
Performing Incremental Dynamic Analysis in ParallelI

Dimitrios Vamvatsikos

University of Cyprus, Department of Civil and Environmental Engineering,
75 Kallipoleos Str, 1681 Nicosia, Cyprus

Abstract

Incremental Dynamic Analysis has recently emerged to offer comprehensive evaluation of the seismic performance of structures us-
ing multiple nonlinear dynamic analyses under scaled ground motion records. Being computer-intensive, it can benefit from parallel
processing to accelerate its application on realistic structural models. While the task-farming master-slave paradigm seems ideal,
severe load imbalances arise due to analysis non-convergence at structural instability, prompting the examination of task partition-
ing at the level of single records or single dynamic runs. Combined with a multi-tier master-slave processor hierarchy employing
dynamic task generation and self-scheduling we achieve a flexible and efficient parallel algorithm with excellent scalability.

Keywords: structures, earthquake engineering, incremental dynamic analysis, distributed computing, parallel processing

1. Introduction

Incremental Dynamic Analysis (IDA) is a powerful
computer-intensive method that has recently emerged to offer a
comprehensive evaluation of the seismic performance of struc-
tures (Vamvatsikos and Cornell [1]) within the framework of
performance-based earthquake engineering. Using numerous
nonlinear dynamic analyses under a suite of multiply-scaled
ground motion records, it allows for the detailed assessment of
the seismic performance of structures for a wide range of limit-
states, ranging from elasticity to dynamic instability and even-
tual collapse. Still, performing an IDA is a time-consuming
procedure that is often considered to lie beyond the computa-
tional resources of professional engineers, most realistic struc-
tural models often requiring several days of computation on a
single computer.

Despite its computationally heavy nature, IDA has met wide
acceptance and it is being used more and more by researchers
to evaluate the performance of structures in a variety of set-
tings. For example, Lee and Foutch [2, 3] and Yun et al. [4] em-
ployed IDA to evaluate the collapse capacity of multiple steel
moment-resisting frames, while Liao et al. [5], Tagawa et al. [6]
performed IDA to assess the performance of several 3D struc-
tural models. Pinho et al. [7] used it to evaluate the accuracy
of static pushover methods on twelve bridges and Goulet et al.
[8] relied on IDA to estimate seismic losses for a reinforced-
concrete frame structure.

Apart from such focused studies, IDA has also been used
extensively in wide parametric studies of single-degree-of-
freedom systems (SDOF) featuring, sometimes, millions of in-
dividual dynamic runs. Especially within the framework of

IBased on a short paper presented at the ECCOMAS COMPDYN 2007
Conference

Email address: divamva@ucy.ac.cy (Dimitrios Vamvatsikos)

estimating seismic performance uncertainty and sensitivity to
model parameters, such extensive investigations have appeared
repeatedly in the literature. Ibarra [9] has run thousands of
IDA analyses to evaluate the response sensitivity and uncer-
tainty of SDOF performance to modeling parameters. Simi-
larly, the development of the SPO2IDA oscillator-performance
prediction tool by Vamvatsikos and Cornell [10] necessitated
the execution of about 7,200 30-record IDAs for fitting and an-
other 540 for error estimation. Lastly, in the course of the ATC-
62 project [11] the evaluation of different single-story systems
with a wide range of in-cycle and cyclic degradation character-
istics demanded at least 800 IDAs of 56 records each.

More recently, with the improvement in computer power,
large parametric IDA assessments have become feasible
even for complex multi-degree-of-freedom (MDOF) structures.
Among the first were Ibarra [9] who used IDA to evaluate sim-
ple moment-resisting frames with parametric beam-hinges, and
Haselton [12] who employed it to ascertain the collapse ca-
pacity of 30 ductile reinforced-concrete moment frames with
heights ranging from one to twenty stories. Vamvatsikos and
Papadimitriou [13] performed design optimization of a high-
way bridge, running 10-record IDAs on almost 1800 different
bridge configurations. Finally, the recent focus on IDA as a
tool to evaluate the performance uncertainty of structures via
Monte Carlo simulation has led many researchers to run tens or
hundreds of IDA analyses of complex MDOF structures: Liel
et al. [14], Dolsek [15], and Vamvatsikos and Fragiadakis [16]
have used anywhere from 10 to 200 multi-record IDAs each,
employing, e.g., classic Monte Carlo with a response surface
approximation, Monte Carlo with latin hypercube sampling or
even approximate moment-estimating techniques.

All in all, in the past few years IDA has moved from the
realm of the eccentric academic method, to an every-day tool
that is being used en masse. Therefore, it is quite natural that

Preprint submitted to Computers and Structures September 10, 2010

there have been several attempts to improve its speed and re-
duce the considerable computational load it incurs. One avenue
of research has been the move to better, more efficient inten-
sity measures (IMs), than the typical 5%-damped first-mode
spectral acceleration Sa(T1,5%), as exemplified by Vamvatsi-
kos and Cornell [17], Luco and Cornell [18] and Baker and
Cornell [19]. Using improved scalar or vector IMs reduces the
record-to-record dispersion of IDA curves, thus needing less
records to achieve results with the required confidence level.
Another unique strategy with the same goal was implemented
by Azarbakht and Dolsek [20] who used a genetic algorithm for
optimal selection of records based on equivalent-SDOF IDA re-
sults, thus estimating the summarized IDA results for MDOF
structures with a reduced number of records.

Nevertheless, all such approaches invariably result back to
the evaluation of a number of single-record IDA curves, where
little has been done to accelerate their computation. They are
typically run sequentially on a single computer, or one central
processing unit (CPU), or at most broken up manually into a
few subsets of records that are fed to 2–3 CPUs with the re-
sults often being combined afterwards by hand. With the pro-
liferation of computer clusters and parallel computing (Grama
et al. [21]), it is only natural to investigate methods to accel-
erate IDAs. What we propose emphasizes the need to rapidly
perform IDAs “over the weekend” using an ensemble of com-
puters, typically connected by a Local Area Network (LAN)
or the Internet, to analyze realistic, engineering-level models
for a large suite of ground motion records using an existing
commercial or open-source analysis platform (e.g., OpenSEES
McKenna et al. [22]). In other words, we aim to utilize existing
distributed computing methods to enable IDA computations in
parallel using the resources already found in any engineering
office or research laboratory. While this might seem straight-
forward at first, the idiosyncracies of IDA can make efficient
parallelization a challenging issue that deserves to be discussed
in detail.

2. IDA Fundamentals

Performing IDA for a structural model involves running non-
linear dynamic analyses of the model under a suite of ground
motion records, each scaled to progressively increasing inten-
sity levels, appropriately selected to force the structure to dis-
play its entire range of behavior, all the way from elasticity to
final global dynamic instability [1]. The ground motion inten-
sity level is measured by an intensity measure (IM), e.g., the
5%-damped first-mode spectral acceleration Sa(T1,5%), while
the resulting structural response is typically represented by an
engineering demand parameter (EDP), e.g., the maximum inter-
story drift ratio θmax. Thus, each dynamic analysis can be visu-
alized as a single point in the EDP-IM plane, as seen in Fig. 1(a)
for a nine-story steel moment-resisting frame. Such points can
be interpolated for each record to generate IDA curves of the
structural response. The resulting curves can be seen for the
nine-story building in Fig. 1(b) were we observe their complex
nature: Rising in a linear elastic slope from zero intensity, then
twisting their way after yield to the final plateau, termed the

flatline, where the structure responds by displaying dispropor-
tionately large EDP-increase for very small increments of the
IM. This is where the structure approaches global dynamic in-
stability, ultimately evidenced as numerical non-convergence in
a well-executed, accurate analysis [23]. By appropriately post-
processing the IDA curves, one can determine the distribution
of EDP-response given IM (or vice-versa), define appropriate
limit-states and, in combination with probabilistic seismic haz-
ard analysis [24], determine the mean annual frequency of ex-
ceeding designated performance goals [23].

