As evident from
Table4.5, the error tends to increase for more complex backbones. This is caused by the cascading
of the models, i.e., as more segments are added to the backbone, each additional segment relies
on the accuracy achieved in the previous ones. Thus, the more complex our backbone, the more
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error we should expect in the later segments (e.g., the residual plateau). But even within the same
segment of the curve, the distribution of the error is not homogeneous, neither for the full IDA,
nor for the SPO2IDA. In the IDA results, as the ductility increases beyond yielding, the record-to-
record variability and the error it induces increase as well. This, in turn, introduces higher noise in
the fitted data, thus making the fitted equations less accurate at higher ductilities. So, in general,
one should expect errors lower than average at low ductilities and higher than average at high
ductilities for both methods. Finally, since we have relied on regression to fit the IDA curves, just
like all fits these equations will perform better in the middle of the fitted dataset and worse at the
edges (Veisberg 1985. So, one should generally expect higher errors closer to the edges where
some fits are least accurate, e.g.aat —0.01 for Equation4.2 or atreq = 0.9 anda, = —0.01

in Equation4.4. All such observations taken into consideration, there are some combinations of
backbone parameters that may cause SPO2IDA to produce a mediocre estimate for some segment
of the IDA, but in our experience even these cases are rare.

4.5 Extension to all-periods pinching model

Up to now we have described a procedure used to obtain the fractile IDA curves of a fairly limited
model. Still, this can be easily extended to other periods, dampings, or hysteretic models. What
we have really introduced above is a methodology that permits the accurate modeling of the SDOF
fractile IDA curves for complex backbones by investigating only a small number of them. If one
wishes to capture the behavior of a different SDOF system, or use a different suite of ground
motion records, all that is needed is repeating the above three fits for the hardening, negative and
residual part to include the new parameters. As an example, we are going to extend SPO2IDA to
both short and long periods, still using the same suite of 30 records, moderately pinching hysteresis
and viscous damping @f= 5%. The overall concept will be precisely the same as for the moderate
periods, simply the necessary coefficients will be given by more complicated equations that, in
addition to the backbone parameters, will now include the oscillator p&riod

Unfortunately, the oscillator period influences each of the backbone regions in a complex,
coupled way, that makes it impossible to assume independence. So, where we had mostly one
or two dimensional fits, now we will have two and three dimensional ones. This fact increases
the number of oscillators that we have to investigate by an order of magnitude, and unfortunately
no fancy methods can help us further reduce the dimensionality of the problem. Still, the same
fundamental results that we employed previously to reduce the number of backbones investigated
are not period dependent, i.e., the equivalency of the backbones is found to be valid for the short
and long periods as well.

4.5.1 Fitting the hardening branch of the IDA

Several researchers have provided similar fits for wide period ranges but most have focused on just
the elastic-perfectly-plastic modeléwmark and Hall1982 Mirandg 2000, while even those

who have gone beyond that have only a limited coverage of the hardeningagl@idassar and
Krawinkler, 1991, or consider the effect ddy, to be independent of period (Lee et al, 1999.

On the other hand, we will make no such simplifications. Using Equadidi, (vhich accurately
captures the shape of the hardening part of the IDA, all we need to do is provide fits for the
coefficientsBxe, and g, that depend both oh anday,.

INBaos = D brosi Prwi(an, T),  IN(Yooe+1) = maX(Z byosi Pi(an, T), 0) , (4.7)
| |

for any a, € [0,0.9], T € [0.2s,49]
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where the coefficients,g,j and corresponding functions can be conveniently found in Télble

Table 4.6: Coefficients needed for the IDA hardening part in Equatiid)(

Pyosi for Beos Byos,i fOr Voo

X% = 16% 50% 84% 16% 50% 84%
In~Y(T +12) -0.1520 -0.1985 -0.6344 0.1925 0.3689 0.9434
1 -0.5027 -0.0955  0.2649 0.1246  0.0480 0.0277
InT -0.0542 -0.0316 0.0818 -0.1045 -0.1747 -0.4226
In2T 0.0181 0.0291 -0.1250 0.0605 0.1364 0.3241
apIn~{(T+1) -0.1520 -0.1985 -0.6344 0.1925 0.3689 0.9434
an 0.8058 0.3737 -0.0954 -0.1989 -0.2105 -0.0297
anInT 0.2037 0.2334 0.5720 -0.0822 -0.1916 -0.5081
apIn?T -0.2572 -0.3683 -0.5508 0.1711 0.3816 0.5662
a2®InHT+1) -0.1520 -0.1985 -0.6344 0.1925 0.3689 0.9434
ads -0.3675 -0.3041 -0.1600 0.0713  0.1533 -0.0010
ad®InT -0.1520 -0.1985 -0.6344 0.1925 0.3689 0.9434
asIn?T 0.2258 0.3128 0.6418 -0.2237 -0.4964 -0.8851

As expected, the results are similar in the moderate and long period range, the median follow-
ing the “equal displacement” rule, but the situation is much different in the short period domain.
In that region there is significant dependance on lagthnd T, making any simplifications of the
above equations quite difficult.

4.5.2 Fitting the negative branch of the IDA

Again, using Equations4(2) and @.3) we only need to fit and redefine the coefficiefiig and
Y SO that they depend both dnandac:

Boo = basibi(ac,T), Yoo =min <z Byos IOi(ac,T),1> (4.8)
for anyac € [—4,—0.02), T € [0.2s,49]

where the coefficients and relevant functions are found in Ta@le

Table 4.7: Coefficients needed for the flatline of the IDA softening part in Equatod) (

Dyosi fOr Buos bxoe,i fOr Yioe
X% = 16% 50% 84% 16% 50% 84%
0.2391 0.3846 0.5834 1 -0.2508 -0.2762 -0.2928
InT 0.0517 0.0887 0.1351 |a| -0.5517 -0.1992 -0.4394
In|ac| -1.2399 -1.3531 -1.4585 a2 0.0941 -0.0031 0.0683
Injag/InT -0.0976 -0.1158 -0.1317 |ac|* 0.0059 0.0101 0.0131
In? |ag| 0.0971 0.1124 0.1100 InT 0.1681 0.2451 0.1850
In?|ag|InT 0.0641 0.0501 0.0422 |ac|InT 0.1357 -0.0199 0.1783
In®|ag| -0.0009 0.0041 0.0056 &ZInT -0.0127 0.0091 -0.0305
In®|ag|InT 0.0072 0.0067 0.0074 |ac|~'InT ~ 0.0010 -0.0075 -0.0066
In2T -0.1579 -0.0135 0.0027

|a|In?T  0.2551 -0.0841 0.0447
a2ln®T  -0.0602 0.0222 -0.0151
lac|~1In2T  0.0087 -0.0003 -0.0025
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4.5.3 Fitting the residual part of the IDA

Similarly, by using the equivalent residual concept, only three influential parametersagxis,
andT, resulting in the same model as in Equatidi), only now we will define new coefficients:

BXO/Oa %(% — Z bx%,i pi (a(lv rEC])T)a (49)
|
forany ac € [-4,—0.05, reqe [0.050.90, T € [0.2s,4s|

where the coefficients can be found in Tabl8.

Table 4.8: Coefficients needed for fitting the IDA residual part in Equatii®)

bxos,i for Bros byos,i fOr Yoe

X% = 16% 50% 84% 16% 50% 84%
1 -0.2226 0.1401 0.7604 1.0595 1.0635 1.0005
In|ac| -0.0992 -0.0817 -0.1035 0.0236 0.0177 0.0283
INreq -0.4537 -0.5091 -0.5235 0.1237 0.1466 0.1607
INTeq-In lac| -0.0398 -0.0236 -0.0287 0.0111 0.0048 -0.0004
In I’gql 0.0829 -0.0364 -0.0174 -0.0023 0.0102 0.0021
In rgql -Injac] 0.0193 -0.0126 -0.0118 0.0008 0.0019 0.0035
InNT -0.1831 -0.2732 -0.5651 -0.0881 -0.1044 -0.1276
INT -In|ag| -0.0319 0.0015 0.0437 -0.0077 -0.0137 -0.0413
INT -In leq 0.1461 0.1101 0.0841 -0.0239 -0.0090 -0.0085
INT -Inreq-In lac| -0.0227 -0.0045 0.0159 0.0025 -0.0014 -0.0198
InT - |I’II";ql -0.0108 0.0333 0.0033 0.0082 -0.0003 0.0037
INT -In rgql -Inlag| -0.0081 -0.0000 0.0033 0.0007 -0.0013 -0.0043
In2T 0.1660 0.1967 0.0929 0.0317 0.0038 0.0673
IN2T -In lac| -0.0124 -0.0304 0.0130 0.0006 0.0065 0.0074
IN2T -In leq 0.0273 0.0396 0.0580 -0.0173 -0.0484 -0.0737
IN2T -In leq-In lac| -0.0167 -0.0209 -0.0144 0.0056 0.0068 0.0255
IN2T -In I’e_q1 -0.0182 0.0311 0.0221 0.0007 -0.0112 -0.0073
I?T-Inrgd-Inja  -0.0097 -0.0047 0.0007  0.0004 0.0008 0.0005

4.5.4 lllustrative Results and Observations

Using splines to connect the above presented three fits and to integrate them into SPO2IDA, we
have generated a tool that can accurately capture the behavior of a complex quadrilinear backbone
for a wide range of periods, from 0.2s to A&a(nvatsikos2002. An example of its application is
presented in Figuré.5. Therein the median IDA curve of an elastic-hardening-negative-plateau
backbone is recreated for several oscillator periods. Starting from at a moderate pdrisdlsf

the flatline happens & ~ 4.1, but if we decrease the period downTo= 0.3s, we observe that

the IDA becomes more aggressive; softening commences at very low vaResidfthe flatline is
reached very quickly, @&~ 2.7 for T = 0.3s. On the other end, when the period is increased, the
median IDA is “milder”, it rises and straightens out, staying longer on the “equal displacement”
rule, i.e., on theu = Rline. Thus, the flatline is greatly delayed, occurrindRat 5.5 at T = 4s.
Obviously, the oscillator period has a significant effect on the flatline but also on all the features of
the fractile IDAs. The only exception appears for moderate and long periods in the region where
the backbone is still hardening. There the median IDA follows the equal displacement rule and
thus becomes insensitive to the (moderate or long) period. As observed at least for the median in
Figure4.5 SPO2IDA is now able to capture all such period-dependent effects.
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Figure 4.5: Median IDAs for a backbone with, = 0.2, u. = 2, ac = —0.5, r = 0.5, u; = 6 but varying
periods.

45,5 SPO2IDA error estimates for all periods

Similarly to the moderate period model, we have generated a separate test-sample of various os-
cillators with randomly generated backbones and periods. Then we performed a calculation of
the fractile demand and capacity erroeg )y and(&r)xw according to Equationst(5)—(4.6) both

shown in Tablet.9. Therein we have also included the bootstrap{@gd.e and(&r)xe values for

a full IDA with 10 and 30 records.

Once again, the SPO2IDA error is, practically speaking, comparable to the error induced by the
record-to-record variability in a full 30-record IDA for all cases, except the last, the quadrilinear

one. Again, the most complex of the backbones is harder to capture, but still, the SPO2IDA error
remains within reasonable limits.

Table 4.9: Average fractile-demand and fractile-capacity errors for short, moderate and long periods and a

variety of backbone shapes, as caused by the fitting in SPO2IDA and by the record-to-record variability in
IDA.

SPO2IDA 10 records 30 records
xX%= 16% 50% 84% 16% 50% 84% 16% 50% 84%

elastic-hardening

&R 0.04 0.04 0.05 0.09 0.07 0.09 0.06 0.04 0.05
&u 0.02 0.03 0.04 0.06 0.06 0.09 0.04 0.04 0.06

elastic-hardening-negative

&R 0.05 0.04 0.05 0.08 0.06 0.09 0.05 0.04 0.04
&y 0.05 0.03 0.04 0.07 0.07 0.10 0.04 0.04 0.04
elastic-hardening-negative-plateau

&R 0.20 0.18 0.20 0.21 0.16 0.18 0.14 0.10 0.12
&y 0.19 0.24 0.26 0.20 0.17 0.24 0.12 0.12 0.15

The same observations apply here as in the moderate period range; the errors thJatde
averaged over numerous backbones, periods and along each individual fractile curve. Therefore,
individual cases may perform better or worse than the posted values. The only difference from the
moderate period case is the additional consideration of period. Generally, in the short period range,
the record-to-record variability is higher thus degrading the accuracy of both IDA and SPO2IDA.
Still, barring some isolated below-average-accuracy estimates, the results are very reliable.
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(a) Results from IDA versus SPO2IDA (b) Results fromMiranda(2000

Figure 4.6: Comparing estimates of me@p ratios generated by SPO2IDA for the special elastic-perfectly-
plastic case versus the real data and results vtranda (2000 for u = 1.5,2,3,4,5,6.

4.6 From the IDA to the inelastic displacement ratios

On a more practical aspect, SPO2IDA can directly prodedactors and inelastic displacement
ratios, often used in seismic guidelines (efgEMA, 1997). The direct mapping of thg-givenR

to theR-given-u fractiles effortlessly provides fractilR-factors. Similarly, one can easily generate
(Cu)xe, the x%-fractile of inelastic to elastic displacement ratio givenand (Cr)xe, the x%-

fractile of inelastic to elastic displacement ratio giviknas defined irMiranda(2007). Actually

the fractiles of the two ratios are equivalent(@g )xw = (Cr)xw = Hx(R)/R= /Ri100-x)%(H)-

By modeling the fractiles in SPO2IDA we can use the same fits to genera®effoeors and both

the inelastic displacement ratios; had we chosen to model the mean response, we would need a
separate fit for each of the three quantitiesrandg 2001).

