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SUMMARY 

Traditional or historic masonry structures occur in large populations throughout the 

world, particularly in preserved historical city clusters.  Being non-engineered and 

ageing these structures are in urgent need of assessment and seismic 

repair/rehabilitation.  But traditional masonry presents important challenges to 

computational modeling, owing to complexity of structural system, material 

inhomogeneity and contact interactions that collectively can only be addressed 

through detailed 3D nonlinear representation.  In this paper, a simple, performance 

assessment model is developed in order to address the need for preliminary 

assessment tools for this class of structures. The objective is to be able to rapidly 

identify buildings that are at higher risk in the event of a significant earthquake, 

potentially justifying a second round of more detailed evaluation. The proposed model 

defines the characteristics of a Single Degree of Freedom representation of the 

building, formulating consistent 3D shape functions to approximate its fundamental 

mode of vibration considering both in-plane and out-plane wall bending as a result of 

insufficient diaphragm action.  Parametric expressions for the dynamic properties are 

derived in terms of the important geometric, material, and system characteristics, and 

are used to express local demand from global estimates.  Acceptance criteria are 

established both in terms of deformation and strength indices to guide retrofit.  An 

application example of the proposed assessment methodology is included, to 

demonstrate the ability of the model to reproduce the essential features of traditional 

masonry buildings under seismic action. 

KEY WORDS: earthquake; masonry building; simplified model; fragility; static 

pushover. 

1. Introduction 

A large number of historical buildings used as traditional family dwellings in the 

Balkans are almost exclusively of unreinforced masonry (URM) occasionally laced by 

timber tiers; this structural system is known from ancient times as Opus Craticium. 

The resistance of URM to lateral loads is primarily imparted by interface friction 

between interlocking stones, supported due to the overbearing gravity loads.  The 



 

origin of this construction archetype dates back to pre-Minoan times, continues 

through classical antiquity and the roman times (Vitruvius 27-23 BC), and has 

survived in abundance throughout the Balkan region primarily in historical/traditional 

structures dating to the pre-World War II period.  Basic characteristics of this type of 

construction are (a) the relatively large area ratio of exterior and interior walls which 

may be either reinforced with timber ties (referred to as tiers) or entirely unreinforced, 

and (b) the relatively flexible diaphragms. 

Post-earthquake reconnaissance reports in S. Europe, record modes of failure in 

URM buildings typified by diagonal cracking of wall piers, out of plane bending and 

detachment of piers and dissembling of corner masonry blocks.  These are usually 

owing to the combined absence of diaphragm action, insufficient tying of horizontal 

to vertical member of the structure and the cumulative implications of poor 

maintenance and long term phenomena (creep, ageing, corrosion/erosion and soil 

settlement) [Vintzileou et al. 2007, Simsir et al. 2004, Ceci et al. (2010),  Günay and 

Mosalam (2010)].  Additional problems are associated with the inherent brittleness of 

unreinforced masonry, occasionally poor workmanship, large self-weight of the 

structural materials used (including stone roof-tiles) and lack of any design for 

seismic resistance apart from the empirical traditional practices of the era of 

construction. 

Design and assessment of load-bearing unreinforced masonry structures until 

recently was not regulated by any established Code of practice.  With the introduction 

of design standards for masonry (EC6, 1989), an outstanding issue regarding high-

seismicity regions is the assessment of structural adequacy of existing historical or 

traditional buildings.  From an engineering perspective among existing structures 

traditional constructions stand out as a special category because: (a) their lateral load 

resisting system is vague and undefined, (b) they often combine load carrying and 

secondary components, whereas factors such as ageing, corrosion/depletion of the 

stone binder and of the timber ties, as well as human intervention, further degrade 

their seismic resistance.    

Due to their heritage significance, rehabilitation of traditional structures is 

regulated by International Treaties requiring compatibility and reversibility of the 

intervention [ICOMOS, 1964]. Thus, there is a need for development of uniform 

methods for seismic assessment and rehabilitation, specifically tailored to the 

structural system and performance criteria that represent this class of structures. A 

most difficult issue in this regard is establishing generalized rules for quantifying the 

seismic vulnerability of traditional structures, firstly due to their great variability of 

form, but also owing to the different extents of degradation and human intervention 

they have endured over the years.    

On a scale of complexity of application, rapid visual screening and detailed finite 

element simulation of historical buildings represent the two most remote ends in the 

spectrum of methods used today for the purposes of seismic assessment of structures.  