As our goal is accelerating the estimation of the IDA curves,
of primary interest in our development hereafter is the existence
of this flatline, the enormous record-to-record variability it dis-
plays and how this complicates the subtle issue of “appropri-
ately selecting” the IM-levels to efficiently arrive at the results
of Fig. 1(b) by expending only a small number of runs. For
example, the simplest algorithm that can be devised to trace a
single-record IDA curve is the stepping-algorithm:

Algorithm. SERIAL_STEP

1 repeat
2 increase IM by the step
3 scale record, run analysis and extract EDP(s)
4 until collapse is reached

While extremely simple, it is rendered completely inefficient
by our inability to properly choose the all-important IM-step.
As seen in Fig. 1(b), any step selected will be too small for
some records and too large for others, and we have no way of
knowing a priori which is which, thus leading to a large waste
of runs [23]. Therefore, we need adaptive tracing algorithms,
like the hunt&fill [23] discussed later, that can be very efficient
but remove our ability to know in advance the runs that are to
be performed. As we will discuss in the following sections,
this is what precludes wide use of the simplest parallelization
schemes, since most tasks are dynamically decided after every
dynamic analysis is processed.

IDA parallelization thus becomes an interesting topic that
we will tackle by investigating it within the constituents of a
modern IDA study: a) The basic level of a single run, a sin-
gle (nonlinear dynamic) analysis of a structural model under a
given ground-motion record (i.e., any point in Fig. 1(a)) b) a
single-record IDA study, i.e., a set of single runs/analyses of
the model for increasing intensity of a given record (e.g., any of
the 20 curves in Fig. 1(b)), c) a multi-record IDA study, which
is a collection of single-record studies of the same model un-
der different records (represented, for example, by the set of 20
curves from Fig. 1(b)) and d) multiple multi-record IDA studies
where many different models are analyzed via a multi-record
IDA, sometimes differing only in their parameters and maybe
even using the same set of ground motion records. While a
single run/analysis might take anywhere from 30sec to 1hr, de-
pending on the structural model, the record and the CPU, a set
of multiple multi-record IDA studies may easily contain thou-
sands of single runs, often lasting weeks or months on a single
processor.

2

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

0.2

0.4

0.6

0.8

1

1.2

"f
irs

t−
m

od
e"

 s
pe

ct
ra

l a
cc

el
er

at
io

n
S

a(T
1,5

%
)

(g
)

maximum interstory drift ratio, θ
max

(a) IDA points

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

0.2

0.4

0.6

0.8

1

1.2

"f
irs

t−
m

od
e"

 s
pe

ct
ra

l a
cc

el
er

at
io

n
S

a(T
1,5

%
)

(g
)

maximum interstory drift ratio, θ
max

(b) IDA curves

Figure 1: The discrete analysis points and the corresponding IDA curves calculated for 20 records for a nine-story steel moment-resisting frame.

3. Approaching IDA parallelization

There are two paths one can take when attempting to par-
allelize IDA. One method would be to attempt parallelization
within the dynamic analysis itself. Then we need to employ
special parallel execution software, that will often have to be
custom-made or at least custom-compiled for optimal perfor-
mance on the client’s computer cluster, and it will concurrently
solve the system of equations for the model using, for example,
a domain-partitioning technique [e.g., 25]. This would effec-
tively be a fine-grained parallelization of the IDA problem that
is ideally suited to very large models with numerous degrees
of freedom. It has the advantage that it can potentially allow a
vast number of CPUs to participate in the problem (the larger
the model, the more CPUs can effectively be combined to solve
it) but it suffers from increased communication overhead (mes-
sage passing) among CPUs and, most importantly, it needs a
knowledgeable user and appropriate software. In other words,
we cannot use most existing analysis programs to partition an
IDA in this way, unless we have a version that can already run
in parallel [e.g., 25].

Fortunately, we do not necessarily need to take this route as
long as a single dynamic run of our model can still be performed
within the limitations of each single CPU in the cluster. Since
an IDA involves by nature the execution of numerous such sin-
gle tasks, it becomes amenable to task-farming techniques [21].
Instead of solving a single large-scale problem by partitioning
it to several CPUs, we only have a large collection of smaller
independent problems that may be serially executed in a single
CPU but they could just as easily be assigned to a larger num-
ber of CPUs that run in parallel. In this way we minimize the
communication overhead among computers while enjoying the
additional advantage of using any existing single-CPU analysis
software. Such is indeed the nature of IDA, and it would make
sense to take advantage of it.

Perhaps the easiest way to parallelize such a process is the

master-slave model, where a single master node controls task
generation, while the slave nodes are just workhorses that wait
for the next assignment to perform. Still, a priori assignment
of the tasks to the processors is not optimal. Some tasks are
appreciably more time-consuming than others. At the level of
a single dynamic run, depending on the number of excursions
into nonlinearity and the convergence difficulties, there may be
significant differences in the computations needed. Addition-
ally, the length of a ground motion record itself dictates, in part,
the time needed for a dynamic analysis. At the level of a single-
record IDA study, even among records having equal lengths one
could easily cause more inelastic cycles than the other, or just
have some steep pulse that demands many iterations for conver-
gence. Thus, it is always best to let the master post the jobs in a
common memory (e.g., a common filespace), or broadcast them
via message-passing (MPI Forum [26]) to the slaves, and then
let the slaves themselves take on tasks whenever they become
available, a process that is known as self-scheduling [21].

Thus, the only question left to answer is selecting the level
where we are going to divide the IDA process. There are two
obvious routes one could take: Assign tasks to CPUs at the level
of single dynamic analysis or assign single-record IDA studies.

4. Partitioning into single-record tasks

The simplest alternative is to choose a coarse-grained parti-
tioning, where each node (i.e., processor) is assigned each time
to run a single-record IDA on the structural model. This prob-
lem essentially falls into the “embarrassingly parallel” category
(Foster [27]). Thus, we are able to use our existing code both
for running the dynamic analyses, but also for tracing IDAs.
The efficient hunt&fill technique [1] may be employed locally
at each node to achieve maximum reusability of existing code.

The only possible loss when taking this path is the scalabil-
ity. For N records we can only employ N-CPUs at best, i.e.,

3

Figure 2: Two level master-slave hierarchy for partitioning IDA studies on a record-by-record basis.

as many as the records that we want to run, unless we are run-
ning more than one models, e.g., in a parametric study or a
comparison of different design alternatives. Then we could ef-
ficiently assign J×N CPUs, where J is the number of different
multi-record IDA studies we want to perform. In a typical engi-
neering office it would seem rather unlikely (at present) to have
more than 5-10 computers dedicated to this task; processing
will run quite efficiently for such small clusters. Anyway, this
is the simplest route that will let us use our existing non-parallel
analysis software, plus any IDA running capabilities that it may
already incorporate, e.g., as happens with the Seismostruct soft-
ware (Seismosoft [28]).

Another problem with such a coarse-grained parallelization
is the inefficient load balancing that may appear at the end of
the analysis, when we may have more CPUs than records avail-
able. Whenever the number of CPUs is not a divisor of the
number of records, we will have some CPUs having finished
their records and idling while the rest complete the IDA. For
example if we have 6 CPUs running a 20 record IDA study, as-
suming all records take the same time to complete would mean
that, in total, 4 CPUs will run 3 records each while the other 2
CPUS will run 4 records each. When the final two records are
being run we will have 4 CPUs idling and not contributing at
all to the effort.

Such issues only become important when the number of
CPUs is comparable to the number of records times the num-
ber of IDA studies. For most practical applications though, as-
suming a small-size cluster for a typical engineering office, this
would hardly be the case. Whenever we expect to run a large
number of records with a handful of CPUs, there is no reason
to be concerned about scalability or load-balancing with this
approach.