On the other hand, instead of the fractiles, the miedactors or mean inelastic displacement
ratios may be of interest. E[-] is the expectation operator, then we want to estirfie, E[C,,| =
UE[1/R] for a given value ofu andE|[Cgr] = E[u]/R for a given value oR. Actually, for values
of R higher than any of the flatline&[u] and correspondinglf£[Cr] become infinite. At lower
R-values the distribution gft givenR is approximately lognormaBhome and Corngll999 and
so is the distribution oR given u for any p-value. In those ranges we can use the properties of
the lognormal distribution (e.gBenjamin and Cornelll970 to show that

1 1

ER = R50%(I~1)'9Xp<20|%R> ; OinR = 5 (INRsao(H) —INRupos(1))  (4.10)
E (R 1 1

E[CR| = g‘] _ HSOQ( )~exp<20|%u>, Oiny = 5 (IN pgaoe(R) —In peos(R)) -~ (4.11)
=S ) P R _

E[Cy] = HE [R] = Reood ) exp(zalnR> ., O_InR= OinR (4.12)

In Figure4.6(a)we have used Equatiod.(L2) to calculate averag@, ratios using SPO2IDA
for an elastic-perfectly-plastic system over a range of periods from 0.1s to 3s using SPO2IDA. On
the same figure we also plot the aver&jecalculated directly from the 30 record suite through
IDA, without the use of any approximation or fit. Clearly, the SPO2IDA results closely match
the exact ones, except perhaps for the shortest of periods. As a further comparison, we have
recreated in Figuréd.6(b)theC, results from the proposed equatiorMiranda(2000, generated
for an elastic-perfectly-plastic model with kinematic hardening, using over 200 records that have
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a wide magnitude and source-to-site distance range, and that were all recorded on firm soil. As
expected, the results are comparable everywhere but in the short period range, where the record-to-
record variability is maximum. Of course, such a specialized fit should be expected to outperform
SPO2IDA, having much less error, especially in the short periods. Still, our tool is proven to
be suited to many applications, even beyond estimating the fractile IDAs that it was originally
designed for.
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Figure 4.7: Viscous damping has negligible influence, as shown for moderate periods for a backbone with
ahn=03 c=2a=-2,r=05 us =5.

4.7 Influence of other SDOF parameters

By mostly focusing on the oscillator backbone we have restricted our modeling effort in several
other aspects; ground motion records were selected from a narrow magnitude and distance bin
and correspond to firm soil only, while hysteresis-wise, we have only considered a 5% damped,
moderately pinching model. Do these choices seriously restrict SPO2IDA, or can the results be
applied in cases beyond what we have considered?

Regarding the selection of the records, the issue of magnitude, source-to-site distance and soil
site appear. It has been well documented in the literature that the elastic-perfectly-plastic and the
elastic-hardening system results (mé&factor, C, andCg) are not significantly influenced by
magnitude, except maybe in the shortest of peri®ilsa-Garcia and Mirand2003, or distance,
unless near-fault directivity is an issue (eMiranda 200Q Nassar and Krawinkled991). Actu-
ally, several researchers have found evidence of significant difference between forward-directivity
and non-directivity influenced record€esta and Aschhein2001; Baez and Miranda2000,
while a recent study bhopra and Chintanapakdé0017), proposes modifyingR-u-T relation-
ships to account for such effects. In that case, SPO2IDA needs to be upgraded before being applied
when directivity matters. On the other hand, regarding soil-site igdiremida (2000 has found
little dependance within different firm soil sites. Bdiranda(1993 andRahnama and Krawin-
kler (1993 confirm that soft soil sites can be significantly different and their effect needs to be
taken into account when applicable. Obviously, this effect has not been taken into consideration
for SPO2IDA.

As for the details of the oscillator itself, at least viscous damping does not seem to be an
importantissue. As shown in Figude?, at least for moderate and long periods, there is, practically
speaking, little or no difference in the actual normalized resp&yge of systems that have the
same backbone, but damping ratios as low as 2% or as high as 8%.

The oscillator hysteresis is another problem, and we have only used a moderately pinching
model; we have not considered the influence of the degree of pinching nor the use of other models
that otherwise account for pinching, e.g., modified Clough, or models that totally dismiss pinching
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Figure 4.8: The different effect of the hysteresis model on oscillators with elastic-perfectly-plastic and
elastic-negative backbones.

and stiffness degradation, e.g., the kinematic model used with the standard elastic-perfectly-plastic
system (for the details of the models see, eRghnama and Krawinklef993. For an elastic-
perfectly-plastic backbone (Figude8(a) the effect is practically negligible, as the three models
generate the same median (and similarly all fractile) IDA curves. This is not the case for the
elastic-negative backbone, as seen in Figug€b) The median IDA (and actually any individual

IDA curve) of the kinematic shows consistently higheddemands and loweR-capacities ver-

sus the two peak-oriented models, which are almost the same. The reason is that the kinematic
model cannot maintain full loops when on the descending branch of the backbone, as seen in
Figure4.8(c)} when the oscillator unloads and subsequently reloads it remains on the same elas-
tic slope that leads it quickly back to the negative backbone, not allowing any hysteretic energy
absorption, an effect also observedMghin and Lin(1983, Rahnama and Krawinkl€l993,
Krawinkler and Seneviratn@d998. On the other hand, the pinching model is able to display the
more realistic full loops of Figurd.8(d) a behavior that is similarly matched by the modified
Clough model, thus both having quite similar median (and also all fractile) IDAs in Fig8(b)
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In general, once we go past the peak of the backbone, the hysteretic model may indeed become
an important parameter, and previous sensitivity studies on just elastic-perfectly-plastic backbones
will not be adequate.

Another issue that may influence SPO2IDA is that the hysteretic model used has no cyclic
deterioration features, i.e., if subjected to cycles of the same deformation amplitude the hysteretic
loops will not change or deteriorate in any way.Rahnama and Krawinkl€i.993 there appears
some evidence that cyclic deterioration may play a significant role, i.e., severe cyclic strength
deterioration seems to be increasing the demands. On the other Gaiptia @nd Kunnatii998
have qualitatively investigated such effects and found them to be more pronounced at the lower
periods (less that 0.5s), where the numerous high frequency cycles can emphasize the details of
the hysteretic model, causing enough large loading-unloading cycles to induce significant strength
deterioration.

In conclusion, the degree of pinching, the cyclic deterioration and other such hysteretic details
may or may not be important but they are mostly confined to the level of the SDOF system. When
the ultimate goal of a tool like SPO2IDA is actually approximating the response of a first-mode-
dominated MDOF building\(amvatsikos and CorneglR004b, in a manner similar t&-EMA
(1997, then it becomes questionable whether focusing on such details makes sense. While the os-
cillator backbone can be modeled after the MDOF SPO curve, it is hard to capture other hysteretic
characteristics of the MDOF in the equivalent SDOF. And even when a methodology is devised
that allows such assessments, a study-bytch and Sh{1998 has found small effect of such
details of the hysteretic modeling of connections in steel moment resisting frames to the response
of MDOF systems. In our opinion, it seems a greater priority to investigate directivity and soft
soils rather than focus on the smaller details of hysteresis.

4.8 Conclusions

A complete methodology has been presented that accurately accounts for the effect of the back-
bone on the seismic behavior of an oscillator with arbitrary period. The investigated backbone
shapes range from simple bilinear to complex quadrilinear with an elastic, a hardening and a
negative-stiffness segment plus a final residual plateau that terminates with a drop to zero strength.
Long hardening segments are found to significantly improve performance, while their slope has
only a small effect. On the other hand, the steeper the slope of the negative-stiffness segment, the
higher the demands and the lower the capacities past the peak of the backbone. Residual plateaus
that are higher in terms of strength or longer in terms of ductility, both benefit the post-peak per-
formance. Finally, the oscillator period significantly influences the effect of all segments except
the hardening one in the moderate or long period ranges. Several different backbone shapes were
found to produce similar dynamic behavior. Thus, the required number of backbone shapes to
be investigated is drastically reduced, allowing the effect of a complete quadrilinear backbone to
be captured with only a handful of regressions. In accordance, a number of equations have been
proposed, defining a flexible, publicly available, software tool for performing fast assessments of
the (median and dispersion of) demand and capacity of virtually any oscillator. Thus, an engineer-
user is able to effortlessly get an accurate, spreadsheet-level estimate of the performance of the
oscillator without having to perform the costly analyses, providing ready insights into the relative
advantages and disadvantages of possible design or retrofit alternatives.
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4.10 Appendix: The SPO2IDA algorithm

Here we provide the exact details of the algorithm that actually constructs the fractile curves
in SPO2IDA from the three fitted segments. The only user input is the five parameters of the
backbonesy, L, ac, r, Ui and the period (if applicable). Before we start, we need to determine
which of the three parts (hardening, negative, residual) are going to be needed for the backbone.
For example, ifus is equal tou. then no negative or residual part need to be plotted, similarly, if

r = O the residual does not exist. Once that is decided we can proceed to generate each individual
part.

First, we generate the elastic part for each line. This is really straightforward and actually the
same for all fractiles. Then, we append the hardening part. The only twist to this is calculating
the R-value where the hardening stops, but this can be easily done by solving for each fractile the
second-order Equatiod () for R, givenu = L, to get

—Baow+ 1/ Bap+aninpe
if Yoo # 0
INR(100-x)9(Hc) = I 2% (4.13)
N e .
if oo =0
ﬁx% Vs

Then it is trivial to calculate the hardening part directly from Equatibri)( Additionally, to
facilitate the smooth fit with the negative part, it is also useful to calculate the slope of the IDA (in
the log-log domain) at the end of the hardenigg,(Lc) = Bxos + Voo INR(100-x)%(He)-

for each x%-fractile IDA
generate the elastic part as a straight (ipeR) = (0,0)...(1,1)
get thelBy, Yos coefficients for the hardening branch
calculatein Ri100-x)%(Lc)
selectN equidistant point&; € (1, R100-x06(Hc)], i =1...N
calculate the corresponding = exp(Bws INR + %o IN°R), i =1...N
calculate slope-at-ersjo,(Lc)

end

To generate the negative part we need some way for a smooth transition from the hardening
to the flatline that will be induced by the negative if the residual does not exist. True to our
cascading-models principle, we will note that indeed, up to ductiitthe IDA will behave as if
the residual did not exist, so it makes sense to ignore it in this part. As discussed previously we
will use the repeated-midpoint insertion spline for this purpései, 1990. All we need is to
supply acontrol polygonand the algorithm will generate a smooth curve that tangentially touches
the midpoint of each segment of the polygon. So if we let

int

In L = [INR100-x)9%(Hend) — INR(100-x96 (He) ] Seos(He) + N e, (4.14)

then the points

In 11,55 INR(100-x)%( Hend) (4.15)

2In e — In gt 2InR100-x)%(Hc) — INR(100-x)%( Hend)
(L,R) = ,
21N pleng— In iy INR100-x)%(Hend)

define the appropriate control polygon. All we need is to fit the spline to this polygon and it will
blend the hardening segment nicely into the flatlingaat. Since we may have a residual segment
following, we would want to truncate this spline @t and also calculate the slope at that point
(e.g., through finite differences) to fit the next segment.
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for each x%-fractile IDA
estimateR 100-x)o6( Hend) from Equation ¢.2)
define the control polygon
fit a spline to the polygon in the log-log domain
calculateN points(In i, InR) on the fitted spline, spanning the range frggto y;
transform them to the linear domain
calculate the slope-at-end of the segrmsnt ;)
end

Finally we are left with the residual plateau part. The fits provide us only with the linear
behavior (in log-log) at ductilities beyond,, so we need again a smooth transition from the
relatively flat segment caused by the negative part. If we calculatBghexs, coefficients from
Equation ¢.4), then we can calculate the ductility at the intersection of the tangent at the end of
the negative-branch with the residual-plateau “secant” line:

IN tr — S (Hr ) INR(100-x)96(Hr ) — Bros

InRMd  — 4.16
(100-x)% Voo — Son( L) ( )

INpBe = Bos+ Yoo NRTE0 0 (4.17)

Then the tangent and the secant provide the following control polygon that allows a smooth spline
fitin the log-log domain:

2Inpr —Inpgd 2INRi100 96 (Hr) — INRAG 0

(U,R) = In 113, INRAGH x99 (4.18)
3In gl 3In g — Ban) / Yiow

All we need to do is calculate this transition part with the spline and then add as many points
as we need along the linear (in log-log) segment provided by the residual-plateau fit to reach the
fracturing at ductilityus. The final touch is adding a flatline at:

for each x%-fractile IDA

estimateBys, Yo from Equation 4.4) or Equation 4.9)

define the control polygon

fit a spline to the polygon in the log-log domain

calculateN points(In i, InR) on the fitted spline, spanning the range frgpto s

transform them to the linear domain

append a flatline, as a linear segm@ntR) = (Lt , R100-x)9(Ht)) - - - (90, Riaoo-xjoe(Ht))
end

If we plot the points that we have calculated, we will get graphs of the fractile IDAs, just like
the figures presented earlier.



Chapter

Direct estimation of the seismic demand
and capacity of MDOF systems through
Incremental Dynamic Analysis of an
SDOF approximation

Vamvatsikos, D. and Cornell, C. A. (2003cASCE Journal of Structural Engineeringn
preparation).

5.1 Abstract

Introducing a fast and accurate method to estimate the seismic demand and capacity of first-mode-
dominated multi-degree-of-freedom systems in regions ranging from near-elastic to global col-
lapse. This is made possible by exploiting the connection between the Static Pushover (SPO) and
the Incremental Dynamic Analysis (IDA). While the computer-intensive IDA would require sev-
eral nonlinear dynamic analyses under multiple suitably-scaled ground motion records, the sim-
pler SPO helps approximate the multi-degree-of-freedom system with a single-degree-of-freedom
oscillator whose backbone matches the structure’s SPO curve far beyond its peak. Similar method-
ologies exist but they usually employ oscillators with a bilinear backbone. In contrast, the empir-
ical equations implemented in the SPO2IDA software allow the use of a complex quadrilinear
backbone shape. Thus, the entire summarized IDA curves of the resulting system are effortlessly
generated, enabling an engineer-user to obtain accurate estimates of seismic demands and ca-
pacities for limit-states such as immediate occupancy or global dynamic instability. Using three
multi-story buildings as case studies, the methodology is favorably compared to the full IDA.