Rapid screening based on visual observation can only assess the condition of the 

structure and possible damages. Detailed F.E. solutions are fraught with uncertainty 

with regards to the mechanical behavior of the materials, the extent of damage, and 

the actual state of interaction that occurs at the interfaces of different materials (e.g. 

timber and mortar or stones, soil with masonry, etc.).  For the needs of seismic 

assessment (EC8-III 2005), traditional heritage buildings qualify under knowledge 

level I (KL-I):  for KL-I, owing to the limited information about material properties 

and the structural system, the code discourages the use of nonlinear modeling and 

analysis, but rather, requires the use of simple procedures requiring relatively little 



 

computational effort that is comparable to the limited information available.  In this 

case, nonlinear models may be used primarily in order to guide the development, and 

to corroborate and support the development of simple procedures (see for example the 

results from a research project PERPETUATE which uses such a nonlinear approach 

for assessment of cultural heritage buildings with stiff diaphragms, Lagomarsino and 

Cattari, 2015).  However, when shell element modeling is required to model the load 

bearing walls (this is the case where the building has flexible diaphragms, or poor 

connectivity between diaphragms and perimeter walls) introducing material 

nonlinearity in the form of softening and brittleness to represent the unreinforced 

masonry is practically impossible: the analysis becomes ill-conditioned in the absence 

of the stabilizing influence of reinforcement, even from the occurrence of the minutest 

crack (Pantazopoulou 2013).        
This paper presents such a simplified procedure intended to be used as a first order 

assessment tool of the seismic resistance of stone-masonry traditional houses of box-

type with flexible diaphragms. The method is formulated using an equivalent SDOF 

representation of the building’s dynamic response.  Both demand and supply in the 

critical locations of the structure needed for evaluation of the acceptance criteria are 

established in closed-form, in terms of deformation measures, through transformation 

of global response quantities to local measures.  Transformation was based on the 

shape of fundamental mode of spatial vibration of the structure which was 

approximated in this study by a 3-dimensional shape function, derived consistently 

with the boundary conditions of the building.  Acceptance criteria are established both 

in terms of deformation and strength indices.  An application example of the proposed 

assessment methodology is included, to demonstrate the ability of the model to 

reproduce the essential features of traditional masonry buildings under seismic action. 

2. Mechanical Model 

2.1. Extending the concepts of Pushover Analysis  

The framework of seismic assessment methodologies for steel and concrete structures 

that has been developed in the past twenty years forms the natural background for 

development of similar methods geared towards masonry structures.  The commonest 

and most palatable of the available options are nonlinear static approaches where the 

structure is considered in its fundamental mode of vibration through the Equivalent 

Single Degree of Freedom (ESDOF) idealization (EC 8-I (2004)). The associated 

resistance (static pushover) curve is obtained by considering load patterns that follow 

the height-wise profile of the translational mode. 

However, a significant difference between steel or concrete frames and URM 

structures exists, that complicates direct extension of the established procedures to 

masonry buildings: Frame structures are mostly lumped systems with stiff 

diaphragms, whereas URM buildings (at least the types considered in the present 

paper) have distributed mass and stiffness with typically flexible diaphragms. The 

consequence of this characteristic is that the fundamental mode of vibration engages a 

disproportionately low fraction of the building mass, well below the 75% cutoff value 

for mass participation which is a pre-requisite for the application of the simple 

ESDOF-based methods. 

The alternative option of multimodal pushover analysis (Chopra & Goel 2002) can 

only be realistically applied with finite element models. In most cases the effort 



 

required to obtain dependable results coupled with the degree of uncertainty regarding 

the actual model properties render this approach beyond the scope of practical 

assessment of URM structures. Equivalent frame models (Lagomarsino et al. 2013) 

can be useful in reproducing modes of failure that depend on in-plane strength and 

stiffness of wall elements, but they are particularly suited to buildings with stiff 

diaphragms; some types of traditional buildings such as those considered here are 

particularly susceptible to out-of-plane action owing to flexible diaphragms.  

    

 

 

 

 

 

 

Figure 1. (a) Typical example of timber laced stone-masonry dwelling   (b) Idealized 

Building Model (box) (c) Variation of total translational accelerations along building height. 

In order to extend the concepts of classical pushover analysis to masonry structures 

the translational displacement shape is required, Φ(x,y,z), which is assumed by the 

structure at the peak of its dynamic response to horizontal ground motion.  Through 

this shape it is also possible to identify and localize the likely points of concentration 

of anticipated damage from the resulting distribution of deformation implicit in 

Φ(x,y,z), while at the same time identifying (a) locations where lack of stiffness may 

occur and (b) the relative significance of possible mass or stiffness discontinuities. 