4.1. Two-level master-slave model

All that is left now is deciding on a way to perform the actual
task assignment. The classic master-slave model is a simple
technique, but adapting it to be employed efficiently on IDA is
an interesting process in itself. There are also several logistic
issues regarding how much centralized our scheme should be,
i.e., what parts of a single-record IDA should the slave run and
what parts should the master retain.

One approach would be to let the master pick up all the work
of tracing (i.e., running the hunt&fill algorithm) and postpro-
cessing the results supplied by the slaves. This may seem at-
tractive, as it leaves all the decision making to the master and
makes the slaves pure workhorses that run analyses and return
data. Unfortunately it also raises the communication overhead
while it may also turn the master into a bottleneck in the whole
process. The other obvious extreme is letting the master only
supply the record and model information and let each slave
trace and postprocess all the results on its own. Then, the slaves
will only return high-grade, low-size data to the master. This is
actually a very efficient scheme for our purposes, absolutely
minimizing any communication costs, therefore it is the one we
will adopt in our development.

Having decided on what the responsibilities of master and
slave are going to be, the most important issue remaining when
assigning tasks is making sure that the master node does not
remain idle while the other nodes are already running analyses.
In general the organizing, task communication and assembly
of the already-postprocessed results is simple work that takes
negligible time compared to any single-record IDA. Therefore,
there is a good chance that our master CPU will be idling while
the slaves sweat it out. When talking about a cluster of 5–10
CPUs, having one idling is actually a very inefficient way to
balance loads as we are immediately wasting 20–10%, respec-
tively, of the available computing power. The obvious choice is
to have the master node assign one task to itself while it waits
for other nodes to complete their own.

Another issue appears then, as the faster slaves may now have
to wait for the master node to finish its self-assigned task before
it manages to send them another. A simple way out is to have
the master broadcast in advance all the tasks that need to be
performed for the IDA study (i.e., send all records), or, if that
number is too large, dynamically keep adding more tasks to the
work-pool than the number of CPUs and let the slaves perform
self-scheduling by picking a task themselves. Each task that
is to be run by a slave is immediately removed from the pool
so that it is not executed by another. When a slave finishes
the analysis, it sends the results back and starts with the next
task. When all the tasks are finished, the master reads the frag-
mented, single-record IDA studies and assembles them in the
final multi-record IDA.

4

The final communication model adopted is schematically
shown in Fig. 2. In essence, it is a two-level master-slave hi-
erarchical model where the master adds tasks to the work-pool
while all CPUs, including the master, compete to grab tasks
from the pool, thus implementing dynamic self-scheduling.
The actual implementation of the proposed procedure depends
on the size of the problem, so it differs slightly when running
just one or many multi-record IDA studies.

4.2. Single multi-record IDA study
Assuming a single case (i.e., single structural model) IDA is

to be run, the algorithm needed to coordinate the tasks is quite
simple:

Algorithm. MASTERSCRIPT_ONECASE

1 post model file and records to shared memory
2 run slave script
3 assemble results

Algorithm. SLAVESCRIPT_ONECASE

1 while jobs exist do
2 pick first available job (record)
3 trace the single record & postprocess
4 send results to master
5 end while

As long as we have a tracing routine available that can per-
form a single-record IDA on one CPU, we can use these two
scripts on the respective master and slave nodes to get an in-
stant parallel machine. Note that this structure and all the sim-
ilar ones that will follow are simple enough to be easily im-
plemented with either a shared memory or a standard message-
passing model, e.g., using libraries like MPI (MPI Forum [26]).
Actually, the communication overhead is so low that it can also
be realized via a simple file-keeping scheme at some common
network drive. The master needs no knowledge of how many
CPUs are available, therefore CPUs may be added to the com-
putation as they are powered on or become available from other
jobs. In this form, the scheme is extremely tolerant to CPUs
crashing or going offline for whatever reason, not an uncom-
mon occurrence in networks. As long as the common memory
remains online, the remaining CPUs will finish the run. Even
if the master node itself goes offline, the slaves will perform all
the posted runs. All we need to do is rerun the master script to
aggregate the results.

4.3. Multiple multi-record IDA studies
When we want to run IDA for multiple cases (structural mod-

els) in a parametric analysis, as discussed earlier, it would be
advantageous to modify task-assignment to minimize idling of
CPUs. The goal is to have the slaves running tasks non-stop
until all IDA studies are finished: Even if the current IDA study
is not finished due to some node running the final record, the
rest of the CPUs should be set running the next case available.
Obviously the above presented algorithms need some modifica-
tions to achieve that.

The way to resolve this is to simply have the master post
more that one IDA study case at a time (together with appro-
priate model data), and then check back each time to make sure

that there are more than enough jobs posted in the common
memory before it undertakes any single task. Also, due to dif-
ferent performance capabilities of the slave nodes (one may be a
much slower CPU) there is a real chance that a single CPU may
still be running the last remaining analyses for IDA case i while
the others (and perhaps the master itself) are already running
analyses for IDA case i+1. Therefore the master must be flex-
ible enough to take into account all such difficulties, keep post-
ing and running jobs while at the same time checking back to
assemble results from any IDA study that is finished. Whenever
such a finished case is detected, the results are assembled and,
if applicable, removed from the common memory to be stored
locally for saving space. Now, the requirements are steeper,
therefore the algorithm becomes slightly more complicated:

Algorithm. MASTERSCRIPT_MULTICASES

1 while non-posted cases exist OR posted ones running do
2 if insufficient number of cases posted then post another
3 run slave script
4 if any case’s records are finished, assemble results
5 end while

Algorithm. SLAVESCRIPT_MULTICASES

1 while jobs exist do
2 pick first available job (record)
3 trace the single record & postprocess
4 send results to master
5 if master node has called this procedure, EXIT
6 end while

Note that we have modified the slave node script as well.
Since this is also used by the master, the script should not let
it be trapped and kept running until all posted tasks have fin-
ished. While this is happening the list of posted tasks may be
emptied and the slaves will become idle. So we have added an
if-clause that allows the master node to escape after finishing
a single task in order to check whether more tasks need to be
posted. The same functionality can be achieved by having the
master node spawn its own analysis process (the slave script) as
a separate thread on the same CPU while maintaining a constant
monitoring of the slaves.

5. Partitioning into single-analysis tasks

While the above approach may be adequate for the needs of a
small office-level network, a different approach is needed when
using higher numbers of CPUs, as available, for example, in
a research facility. Actually, even for small clusters running
a small number of records, it may be worth exploring a more
efficient approach when the number of CPUs is not a divisor of
the number of records. In such cases, when we reach the final
stages of our IDA-running (be it a single or a group of cases in
a parametric study) we will have some CPUs idling. Even then
it would be very attractive to somehow retain the efficiency of
the previous scheme while not wasting the available computing
power at the very end of the IDA computation.

The idea is to assign tasks at the level of single dynamic anal-
yses instead of single-record IDAs, thus achieving a medium-
grained partitioning of tasks. One dynamic run per CPU is after

5

Figure 3: Three-level master-slave hierarchy for partitioning IDA studies on the basis of single dynamic analyses.

all a simple and easy way to divide an IDA. If for an N-record
IDA each record needs about K-runs, we could ideally use up
to N×K CPUs and still achieve excellent scalability. With typ-
ical values of N = 20 records and K = 8 runs, we could use up
to 160 CPUs in parallel to solve the problem, theoretically, in
1/160 of the time it would take with just one CPU. Of course,
“theoretically” is the catch phrase here: As we have seen, not
all runs are equal in computational load. Therefore, a more ac-
curate estimate would be to say that with such a scheme, and
assuming perfect task-scheduling, we can finish an IDA case at
best at the time it would take the worst single dynamic anal-
ysis to complete. Let us now consider how such near-perfect
scheduling can be achieved.