5.2 Introduction

At the core of Performance-Based Earthquake Engineering (PBEE) lies the accurate estimation
of the seismic demand and capacity of structures, a task that several methods are being pro-
posed to tackle. One of the promising candidates is IDAnfvatsikos and Cornel20023, a
computer-intensive procedure that has been incorporated in modern seismic cod&&(@4y.,

20003 and offers thorough demand and capacity prediction capability, in regions ranging from
elasticity to global dynamic instability, by using a series of nonlinear dynamic analyses under suit-
ably multiply-scaled ground motion records. Still, professional practice favors simplified meth-
ods, mostly using single-degree-of-freedom (SDOF) models that approximate the multi-degree-of-
freedom (MDOF) system’s behavior by matching its SPO curve, coupled with empirical equations

72
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Figure 5.1: The 16%, 50%, 84% fractile IDAs and Figure 5.2: The median IDA compared against the
limit-state capacities. SPO generated by an inverted-triangle load pattern.

derived for such oscillators to rapidly obtain a measure of the seismic demand-gfar,and
Fischinger 1988 Fajfar and Gaspersi@996 FEMA, 1997). Such procedures could be extended

to reach far into the nonlinear range and approximate the results of IDA, but they use oscillators
with bilinear backbones that only allow for elastic perfectly-plastic behavior, and occasionally
positive or negative post-yield stiffness (e liranda 200Q Nassar and Krawinklerl991; Al-
Sulaimani and Roesseft985. With the emergence of the SPO2IDA softwavarfvatsikos and
Cornell 20049, empirical relations for full quadrilinear backbones are readily available, which,
when suitably applied to the MDOF SPO, allow us to accurately approximate the full IDA and
investigate the connection between the structure’s SPO curve and its seismic behavior.

5.3 IDA fundamentals

To illustrate our methodology, we will perform IDA for a centerline model of a 9-story steel-
moment resisting frame designed for Los Angeles according to the 1997 NEHRP provisiens (
and Foutch2002. The model incorporates ductile members, shear panels and realistically fractur-
ing Reduced Beam Section connections, while it includes the influence of interior gravity columns
and a first-order treatment of global geometric nonlinearitie éffects). Essentially, it is a first-
mode-dominated structure that has its fundamental mode at a periad=02.3 sec, accounting
for 84.3% of the total mass, hence allowing for some significant sensitivity to higher modes.

We have also compiled a suite of twenty ground motion records that have been selected to rep-
resent a scenario earthquak@ifvatsikos and Corngl20043; the moment magnitude is within
the range of 6.5 — 6.9, they have all been recorded on firm soil and show no directivity effects. IDA
involves performing a series of nonlinear dynamic analyses for each record by scaling it to sev-
eral levels of intensity that are suitably selected to uncover the full range of the model’s behavior:
from elastic to yielding and nonlinear inelastic, finally leading to global dynamic instability. Each
dynamic analysis can be characterized by at least two scalars, an Intensity Méssunah{ich
represents the scaling factor of the record (e.g., the 5%-damped first-mode spectral acceleration
Sa(T1,5%)) and a Damage Measur®i), which monitors the structural response of the model
(e.g., maximum, over all stories, peak interstory drift rdi@y or peak roof drift ratioB;qef).

By suitably interpolating between the results of the dynamic analyses, we can plot@ithe
IM axes an IDA curve for each record. The twenty IDA curves that are thus produced can then
be summarized into the 16%, 50% and 84% fractiles, as presented in Biguned explained in
detail by Vamvatsikos and Corne{(R0043. Additionally, limit-states such as Immediate Occu-
pancy (I0) and Collapse Prevention (CEEMA, 20003, or the global dynamic instability (Gl,
evident by the characteristic flattening, termedfthiine, on each IDA) can be easily defined on
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the curves. Finally, by combining the results of IDA with Probabilistic Seismic Hazard Analysis
within a proper framework (e.gGornell et al, 2002 Vamvatsikos and Corngl20023, we can
estimate the mean annual frequencies (MAFs) of exceeding each limit-state, one of the ultimate
goals of PBEE. Still, the calculation of the full, twenty-record IDA for this model requires about 24
hours of computing on a single 1999-era processor, something that may be beyond the practicing
engineer.

A path to a simpler solution appears if we choose to plot the SPO of the MDOF syst@émg,on
versusS,(Ti, 5%) axes, where the total base shear is divided by the total mass and scaled to match
the elastic part of the IDA by an appropriate factor (that is equal to one for SDOF systems). By thus
plotting the SPO curve versus the median IDA curve on the same graph (Bigureie observe
that both curves are composed of the same number of corresponding and distinguishable segments
(Vamvatsikos and Cornel20023. The elastic segment of the SPO coincides by design with the
elastic IDA region, having the sanetastic stiffnesswhile the yielding and hardening of the SPO
(evident by its non-negative slope up to the peak) forces the median IDA to approximately follow
the familiarequal displacememtle for moderate period structurége(etsos and Newmayk960
by maintaining the same slope as in the elastic region. Past the peak, the SPO’s negative stiffness
appears as a characteristic flattening of the IDA, the flatline, that eventually signals global collapse
when the SPO curve reaches zero strength. This apparent qualitative connection of the SPO and
the IDA drives our research effort to provide a simple procedure that will use the (relatively easy-
to-obtain) SPO plus some empirical quantitative rules to estimate the fractile IDAs for a given
structure, providing the IDA curves at a fraction of the IDA computations.

5.4 SPO2IDA for SDOF systems

Based on the established principle of using SDOF oscillators to approximate MDOF systems, we
have investigated the SPO-to-IDA connection for simple oscillators. The SDOF systems studied
were of short, moderate and long periods with moderately pinching hysteresis and 5% viscous
damping, while they featured backbones ranging from simple bilinear to complex quadrilinear
with an elastic, a hardening and a negative-stiffness segment plus a final residual plateau that ter-
minated with a drop to zero strength. The oscillators were analyzed through IDA and the resulting
curves were summarized into their 16%, 50% and 84% fractile IDA curves which were in turn
fitted by flexible parametric equationggmvatsikos and Corngl2004d. Having compiled the
results into the SPO2IDA tool, available onlingafmvatsikos 2002, an engineer-user is able to
effortlessly get an accurate estimate of the performance of virtually any oscillator without having
to perform the costly analyses, almost instantaneously recreating the fractile IDAs in normalized
coordinates oR= S;(T1,5%) /83’ (T1,5%) (whereSY(T1,5%) is theS,(T1, 5%)-value to cause first

yield) versus ductilityu.

5.5 SPO2IDA for MDOF Systems

Adopting an approach similar to FEMA 278EMA, 1997 we can use the SDOF IDA results
generated by SPO2IDA to approximate the seismic behavior of the first-mode-dominated MDOF
system. This entails using an SDOF oscillator having the structure’s fundamental period, whose
backbone closely matches the SPO of the MDOF building. The resulting fractile IDA curves for
the SDOF system only need to be properly rescaled from fejir coordinates to predict the
fractile 600f IDAs and additionally, using the SPO, can be transformed to estimate the fractile
Bmax IDAs. While the methodology may seem straightforward, the ability of SPO2IDA to extend
the results well into the SPO’s post-peak region pushes the method to its limits and poses several
challenges that have to be overcome.
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5.5.1 Defining the SPO

While for an SDOF system the SPO is uniquely defined, this is not the case for the MDOF;
depending on the load pattern selection, one may generate several different SPO curves, as evident
in Figure5.3. Therein we have plotted thg,os SPOs for the 9-story building subjected to four
different load patterns, producing four quite different SPOs. Beginning from the outermost SPO
to the innermost, we observe the following:

1.

A load pattern that is proportional to the first-mode shape times the story masses is the most
optimistic of the four, as it predicts the highest strength and roof drift rékig; ~ 0.32,
before system collapse occurs.

. Ifinstead of just the first mode we use a Square-Root-Sum-of-Squares (SRSS) combination

of the first two mode shapes we get the second most optimistic curve, where the maximum
strength has dropped significantly, but the roof drift ratio at collapse rerfias: 0.32.

. By changing the load pattern at the peak of the previous SPO to a uniform one, i.e., a shape

that is directly proportional to the story masses and resembles an SRSS of the first two mode
shapes of the damaged structure at the peak of the SPO, we uncover a severer drop towards
collapse, with zero-strength occurring8os =~ 0.24.

. If instead of the uniform we impose in the post-peak region the inverse of the pre-peak

SRSS pattern (the minimum force now being at the roof-level), it surprisingly produces the
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severest SPO of all, with global collapse happenin@ &t ~ 0.11, almost one third of the
prediction generated by the pure first-mode load pattern.

In essence, the choice of the load pattern has a significant effect on the calculated SPO curve
for large levels of deformation and, evidently, each of the four possible realizations pictured in
Figure5.3will produce a different estimate for the seismic demands and capacities. As shown for
simple oscillators byamvatsikos and CornglR0044, if we progress from the outermost SPO to

the innermost one, the estimateda¥ -demands past the SPO peak will monotonically increase,
and correspondingly the estimattd -capacity for any limit-state that lies beyond the peak will
decrease.

So, how is one to choose among the four SPOs? Since we have the full IDA results, we can
compare the deformed shapes of the structure produced by the various SPOs versus the IDA. While
the median IDA deformed shape shows that in the post-peak region most of the deformations are
concentrated on the upper floors, only the innermost (most-damaging) of the four SPOs manages
to produce a similar deformation pattern. The other three load patterns seem to concentrate defor-
mations mostly at the lower floors, thus not forcing the structure through the same path to collapse
as the dynamic analysis does. We should expect that this most-damaging, worst-case SPO will
provide a good approximation to the behavior of the 9-story structure during a nonlinear dynamic
analysis.

Such a conclusion can be generalized to structures other than the particular 9-story; it makes
sense to assume that a structure under seismic excitation will collapse following the weakest-link,
most-damaging, least-energy path. On the other hand, the use of a rigid load pattern will, in
general, constrain the deformed shape of the structure, allowing it to withstand higher lateral loads
and carry them to higher ductilities. Hence, we suggest that the SDOF oscillator whose backbone
mimics the worst-case SPO will most accurately approximate the dynamic behavior of the true
MDOF model. Specifically, we should expect that in the post-peak region, the further an SPO lies
from the worst-case one, the more unconservative results it will produce; i.e., SPOs that envelop
the worst-case one, when they are used as basis for the calculations of our method, they will
generate upper-bound estimates of limit-state capacities and lower-bound estimates of demands.
Hence, we choose to focus on the most-damaging of the four SPOs for all the calculations that
follow.

Unfortunately, there is no obvious recipe to help us arrive at the worst-case SPO. It is hard
to predict in advance what load pattern will be the most appropriate, especially if one does not
have a priori the dynamic analysis results to confirm that the dynamic and static deformed shapes
match. Fully adaptive schemes may prove to be able to find the least-energy path to collapse,
several candidates having been proposed at ledstdwinkler and Seneviratnd 998, Gupta and
Kunnath(2000 andAntoniou et al(2002), but none of the proposed schemes has been sufficiently
tested and verified in the post-peak region, where good accuracy matters the most for all limit-
states that lie close to global dynamic instability (e.g., CP and GI). A simpler, viable solution for
regular structures involves using a pattern proportional to the SRSS of several mode shapes times
the story masses or a code-supplied pattern, at most up to the peak of the SRERfi=.0.02
or Bhax ~ 0.04 in Figure5.4), and consequently testing at least three configurations in the post-
peak region: Continuing the pre-peak pattern (i.e., maximum force is at the roof), changing to
a uniform or using the inverse of the pre-peak pattern (maximum force at the first story). By
performing these three basic pushovers we get sufficiently broad coverage and can pick a load
pattern that will provide a good enough approximation to the overall most damaging, worst-case
SPO.

Once we have an acceptable estimate of the worst-83§eSPO, it is a simple matter to
approximate it with a piecewise-linear backbone, in this case a trilinear elastic-hardening-negative
model (Figureb.5), and process it through SPO2IDA. Instantaneously we will get estimates of
the fractile IDAs (normalized t&® and u) for the SDOF with the matching trilinear backbone, as
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shown in Figures.6.

5.5.2 Estimating the IDA elastic stiffness

SPO2IDA will provide us with accurate estimates of the SDOF system fractile IDAs, but the results
will be in dimensionlesR versusyu coordinates and need to be properly scale&d,5%)
versusfoof OF Bmax axes. Therefore, we need to determine for e&ékractile, x € {16,50,84},

the values 0f5;(T1,5%), Broof and Bmax that correspond to its yield point, nam@ix%(le%),
67006 AND B, 206- Obviously, for an SDOF system, this task is trivial; the backbone directly
provides the yield displacement (same for all fractiles), while it also offers the yield base shear,
which when divided by the total mass will result to the valu&iT;, 5%) (again, common for all
fractiles). This is much harder for an MDOF system, mainly due to the effect of the higher modes;
some records will force the structure to yield earlier and some later, at varying levidls afd

DM . The problem can be simplified if we assume that the SPO accurately captures at least the
median valueB), ; 54, and that all fractiles IDAs yield at about the same valuéj;j%(Tl, 5%).

This assumption is not strictly true for MDOF systems and it becomes highly accurate only if the
first mode is dominant but, in general, it is more than enough for our purposes. In this case, we
only need to estimate the elastic stiffnefig (DM) of the medianB,qof and Bmax IDA, or, even

better, the elastic stiffness of all three fractlgos andBmax IDAS, Kroof x2 aNdKmaxxes respectively.

Since such a task involves dynamic linear elastic analysis, it can be easily performed with a
minimum of computations. The direct way is to select a suitable suite of records and perform
elastic response spectrum or timehistory analysis for each record to determthg th@d Oyax
response. Then, we can estimate the 16%, 50% and 84% fractiles of the sample of elastic stiff-
nessesS(T1,5%) /B0t andSa(T1,5%) / Bmax, Calculated for each ground motion.