The shape of lateral translation, Φ(x,y,z), at the peak of earthquake response, most 

likely comprises contributions of several modes and mechanisms of deformation, and 

must necessarily engage a significant fraction of the system’s mass during vibration as 

usually occurs with a random motion such as the ground excitation.  In the present 

study, in order to establish its form, the structure is subjected to a horizontal 

gravitational field that acts in the direction of the earthquake considered.  This 

approach is based on the observation that pointwise throughout the structure, the 

earthquake loading p(x,y,z,t) is proportional to the system’s mass, m(x,y,z), as follows: 

 g/)t,z,y,x(u)z,y,x(w)t,z,y,x(u)z,y,x(m)t,z,y,x(p totdtot        (1) 

where, wd(x,y,z) is the associated value of the weight, 
totu  the distribution of total 

acceleration throughout the structure and g the acceleration of gravity; this starts from 

the value of peak ground acceleration, groundu , at ground level, and increases to the 

total acceleration of the system at the crest of the roof, uuu groundtot
  , where u is the 

relative displacement of the structure with reference to its base support.  At peak 

response, the distribution of total accelerations in Eq. (1) follows a trapezoidal-like 

distribution, as illustrated in Fig. 1c, starting from the ground acceleration magnitude 

at the support, to the amplified value at the crest. .  From Eq. (1) it follows that the 

earthquake forces have the same spatial distribution as the mass, naturally increasing 

with height along with the lateral acceleration.  To simplify the calculations, the 
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increase in intensity owing to the height-wise variation of accelerations is neglected in 

the remainder of this discussion.  Instead, a uniform average acceleration pattern 

along the height of the structure is assumed (shown by a dashed line in Fig. 1c). 

The resulting lateral displacement of the structure, ud(x,y,z), owing to the 

application of the point-wise value of the weight in the direction of seismic action, has 

the advantage of satisfying all the essential and natural boundary conditions of the 

structural vibration problem.  For example, the restoring forces that resist the applied 

gravitational field in the direction of the earthquake satisfy the associated dynamic 

equilibrium equation since:  

                                               g/)t,z,y,x(u)z,y,x(m)z,y,x(uk tot                      (2) 

and, 

                                       g)z,y,x(m)z,y,x(w)z,y,x(uk dd                         (3) 

It has been shown that the translational shape of vibration, obtained by normalizing 

the shape of ud as Φ(x,y,z) = ud(x,y,z)/ud,max, results in a mass participation factor in 

the direction of earthquake action, in the range of 90% or more (Pardalopoulos et al. 

2013). This procedure has the practical advantage that it enables the use of the 

familiar features of classical shell analysis software that are used routinely for gravity 

load analysis of distributed mass systems with the sole input modification over 

conventional gravity load analysis being the direction of acting gravitational field 

selected by the user.   

Using the translational shape of vibration, the natural frequency of vibration of the 

system may be approximated with sufficient accuracy using the Rayleigh quotient as 

follows: 
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Seismic demands may be determined in terms of total acceleration and displacement 

of the associated SDOF system (EC8-I (2004) or ASCE-41/06 (2007)). Interestingly 

the design lateral forces (seismic demand and supply) for load-bearing unreinforced 

masonry structures, VSd and VRd, both depend on the distribution of mass of the URM 

building (the force demand increases with the system’s mass, whereas the frictional 

resistance at any horizontal plane of sliding increases with the overbearing weight of 

the structure which is also proportional to the mass (Tastani et al. 2009). For example, 

higher gravity loads attract a higher seismic base shear (greater mass), but the lateral 

shear resistance of the walls also increases through enhanced friction.  Thus the two 

terms in the design inequality, VSd < VRd, interact, to the extent that structural safety 

may only be assessed for a specific seismic hazard spectrum. In light of the 

complexity and uncertainties involved in the problem, determination of the 

performance point for a given ground motion is estimated based on elastic analysis, 

making allowance for ductility by moderating the force demands and magnifying the 

displacement demands.  To further simplify the process, the important step of the 

calculation of the shape of translational vibration, (x,y,z), and the associated 

characteristics of an equivalent single degree of freedom (ESDOF) approximation of 

the load-bearing masonry structure are estimated through simplifying assumptions so 

as to obtain closed form solutions that may provide the basis for easily applicable 

assessment tools. The derivations are listed in the following sections. 
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2.2. Estimation of an ESDOF system shape function under lateral translation  

Consider a box-shaped rectangular-plan building having external plan dimensions 

aext, bext, with perimeter walls of uniform thickness t and height H (Fig. 2a, b) The 

corresponding midline dimensions (centerline of the walls) are a = aext – t, b = bext – t. 