5.1. Three-level master-slave model

Having established the desired priorities for our algorithm,
we need to set up the mechanics of task scheduling. The na-
ture of the proposed algorithm dictates the use of a multi-level
hierarchical master/slave-1/slave-2 model. The master gener-
ates and adds single-record tasks to the work-pool, just like be-
fore. Then, all CPUs implement self-scheduling by attempt-
ing to pick single-record tasks. The processors that manage to
get one become the slave-1 nodes which themselves generate
single-analysis/run tasks. The remaining CPUs are the slave-2
nodes and select single-run tasks to perform. This becomes a
dynamic three-tiered hierarchy where we need to make sure that
the master and the slave-1 nodes are always busy; they should
simply become slave-2 nodes once they are done distributing
tasks and run analyses themselves. Then, they only need to
check back once in a while whether the record (for a slave-1) or
the full IDA (for the master) have been completed, to assemble
the respective results and proceed to the next case, if any. In this
scheme, only the assignment of the master-CPU is static. The
other CPUs always compete to get the single-record tasks, thus
one CPU may take the mantle of a slave-1 for a given record but
then, once it is done tracing it, it may not be able to find another
record and have to become slave-2.

The proposed strategy is much more efficient than trying, for
example, to further decentralize the role of slave-1 processors:
We could have each slave-1 processor release its slot when it as-
sumes even briefly its slave-2 role. Once more runs are needed,
or a collapse has been hit, the first slave-2 that has seen the col-
lapse or is out of runs will assume the slave-1 role for this record
and pick up from where its predecessor stopped. While this of-
fers robustness to network failures or computers shutting down,
it makes for very complicated programming and a higher com-
munication overhead. As each new slave-1 reads up the whole
history of tracing for the record, it takes up valuable time and
bandwidth because, in order to restart the tracing, it needs to
process several pieces of information that are not available lo-
cally. Unless extreme resilience (e.g., due to CPUs being shut
down and suddenly removed from the cluster) is required there
is no need to go to such lengths. Having the same CPU main-
tain the role of slave-1 until a given record is traced makes for
a simpler and slightly faster system.

The resulting three-level master-slave hierarchical model is
shown schematically in Fig. 3. It is an efficient scheme that
can operate at a significantly reduced communication overhead
while keeping the work-pool filled and leaving no CPU idle,
at least until the final stages of processing. Still, the devil is
in the details, and in order for it to work we need to answer
two important questions: a) how will a slave-1 orchestrate the
tracing of a single-record IDA curve by generating tasks that
can be run in parallel and b) how a slave-2 will self-schedule by
prioritizing tasks in order to appropriately select which runs to
perform to avoid wasting computing power.

5.2. Serial hunt&fill

The efficient tracing of an IDA curve is not a trivial issue,
simply because of the existence and the unpredictability of the
flatline. As we have already discussed, it is not easy to prede-
fine the number and level of the intensity IM of the runs to be
performed, which is why simple, easily-parallelizable schemes
like the stepping algorithm become so inefficient. Currently, the

6

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 1

 2

 3

 4

 5

 6

 7
 8

 9

 10

 11

 12

maximum interstory drift ratio, θ
max

"f
irs

t−
m

od
e"

 s
pe

ct
ra

l a
cc

el
er

at
io

n
S

a(T
1,5

%
)

(g
)

converged runs
nonconverged runs

Figure 4: Tracing with one CPU.

Table 1: Sequence of runs generated by the serial hunt&fill tracing algorithm for
a nine story structure subjected to a single record.

No. calculations Sa(T1,5%) (g) θmax

1 0.005 0.05%
2 0.005+0.10 0.105 0.79%
3 0.105+0.10+1×0.05 0.255 2.02%
4 0.255+0.10+2×0.05 0.455 3.01%
5 0.455+0.10+3×0.05 0.705 5.85%
6 0.705+0.10+4×0.05 1.005 +∞
7 0.705+(1.005−0.705)/3 0.805 18.83%
8 0.805+(1.005−0.805)/3 0.872 +∞
9 (0.805+0.705)/2 0.755 9.18%
10 (0.705+0.455)/2 0.580 3.27%
11 (0.455+0.255)/2 0.355 2.96%
12 (0.255+0.105)/2 0.180 1.34%

best available serial tracing-algorithm is the adaptive hunt&fill
scheme [1]. In the interest of adapting it to work in a parallel
setting, we will shortly describe its inner workings.

The algorithm consists of three distinct stages: (a) The hunt-
up where the IM is increased at a quadratically accelerating rate
until collapse (the flatline) is reached, (b) the bracketing phase
where runs are performed between the highest converged in-
tensity level IMC and the lowest non-converged level IMNC in
an attempt to pinpoint the flatline by iteratively dividing the in-
terval [IMC, IMNC] according to a 1/3-2/3 ratio (to improve our
chances for a converged run), and (c) the fill-in phase where
runs are performed by halving the largest gaps that were left
between convergent IMs due to the accelerating steps of the
hunt-up. An example of its application appears in Table 1 and
Fig. 4 for a nine story building [23] where the 5%-damped first-
mode spectral acceleration Sa(T1,5%) is the IM of choice and
the maximum interstory drift ratio θmax is the desired EDP-
response. The pseudo-code of the algorithm is as follows:

Algorithm. SERIAL_HUNTFILL

1 // hunt-up
2 repeat
3 increase IM by the step
4 scale record, run analysis and extract EDP(s)
5 increase the step
6 until collapse is reached
7 // bracket
8 repeat
9 select IM that divides into 1/3-2/3 the interval [IMC, IMNC]

10 scale record, run analysis and extract EDP(s)
11 until gap between IMC and IMNC < tolerance
12 // fill-in
13 repeat
14 select IM halving largest gap between converged IMs run
15 scale record, run analysis and extract EDP(s)
16 until largest gap in converged IMs < tolerance

At least in the hunting-stage, the next step to be taken each

time, i.e., the determination of the next run’s IM-level, depends
entirely upon the results of the previous run performed. There-
fore, this algorithm cannot be implemented as is for a single-
analysis parallelization scheme. Thus, comparing with the pre-
vious single-record scheme, we can see that scalability and
IDA-tracing efficiency cannot be easily achieved at the same
time.

5.3. Parallel hunt&fill for dynamic task generation

In order to achieve efficient task-partitioning of a single-
record IDA by a slave-1 down to the single-analysis level, we
need to work within the guts of the IDA tracing algorithm,
the hunt&fill scheme. Run by a slave-1 processor, its function
should be to dynamically add and remove single-analysis tasks
from the work-pool based on the information available from
analyses that have already been performed. For the rest of this
section we will proceed by building upon the theoretically sim-
pler case of a static assignment of CPUs. In other words, we as-
sume that the CPUs assigned to a record will remain and work
on it until tracing is finished. While we will modify this strategy
later, it will serve well for our current development, as the crit-
ical test for our tracing algorithm will come when a very large
number of CPUs are available to receive tasks from each record,
a number that on average and across many records should be ex-
pected to remain relatively constant. In such scheduling-critical
cases, having some CPUs jump from record to record will not
appreciably change what we are going to discuss. So, let us
now focus on each of the three stages of tracing.

Regarding the hunt-up stage and assuming we have M CPUs
to apply, the obvious method would be to assign each to a single
run in the hunt-up sequence, always facing the possibility that
one of these M runs (at worst the very first) will prove to be
non-convergent and thus invalidate all the ones above. There is
no obvious limit to how many CPUs one could supply to such
a procedure, only perhaps a desired upper limit on how many
runs one might want to expend to trace a single record. Still,

7

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

maximum interstory drift ratio, θ
max

"f
irs

t−
m

od
e"

 s
pe

ct
ra

l a
cc

el
er

at
io

n
S

a(T
1,5

%
)

(g
)

converged runs
nonconverged runs

Figure 5: Tracing with three CPUs. Each of the three colors indicates a different
CPU.