A simpler method appears if we approximate the medlag and B,ax elastic stiffness by
dividing any elastic SPO level of base shear by the total building mass times the corresponding
elasticBq0f OF Bmax Value respectively. This is the same operation one would perform for an SDOF
system, hence we cannot recover information about the variability in the elastic stiffnesses. There-
fore, we are forced to assume thabs xo = Kroof 509 8aNdKmaxxs = Kmaxs0% Which is accurate only
when higher modes are negligible. This is the same assumption adopted for the standard Nonlinear
Static Procedure, e.g-ajfar and Fischingef1988, Fajfar and Gaspersid996, FEMA (1997,
although, in that case, normalization is done by the first mode mass rather than the total, something
that usually makes very little difference.

Obviously, only the first method is an exact calculation of the elastic IDA stiffnesses, and
hence is the method of choice for the calculations to follow. The simpler method reduces the
computational load, but in a manner similarR&MA (1997, it neglects the variability in the
elastic stiffness. This reduces its accuracy and restricts its usefulness to shorter buildings with
insignificant higher mode effects. Ultimately, the selection of the estimating procedure is a trade-
off between speed and accuracy, and depends solely on each user’s needs.

5.5.3 Putting it all together

Having determined the appropriate elastic stiffnesses for the fractile IDAs, all that remains is
to properly de-normalize and scale the SPO2IDA results, fRwersusu coordinates, into
Sa(T1,5%) versusBor and Bmax axes. Since the SPO has been approximated with a trilinear
elastic-hardening-negative model (Figr&), its yield-point values of base sheflsor and Bmax,
namelyFY, Qﬁ(’)of'spo and 6ax.spo are readily available. As explained previously, we will assume

that eachd%-fractile IDA, x € {16,50,84}, yields at the same value &4, (T1,5%), but at dif-
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Figure 5.7: Generating the fractile IDAs from nonlinear dynamic analyses versus the MDOF SPO2IDA
approximation for the 9-story building.

ferentd’. and6’ hence, for alk € {16,50,84} we get:

roof,x% maxx%:’
S 06(T1,5%) = 6501 spo" Kroot 50, (5.1)
Broorxs = Shxos(T1,5%) /Keoof 06 (5.2)
9r¥1a>gx% = Sa)ll,x%(Tlv 5%)/kma)gx% (5.3)

Using Equations{.1-5.3), we can easily rescale the results of SPO2IDA and bring them into
properS;(T1,5%) versusBof axes to generate th@or fractile IDAs, as seen in Figurg.7(b)
which clearly compare very well against the real IDAs in Figbirga)

If all that we want is an estimate of thlf -capacity for global dynamic instability of the struc-
ture, we need not proceed further. On the other hand, to estimate other limit-state capacities (e.g.,
10 or CP), we need the IDAs expressed in otbd s, usuallyBmax. The SPO curve actually pro-
vides the means for such a transformation thanks to the difggtto-6max mapping it establishes
when expressed ifl,qot and Bmax coordinates (Figuré.4), a concept that has been used at least
in FEMA 273 FEMA, 1997. The variation that we propose involves shifting th& axes of

the SPO for eack%-fractile, scaling the elastioor values of the SPO bg? 0./ Gr{,oflspo and

shifting the inelastidBoof Values bydy, .o, — Q%Ofyspo By performing the equivalent operation
to the Bmax SPO values, i.e., scaling the elagfigay by G%axm/e%ax,spoand shifting the inelastic
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values bye%axx% — G%axyspo we provide a custonqer-10-6nax mapping that will correctly trans-

form demands for each fractile, recognizing the variability in elastic stiffness. Of course, were it
possible to get the equivalent of a “fractile SPO”, by tracing in some way the force-deformation
path that the structure would follow for 16%, 50% and 84% of the ground motion records, such
transformations would not be needed. In the absence of such data, we use this method to roughly
approximate such fractile SPOs, at least in the elastic range.

The results are visible in Figuie7(d)and compare favorably with the real IDA estimates in
Figure5.7(c) Indeed, the estimated IDAs seem to slightly overestimate capacities and underesti-
mate demands, mostly an effect of higher modes plus having just an approximation rather than the
real worst-case SPO. For example, the post-peak load pattern cannot take advantage of the sharp
drops due to connection fracturing that clearly appear (Figubebut instead allows the structure
to recover. A more adaptive pattern would probably do better. Still, even this rough approximation
is good enough considering the rought0% standard error (estimated by bootstrappigfypn
and Tibshirani1993 that exists in estimating the fractiles from the twenty-record full IDA.

On the other hand, regarding ease-of-computation, if we assume that a single 1999-era pro-
cessor is used, the analysis time is reduced from 24 hours for the MDOF IDA, to only several
minutes for the SPO and the elastic response spectrum analyses, not to mention the practically
instantaneous SPO2IDA procedure. Thus, we have achieved a fast and inexpensive estimate of the
MDOF dynamic behavior at only a small cost in accuracy, the results, at least for this structure, ly-
ing within the statistical error (caused by the record-to-record variability) of estimating the fractile
IDAs from MDOF nonlinear dynamic analyses with twenty ground motion records.

5.6 Application to a 5-story braced frame

Let us now test the proposed procedure on a different structure, using a centerline motietof a
1.8 sec 5-story steel chevron-braced frame with ductile members and connections but realistically
buckling braces including B-effects Bazzurro and Cornelll994h. For this building, the higher
modes are practically insignificant, thus there is little or no ambiguity about the shape of the
backbone. It suffices to use a load pattern that is proportional to the first mode shape times the
story masses, thus getting the SPO curve shown in Fig8ri@ 6;o0t and Bnax CcOOrdinates.

Taking advantage of the SPOZ2IDA tool, thgys SPO curve is closely matched with a trilinear
elastic-negative-plateau model (Fig&.8). Finally, by combining the results from SPO2IDA with
the fractile elastic stiffnesses, we generate the approxifiafeand 6,4« fractile IDAs. Using the
same suite of records as for the 9-story, the IDA curves are calculated and summarized in their
16%, 50% and 84% fractiles. By comparing the tBa fractile IDAs in Figure5.10(a)versus
the approximate results in Figusel0(b) it becomes apparent that they are in excellent agreement.
Similarly, the 6nax fractile IDAs in Figure5.10(c)are accurately captured by the approximate
results, shown in Figure.10(d) Clearly, as we should expect for such a building with insignificant
higher modes, the proposed procedure is a very cost-effective way to approximate the IDA results.
But what happens at the other end, for a tall structure with significant higher mode effects?

5.7 Application to a 20-story moment frame

In order to test the limits of our method, we decided to use it on a tall structure, heavily influenced
by higher modes. Our choice was a centerline model of a 20-story steel moment-resisting frame
(Luco and Cornell2000 with ductile members and connections that includes the influence of
the interior gravity columns plus a first-order treatment of global geometric nonlinearitiés (P-
effects). Its first mode has a periodTaf= 4 sec and accounts for 80.2% of the total mass, placing
this structure beyond the realm of first-mode-dominated buildings. Once more, the structure is
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analyzed through IDA for the same suite of records used previously, the resulting fractile IDA
curves to be used as the standard for comparison.

First of all, the worst-case SPO needs to be determined. Surprisingly, this is an easy task,
compared with the previously examined 9-story building. Because of the height of the structure,
the massive R effects are dominating and quickly push the structure towards global collapse.
There is only one path to collapse, and almost all reasonable load patterns will force the structure
to take it. Hence, a simple load pattern proportional to the first modal shape times the story
masses is adequate to capture the worst-case SPO, even beyond its peak, the resulting curve shown
in Figure5.11in 6,00t and Bmax coordinates. Comparing versus the IDA, we can confirm again
that the worst-case SPO and the IDA produce similar deformation patterns, concentrating most
deformation at the lower stories of this building.

Using a trilinear elastic-hardening-negative backbone, we can accurately capt@git880
(Figure5.12), then use SPO2IDA and the fractile elastic stiffnesses to reach the results shown in
Figures5.13(b)and5.13(d) By comparing them versus the real fractile IDA curves, in Fig-
ures5.13(a)and5.13(c) one notices several striking differences and similarities. &g IDAs
are relatively well estimated. There is some overestimatiofgaf demands in the near-elastic
region, as the MDOF system is capable of high hardening that the SDOF system cannot reproduce,
still, in the region near collapse, tifg,of IDAs are almost perfectly matched. On the other hand,
the proposed method largely overestimatesGhg IDA demands and correspondingly underes-
timates theS,(T1, 5%)-values of capacities, especially for limit-states in the near-elastic domain,
but maintains good accuracy close to global collapse. It seems that the higher modes are influenc-
ing the accuracy of the approximation, reducing it in the near-elastic range but not close to global
collapse.

It is well known that it is very difficult to capture the higher mode effects with just the SPO
(Krawinkler and Seneviratnd998. The 6,q0f response is somewhat insensitive to them because
of its global nature, but local damage measures, @ikg,, are not, thus making it very difficult
to capture the corredqi-t0-6nax mapping with just the SPO. For example, even in the elastic
range, the ratio of the elastic stiffnesses of the me@jg# to the mediarf,ax IDA is about 1.5.

This means that at any level 8f(T1,5%), the mediarfnax is about 50% higher than the median
6ro0f, 1.€., @ high degree of deformation localization exists even in the elastic region. On the other
hand, the equivalent ratio for the SPO produced with the first-mode load pattern is only 1.3; much
less localization is predicted by the static analysis than the dynamic. Even more so, this ratio for
the 84%0;00f andBnax IDAS is almost 2, which explains why the estimation seems to suffer away
from the median in the near-elastic region. Such differences are a direct manifestation of higher
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Figure 5.13: Generating the fractile IDAs from nonlinear dynamic analyses versus the MDOF SPO2IDA
approximation for the 20-story building.

modes and cannot be possibly captured by the SPO. This fundamental deficiency of the SPO is
precisely the reason why our prediction of thgax fractile IDAs, especially in the near-elastic
domain, is not as good for this building. Still, adaptive SPO procedures may better capture the
Bro0i-t0-Bmax cOnnection, maybe even the variability, and if indeed they are proven to do so, the
method described here will highly benefit from their use.

Despite such limitations of the SPO, when nearing global dynamic instability even the elusive
Bmax fractile IDAs are almost perfectly captured. It seems that even such a complex structure can
be accurately modeled by an SDOF system close to collapse. While in the elastic or near-elastic
region all the modes are interacting to create a complex behavior, as damage accumulates, some of
the dominant frequencies seem to be “silenced” and the structure becomes more predictable, more
first-“mode” dominated. Some evidence appears if we calculate the eigenvalues from the tangent
stiffness matrix at several points along the SPO curve. Then, we observe that the first-eigenvalue
mass steadily increases, from 80.4% of the total mass in elasticity to more than 90.2% at the peak
of the SPO. The most probable cause is that the element yielding, buckling or fracturing gener-
ates preferred paths of structural deformation, providing locations where most of the deformation
concentrates. Thus, the building becomes somewhat less complex, preferring to vibrate in a mode
defined by the combination of those damaged elements. We can only assume that such damage
can simplify our structure’s behavior and an SDOF system with the proper backbone seems to be
able to capture that.
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5.8 Limit-state capacity estimation using the MDOF SPO2IDA

Apparently, the SPO2IDA approximation provides reasonable estimates, within the limitations of
the SPO, for the fractile IDA curves of all three buildings that we have examined. Having these
results at our disposal we can follow the same steps as we did for the full IDA to perform PBEE
calculations; the only difference is that we have to calculate the summadnZethpacities for

the defined limit-states (10, CP and GlI) directly on the fractile IDAs instead of estimating them
individually on each record’s IDA curve and then summarize th¥amivatsikos and Cornell
20043.

This is straightforward for the 10 and Gl limit-statedafnvatsikos and Cornel20043; their
fractile capacities reside on the fractile IDAs (e.g., Figbr®, so we only need to calculate the
values ofSS,,,(T1,5%) where eachk%-fractile IDA, x € {16,50,84}, reachesdmax = 0.02 to
violate the 10 limit-state, or reaches the flatline for GI. On the other hand, the CP limit-state
points do not necessarily lie on the fractile IDAs, e.g., Figbrke but, in most cases, they are
quite close Yamvatsikos and Cornel20043. Therefore, we propose to apply the SAC/FEMA
definition of the CP limit-state poinEEMA, 20003 directly to the fractile IDAs and thus estimate
the fractile CP capacity points. The final results are shown for all three buildings onSTable

Table 5.1: Comparing the real and estimated 16%, 50% and 840%;,5%) capacities over three limit-
states for each of the studied structures. Note that the 5-story reaches global collapse quite early, so the Gl
and CP limit-states coincide.

16% (g) 50% (g) 84% (g)
Real Est Real Est Real Est
10 0.61 0.75 1.02 1.05 143 155
5-story CP&GI 143 1.84 223 272 4,04 4.26
10 0.18 0.14 0.27 0.20 0.33 0.24
9-story CP 0.57 0.58 0.83 0.88 1.29 1.31
Gl 0.74 0.64 0.91 0.95 1.35 1.37
10 0.12 0.08 0.16 0.10 0.21 0.15
20-story CP 0.23 0.22 0.34 0.35 0.53 0.57
Gl 0.26 0.26 0.39 0.40 0.63 0.61

Table 5.2: Comparing the real and estimated 16%, 50% and 84%gvalue of capacity for the CP limit-
state for each of the studied structures.