Henceforth, without any loss of generality, the earthquake loading is assumed to act 

along the longitudinal wall of length a, and perpendicular to the transverse wall of 

length b.  To approximate the deformed shape assumed by the building at peak lateral 

translation, the structure is considered under the action of an assumed field of uniform 

horizontal acceleration acting in the direction of interest. For simplicity the magnitude 

of the applied acceleration is taken equal to 1g. Through this approach the structure 

may be analyzed by essentially subjecting it to its own gravity, only taken to act in the 

direction of the earthquake (Fig. 2b, 2c). The resulting load on the perimeter walls of 

the mass density ρw corresponds to a uniform field force q(z) defined by,   

   ],0[,/2)( HzHWgbatqzq totw    (5) 

also approximated in Eq. (5) as the ratio of the total building weight Wtot over the 

building height, to take into account roof and story loads. As illustrated in Fig. 2c, the 

displaced shape assumed by the structure, in the absence of diaphragms, comprises 

contributions that result from deformation of walls oriented both parallel 

(longitudinal) and orthogonal (transverse) to the seismic action. Longitudinal walls 

are loaded in their plane of action, so that they deform in-plane. Transverse walls are 

loaded normal to their plane of action deforming out-of-plane.  

 

 

 

 

 

 

Figure 2. (a) Typical plan of traditional masonry structure, (b) seismic loading, (c) method 

used to approximate fundamental lateral translational mode of vibration, (d) breakdown of 

contributions adding to the type-I components of deformation 

The in-plane components of deformation are referred to for brevity as type-I 

components (see Fig. 2d).  These collectively account for (a) the shear distortion 
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occurring in walls parallel to the load, (b) the flexural drift caused in the structure by 

the overturning moment of the distributed lateral pressure, and (c) the amplification of 

lateral distortion at the level of openings due to the increased lateral compliance of the 

structure at that level. The value of the type-I components only depends upon the 

vertical coordinate z, but not on the in-plan coordinates x or y. 

The out-of-plane components primarily comprise lateral deflections of the 

transversal walls bending about their weak axis and they are referred to in the 

remainder as type-II components. Their magnitude represents relative displacements 

of points in the building plan – i.e., within the horizontal plane and it depends on all 

vertical and horizontal coordinates,  x, y and z.  The effect of diaphragms becomes a 

factor on the flexure-only terms of the deformation (i.e., type I and II components), 

modulating their contribution to the total.   

These contributions are combined to define the building’s deformation at any 

point. Of particular interest is the peak lateral translation (usually at some point in the 

roof), as it will be used to normalize the displacement profile so as to determine a 

shape, (x,y,z).  The point where the displacement shape after normalization is equal 

to 1.0 defines the control node of the structure, in pushover terms. In symmetric 

structures this usually occurs at the midcrest of a transverse wall that is bending out of 

plane (see Figure 2c). Estimating the displacement of the control node for a given 

level of loading is the goal of the following subsections. 

2.2.1 In-Plane Contributions to Lateral Translation:  Type I components  

The shear and flexural contributions to the Type-I deflection, denoted by ΔI in Fig. 2c, 

for walls parallel to the earthquake action, as depicted schematically in Fig. 2d, are 

evaluated in detail in this section. If the building is seen as a cantilever structure fixed 

at ground level and free at the roof, having a box-type cross section defined by the 

building plan, then the walls parallel to the direction of the load serve as the web of 

the cantilever. At any level z from the fixed end, the shear force V(z) and associated 

shear strain γs(z) along the building height in the web become: 

                                            zHqqzV

H

z

   d)()(                               (6) 

                                                           
 

wwww

s
GA

zHq

AG

)z(V
)z(


                                (7) 

where Gw is the effective shear modulus of the wall. (Gw may be obtained from tests 

in shear panels as the ascending stiffness of the shear stress – shear strain relationship.  

It is addressed in detail in Section 2.4; a simplification is to approximate its value as: 

Gw≈1000 y,vf , where y,vf is the shear yield-strength of masonry, usually taken equal 

to the tensile strength of the material).    In the presence of diaphragm action, the wall 

shear area is taken equal to their plan area Αw = 2t·(a+b); otherwise it is taken equal to 

the area of the walls parallel to the load, i.e. Aw =2t·a.   The resulting horizontal 

displacement along the loading direction x is,  
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and the maximum displacement due to shear at the top of the walls is 
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Similarly, the moment M(z) and curvature )(z along the height become: 
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Considering the case where the transverse wall is not allowed to bend locally out of 

plane, i.e. as if being restrained by an axially rigid diaphragm, the estimated 

displacement (type I component) along the height of the wall and the corresponding 

maximum displacement at the top due to flexure would be: 
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The moment of inertia Iplan of the composite plan of the structure (comprising both 

longitudinal and transverse walls) in the preceding equations is defined by: 
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For a uniform distribution of lateral accelerations along the building height equal to, 

Sa=·ag, where ag is the peak ground acceleration (PGA) and  the dynamic 

amplification coefficient (≈2.5), the total base shear is, Vbase=Cm(W/g)·Sa;  Cm is the 

mass participation coefficient, taken here as Cm=0.67 (Varum 2003, Clough and 

Penzien 1992, for a flexural cantilever of uniform stiffness and mass, vibrating in the 

fundamental mode as a result of support lateral acceleration as illustrated in Fig. 1.c).  