Table 2: Sequence of runs generated by the parallel hunt&fill tracing algorithm
for a nine story structure subjected to a single record.

No. CPU calculations Sa(T1,5%) (g) θmax

1 cpu3 0.005 0.05%
2 cpu2 0.005+0.10 0.105 0.79%
3 cpu1 0.105+0.10+1×0.05 0.255 2.02%
4 cpu3 0.255+0.10+2×0.05 0.455 3.01%
5 cpu2 0.455+0.10+3×0.05 0.705 5.85%
6 cpu1 0.705+0.10+4×0.05 1.005 +∞
7 cpu3 1.005+0.10+5×0.05 1.355 +∞
8 cpu2 1.355+0.10+6×0.05 1.755 +∞
9 cpu1 0.705+(1.005−0.705)/3 0.805 18.83%
10 cpu3 0.805+(1.005−0.805)/3 0.872 +∞
11 cpu2 0.705+(0.805−0.705)/2 0.755 9.18%
12 cpu1 (0.705+0.455)/2 0.580 3.27%
13 cpu3 (0.455+0.255)/2 0.355 2.96%
14 cpu2 (0.255+0.105)/2 0.180 1.34%

due to the quadratically increasing steps in the hunt-up phase,
it makes sense that the more CPUs we assign here and the more
runs that have already been performed, the more we are likely
to waste. This is an issue that will greatly impact the scheduling
of slave-2’s as we will discuss in the next section.

If on the other hand we have M CPUs to apply to the brack-
eting stage, an efficient way to do this would be to use as many
of them as needed to achieve the desired accuracy and properly
divide the space between the highest converged (C) run at level
IMC and the lowest non-converged (NC) run at IMNC. This
can be achieved by iteratively dividing the largest gap between
the IM-levels of runs generated within the interval [IMC, IMNC]
by appropriately placing a run at the 1/3 distance point from
the C level. When the distance between the successive IMC
and IMNC points, as updated with each completed run, becomes
lower than the required minimum dictated by the user-specified
resolution, the bracketing stops. This has the excellent advan-
tage that for M = 1 CPU it conforms to the standard behavior
of the serial hunt&fill algorithm, thus achieving excellent effi-
ciency. For higher numbers of CPUs it is obviously prone to
some higher percentage of wasted runs, still its performance
remains quite acceptable.

The important question here is what is the maximum number
of CPUs that can be applied to such a procedure for a given
tolerance; any CPU beyond that will be clearly a waste. If
we have defined the capacity resolution [23] by requesting that
(IMNC− IMC) ≤ a · IMC, where a is a reasonable percentage,
e.g., 10%, of the level of the highest converged run, then there
is an obvious limit to how many CPUs we should be willing to
commit to such a scheme. It is easy to show that the worst case
scenario happens when the flatline is very close to IMNC, since
successive divisions of the largest remaining segment in a 1/3-
2/3 division will always cluster the larger 2/3-length segments
in that direction. Correspondingly, the best scenario is for the
flatline to be very close to IMC. The number of runs that are

going to be expended in these situations are:

ibest =ceil
[

ln(IMNC− IMC)− ln(a · IMC)

ln(3)

]
(1)

iworst =ceil
[

ln [(IMNC− IMC)(a+1)]− ln(a · IMNC)

ln(3/2)

]
, (2)

where ceil(x) is the ceiling function that rounds any positive
real x to its immediately higher integer. Obviously, we should
not let the number of runs posted at any instant during brack-
eting exceed iworst, or, conservatively thinking, not even ibest.
As IMC and IMNC get closer with each run completed, ibest is
updated (i.e., lowered) and the whole string of posted tasks is
reevaluated. Whenever a CPU finishes a bracketing-run, the
slave-1 should re-initialize the bracketing phase, removing all
affected tasks that are still in the work-pool and assigning new
ones to take advantage of the new positions of IMC and IMNC.
Any excessive CPUs that cannot find a bracketing run due to the
ibest limitation should simply be reassigned to filling-in below
the C run. Thus, efficient bracketing is often intertwined with
synchronous filling-in.

If, finally, we reach the fill-in stage, the sequence of runs is
completely predictable, even in the rare case of a structural res-
urrection, i.e., a structural collapse occurring for a lower IM
than the highest converged IM we obtained during hunt-up [1].
Thus, we can assign CPUs to fill-in up to the maximum number
of runs we want to expend and still have no waste. We should be
careful, though, with the mechanics of run-counting. We typi-
cally only want to allow a specified maximum number of runs
[23] for the tracing record, thus assuring consistent treatment of
all records. The problem is that if we count all runs performed
by the spare CPUs during hunt-up or bracketing, there are go-
ing to be a lot of non-converged runs (especially in hunt-up) or
many extra closely-spaced convergent runs in bracketing. If we
sum all these, we may easily exceed our total allowance and
still have a poorly-traced IDA, without any runs to spare for

8

filling-in at the lower IMs. The only way to ensure consistent
quality amongst all records, regardless of the number of CPUs
available, is to count runs as if a standard single-CPU tracing
was performed on each and every one of them. The close cor-
respondence of the proposed algorithm with its serial version
make this a trivial calculation.

It should be noted that since we never really know the num-
ber M of CPUs that will assign themselves to perform runs for
this record, we can roughly approximate it by the number Nidle
of CPUs that are idling at the moment plus the present slave-1
that is running the tracing. Conservatively, to make sure that
other CPUs finishing their current tasks will have ample jobs to
choose from, we will multiply it by a factor of, say, two. Thus,
the resulting algorithm, meant to be run by a slave-1 processor,
is designed to cater to multiple slave-2 CPUs by continually
posting tasks while at the same time dynamically modifying its
behavior by aggregating the results as they come back. In addi-
tion, it performs runs as a slave-2 itself instead of just waiting.
The final parallel hunt&fill script is thus quite more complex
than its serial counterpart:

Algorithm. PARALLEL_HUNTFILL

1 // hunt-up
2 repeat
3 for i = 1 to 2(Nidle +1) do
4 increase IM by the step
5 post job in common memory
6 increase the step
7 end for
8 Pick a posted IM, run analysis, extract EDP(s)
9 Read EDP results from runs sent by other CPUs

10 until collapse is reached
11 delete posted jobs remaining
12 // bracket
13 repeat
14 ibest← ceil{ln[(IMNC− IMC)/(a · IMC)]/ ln(3)}
15 for i = 1 to min(2(Nidle +1), ibest) do
16 select IM that divides into 1/3-2/3 the largest gap in sorted

list of posted IMs between IMC and IMNC inclusive
17 post job in common memory
18 end for
19 if 2(N +1)> ibest then
20 while BracketJobsRunOrPosted<MaxRuns and largest gap

in converged IMs < tolerance do
21 select IM halving largest gap between converged IMs
22 post job in common memory
23 end while
24 end if
25 Pick a posted IM, run analysis, extract EDP(s)
26 Read EDP results from runs sent by other CPUs
27 Delete all posted jobs
28 until gap between IMC and IMNC < tolerance
29 // fill-in
30 repeat
31 select IM halving largest gap between converged IMs
32 post job in common memory
33 until largest gap in converged IMs < tolerance
34 repeat
35 Pick a posted IM, run analysis, extract EDP(s)
36 until no jobs are left

An example of its application, using 3 CPUs for the same
building and record as before, appears on Table 2 and Figure 5.
Cpu1 was the designated coordinator, running as slave-1 in this
case. Thus it only managed 4 analyses, while cpu2 and cpu3 run
5 each. Two runs were wasted during hunt-up by cpu2 and cpu3
as a lower run by cpu1 was found to be non-convergent. The
rest of the phases happened to proceed in much the same way
as for the serial hunt&fill. Thus, the final result was a total of
14 runs versus just 12 for the serial version, a waste percentage
of 2/14≈ 14.3%, a rather typical value for this setting. On the
other hand, the total parallel tracing only lasted the time it takes
to complete 5 runs, versus 12 for the serial case.