16% 50% 84%
Real Est Real Est Real Est
5-story CP 0.05 0.05 0.05 0.05 0.05 0.05
9-story CP 0.07 0.10 0.10 0.10 0.10 0.10
20-story CP 0.05 0.10 0.06 0.10 0.07 0.10

By comparing the full IDA versus the approximate results in Tdble it becomes obvious
that the proposed method manages to perform very well for a variety of buildings and for each of
the three limit-states. Even for the 20-story building, only the 10 limit-state is seriously hampered
by the approximation, simply an effect of IO happening at the near-elastic region of the IDA where
the structure is toughest to predict, as explained earlier. As presentachivatsikos and Cornell
(20043, theselM -values are actually all that we need, coupled with conventional Probabilistic
Seismic Hazard Analysis, to get estimates for the MAF of limit-state exceedance. Hence, from
the results of Tabl®.1, we should expect that the MDOF SPO2IDA method can provide quite
accurate MAF predictions.

If we want to use an alternative format similar to FEMA 35&EMA, 20003, we need instead
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the DM -values of the capacity points. For 10 the appropri@td-value is 0.02, by definition,

while for Gl it is 4. For the CP limit-state the results are listed in Téh® where it becomes
obvious that the SPO2IDA estimates are quite accurate, except perhaps for the 20-story build-
ing. Still, the actual estimate of the MAF of the CP limit-state exceedance will not be as bad as
indicated by these results; assuming that the appropBiMebased integrations are accurately
carried through, they should provide the same result witlivhdased onesl@layer and Cornell

2002 Vamvatsikos and Cornel20043. These somewhat higher estimate®df capacity for the
20-story are tempered by equally high estimate®bf demand, in the end producing accurate
estimates of MAFs. Using eithéM or IM -based frameworks, the MDOF SPO2IDA procedure
can be used to easily calculate the MAF of exceeding a limit-state, even for higher mode influenced
buildings in the case that we restrict ourselves to the near-collapse region.

5.9 Sensitivity to user choices

The SPO2IDA method for MDOF structures has proven to be quite accurate. Still, several ques-
tions may be raised, regarding the sensitivity of the capacities displayed in Tabkesd5.2 to
the average user’s choices when applying the proposed methodology.

Obviously, the largest effect comes from finding or missing the right SPO. When the structure
fails due to a global failure mode, e.qg., due ta ke the 20-story building, or it has insignificant
higher mode effects, e.g., like the 5-story building, then the right SPO should be easy to calculate.
Almost any reasonable load pattern, e.g., one proportional to the first mode shape times the story
masses, will suffice. If, on the other hand, there are significant higher mode effects and the struc-
ture fails mainly due to a succession of local events, e.g., connections fractured or braces buckling,
then it is much tougher to find the worst-case SPO. One needs only use the SPO2IDA tool to un-
derstand the large influence of the backbone on the Nz#nvatsikos and Cornel2004d, and
realize that no estimation beyond the SPO peak will be accurate without the right SPO. In such
cases, it is important to use several, preferably adaptive, load patterns and, in the absence of a
proven automated method, use trial and error to select the best of the tried patterns.

Assuming we have found the rigBfoof, Bmax SPO, like in our examples, we now have to fit
the first with a multilinear model. Obviously, there are many trilinear models that we could use
instead of the ones in Figurés4, 5.8 and5.11 Would using them change the final results? It
is recommended that one becomes familiar with the SPO2IDA tool and understand the influence
of the backbone to the SDOF fractile IDAggmvatsikos and Corngl2004d. This greatly helps
realize the implications of how to best fit titk; SPO. For example, the backbone’s hardening
slope is not as important, while the negative slope greatly influences global collapse. Therefore,
care should be exercised to always fit g SPO closer where it matters most to achieve the most
accurate results. Even so, the quadrilinear model offered by SPOZ2IDA allows much flexibility, and
as was the case with all our examples, the shape o eSPO can be reasonably captured. In
that case, no major differences should be expected in the final results.

Another important issue is the estimation of the elastic stiffness. Up to now we have relied
on the direct estimation from elastic timehistory analysis for each record. How much accuracy
will one sacrifice by using a simpler method, and what are the implications for the estimates of
capacities?

Since the normalized SPO2IDA results for the SDOF fractiles are scaled exclusively by the
median elasti®@qof stiffness kioof50% its value directly influences thid/ -estimates of capacity
for all limit-states. As a direct effect of Equations.1)-(5.3), if all the otherkioofx%, Kmaxxos
were accurately predicted bighors00 Was overestimated or underestimateda®p, we will see
a proportionalr% overestimation or underestimation of all limit-state capacities. Intuitively, this
can be understood if we realize that the valueigd 5o determines the scaling of the vertical
IM -axis for the fractile IDAs. Similarly, the five other elastic stiffnesses control the scaling of the
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horizontalDM -axis. Therefore, errors in calculating them have an effect only on limit-states other
than Gl, as they cannot influence the height of the flatlines. What they do influencefgdhe
and6nax values of the IDAs, thus causing limit-states like 10 and CP to appear earlier or later (in
IM -terms) than normal. Thus, it makes sense to be accurate in our estimate&f alf and
Kmaxxos Values.

Keeping these observations in mind, let us investigate the accuracy of the proposed methods.
Obviously, if higher modes cannot be neglected, then the direct method is the only one that can
be used. Itis by far the best way to estimate the variability in the elastic stiffnesses, caused by the
higher modes. If, though, higher modes are deemed unimportant or we are only interested in the
median capacities, we can use the simpler method to get rapid estimates with little computational
effort. The estimate& o500 and kmaxsow, as obtained by the two methods, are compared in
Table5.3 where it becomes obvious that the simpler method performs remarkably well, even for
the 20-story building. At most, it overestimatesor o0 Dy 15%, but in the tall structures it misses
Kmax500% Dy almost 30%, something that should be expecte#lass a localDM, more influenced
by the (neglected) higher modes.

Table 5.3: Comparing the median IDA elastio; and Bmax Stiffnesses, as estimated by several different
methods for the three structures.

5-story (g) 9-story (g) 20-story (g)
Kroof,50%  Kmax50% Kroof,50%  Kmax50% Kroof,50%  Kmax509%
direct 118.2 90.0 12.6 9.7 11.2 7.4
base shear / mass 114.5 84.6 14.2 13.0 12.0 9.9
50% spectrum 118.2 90.0 18.3 3.0 5.6 0.3
“scaled” 50% spectrum 118.2 90.0 18.7 3.0 6.2 0.3

Looking for an intermediate alternative to the above suggested procedures, the estimates for
Kroof 509 andKkmaxs09 are presented for a seemingly reasonable method; elastic spectrum response
analysis is performed using the median spectrum of the unscaled suite of records used for IDA.
As shown in Tablé.3, this is not worth the extra calculations as it badly misses the correct values
for all but the most first-mode-dominated building. This is to be expected, as the median spectrum
does not necessarily provide the median response for true MDOF structures. Even more so, the
16% or 84% spectra will not provide the 16% or 84% response.

To further prove this point, an “improvement” of the above method is used, where all spectra
are first scaled to the san®s(T1,5%)-value and then the median spectrum is generated. Again,
the results are less than satisfactory for all but the 5-story building, but even then, the base shear
over mass approach is much simpler and almost as accurate.

5.10 Conclusions

A new method has been presented that can approximate the seismic demands and capacities of
first-mode-dominated MDOF structures for their entire range of behavior, from elasticity to global
dynamic instability. Based on the Static Pushover (SPO) and building upon software able to accu-
rately predict the Incremental Dynamic Analysis (IDA) curves for SDOF systems, it can estimate,
with reasonable accuracy, the fractile IDA curves of first-mode-dominated MDOF systems. Sev-
eral novel concepts are derived in the process, perhaps the most important being the worst-case,
most-damaging SPO. It often needs carefully selected load patterns to emerge, yet it is the worst-
case SPO that best captures the path that leads to global collapse, thus allowing accurate prediction
of the IDA results. Equally interesting is the apparent “simplification” that occurs in MDOF sys-
tems near global collapse. This permits SDOF systems with appropriate backbones to capture
the onset of global dynamic instability even for higher-mode-influenced structures. Combining all
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these observations, we can conclude that simply by using the appropriate SPO curve plus, perhaps,
a few elastic response spectrum analyses, the engineer-user is able to generate accurate predictions
of the seismic behavior of complex MDOF structures within a fraction of the time needed for a

full IDA.
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Chapter

Investigating the influence of elastic
spectral shape on limit-state capacities
through IDA

6.1 Introduction

The IDA curves and, correspondingly, the limit-state capacities display large record-to-record
variability, even for the simplest of structures, as evident in the previous chapters. This observed
dispersion is closely connected to thd used; somédM s are more=fficientthan others, better
capturing and explaining the differences from record to record, thus bringing the results from all
records closer together. Compare, for example, Fig2u®¥a) and2.9(b) (Chapte2), where PGA

is proven to be deficient relative &(T1,5%) in expressing limit-state capacities, as it increases
their dispersion, practically everywhere on the IDAs. On the other hand, even the improvement
achieved byg,(T1,5%) still leaves something to be desired, as dispersions are in the order of 30%
or more.

Why should we search for such a bettét? There is a clear computational advantage if we
can select it priori, before the IDA is performed. By reducing the variability in the IDA curves,
we need fewer records to achieve a given level of confidence in estimating the ftictilalues
of limit-state capacities. Typically, a reduction to thd -capacity dispersion by a factor of two
means that we need four times fewer records to achieve the same confidence in the results, as
explained in Chapte3. Obviously, the computational savings can be enormous.

Additionally, it is speculated that increasing the efficiency of e may also lead to im-
provedsufficiencyas well. A sufficieniM produces the same distribution of demands and capac-
ities independently of the record selection, e.g., there is no bias in the frdtitapacities if we
select records with low rather than high magnitudes or if the records do or do not contain direc-
tivity pulses (uco and Cornell2004. The goals of efficiency and sufficiency are not necessarily
tied together as the former aims at reducing the variability in the IDA results while the latter at
reducing (or eliminating) their dependance on record characteristics other thah.tBéll, using
a more efficientM will bring the results from all records closer, and similarly bring close the IDA
curves of records coming from different magnitudes or containing different directivity pulses, thus
reducing the importance of any magnitude or directivity dependance.

While S,(T1,5%) is found to be sufficient for first-mode-dominated, moderate period struc-
tures when directivity is not preserifome and Cornelll999, it is not necessarily so for other
cases l(uco and Cornell2004. Therefore, it is important to try and improve ol s beyond
the capabilities 0f5;(T1,5%). Figure6.1 may provide some clues; therein we have plotted the
5%-damped acceleration spectra of the 30 records in Fahl@ormalized by§,(3.98s,5%), i.e.,

87
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Figure 6.1: The 5%-damped elastic acceleration spectra for thirty records, normalized to the first-mode
period of the 20-story building.

the value ofS;(T1,5%) at the first period of the 20-story building used in ChagterThere is
obviously much variability in the individual spectra that cannot be captured b®j(Et 5%). A
structure is not always dominated by a single frequency, and even then, when the structure sus-
tains damage its properties change. Thus, spectral regions away from the elastic first-mode period,
T1, may become more influential. By taking the differences in the individual spectral shapes into
account, we may be able to reduce the variability in the IDA curves and come up with an overall
better/M .

Such information may be incorporated into thé by using appropriate inelastic spectral
values Luco and Cornell2004. This seems to be a promising method, as it directly incorporates
the influence of the record on an oscillator that can yield and experience damage in a way similar
to the structure. Still, in the context of PBEE, the use of inelastic spectral values requires new,
custom-made attenuation relationships. On the other hand, using the elastic spectral values allows
the use of the attenuation laws available in the literature. Therefore, there is still much to be gained
from the use ofM s based on elastic spectra.

Actually, studies byShome and Corne(1999, Carballo and Cornel2000, Mehanny and
Deierlein (2000 and Cordova et al(2000 have shown that the elastic spectral shape can be a
useful tool in determining an improved® . Shome and Corne(L999 found that the inclusion
of spectral values at the second-mode peri)l énd at the third-modeT§), namelyS; (T, 5%)
and S;(T3,5%), significantly improved the efficiency & (T1,5%) for tall buildings. Carballo
and Cornel(2000 observed greatly reduced variability in tB#/ demands when spectral shape
information was included by compatibilizing a suite of records to their median elastic spectrum.
In addition,Mehanny and Deierlei{2000 andCordova et al(2000 observed an improvement
in the efficiency ofS,(T1,5%) when an extra period, longer than the first-mode was included by
employing anlM of the formS,(Ty,5%)* P Sy(c- T1,5%)P (with suggested valugg= 0.5, c = 2).
Additionally, they presented some evidence suggesting that sufficiency may be improved as well,
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since the newM made the IDA curves of several near-fault records practically indistinguishable,
regardless of the directivity-pulse period. Motivated by such encouraging results, we are going to
use the methodology and tools developed in Chaj@tarsd3 to better investigate the potential of
incorporating elastic spectral shape informatiom\s to reduce the dispersion in IDA results.

6.2 Methodology

We will employ three different structures for our investigation into the potential use of the elastic
acceleration spectrum. These will be The= 1.8s 5-story steel braced-frame, the= 2.4s 9-story

steel moment-resisting frame and fhe= 4s 20-story steel moment-resisting frame, all introduced

in Chapters. For each one we will use the suite of 30 records introduced in Chépitable4.1

to perform IDA and we will proceed to define numerous limit-states, each at a Gigrvalue,

to represent the capacity of the structure at successive damaged states. Finally, the appropriate
S5 (T1,5%)-values will be calculated, i.e., the valuesS®{ T1,5%)-capacity for each record and
each limit-state. The ultimate goal is to minimize the dispersion in/Mhecapacities for each
limit-stateindividually by selecting appropriate spectral values or functions of spectral values to
be thelM . As a measure of the dispersion we will use the standard deviation of the logarithm of the
IM -capacities, which is a natural choice for values that are approximately lognormally distributed
(e.g.,Shome and Cornell999.