Considering the overbearing weight of the structure, W, and the overturning moment 

produced by the lateral forces, M=(2/3)VbaseH (the lever arm is taken 2/3H to account 

for the fact that occasionally there is significant mass at the roof level), the maximum 

tolerable value of Sa beyond which flexural cracking would occur (horizontal cracks 

along the building height owing to this type of flexural action) is estimated from:   
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where ftm is the tensile strength of the horizontal bed joints.   Thus, if the acceleration 

at the top of the structure for a given event exceeds the above limit it may be assumed 

that the structure has experienced extensive flexural cracking.   

The local increase of the shear compliance of the walls at the level of window 

openings was disregarded in obtaining s from Eq. (9).  Note that the shear force 

resultant, V(z) only depends on the level of the cross section examined, defined by 

coordinate z, regardless of the presence of openings. However, the average shear 

stress, (z), is amplified locally at the level of openings due to the reduced area of the 

wall supporting the shear force. The local increase in the average shear stress value is: 
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where po is the percentage of the wall plan area Aw (including both longitudinal and 

transverse walls) occupied by the openings and z1, z2 are the lower and upper levels of 

the opening respectively. The corresponding additional shear strain occurring between 

levels z1 and z2 is, 
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which causes an increase in horizontal displacement at every level z ≥ z1: 
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The added displacement at the top now becomes 
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Figure 3: The coefficients used in determining type II flexural deformation at the midcrest of 

the transverse wall: (a) Variation of a1 (Eq. (20)), (b) a2 coefficient (Eq. (21)). 

If more than one groups of openings at different levels of z1, z2 are to be examined, 



 

further Δs,add terms will need to be added, one for each group. 

 

2.2.2 Out-of-Plane Contributions to Lateral Translation: Type II Components 

The final term needed to complete the deformation analysis is due to the out-of-plane 

flexure of the transverse walls (type II component). Each transverse wall is modeled 

by a rectangular plate supported on three out of four edges and uniformly loaded. One 

edge (the bottom connecting to the foundation) is considered clamped. The other two 

adjacent edges (where the transverse wall is supported by the longitudinal ones) are 

partially restrained against rotation about the z axis. If the two partially clamped edges 

are taken to the limit of simple supports (no rotational restraint), then the analytical 

solutions by Timoshenko & Woinowsky-Krieger (1987) for the deformation shape 

due to uniform loading are applicable. By incorporating an empirical factor to take 

into account the effect of partial clamping, the maximum displacement at the middle 

of the free edge (midcrest point) under uniform load qx = ρwgt becomes: 
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where a1, a2 are coefficients that depend on the aspect ratio H/b of the wall. (To also 

account for the contribution of roof and storey loads, the unit weight of the walls, wg, 

may be replaced by, Wtot/H/Aw.)  Coefficient a1 may be estimated analytically 

(Timoshenko & Krieger). Nonlinear regression of the results for H/b in [0, 3], which 

is the range of practical interest, produces the following expression (Fig. 3a):  
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Multiplier a2 is approximated by a linear function for the same range of aspect ratio 

values. It is meant to reproduce the effect where a relatively tall wall (H > b) will see 

its midcrest displacement reduced by a greater percentage due to the partial clamping 

of the vertical edges. Some guidance in choosing its value is provided through 

analytical solutions [Timoshenko & Krieger (1987)] for the limit case where all three 

edges are clamped (Fig. 3b): 

 bHa /2.012   (20) 

2.2.3 Effect of Diaphragms in Moderating Differential Displacements 

The presence of a diaphragm affects the shape of lateral translation by (a) restraining 

the (type I) flexural deformation of walls parallel to the seismic action, and (b) 

reducing the out-of-plane (type II) flexural deformation of transverse walls. Both 

effects are represented by the empirical reduction factors f,I and f,II that define the 

degree of participation of the (unrestrained) flexural deformations Δf,I and Δf,II in the 

total mid-crest displacement. 

The bending stiffness of diaphragms relative to the walls is what determines the 

contribution of the type I flexural deformation to the control-node (midcrest of 

transverse wall) displacement. Factor f,II is similarly a direct function of the axial 

(extensional) stiffness of the diaphragm. The nature of the function connecting the 

parameters of interest may only be found for specific cases by numerical methods 

(e.g., FE analysis). Simpler approximations can also be employed, as shown in the 

Appendix. 