5.4. Self-scheduling via task prioritization
After the slave-1’s have made sure that the work-pool con-

tains an adequate number of tasks, it is the work of the slave-
2’s to sort them out and properly pick runs to perform. While in
the previous section we based our discussion on a static model,
considering only a single record with a given number of CPUs
running analyses until its tracing is finished, our scheme be-
comes much more efficient if CPUs are allowed to reassign
themselves across different records. This allows our algorithm
to achieve proper load-balancing and minimize the amount of
wasted runs. It can be efficiently implemented by appropriate
prioritization of the tasks according to their chance of finding
non-convergence. Hence, quantifying this chance for each task
is fundamental and the best way to approach it is to consider
each tracing phase separately.

Clearly, in the hunt-up stage it is not possible to predict where
the next non-convergent run will be. Therefore, if we have more
than one CPU performing hunt-up runs on the same record,
there is a good chance that we might be wasting runs: One
CPU may register an earlier collapse, thus invalidating all runs
that are still being performed at higher IMs. Actually, there is
no obvious limit to the number of CPUs one could apply to this
phase, thus the potential waste can be enormous and reach up
to the maximum number of runs allocated for a single record.
Finding the flatline during bracketing is also an unpredictable
process but quite less so compared to hunting-up, since we have
an upper and a lower limit that we want to refine. While there
is strong potential for many non-convergent runs to appear in
this stage, this is valid for both the serial and the parallel trac-
ing algorithms. In addition, there is an obvious limit to the total
number of CPUs that can be assigned to bracketing as indicated
by ibest and iworst. This is why tasks in this stage are less prone
to going to waste, although, again, the more CPUs that are per-
forming bracketing runs simultaneously, the more we are likely
to waste. Finally, if we are at the fill-in stage, the sequence of
runs is completely predictable and practically always conver-
gent: We can assign CPUs to fill-in up to the maximum number
of runs we want to expend without any loss.

The priorities of the algorithm are now clear. First, it has to
ensure that there is at least one CPU working on each avail-
able record to ensure that all records, even the ones currently in
an “undesirable” phase, are proceeding smoothly. Otherwise,
CPUs would be flocking to the one or two records that hap-
pen to be in the fill-in stage and provide guaranteed-to-converge

9

runs, thus hurting their chances later on when they have to turn
en masse to records in hunt-up. A simple way to ensure this is
to have each slave-1 perform runs in its free time only for the
record it currently traces. Then our scheme should channel any
spare CPUs to perform runs for records that are in the fill-in
phase. When no more fill-in tasks exist, CPUs should move to
bracketing jobs and lastly to hunt-up. For these last two stages,
preference should be given to jobs coming from records where
fewer CPUs are already working. In addition, specifically for
hunt-up, we should also take into account the number of runs
that have already been performed, as it is an important indicator
that the next run is closer to the flatline.

The proposed prioritization scheme cannot be implemented
centrally in a simple and efficient way. This is why we propose
to achieve it by self-scheduling, letting each slave-2 select jobs
by itself using an appropriate scoring function to grade each
task. Thus, for a given record i, let Ni

CPU be the number of
CPUs currently working on it and let j denote the serial number
assigned to the task (single-run) under question, according to its
position in the sequence of runs as they have been posted by the
tracing algorithm for record i. Then, the corresponding score
Si j can be estimated as:

Si j = f (stage)+5 ·Ni
CPU +g(j,stage) (3)

where

f (stage) =


10000, if stage = hunt-up
1000, if stage = bracket
0, if stage = fill-in

(4)

g(j,stage) =

{
j, if stage = hunt-up
0, otherwise

(5)

The tasks with the lowest score are deemed the least probable to
prove non-convergent and thus receive the highest priority. In
Eqs (3)–(5), the scoring weights have been selected to always
favor filling-in over bracketing and bracketing over hunting-up
and they have performed well for a variety of settings tested.
Still, different strategies can be implemented by appropriately
modifying the proposed constants.

The proposed technique guarantees excellent performance
and a very low waste of runs (due to non-convergence) by di-
rectly minimizing the number of CPUs that work at the same
time in jobs that have a high risk of collapse. The only minor
problem is that it requires each CPU to update other CPUs on
its status. In other words, each CPU needs to be informed of
the case and record that all other CPUs are working on. This
minimally raises the communication overhead but it is indeed
a detail that we should keep in mind, especially when working
with very simple systems (e.g., oscillators) where such delays
can make a difference.

In order to apply the proposed single-run task partitioning,
the master script does not have to change. It remains the same
as for multiple IDA studies. The slave script though has to
change dramatically. As it is the same script all slave nodes will
be running, it has to figure out dynamically whether it needs to

function as a slave-1 or a slave-2 node. If available records ex-
ist, it will take on a full record acting as a slave-1 node and
start dealing out tasks to the available slave-2 nodes. If, on the
other hand, there are no records left, it starts functioning as a
slave-2 node and waits for single-run tasks to be posted, which
it undertakes in the aforementioned priority. Thus, if we have
fewer CPUs than records available, they will all run analyses
as slave-1’s and maintain all the advantages of a coarse-grained
parallelization, wasting no runs at all.

Algorithm. SLAVESCRIPT_MULTICASES2
1 while jobs exist do
2 if single-record job exists then
3 Pick first available job (record)
4 Run parallel hunt&fill on single record & postprocess
5 Send results to common memory
6 else
7 Score posted single-run tasks, prioritizing fill-bracket-hunt
8 Pick lowest-score run
9 Run single dynamic analysis & postprocess

10 Send results to common memory
11 end if
12 If master node has called this procedure EXIT
13 end while

5.5. Further thoughts and improvements

Building upon the basic script developed, we can introduce
further improvements that will enhance load-balancing and in-
crease the speed of execution. These may complicate the details
of the algorithms but they do not change the overall concepts
presented.

First of all, as previously hinted, enormous advantage is to
be gained by allowing some degree of interaction between the
slave-1 CPU running the IDA tracing and the slave-2 CPUs
performing the actual runs. When during the critical hunt-up
and bracketing phases of the hunt&fill there are multiple CPUs
working on the same record, then if any of them hits a non-
convergence, this is to be immediately communicated to the
slave-1 and the tracing strategy should be modified accordingly.
In order to achieve that, each slave-1 should spawn a slave-2
process to run single analyses on the same CPU, while the par-
ent process keeps checking the progress of all slave-2 nodes
that are helping with the given record. If any of them hits a
non-convergent IM, the parent process immediately deletes all
jobs posted for higher IMs and it also sends a signal to the cor-
responding slave-2 CPUs (including its own spawned process)
to terminate processing and start fresh with a new run. When
single convergent dynamic runs may easily cost 30–90min of
time, non-convergent ones may take substantially less time to
complete, as numerical problems often happen in the middle of
the record where the highest acceleration spikes occur. There-
fore, the immediate exploitation of information resulting from
non-convergence allows a rapid redeployment of computer re-
sources, thus enhancing efficiency to the fullest. Specifically,
for our example in Table 2, while it shows two runs wasted
during the hunting phase, both of them were actually stopped
before running their full length, thus considerably reducing the
actual CPU time wasted.