Fortunately, no further dynamic analyses are needed to perform this dispersion-minimization;
all we need to do is to transform each limit-stat8$T;, 5%)-values in the coordinates of the trial
IM's and calculate their new dispersion. For example, if we want the dispersion of the capacities
in PGA terms, then for each unscaled record (or at a scale factor of one) we know both the PGA
andS,(T1,5%)-values and the former can be appropriately scaled by the same factor that the value
of S5(T1,5%) implies; e.g., for the 20-story building, the unscaled record #1 of Taldléas
Sa(T1,5%) = 0.044g and PGA= 0.159, while global instability occurs &85(T1,5%) = 0.40g,
representing a scale factor @40/0.044~ 9.1. Hence, thdM -capacity at the global instability
limit-state in PGA terms is PGA= 9.1-0.159= 1.45g. Similarly we can accomplish such trans-
formations for anyyM based on elastic spectral values. Thus, we are taking full advantage of the
observations in Chapt&; by appropriately postprocessing the existing dynamic runs instead of
performing new ones.

The adopted approach in evaluating the candidi&te is very different from the one used
by Shome and Cornel[1999, Mehanny and Deierleii2000, Cordova et al(2000 andLuco
and Cornel(2004. There, the focus is on demands, iBM -values, all four studies looking for a
single “broad-rangefM that will improve efficiency for all damage levels of a given structure. On
the other hand, our search will be more focused, zeroing on each limit-state separately to develop
a “narrow-range”M that will better explain the given limit-state rather than all of them. Thus,
we are able to follow the evolution of su¢M s as damage increases in the structure, hopefully
gaining valuable intuition in the process. Sitill, since we use @y to define the structural
limit-states, our observations may or may not be applicable when limit-states are defined on other
structural response measures (e.g., peak floor accelerations).

Regarding the choice dM s to use, we will start by investigating single spectral coordinates.
This does not constitute an investigation of speahalpeper se as it focuses on the use of just one
value at one period. Still, it will provide a useful basis as we expand oufMialto include vectors
and scalar combinations of several spectral values. In all cases the focus will be on the efficiency
gained by incorporating elastic spectrum information in each of the above ways. Another issue of
interest is the robustness offered by edeh i.e., how much efficiency it retains when the user
selects spectral values other than those chosen by the dispersion-minimization process. This is an
important question when trying to identi§ypriori an appropriaté in order to take advantage of
its efficiency and use fewer records in the analysis. We are not aiming to provide the final answer



90 CHAPTER 6. ELASTIC SPECTRAL SHAPE FOR CAPACITIES

0.8 , .
! 8 = 0:0001
I
|
|
I
8 : g
g | g
= | =
k) : 5
5 | 8
D I o
© | ©
I
|
I
I
U
1
1 2 3 4 5 6
period, T (s) period, T (s)
(a) Elastic region (b) Bmax=0.007
0.8
0.7+
" " 0.6
2 2
g g 05F
8 8
= =
= Z 041
=} =}
c c
2 S
" " L
5 5 0.3
g g
o o
0.2r
0.1r
0
3
period, T (s) period, T (s)
(C) Bmax=0.01 (d) Global Instability

Figure 6.2: Dispersion of thes$(1,5%)-values versus periodfor four different limit-states for the 5-story
building.
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for the besta priori IM, but rather to investigate the efficiency and the potential for practical
implementation offered by several promising candidates.

6.3 Using a single spectral value

The use of a single spectral value, usually at the first-mode of the structur&,(®&,5%), has
seen widespread use for IDAs, having being incorporated intBE\A (2000ab) guidelines and
used throughout most of our research. Obviously, it is an accurate measure for SDOF systems or
first-mode-dominated structures in the elastic range. But when higher modes are important or the
structure deforms into the nonlinear range, it may not be optimal. There seems to be a consensus
that when structures are damaged and move into the nonlinear region, period lengthening will
occur (e.g.Cordova et a].2000. In that sense, there may be some merit in looking for elastic
spectral values at longer, or in general different, periods than the first-mode. Therefore we will
conduct a search, across all periods in the spectrum, to determine the one that most reduces the
variability in the/M -values of limit-state capacities.

Some representative results are shown in Figueéor the 5-story building, for limit-states at
four levels ofBnax (Figure6.3), namely 0.01% (elastic), 0.7% (early inelastic), 1% (highly non-
linear) and+ (global instability). The structure has obviously insignificant higher modes, since
Sa(T1,5%) produces practically zero dispersion for the capacities in the elastic region. As the
structure becomes progressively more damaged, the optimal period moves awdy, flength-
ening to higher values as expected. Initially, only a narrow band of periods around the optimal
T display low dispersions. When close to global collapse, this band around the optimal period
increases so that any period from 2s to 4s will achieve low dispersion, at most 30% compared to
about 40% when using(T1,5%). A summary of the results is shown in Figusel, where the
optimal period is shown versus tltha-value of all the limit-states considered, while the best
achieved dispersion is presented in Figbrg compared against the dispersion when using PGA
and$;(T1,5%). As observed before, the optimal period increases after yielding, frenT; to
T = 2.4s. Similarly, the dispersion increases for all thfiks in Figure6.5, but with the use of the
optimal period, the efficiency is improved, at least by 40% compar&d(ia, 5%).

Similar results for the 9-story building are presented in Figu6efor the limit-states appear-
ing in Figure6.7 at Bax €qual to 0.5% (elastic), 5% (inelastic), 10% (close to global collapse) and
+oo (global instability). The building has significant higher modes, as evident in Figjé(e)
since the first mode is not optimal even in the elastic region. While all three mbdds,andTs,
seem to locally produce some dispersion reduction, the overall best single period is somewhere
between thd; andT,, atT =~ 1.2s. As damage increases, the optimal period lengthens to higher
values, to finally settle close & when global instability occurs. In Figu&8, the results are
summarized for all limit-states, showing the gradual lengthening of the optimal period. Similarly,
in Figure6.9the optimal dispersion thus achieved is compared versus the results when using PGA
and$,(T1,5%). Remarkably, only in the elastic and near-elastic region does this single optimal
spectral value provide some improvement, in the order of 10%. Close to global collapse, no gains
are realized ove$,(T1,5%).

For the 20-story structure, the results for four limit-states are shown in F&gléefor Bmax
equal to 0.5% (elastic), 2% (near-elastic), 10% (close to global collapse}ar{dlobal instabil-
ity); each limit-state is shown versus the fractile IDAs in Fig@rgél This is a building where
higher modes are even more important, and by looking at Fi§ure(a) it seems that, at least
initially, the second-mode periodi;, manages to explain more th@nin the dispersion of thév
capacity values. The limit-states are definedggy, the maximum of the story drifts, which often
appears in the upper stories at low ductilities and is thus quite sensitive to the higher frequencies.
As damage increases, the optimal period moves away Troand at global collapse reaches a
value somewhere in the middle ®f andT,, at aboutr ~ 2.5s. In Figure6.12the summarized
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results confirm the above observations for the limit-states defined on all valgsaind, sim-

ilarly to the 9-story, only small reductions in dispersion are realized with the use of one spectral
coordinate, as seen in FiguBel3 At least, in this case, using a single optimal period seems to
achieve somewhat better performance tBgiT;,5%) close to global collapse.

Summarizing our observations, the use of a single spectral value seems to offer some benefits,
but mostly to structures with insignificant higher modes. For such structures, it seems relatively
easy to identify the optimal period, as it is invariably an appropriately lengthened value of the
first-mode period;. One could almost say that practically any (reasonably) lengthened first-mode
period will work well. On the other hand, when higher modes are present, one spectral value is
probably not enough. There do exist specific periods that one can use to reduce the variability, but
they appear in a very narrow range and are difficult to pinpoint as damage increases. It would be
difficult to pick a priori a single period for such structures as a slight miss will probably penalize
the dispersion considerably.

Most probably, the reason behind this apparent difficulty is that even into the nonlinear range
the structure is sensitive to more than one frequency. Thus, our attempt to capture this effect
with just one period results in the selection of some arbitrary spectral coordinate that happens
to provide the right “mix” of spectral values at the significant frequencies. Looking at all the
previous figures, it becomes obvious that missing by a little bit will again, in most cases, pump
up the dispersion significantly. Obviously, this one period is not a viable solution for any but the
structures dominated by the first-mode. On the other hand, the introduction of another spectral
value, to form a vector or an appropriate scalar combination of two periods, might prove better.

6.4 Using a vector of two spectral values

The use of more than one discrete spectral value necessitates the development of a framework
for the use of vectoiMs. While the definitions set forth iamvatsikos and Corne(20023
(Chapter?) do provide for a vectoiM , up to now, there has been no formal framework developed

on how to postprocess and summarize such IDAs. So, before we proceed with our spectral shape
investigation, we will propose a methodology to deal with vetids.

6.4.1 Postprocessing IDAs with vectotM s

The most important thing that we must keep in mind is that the IDA per se remains unchanged,

and no need exists to rerun the results that we have acquired; this is all about postprocessing,

as explained in Chapt&. On the other hand, there are some conceptual differences between a

scalar and a vector dM's. Since thdM must in both cases represent the scaling of the ground

motion record, the scald# had to be scalable, i.e., be a function of the scale factor of the record

(Vamvatsikos and Cornelt002a Chapter2). However, for a vector ofV s it would be redundant

and often confusing if more than one of the elements were scalable. Hence, we will focus on

vectors where only one of the elements can be scaled, while the others are scaling-independent.

That is not to say, for example, that when we h8y@1,5%) in a vector, other spectral values are

not acceptable. Rather, we will replace such extra spectral values by their rati§,07eb5%)

(and similarly normalize any other scalatM ); thus, we convey only the additional information

that the new elements in the vector bring in with respect to our primary scalable (d64ldn)

this case it is quite precise to speak of this additional information (one or more additional spectral

ratios) as reflecting the influence of spectral shape (rather than the amplitude of the record).
Following a similar procedure as for a single scalatMe we will use splines to interpolate

the discrete IDA runs for each record versus the scalldldrom the vector Yamvatsikos and

Cornell 20023 ChapteR). Then, we can plot the IDA curves for all records versus the elements of

the vector, as in Figuré.14for the 5-story braced frame and a vectoSfT:,5%) (scalable) and

the spectral ratidiss(1.5,T1) = Si(1.5T1,5%)/Sa(T1,5%) (non-scalable). Contrary to the usual
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practice of plotting théM on the vertical axis, we will now plot bottM s on the two horizontal
axes and put th®M on the vertical one, to visually separate the “input” from the “output”. As a
consequence, the flatlines are now vertical lines, rather than horizontal ones.

Still, we are able to interpolate for only the scalabl¢, while for the non-scalable one we
are left with separate, discrete curves. We need to take an extra step here and make the results
continuous in the otheiM as well, which is why we will introduce summarization at this point.
However, we are not able to use cross-sectional fractiles, as we did for #ihgler ChapteiS.
That would require several valueslbM at each level of the non-scalalild , practically impos-
sible with a limited number of records. However, we can use symmetric-neighborhood running
fractiles Hastie and Tibshiranil 990 with a given window length to achieve the same purpose.
The optimal window length can be chosen, e.g., through cross-validd&foon(and Tibshirani
1993, or by adopting a reasonable fraction of the sample size. In our case, we selected 30%
of the sample size, i.e., used ti8 x 30 = 9 symmetrically closest records to approximate the
fractile value for each level of the non-scalabl¢. The resulting median IDAurfaceappears in
Figure6.15

Now is the time to define limit-state capacities. It can be easily done WHihghased rules for
all limit-states, withByax = +00 resulting in the flatlines for global instability. Imagine horizontal
planes, each for a giveDM -value, cutting the IDA surface. The results can be easily visualized
as contours of the fractile IDA surface, seen in Figére6 for the median. Obviously, now the
median capacity for a given limit-state is not a single point, as for sékla; rather a line, as
the ones appearing in FiguéelG As an example, we are showing in Fig@d.7the 16%, 50%
and 84% capacity lines for a limit-state B4.x = 1.6%, close to the onset of global instability.
These correspond to our best estimate of the 16%, 50% and 84% IMci@iue of the limit-state
capacity. For example, if several records Ragl1.5,T;) = 1.2, then if scaled t&;(T1,5%) ~ 0.59
(to reach the 16% capacity line) only 16% of them would cause the structure to violate the limit-
state, and they would have to be scaled to d&l{T:,5%) ~ 0.6g for 84% of them to cause
limit-state exceedance. On the other hand, if another set of records were comparatively less rich
in the longer periods, e.g., Rs3(1.5,T;) = 0.5, they would have to be scaled $(T;,5%) ~ 1g
to cause 50% of the records to violate this same limit-state.

In retrospect, notice that we have slightly altered the “standard” IDA post-processing, as de-
fined byVamvatsikos and Corne{R002a 20043 (Chapter® and3). For scalaiM s, we would
first define limit-states points on each IDA, and then summarize, while for vBdtsiit is advan-
tageous to reverse these steps. Keep in mind though that if we are usin@Mnlyased rules
for the definition of limit-states, as we do here, then we can similarly reverse these steps for the
scalarlM . The results will be exactly the same, as explained in Ch&ptire (100— x)%-fractile
IDA limit-state capacities for Immediate Occupancy and Global Instability (and all dwer
based limit-states) reside on tk#-fractile IDAs. On the other hand, this is not the case for the
FEMA-350 FEMA, 20003 definition of the Collapse Prevention limit-state. It is partially based
on the change of the slope of the ID¥gmvatsikos and Corngl20023 (Chapter2), therefore it
is clearly not a simpléM -based limit-state.

As a final note, it is important to observe how we were forced to introduce summarization
over windows rather than stripes. By introducing an extfa we may have explained some of
the variability in the capacities but we have also increased the dimensionality of the sample space,
thus the data is more sparse. Where we used to have 30 points for each level (stripe) of the scalable
IM , we now have only a few points for whole regions of the unscaldisleObviously, we cannot
keep introducing extra dimensions, otherwise we will be facing extreme lack-of-data problems.
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6.4.2 Collapsing a vector to a scalar

By observing the contours in Figu@16it becomes obvious that a power law relation can be
employed to approximate each one:

S5(T1,5%) ~ aRea(1.5,Ty)" (6.1)

wherea, b are the fitted coefficients.