 

2.3 Total Displacement at Mid-Crest and Translational Mode Shape  

The peak lateral displacement is expected to occur at the mid-crest of the transverse 

wall owing to the local amplification effected by the out-of-plane bending of 

transverse walls unsupported at the crest.  Type I displacements prescribe the 

translation, in the direction of the earthquake, of the walls parallel to the load and 

thus, of the corner supports of the transverse walls.  They comprise the shear 

deformation of the walls with their openings and the flexural deformation of type I:  

 IfIfaddssI ,,,    (21) 

The transverse walls displace out-of-plane (type II deformation) in the direction of the 

earthquake. The additional deflection at mid-span relative to their corner supports is: 

 IIfIIfII ,,    (22) 

The total mid-crest displacement becomes: 

 IIfIIfIfIfaddssIIItot ,,,,,    (23) 

The contribution of each component of deformation to the shape of lateral translation 

of the entire structure is obtained by normalizing the terms of the above equation with 

the total displacement at mid-crest, Δtot.: the resulting normalized displacement 

pattern at that point assumes the value of 1.0 and thus, the associated point may serve 

as the control node in determining the performance point on the pushover curve of the 

structure, from an ESDOF type analysis (ATC 41/06 (2007), EC8-I (2004)).  For each 

mechanism of deformation the following participation factors in the final shape are 

defined:  
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so that 1)( ,,,  IIfIfaddssIII  .  Each participation factor is used to 

scale the respective deformation functions in the total translational shape of peak 

response. For type I components the functional forms are defined from Eqs. (8), (12) 

and (17), as follows: 
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 Note that the last two terms in the right hand side of Eq. (26) are typically dwarfed 

by the shear deformation of the wall without openings.  To further simplify this 

approximation, these two terms are lumped into the first (shear deformation 

component) by replacing the participation coefficient s with I in Eq. 25.  
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While the neglected contributions may be important locally, amplifying point-wise the 

values of strains and curvatures, they are insignificant in estimating the global ESDOF 

properties: Typically, δs will account for more than 80% of the total type I 

deformation. Thus, Eq. (27) is ideal for practical estimation of the ESDOF system 

period and participation factor, whereas Eq. (26) may be used to obtain local 



 

deformation demands. 

The type II flexural shape of the wall is a complicated function, which is 

represented only in an approximate way. Thus, at any given distance from the base, z, 

relative outwards displacements across the width of the building, b, follow a function 

that ranges between a sine and a cosine shape, depending on the value of a constant, c: 
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The significance of this assumption pertains to the degree of clamping at the vertical 

supports of transverse walls as implied by the lateral deflected shape of the plan of a 

simple rectangular structure depicted in the mode shapes of Fig. 4(a) or (b). Thus, 

parameter c takes on values between 1 and 2 thereby transforming Eq. (28) from a 

half-sine shape (appropriate for out-of-plane deflection of a wall pinned at the ends) to 

a full cosine shape (for a wall with clamped ends) to represent different degrees of 

fixity along the vertical edges of the transverse wall.  

             

Figure 4.  (a), (b) Plan-view of the first two eigenmodes for a rectangular-plan masonry 

structure with flexible diaphragms (H = 6m, a = 5m, b = 11m, t = 0.60m). 

The partial clamping is best represented by a value of c = 1.5, which is adopted for the 

local shape in order to define local failure criteria. Based on extensive parametric 

studies with the above expression, there is little to be gained for the global ESDOF 

system properties by using the more complex expressions associated with this value 

of c. Thus the simpler and analytically more tractable sinusoidal shape of c = 1 is 

preferred instead, when extracting the global ESDOF system properties. Variation 

along the height z is provided by a cubic polynomial that resembles the shape of shear 

deformation found earlier.  Altogether, the type II displacement shape of the 

transverse wall that determines its additional lateral translation relative to the wall 

edges (whose displacements are defined by Eq. (26)), becomes:  
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Figure 5. The shape function assumed by Eq. (30) for the total deformation of the transverse 

wall for H = 6m, a = 8m, b = 8m, t = 0.625m. As shown by the arrows, the ΦI term 

determines the displacement at the corners, but ΦII clearly dominates at midcrest. 

For the longitudinal walls, only type I deformation is possible, thus only ΦI (z) is 

needed to describe their distribution pattern. For the transverse walls (and story or 

roof diaphragms, assuming no separation has occurred), both types of deformation are 

present. Thus, their total shape is obtained from the added contributions of Eq. (27) 

and (29): 

 ),()(),( zyzzy IIIt   (29) 

The total deformation for the any level of seismic loading and for any part of the 

structure may now be estimated by multiplying the appropriate type I or type I+II 

shape functions with the corresponding seismic displacement demand Δtot estimated 

for the control node (Fig. 5).  