10

Another variation that can result to a lower number of runs
being wasted is based on the concept of performing fill-in
even as we are hunting-up. While typically the fill-in phase
corresponds to 20–30% of the total number of runs in any
economically-traced IDA curve, when attempting to achieve ex-
cellent precision, something that is usually reserved for single-
degree-of-freedom systems only, this percentage may rise to
more than 60%. In such cases, while hunting-up with one pro-
cessor, we can assign extra processors to fill in between the
large hunt-up steps. This idea is only viable for high ratios of
fill-in runs since the largest gaps are always left close to the
flatline. Therefore, at least initially, we are going to be filling
the smaller gaps that might need no filling at all. Of course
we will not have wasted a single run in this way but the extra
runs performed will probably not help to speed up the tracing
if economy in runs is what we are after, having only improved
resolution in the body of the IDA curve rather than close to col-
lapse. Therefore this approach can only have a limited field of
application for smaller models and high accuracy settings, but
if these are what we are after it can help significantly.

6. Performance comparison

In order to test the algorithms presented we used the nine
story building discussed earlier, subjected to 20 ground mo-
tion records [23]. Each dynamic analysis takes 8–15min on
a Pentium IV CPU, the longer times usually needed for con-
vergent runs close to collapse. We run this multi-record IDA
study using (a) one CPU with the serial hunt&fill algorithm
versus 2–26 identical CPUs with (b) the serial hunt&fill algo-
rithm on single-record tasks, (c) the parallel hunt&fill algorithm
with single-analysis tasks and (d) the stepping algorithm with
single-analysis tasks. Serving as the basis for our comparison,
the one-CPU case finished in approximately 40hrs. To better
understand the capabilities of each algorithm, let us first com-
pare this case in detail against using three CPUs only, before
expanding to more.

When using the three CPUs with single-record tasks, the se-
rial tracing algorithm managed to complete in 14hrs only. Due
to the number of CPUs not being a divisor of the number of
records, there cannot be a perfect load-balancing when tracing
the last two records. Then, as seen in Table 3, cpu1 will re-
main idle while cpu2 and cpu3 keep working. Since we have
many more records than CPUs, this is not a huge waste, sim-
ply under-using one CPU. Therefore we achieve a performance
improvement, termed speedup [21], of 40/14 = 2.86 over the
single CPU case, resulting to a slightly sublinear efficiency of
2.86/3 = 95%.

When using the parallel version of hunt&fill with single-
analysis tasks, the analysis will proceed in much the same way
as in the previous case until it hits the final two records. Then,
the previously idle cpu1 will alternate between helping cpu2
and cpu3 with their workload. Therefore, the wasted runs will
be less than what we observed in Table 2, where 3 CPUs were
tracing a single record. Then, two runs were wasted for a single
record, while now only one is wasted on average per record, re-

Table 3: Detailed performance comparison of stepping, serial IDA tracing and
parallel tracing for a nine-story structure subjected to 20 records.

Tracing CPUs CPU loads time (hrs) speedup

serial 1 20x12 = 240runs 40 1
cpu1: 20recs

serial 3 20x12 = 240runs 14 2.86
cpu1: 6recs
cpu2: 7recs
cpu3: 7recs

parallel 3 20x12 + 2 = 242runs 13.5 2.96
(2 wasted)

cpu1: 6recs + 8runs
cpu2: 6recs + 8runs
cpu3: 6recs + 8runs

none 3 336 runs (2 wasted) 18.7 2.14
cpu1: 111runs
cpu2: 113runs
cpu3: 112runs

sulting to 13 runs for each of the final two records. The speedup
thus rises to 2.96 for 3 CPUs, for an almost 99% efficiency.

To offer a different standard for comparison, we have also
tested the simple stepping algorithm on three CPUs, marked as
“None” (i.e., no tracing) in Table 3. This is essentially what can
be applied with minimal programming through any platform
supporting parallelization, e.g., OpenSees [25], via specifying
a constant IM-step. We assume that at least some termination
clause is provided to stop further runs at increased IMs for a
given record when the first non-convergence is observed. As-
suming that we have some knowledge of the expected flatline
Sa(T1,5%)-values, we have requested a minimum of 8 conver-
gent runs per record. The reader is reminded here that the trac-
ing algorithms manage 10–11 convergent runs everywhere, i.e.,
25–30% higher quality in IDA curve representation. Conse-
quently at least a 0.06g IM-step has to be used and the result is
a staggering number of 334 runs. If we increase our program-
ming overhead by at least using some clever task-assignment,
i.e., by letting all CPUs run the lowest IM values across all
records before proceeding with the highest ones, we can min-
imize the waste to only two runs for a 336 total. Still, the
speedup drops to 2.14 for an efficiency rating of 71%. In other
words, despite our having to settle for lower quality tracing, al-
most 30% of the supplied processing power was misused rather
than just 1% with the parallel hunt&fill.

Fig. 6 shows the results for all the tests run on 2–26 CPUs,
expanded by performing simulations on fitted process-models
for up to 60 processors, showing the expected behavior of each
algorithm. In general, for low numbers of CPUs per record,
the serial and parallel hunt&fill will almost behave identically,
with the latter having a slight edge in cases where the num-
ber of CPUs is not a divisor of the number of records, as ex-
plained earlier. They both maintain near-linear speedup until a
total of 10–11 CPUs are used (Fig. 6(a)). In the same range,
the stepping algorithm will achieve a nearly constant 70% effi-
ciency (Fig. 6(b)). While one CPU per record, or twenty total, is

11

0 10 20 30 40 50 60
0

10

20

30

40

50

60

CPUs

sp
ee

du
p

parallel
serial
none

(a) speedup comparison

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CPUs per record

ef
fic

ie
nc

y

parallel
serial
none

(b) efficiency comparison

Figure 6: Multi-CPU performance comparison of the stepping, serial and parallel tracing algorithms for a nine-story structure subjected to 20 records. Data beyond
26 CPUs is based on simulations.

the limit of application for the serial tracing, 0.5–0.6 CPUs per
record is actually a more reasonable practical limit as any addi-
tional processors will in general be kept idling without a record
to process for the last cycle of task assignments. In such cases,
the efficiency of serial hunt&fill will drop almost to the level
of the stepping algorithm, up to when 20 processors are em-
ployed. That is where for an 89% efficiency the serial hunt&fill
will manage its best processing time of about 2.3hrs, i.e., the
time it takes to trace the worst (slowest to run) record with one
CPU. The same case will be performed slightly faster by the
parallel hunt&fill and single-analysis tasks. The reason is that
the worst record will eventually be traced with the help of one
or two more CPUs that have finished their own, easier cases.
Thus, the processing time drops to less than 2.1hrs, indicating
an efficiency of 97% compared to only 67% for the stepping
algorithm.

If we use more than 20 CPUs, i.e., more than one per record,
the serial tracing algorithm is no longer applicable. On the other
hand, both the parallel hunt&fill and the stepping algorithm will
roughly maintain their previous performance taking advantage
of the finer partitioning of tasks that they are based on. In all
tests, though, the parallel hunt&fill outperforms stepping by a
wide margin of nearly 30% additional efficiency. As shown in
Fig. 6(a), it maintains near-linear speedup, achieving efficien-
cies in the order of 90% or better in most situations (Fig. 6(b)).

Although this test only involved a single structure, the results
can be used as indicative for other typical situations. The reason
is that the number of CPUs per record has been found to be a re-
liable predictor of efficiency. For example, if we were to use 60
CPUs, i.e., 3 per record, without dynamic CPU self-scheduling,
then we can conservatively approximate the algorithm’s per-
formance by using the case presented in Table 2 times twenty.
At an average of 14 runs per record, we would get a total of
280 runs, each CPU performing at most 5 runs. Thus, the to-
tal process would take about 50mins or 0.83hrs, indicating a

speedup of 48 for 60 CPUs, or an efficiency of 48/60=80%. Ac-
tually, simulations of the actual process, where self-scheduling
for slave-2 processors and early termination of wasted runs is
implemented, show that the efficiency is slightly better, reach-
ing 87%, as shown in Fig. 6(b). Of course, results will vary in
each case, depending on the tracing settings and on the number
of runs allowed per record, but the tests presented can still serve
as a rough guide for typical MDOF IDA studies.