Even though thé-value is not consistent for all limit-states, as the contours have higher cur-
vature for higheiDM -values, we can still specify some reasondblalue that will be adequate
for several of them. In that case, we can rewrite Equafiof) s

a~ S(T1,5%) - Rsa(1.5,T1) P (6.2)

and interpret it as follows: by multiplyin§$(T1,5%) capacity values bfRsy(1.5,T1) ™, we can
bring them closer, almost to an (arbitrary) constant. In other wa@d3;,5%)Rs(1.5,T1) P is
a scalarlM that will retain much of the vectolM’s ability to reduce dispersion in limit-state
capacities. How much reduction it will achieve will depend on our ability to select a pteper
value and the goodness-of-fit of Equati®i to the contour.

Not surprisingly, it is such a form th&home and Cornel([1999, Mehanny and Deierlein
(2000 andCordova et al(2000 have used to create a new, more effective sdafarWhile the
idea there was mostly driven by the need to be able to use existing attenuation laws to create
hazard curves for the nei (Cordova et al.2000, they have come very close to an accurate
approximation to the contour shape, at least for this first-mode-dominated structure.

6.4.3 Investigating the vector of two spectral values

Clearly, for the 5-story building with negligible higher modes, using a vector instead of a scalar
IM produces very impressive results. The introductioRgf1.5, T;) provides significant insight

to the seismic behavior of the 5-story, as seen in Figut§ whenRs4(1.5,T;) > 1, as its period
lengthens, the damaged structure falls in a more aggressive part of the spectrum and is forced
to fail at earlier§;(T1,5%) levels, exhibiting rapid softening. On the other hand, if the ratio is
less than one, the period lengthening helps to relieve the structure allowing the IDA to harden and
reach higher flatlines (in terms of ti&g(T1,5%)). Actually, the less aggressive the record is (lower
Rsa(1.5,T1)) the more the IDA hardens. The introduction of the extahas helped explain some

of the record-to-record variability in tH&(T;, 5%) capacities for almost any level 6iM, i.e., for

any limit-state.

Additional studies show that such results are not very sensitive to the spectral ratio that we
choose to use. At least for the 5-story building, almost any such lengthened period will provide
some explanation of the variability in capacity. On the other hand though, it may not be so for other
buildings. As shown in Figure®.18and6.19 whereRs4(1.5,T) is also used, it yields little or no
additional information for the 9-story and 20-story building respectively. If on the other hand, we
use another spectral coordinate, at a period lower Thasome additional resolution is gained,
but the shape of the contours may no longer be a power-law, as seen in &igafer the 20-
story whenRs5(0.5,T1) is used in addition t&(T1,5%) (where0.5T; ~ 1.5T, for this building).

Still, even for these complex buildings, there exist periods that explain well the variability and
even show the familiar, power-law shape of the contours, as shown for the 9-story when we use
Rsa(0.7,T1) (where0.7Ty ~ 2T, for the 9-story), Figures.21, and even the 20-story when we
introduceRs4(0.3,T1) in Figure6.22 (where0.3T; =~ T, for the 20-story). Clearly, there is great
potential in using the power-law form, but the question remains whether the appropriate periods
for its use are easy to determine, especialfyriori.
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6.5 Using a power-law form with two or three spectral values

Motivated by the power-law form that the contours take on many occasions, we have decided to
directly investigate its application as an improvédl. Formally, we intend to perform a search for
the optimally efficieniM of the form

IM = Sy(Ta,5%)" P Si(15,5%)"

Si(15,5%) |7
Sa(Ta, 5%):|

wheret, andt, are arbitrary periods an@ € [0, 1]. Notice the difference witshome and Cornell
(1999 who constrain both periods to g andT, respectively, oMehanny and Deierlei(2000
andCordova et al(2000, who chose to constrain one of the periods tarhelnstead, we intend
to let the optimization find the best valueag, 1, andp.

Additionally, we will investigate a power-law form containing three spectral values or, equiv-
alently, a single spectral value and two spectral ratios:

= Su(Ta, 5%) [ (6.3)

IM = Su(Ta, 5%) P~ (11, 5%)P Su(1c, 5%)Y

Sa(rb,S%)]B [sa(rc,s%)] v
Sa(Ta, 5%) Sa(Ta, 5%)

whereTt,, T, and 1 are arbitrary period3,y € [0,1] andB +y < 1.

The optimal two periods for the 5-story building appear in Fighi23 over a range of limit-
states from elasticity to global collapse. At elasticity, the two periods converge to the first mode,
Ty, since the structure has practically no higher mode effects. As damage increases, one of the
periods hovers close t§;, while the other is increasing and fluctuates about 50% higher. The

(6.4)

- Sir5% |
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Figure 6.21: Median contours for the 9-story building B (T1,5%) andRs4(0.7,T1) coordinates. They
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Figure 6.23: The two optimal periods,, T, as they evolve witlh,ax for the 5-story building.
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Figure 6.27: The 84% fractile of the suboptimal dispersion when using a single spectral value versus a
power-law combination of two or three periods for the 5-story building. For comparison, the dispersion
achieved byg;(T1,5%) and the optimal three-periods power-law is also shown.

optimal value off3 is always about 0.5, favoring equal weighting of the two periods. Comparing
Figures6.5and6.24it becomes obvious that the use of two spectral values reduces the capacity
dispersion by a small amount relative to the use of a single (optimal) value. \Bifile, 5%)

would achieve about 40% dispersion and a single optimal period would reduce this to 25%, the
use of two periods only brings it down to 20%.

If we introduce a third spectral value for the 5-story through Equaiidin then we come
up with the three optimal periods shown in Fig@@5for a range of damage-states. Again, in
elasticity, the three periods convergdatnd then they slowly separate. One period stays at about
T1 and the rest gradually increase. When close to global collapse the second one is 50% higher
and the third 100% higher thai. Again, equal weighting seems to be the rule for all limit-states
since the optimal values afe~ y~ 1/3. The dispersion reduction is even less spectacular than
before (Figures.26), reaching a level of just 18% at global collapse compared to the 20% of the
two spectral values. Clearly, we have reached the limits of what the elastic spectral shape can do
for this building. As expected, when higher modes are insignificant, one, maybe two, periods will
be enough to determine an improved, near-optitig| cutting down dispersion by a factor of two
relative t0S,(T1,5%). Adding more complexity to théV does not seem to help efficiency, as the
system is not that complex itself.

When practically implementing sudi s before the dynamic analyses are performed, it is
important that efficiency remains high even when not using the (unkropmori) optimal pe-
riods. To investigate the sensitivity of the proposed scifbs we have simulated random user
choices for the period(s) used for the single spectral value or the power-law combinations of two
or three values. The user is supposed to have picked periods uniformly distributed-x2bfa
of the optimal values for eactM and to have selected equal weighting of spectral values in the
power-law (i.e.8 = 1/2 or B = y=1/3). Such simulations are repeated numerous times for each
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limit-state (i.e., value 0Bnax) and the achieved suboptimal dispersion is calculated for #dch

In Figure6.27we are plotting the 84%-fractile of the suboptimal dispersion for the single period
and the two power-law combinations versus gy definition of each limit-state; i.e., we are fo-
cusing on a worse-than-average scenario. For comparison, the dispersion whe®, (Birio)

and when using the optimal three periods power-law is also shown. Obviously, the largest effect
for the 5-story is in the elastic region, where not usiags a very bad choice in all cases. In the
nonlinear range, missing the optimal period seriously degrades the performance of dMingle
bringing its dispersion to about 30%, a fact also observed in FigizeOn the other hand, the

two and three period combinations perform relatively well, managing to keep a dispersion of about
25% and 20%. Again, just as when using a vector of two spectral values, the power-law form is
quite stable, even more so than using a single spectral value, hence relatively large changes away
from the optimal periods do not significantly influence the dispersion reduction of the power-law
IM . Practically, in the post-yield region, using the first mode plus e.g., a 50% increased period,
with 8 = 0.5 (i.e., equal weight on both spectral values) will in general produce good results.
Actually these conclusions are quite in agreement @itindova et al(2000.

In the case of the 9-story building, the two optimal periods appear in F@@8and the three
best in Figures.30 In the first case, the smaller period seems to staly athile the higher one
starts fromT; and increases to some higher value, only to return badk tmain. For the three
periods, the results seem to favor one perio@atanother afl, and a third at about twicé;.
Similarly to the 5-story, equal weighting is the optimal strategy for bibtls and almost all limit-
states. With either two or three periods, as seen in Fighi2%and6.31, the dispersion reduction
is about the same. Actually, the dispersion drops from 40% for one optimal period (or even for
justS;(Ty,5%)), to less than 25—-30% when two or more periods are used. Again, it seems that two
spectral values are enough for this first-mode-dominated building and clearly better than just one.

What is of more value though is that the efficiency of the two or three-eleliwkig very stable
relative to the choices of the periods and fhey weights. In Figures.32we plot the results of
the previously described sensitivity analysis for the 9-story. Clearly, using only one (suboptimal)
period is often worse or at most as good as when uSii#;, 5%), as observed in Figur@.6 as
well. On the other hand, with two or three periods, equally weighted in a power-law forrilthe
is considerably more robust and relatively reasonable efficiency is maintained. If we follow our
observations and set one value arodhdanother at abouf, and maybe a third 50% or 100%
higher thanTy, then weigh them equally3(= 1/2 or 3 = y = 1/3), a dispersion of about 30% is
easily achieved in contrast to the elusive single optimal period.

Figure6.33shows the best two periods for the 20-story building. One seems to stay somewhere
in the middle ofT, and Tz while the other is a lengthened version of the first mode, perhaps by
30-50%. The picture is clearer for the three best periods in Fig3% where each seems to be
a (roughly) 50% lengthened version of one of the three elastic mdgdek, andTs. The optimal
weights are roughly equal for all two or three periods. The dispersion reduction is significant
in both cases, reaching down to 25% versus the 35% achieved by a single optimal period or the
40% of S3(T1,5%) (Figure6.34 6.36). While the use of three periods rather than two seems to
offer little benefit, actually it makes thi& quite easier to define. Additionally the results of
the sensitivity analysis in Figurg 37 suggest that efficiency remains relatively high when three
suboptimal periods are employed, versus two or one. Simply by increasing all three elastic periods
by some reasonable percentage and employing equal wef@htsy(= 1/3) works fine for all
limit-states, achieving dispersions in the order of 30%.

In conclusion, it seems that the use of the power-law form with two or three spectral values
helps even when the higher modes are significant. Actually, the more significant they are, the more
periods we might want to include. The benefit is not so much in the reduction of dispersion, rather
in the robustness of thiM and the ability to identify ita priori. Further investigation of more
structures is needed before some concrete proposals are made, but the concept looks promising.
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Figure 6.28: The two optimal periods,, T, as they evolve witlh,ax for the 9-story building.
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Figure 6.29: The dispersions for optima,(Ta, 5%)'# Sy(1p, 5%)P versusS,(Ti,5%) and PGA for the
9-story building.
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Figure 6.30: The three optimal periods, T, T as they evolve witlB,ax for the 9-story building.
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Figure 6.32: The 84% fractile of the suboptimal dispersion when using a single spectral value versus a
power-law combination of two or three periods for the 9-story building. For comparison, the dispersion
achieved byg;(T1,5%) and the optimal three-periods power-law is also shown.

6.6 Using all spectral values

The problems encountered with all previous attempts to use the spectral shape mainly stem from
the fact that we were looking for distinct “perfect” periods. This in part made the problem quite
more difficult, as we were trying to describe the full spectral shape with only one or two values.
We might want to use more information from the spectral shape than just two discrete values, and
this hopefully will open up some easier paths. Still, visualizing such a vector would be hard, and it
would be equally difficult to have enough data to fill the extra dimensions. On the other hand, the
collapsed form of the vector to a scalar suggests an easier way to approach this problem. Including
more spectral coordinates in Equatidhlj is relatively straightforward, while finding the right
B, y-coefficients may be handled by standard linear regression methods, penalized to reflect the
sample size limitations.

Taking one step further, there exist methods in statistics that can treat each record’s spectrum as
a single, functional predictor, thus taking into consideration the shape of the full spectrum and use
it as a predictor for limit-state capacity. In formal terms we are proposing the use of a functional
linear model Ramsay and Silvermafh996 that will use each record’s spectrum to predict a scalar
response, i.e., its limit-sta®" (T1, 5%)-capacity derived from the IDA curve of thath record.
In essence, we are proposing the use of the linear functional model

Su(1,5%)
SH(T175%)
wherea is the regression interceg(1) is the regression coefficient functiot3,andt. are the

starting and ending periods that bound the spectral region of interest and, finalg,the inde-
pendent and normally distributed errors (with a mean of zero).

. te
In S (Ty, 5%) :a+/t B(T)In[ } dr+g (6.5)
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Figure 6.33: The two optimal periods,, T, as they evolve witlh,ax for the 20-story building.
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Figure 6.34: The dispersions for optima,(1a, 5%)'# Sy(1p, 5%)P versusS,(Ti,5%) and PGA for the
20-story building.
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Figure 6.35: The three optimal periods, 1y, T; as they evolve witlBnax for the 20-story building.
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Figure 6.36: The dispersions for optima,(Ta, 5%)' Y Sy(1p, 5%)P Su(1¢,5%)Y versus the dispersions
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Figure 6.37: The 84% fractile of the suboptimal dispersion when using a single spectral value versus a
power-law combination of two or three periods for the 20-story building. For comparison, the dispersion
achieved by5,(T1,5%) and the optimal three-periods power-law is also shown.