2.4 Masonry Material Behavior 

The stress-strain behavior of a masonry element under plane stress is idealized as 

linear up to the point of apparent yielding (Fig. 6a), whereas the length of the plateau 

depends on the inherent ductility of the blocks and mortar but also on the manner of 

construction (timber-laced or not). The nominal shear strength of a masonry element, 

fv, is estimated as a weighted product of compressive strength of building block 

strength fbc and joint mortar compressive strength (EC 6, 2005), fmc:  

fv=1.25kfbc
0.7

fmc
0.3

 (stress terms in MPa, with k in the range of 0.35 to 0.55). The range 

of values of the parameters listed above may vary, but the mean strength is estimated 

as 0.5MPa with a standard deviation of 0.15MPa. Note that the code recommended 

values for the shear distortion upon yielding of the masonry wall (yielding here is 

used to identify the onset of friction-sliding behavior along mortar joints after the 

occurrence of diagonal cracking) is in the range of 0.1% - 0.15%, whereas the shear 

strain ductility ranges, reaching values as high as 3 in cases of timber laced masonry 

(GRECO 2012). The design code model for shear strength rides on a Mohr-Coulomb 

type of idealization of the behavior of stone masonry (Page 1981, Magenes and Calvi 

1997, Magenes and Della Fontana, 1998, Milani et al. 2006);  according with this 

concept, the cracking shear strength (used in the remainder as apparent yielding), y,vf



 

, of unreinforced masonry is expressed in terms of the inherent stone-binder cohesion, 

σz is the normal compressive stress clamping the potential sliding plane, and μ is the 

apparent frictional coefficient. 

 zby,v cf    (30) 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. Behavioral Models: (a) Code-recommended resistance curve for masonry wall 

element, (b) Model illustrating the contribution of timber laces, (c) Tier section  

Equation 31 corresponds to the characteristic shear strength of masonry as prescribed 

by Eq. (3.5) of Eurocode 6 (2005), where the characteristic value for the cohesion is 

specified in terms of the mortar layer thickness, the type of masonry unit and the type 

of mortar used for the bed joints, ranging between 0.1 to 0.4 MPa; the value of μ is 

taken equal to 0.4 (Tomazevic 2006).  An upper limit is set on fv,y by the requirement 

that it does not exceed the value of 0.065fb, where fb the compressive strength of the 

typical masonry unit.  In applying the code relationship in the present work, the 

frictional component of shear strength has been neglected, based on the assumption 

that normal stresses σz owing to overbearing loads are very small (in the order of 0.05 

to 0.10 MPa). The cohesion cb may alternatively be taken as the weighted product of 

tensile (fwt
′ 
) and compressive (fwc

′ 
) strengths of the weaker component of the 

composite masonry (i.e., of the mortar): c=0.5(fwt
′ 
fwc

′ 
)
0.5

 (where fwt
′
 is approximated 

as 0.1fwc
′ 
); this approach yields commensurate results with those given earlier 

(conservatively around 0.15 - 0.3 MPa). The contribution of tiers in this strength 

model is estimated by the total force, Vb, sustained by the number of tier elements 

(ntier) that intersect a 45
o
 plane of failure after diagonal cracking (ntier=a/stier where stier 

the spacing of tiers in height and a the dimension of the building parallel to the 

earthquake, Fig. 6(b), (Tastani et al., 2009): 

                                                     



tier

tier

n

i

tieritierb fAV
1

,                                                 (31) 

Parameters Atier and fi,tier are the area and axial stress of the material that acts as tier 

reinforcement. fi,tier is equal to ub∙tier∙Lb,i, where ub is the bond stress at the mortar – 

timber interface (taken for simplicity equal to the tensile strength of the masonry wall, 

fwt
′ 
), tier is the contact perimeter of the cross section of the timber tier element with 

masonry and Lb,i the minimum available contact length of tier with the wall, measured 

to the left or to the right of the diagonal cracking plane.  Interface bond is supported 

by friction due to the overburden pressure, but also due to mechanical interlocking of 

the transverse ties of the tiers in the masonry (Fig. 6(c)). 
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2.5 Basic ESDOF system parameters for simple box-type buildings 

Deriving the properties of the associated equivalent, or generalized single degree of 

freedom system (ESDOF) that represents the overall building behavior in spectral 

coordinates has been the motivating objective for this paper. Thus, the definition of 

the shape of lateral translation was a necessary intermediate step in the process of 

estimation of the essential dynamic properties of the ESDOF, namely, the associated 

mass (mobilized by the response shape), period, excitation coefficient and the 

corresponding mass participation factor. 