In any case, if the number of CPUs is further increased be-
yond three per record, the expected drop in efficiency will only
worsen. Nevertheless, the proposed parallel tracing algorithm
remains our best choice, if not the only one, before resulting to
parallel finite element solution algorithms.

7. Conclusions

Two efficient algorithms to perform Incremental Dynamic
Analysis using multiple CPUs in parallel have been presented
and tested. The first represents a coarse-grained partitioning
of tasks on the basis of single records and, while simple to
program and implement, it is applicable only when the num-
ber of CPUs is equal to or less than the number of individual
single-record IDA studies that will be performed. The second
algorithm further partitions the computations by working at the
level of single dynamic analyses, implementing a far more ef-
ficient, medium-grained scheme that necessitates some careful
programming to be realized.

In this case, due to the unpredictable nature of IDA curves
caused by the global dynamic instability of realistic structural
models, the intensity level of the dynamic runs has to be de-
cided on the fly. Therefore, to achieve efficient parallelization,
we have exploited the idiosyncracies of IDA to offer a parallel
version of the standard hunt&fill serial tracing algorithm. The
end product is a dynamic load-balancing algorithm with a three-
level hierarchy of master/slave-1/slave-2 roles for CPUs using

12

dynamic task generation and self-scheduling to efficiently par-
allelize all tasks. Using a minimum of communication among
the processes, it allows for rapid reassignment of CPUs based
on currently available information to modify their behavior. It
can achieve near-optimal load balancing that is scalable to a rel-
atively large array of processors, the actual number depending
on the size of the problem. Testing on a realistic analysis set-
ting has shown that the parallel tracing algorithm with single-
run task partitioning can thus achieve near-linear efficiency for
high numbers of processors, making it suitable for all but the
largest clusters available in typical engineering offices or re-
search facilities.

8. Acknowledgments

The author wishes to dedicate this paper to the memory of
Professor I. Vardoulakis, who first taught him that science is
fun.

References

[1] Vamvatsikos D, Cornell CA. Incremental dynamic analysis. Earthquake
Engineering and Structural Dynamics 2002;31(3):491–514.

[2] Lee K, Foutch DA. Seismic performance evaluation of pre-northridge
steel frame buildings with brittle connections. ASCE Journal of Structural
Engineering 2002;128(4):546–55.

[3] Lee K, Foutch DA. Performance evaluation of new steel frame build-
ings for seismic loads. Earthquake Engineering and Structural Dynamics
2002;31(3):653–70.

[4] Yun SY, Hamburger RO, Cornell CA, Foutch DA. Seismic performance
evaluation for steel moment frames. ASCE Journal of Structural Engi-
neering 2002;128(4):534–45.

[5] Liao KW, Wen YK, Foutch DA. Evaluation of 3D steel moment frames
under earthquake excitations. i: Modeling. ASCE Journal of Structural
Engineering 2007;133(3):462–70.

[6] Tagawa H, MacRae G, Lowes L. Probabilistic evaluation of seismic per-
formance of 3-story 3D one- and two-way steel moment-frame structures.
Earthquake Engineering and Structural Dynamics 2008;37(5):681–96.

[7] Pinho R, Casarotti C, Antoniou S. A comparison of single-run pushover
analysis techniques for seismic assessment of bridges. Earthquake Engi-
neering and Structural Dynamics 2007;36(10):1347–62.

[8] Goulet CA, Haselton CB, Mitrani-Reiser J, Beck JL, Deierlein GG,
Porter KA, et al. Evaluation of the seismic performance of a code-
conforming reinforced-concrete frame building—from seismic hazard to
collapse safety and economic losses. Earthquake Engineering and Struc-
tural Dynamics 2007;36(13):1973–97.

[9] Ibarra LF. Global collapse of frame structures under seismic excitations.
PhD Dissertation; Department of Civil and Environmental Engineering,
Stanford University; Stanford, CA; 2003.

[10] Vamvatsikos D, Cornell CA. Direct estimation of the seismic demand
and capacity of oscillators with multi-linear static pushovers through in-
cremental dynamic analysis. Earthquake Engineering and Structural Dy-
namics 2006;35(9):1097–117.

[11] ATC . Effects of strength and stiffness degradation on seismic response.
Report No. FEMA-P440A; prepared for the Federal Emergency Manage-
ment Agency; Washington, DC; 2008.

[12] Haselton CB. Assessing seismic collapse safety of modern reinforced
concrete frame buildings. PhD Dissertation; Department of Civil and
Environmental Engineering, Stanford University; Stanford, CA; 2006.

[13] Vamvatsikos D, Papadimitriou C. Optimal multi-objective design of a
highway bridge under seismic loading through incremental dynamic anal-
ysis. In: International Conferenec on Structural Safety and Reliability,
ICOSSAR 2005. Rome, Italy; 2005, p. 329–36.

[14] Liel AB, Haselton CB, Deierlein GG, Baker JW. Incorporating model-
ing uncertainties in the assessment of seismic collapse risk of buildings.
Structural Safety 2009;31(2):197–211.

[15] Dolsek M. Incremental dynamic analysis with consideration of mod-
elling uncertainties. Earthquake Engineering and Structural Dynamics
2009;38(6):805–25.

[16] Vamvatsikos D, Fragiadakis M. Incremental dynamic analysis for esti-
mating seismic performance sensitivity and uncertainty. Earthquake En-
gineering and Structural Dynamics 2010;39(2):141–63.

[17] Vamvatsikos D, Cornell CA. Developing effcient scalar and vector inten-
sity measures for IDA capacity estimation by incorporating elastic spec-
tral shape information. Earthquake Engineering and Structural Dynamics
2005;34(13):1573–600.

[18] Luco N, Cornell CA. Structure-specific, scalar intensity measures for
near-source and ordinary earthquake ground motions. Earthquake Spectra
2007;23(3):357–92.

[19] Baker JW, Cornell CA. Vector-valued intensity measures incorporating
spectral shape for prediction of structural response. Journal of Earthquake
Engineering 2008;12(4):534–54.

[20] Azarbakht A, Dolsek M. Prediction of the median IDA curve by employ-
ing a limited number of ground motion records. Earthquake Engineering
and Structural Dynamics 2007;36(15):2401–21.

[21] Grama A, Gupta A, Karypis G, Kumar V. Introduction to Parallel Com-
puting. Boston, MA: Addison-Wesley; 2nd ed.; 2003.

[22] McKenna F, Fenves G, Jeremic B, Scott M. Open system for earthquake
engineering simulation. 2000. [May 2008]; URL http://opensees.
berkeley.edu.

[23] Vamvatsikos D, Cornell CA. Applied incremental dynamic analysis.
Earthquake Spectra 2004;20(2):523–53.

[24] Cornell CA. Engineering seismic risk analysis. Bulletin of the Seismo-
logical Society of America 1968;58(5):1583–606.

[25] McKenna F, Fenves G. Using the OpenSees interpreter on parallel com-
puters. NEESit Report No. TN-2007-16; NEES Cyberinfrastructure Cen-
ter; La Jolla, CA; 2007.

[26] MPI Forum . MPI: A message passing interface standard (ver. 1.1). 2003.
[Mar 2008]; URL http://www.mpi-forum.org.

[27] Foster I. Designing and Building Parallel Programs. Boston, MA:
Addison-Wesley; 1995. URL http://www.mcs.anl.gov/~itf/
dbpp/.

[28] Seismosoft . Seismostruct - a computer program for static and dynamic
nonlinear analysis of framed structures. 2007. [May 2008]; URL http:
//www.seismosoft.com.

13