This can be thought as a conventional multivariate linear regression model, only we can have
an infinite number of predictors, or degrees of freedom, in our fitting. Of course, having infinite
parameters and only a finite number of responses, allows such a model to actually interpolate the
responses, if we choose so. This would not provide a meaningful estimator, but can be reme-
died by sufficiently smoothing the coefficient functifiir) at a level easily found through cross-
validation. We end up with a model to predict limit-state capacities, that can be easily imagined to
be of the same power-law form as the one we have introduced to collapse the vector/bfswo
into a scalar in Equatior6(l). If we use a trapezoidal rule to perform the integration, then we can
write Equation 6.5) as:

C,i ~ S i M
NSy (12,59 ~ o+ 3 Br)In [sam,fv%)] o N
ci o sa(ri,5%>]‘3“‘)“
1Ty, 5%) ~ < (T, B0/
S (T1,5%) ~ € ﬂ[sa(Tl,S%) -

n

e” ~ S8 (T, 5%) D [

. —B(1)At

Si(TZb 5%)

Equation 6.6) allows us to define a new , of similar form to Equation&.2), that now uses
practically the whole spectrum to explain (and reduce) the record-to-record variability. Similarly
to the collapsed vector form, as describe@ordova et al(2000), it is expected that hazard curves
can be easily determined for such/ah without the need of new attenuation relationships.

But why expand to such a complicatéd ? We have performed such a functional linear fit for
the global instability capacities of the 20-story building, for the spectral coordinates Witkin
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Figure 6.38: The regression coefficient functig{7) at global dynamic instability for the 20-story build-
ing.

0.1s andte = 6s, and have plotted the coefficient functi@(r) in Figure6.3§ it precisely explains
the influence of every spectral coordinate on the flatline capacity. We can thifkrpfas a
weight function, where its absolute value at each period provides us with the degree of the period’s
significance to capacity. As it appears, the importance of spectral coordinates is highest for periods
longer than the first mode (hidB(7)|-values), while it decreases rapidly for periods lower than
the second mode (loyB(71)|-values). The simplicity of the shape suggests that we can probably
provide some general priori suggestions for the coefficient function that will provide relatively
efficientIM s. Note, that we need not match the actual values of the coefficient function, only its
shape, as we are not interested in capacity-prediction, only in capacity dispersion reduction.
Again, the realized gains may not lie as much with dispersion reduction as with robustness.
The IM suggested by the fit reduces all capacity dispersions for all limit-states by approximately
50% relative tdS,(T1,5%), almost to similar amounts as the power-law form with three periods.
Only further investigations can prove whether this functional model will prove more useful or
robust than the simpler power-law form. Still, it may help us identify spectral regions of interest
and characterize structures in a very simple way.

6.7 Conclusions

Providing more efficient Intensity Measurdd/(s) is a useful exercise, both in reducing the num-

ber of records needed for PBEE calculations but also in improving our understanding of the seismic
behavior of structures. The observed record-to-record dispersion in the limit{gtatapacities

can be practically halved by taking advantage of elastic spectrum information. Several methods ex-
ist to incorporate elastic spectral valuesghihs. One could use a single optimally selected spectral
value, a vector of two or a power-law combination of several spectral values. While all candi-
dates seem to achieve similar degrees of efficiency, not all of them are suitable foptise;
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it may be quite difficult to select the appropriate periods (or spectral values) before we complete
our dynamic analyses. Using a single optimal spectral value is practical only for buildings with
insignificant higher modes. On the other hand, when the influence of higher modes is significant,
spectralshapebecomes important. Then, using two or even three spectral values seems to help
both the efficiency and the robustness of the to the suboptimal selection of periods. Still,
before suchM s are adopted, significant work remains to be done; we need to investigate more
structures and more ground motion records, probably ones with important local spectral features,
e.g., soft sail or directivity influence. Thus we will be able to better select the approfiviateat

will be both efficient and sufficient for a given structure and site.



Chapter

Conclusions

7.1 Summary

In the preceding chapters we have defined Incremental Dynamic Analysis (IDA) and used it to
investigate various aspects of the seismic performance of structures.

Chapter2 provides a concrete theoretical basis for IDA, fully describing the process of per-
forming multiple nonlinear dynamic analyses under a suite of multiply-scaled ground motion
records. The Intensity Measuré\{) was introduced to quantify the scaling of a ground mo-
tion record and the Damage Measuf#\|) was used to record its response, generating an IDA
curve for each record in thi&1, DM plane. Observing such curves revealed large record-to-record
variability but also several interesting aspects of structural behavior. The equal displacement rule
was found to be applicable for moderate and long period structures in the near elastic region.
Additionally the phenomena of non-monotonic behavior, discontinuities, hardening, softening,
flatlining and even resurrection behavior were observed in individual curves. On each IDA curve
limit-states were defined using a variety of methods or rules. Using cross-sectional fractiles the
IDA curves where summarized into the 16%, 50% and 84% IDA curves, and the capacities were
summarized into their 16%, 50% and 8408/ or IM values. Further we have addressed the
guestion of “legitimacy” of scaling records and the relationships between IDARdadtors as
well as between IDAs and the Static Pushover (SPO) Analysis. A significant connection appeared
between the IDA and the SPO; individual segments of the SPO (e.g., elastic, positive-stiffness,
negative-stiffness, residual plateau) correspond to unique segments of the IDA (e.g., elastic, equal
displacement, softening, secant at reduced stiffness). Finally, algorithms were presented that can
significantly reduce the number of nonlinear runs per record. Allin all, IDA was shown to provide
useful intuition into the seismic behavior of structures.

In Chapte3 we looked into the practical application of IDA to a 9-story steel moment-resisting
frame, using the methods presented in the previous chapter to produce a complete example and
commentary for applying IDA to PBEE. Publicly available software is used to perform the anal-
ysis, interpolate the IDA curves, estimate limit-state capacities and summarize the results into a
format that can be easily integrated with modern PBEE frameworks. The final goal is estimating
the mean annual frequency of exceeding certain limit-states. We pay special attention to the details
of the practical implementation: how many records, how many runs per record, how the curves
are interpolated, the use of approximations in the probabilistic calculations. These are just some
of the subjects that we investigate, and they are all found to influence the accuracy of the final
IDA results. The methods that have been presented are designed to strike a favorable compromise
between speed and accuracy and thus resolve such issues. Perhaps, the single most important thing
to remember is the wealth of information that can be found in IDA if only we take advantage of
ever-cheaper computing power and automated methods to investigate the structure’s behavior.
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In Chapter4 the SPO2IDA tool was developed to provide rapid estimation of the seismic
performance of oscillators with complex backbones and arbitrary periods. The investigated back-
bone shapes range from simple bilinear to complex quadrilinear with an elastic, a hardening and a
negative-stiffness segment plus a final residual plateau that terminates with a drop to zero strength.
Using a suite of thirty ground motion records, IDA was performed for numerous such backbone
shapes and the summarized IDA curves were extracted for each individual case, yielding inter-
esting observations. Long hardening segments are found to significantly improve performance,
while their slope has only a small effect. On the other hand, the steeper the slope of the negative-
stiffness segment, the higher the demands and the lower the capacities past the peak of the back-
bone. Residual plateaus that are higher in terms of strength or longer in terms of ductility, both
benefit the post-peak performance. Finally, the oscillator period significantly influences the effect
of all segments except the hardening one in the moderate or long period ranges. Several different
backbone shapes were found to produce similar dynamic behavior. Thus, the required number
of backbone shapes to be investigated is drastically reduced, allowing the effect of a complete
quadrilinear backbone to be captured with only a handful of regressions. In accordance, a number
of equations have been proposed, defining a flexible, publicly available, software tool (SPO2IDA)
for performing fast assessments of the (median and dispersion of) demand and capacity of virtu-
ally any oscillator. Using SPO2IDA we can effortlessly get accurate estimates of the performance
of the oscillator without having to perform the costly analyses, providing ready insights into the
relative advantages and disadvantages of possible design or retrofit alternatives.

In Chapter5 we employed SPO2IDA in conjunction with the SPO for direct approximation
of the MDOF seismic behavior. This method can estimate the seismic demands and capacities
of first-mode-dominated MDOF structures for their entire range of behavior, from elasticity to
global dynamic instability. Based on the SPO and building upon software able to accurately pre-
dict the Incremental Dynamic Analysis (IDA) curves for SDOF systems, it can estimate, with
reasonable accuracy, the fractile IDA curves of first-mode-dominated MDOF systems. Similar
existing methodologies usually employ bilinear oscillators. The use of SPO2IDA enables us to
extend them well beyond the peak of the SPO. Several novel concepts are derived in the process,
perhaps the most important being the worst-case, most-damaging SPO. Sometimes, carefully se-
lected load patterns are needed to estimate it, but the worst-case SPO best captures the path that
leads to global collapse. Thus it allows accurate prediction of the IDA results. Equally interesting
is the apparent “simplification” that occurs in MDOF systems near global collapse. This permits
SDOF systems with appropriate backbones to capture the onset of global dynamic instability even
for higher-mode-influenced structures. Combining all these observations, we can conclude that
simply by using the appropriate SPO curve plus, perhaps, a few elastic response spectrum analy-
ses, the engineer-user is able to generate accurate predictions of the seismic behavior of complex
MDOF structures within a fraction of the time needed for a full IDA.

Finally, in Chapter6, the limit-state capacities estimated by IDA were used as a tool to re-
search the effect of the elastic spectrum on structural performance and its ability to iniigrove
efficiency. Providing more efficient Intensity Measur#d §) is a useful exercise, both in reducing
the number of records needed for PBEE calculations but also in improving our understanding of
the seismic behavior of structures. The observed record-to-record dispersion in the linfstate
capacities can be practically halved by taking advantage of elastic spectrum information. Several
methods exist to incorporate elastic spectral valuedfis. We chose to use a single optimally
selected spectral value, a vector of two or a power-law combination of several spectral values.
While all candidates seem to achieve similar degrees of efficiency, not all of them are suitable
for usea priori; it may be quite difficult to select the appropriate periods (or spectral values) be-
fore we complete our dynamic analyses. Using a single optimal spectral value is practical only
for buildings with insignificant higher modes. On the other hand, when the influence of higher
modes is significant, spectrahapebecomes important. Then, using two or even three spectral
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values seems to help both the efficiency and the robustness ffthe the suboptimal selection

of periods. Still, before suchM s are adopted, significant work remains to be done; we need to
investigate more structures and more ground motion records, probably ones with important local
spectral features, e.g., soft soil or directivity influence. Thus we will be able to better select the
appropriatdM that will be both efficient and sufficient for a given structure and site.

7.2 Limitations and Future Work

All the work presented revolves around IDA and is limited in all the ways that IDA is. Thus,
the single most important issue is the concept of ground motion record scaling. There certainly
exist structures for which scaling is “legitimate”, e.g., moderate period buildings in sites with
no directivity whenS,(T1,5%) is the IM (Shome and Cornelll999. Still the issue is far from
resolved. Structures that have short or long fundamental period, have significant higher modes
or exist in sites influenced by near-fault directivity, are candidates for causing problems. That is
not to say that in these case the results coming from IDA over a given suite of records will not
be legitimate, rather that care should be taken to remove the dependence on record characteristics
other than théM used.

The obvious way to do so is to properly select the ground motion records a priori, before per-
forming IDA. Another, easier-to-implement method would be the introduction of a suffithént
as attempted by uco and Cornel(2004 and Cordova et al(2000. A sufficient/M would be
able to remove the possible bias, bringing together the results from records with different charac-
teristics, like magnitude or forward-directivity. Or, one could try to properly weigh each record
according to its contribution to the total hazard, as found by disaggregation; thus, record-selection
can be exercised a posteriori. Obviously, there are several candidate methods and more work needs
to be directed to this area before the scaling issue is resolved.

IDA is also limited by the very structural model, analysis algorithms and element models
that it uses and all the assumptions incorporated therein. Therefore, it has the unique advantage
of growing as the power of our modeling and our computational abilities evolve, but it is also
hampered by their limits. For example, in many of the results shown herein, there exist damaged
but still stable structures at roof drifts in excess of 5%. This is a conclusion that many professionals
and researchers may seriously question. It is important to understand that this is exactly what
current models can predict. Only the comparison with better models, observations in the field
and lab experiments will prove or refute them. But the point is that we are focusing only on the
method, and we anticipate that it will remain unchanged as the models improve.

Thus, we await with great anticipation structural models that will include all the important
factors that we have left out: the introduction of soil-structure interaction, the expansion of models
to three-dimensional structures simultaneously subjected to more than one component of ground
motion and the inclusion of more structural elements (e.g., stairwell and partitions) or improved
element models that can show e.g., axial failure of columns and shear failure of beams. Until then,
IDA will be limited to what has been incorporated to structural models so far.

The approximation of IDA by SPO2IDA is hampered by several additional problems. At the
SDOF-level, it is the consideration of directivity, soft soil and the characteristics of the hysteretic
model that limit its application, as explained in detail in Chagtem the MDOF case, we have
also inherited the limitations of the SPO, especially its inability to capture the influence of higher
modes. These further constrain the accuracy we can achieve with SPO2IDA in the near elastic
and nonlinear region, although, remarkably, not in the global collapse domain. Also, further
work is needed to test and maybe modify the methodology for buildings with stiffness or strength
irregularities along their height or within a story. One could easily assume that it may become
quite challenging to find the worst-case SPO, or some equivalent SPO that would give the best
prediction.
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Finally, the use of the elastic spectral shape to reduce the dispersion of capacities in the non-
linear range carries all the problems of using elastic information to predict inelastic results. The
inelastic spectral shape will probably be a better bet in the long-term, but the cost comes in the
face of the building-specific attenuation laws needed.

7.3 Overall Conclusions

IDA has proved a useful tool, and can be part of both the short and long-term future of PBEE.
It helps quantify the seismic performance of structures, and in the form of the summarized IDA
curves and théM -capacities it provides a remarkably useful foundation to develop important
intuition and create new approaches to PBEE. Built upon this very foundation, the SPO2IDA tool
has proven both accurate and useful for understanding how a structural design may help or hinder
the seismic performance both for SDOF but also for MDOF structures. In a similar way we have
developed the investigation of the elastic spectral shape. Its potential to explain the record-to-
record variability in capacity is promising and can help resolve many problems. Naturally, these
methods have limitations but they are not insurmountable and we anticipate that future research
will address them appropriately.
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