The total mass of the system may be found as the sum of the wall masses, the roof 

mass mrf and any gravity and service loads present on the Nst building floors (Nst = 1 

for a 2-story building).  With reference to the building plan of Fig. 2, having a wall 

mass density ρw, and typical floor mass mst (comprising a distributed mass of ρrf and 

ρst per unit area of roof and floor, respectively, and a live load of q), the total system 

mass becomes: 

 ststrfwtot mNmmm   (32) 

where,    )tb)(ta(g/q.m  );tb)(ta(m  ;H)ba(tm ststrfrfww  302  .  

The generalized mass of the ESDOF is obtained using the translational shape of 

vibration as follows (Clough and Penzien 1976):  
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where Η/κj represents the z coordinate where diaphragm  j (or equivalently mass mj) is 

located. Thus, by analytic integration: 
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 (34b) 

For example, for a typical two story house, where the mid-story is located at mid-

height (at H/2) using m1=mst, κ1=2 and m2=mrf, κ2=1 simplifies the above expression 

to: 
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The generalized stiffness of the ESDOF system is estimated following the same 

concept (Clough and Penzien 1976); the integration is simplified significantly if 

Poisson effects in plate bending are neglected: 
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where  y
y

v,ww /fG   is the elastic slope of the shear force – shear strain diagram of 

masonry (units of stress).  For example, the average shear stress-strain behavior for 

common stone masonry walls (without tiers) adopted by Eurocode 8-III (2005) is 

depicted in Fig. 6(a).  The associated period of the system is calculated from:  

 
K

m
T 2  (35) 

The earthquake excitation factor, Le representing the degree to which the assumed 

shape of translation is excited by the ground motion is defined by: 
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For the special case of the two story house examined previously: 
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Furthermore, the effective mass mobilized by the deflected shape, m* and the 

associated participation factor Γ may now be estimated as (Clough and Penzien, 

1976): 
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Based on the above calculations, the generalized effective mass for the translational 

shape considered is found to be in the order of 45-65% depending on the building 

dimensions; its magnitude underlines the fundamental difference between lumped 

systems (where the usual value is well over 75% of total mass) from the distributed 

mass systems such as the one examined herein. The larger the values of a and H are, 

as compared to b, the higher the effective mass. Since the critical direction of ground 

excitation for a rectangular building is when it strikes orthogonal to the longer wall, it 

may be said that in general ab  , thus, the effective mass will generally be low. Still, 

the proposed displacement pattern actually represents a much higher percentage of the 

system’s response, as the next significant mode has practically the same period, only 

the out-of-plane walls bend in opposite directions (as illustrated in Fig. 4). Thus, the 

proposed shape sufficiently assesses the system behavior and it enables rapid 

transformation from global to localized seismic demands, and relatively accurate 



 

calculations on the seismic vulnerability of a large group of similar buildings. Note 

that the above expressions can be easily modified to incorporate additional structural 

components contributing to the mass and stiffness of the structure.  For example, 

interior walls oriented in the direction of the earthquake contribute to mass and 

stiffness while reducing the unsupported length of transverse walls (their contribution 

is added on to that of the parallel exterior walls by increasing proportionately the 

equivalent wall thickness and subdividing the transverse span to b/2 in both the mass 

and stiffness calculations).  Interior walls oriented orthogonal to the earthquake 

contribute to the mass in the same manner as the other transverse walls (i.e., their 

contribution is accounted for by increasing proportionately the equivalent transverse 

wall thickness in the mass equations only). 

2.6  Performance Evaluation via Nonlinear Static Procedures 

The seismic performance of the masonry structure may be evaluated using any 

nonlinear static procedure, e.g. as specified in EC8-I [2005].The corresponding 

control node displacement Dtarget is,  
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using either the associated demand in spectral acceleration Sa(T) or spectral 

displacement Sd(T) at period T. C1 is the inelastic displacement ratio at a strength 

reduction factor of q (or R), defined as C1= μd /R, where μd is the ductility demand and  
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where Vbase,y is the yield base shear (see following section). Expressions for C1 are 

widely available in the literature, e.g., C1 = 0.5 (R
2
+1)/R for short-periods according to 

Veletsos and Newmark (Chopra 1995). The displacement demand throughout the 

structure is obtained from Dtarget· Φt (x,y,z); spatial derivatives of this result provide 

the local deformation demands (shear distortion angles, relative drift ratios, curvature 

of walls in out-of-plane bending). In the following sections these values are then 

compared with the corresponding deformation capacities to assess the potential for 

failure. 

2.7 Capacity curve definition 

The response of the structure to a constant horizontal acceleration (pushover load for 

distributed parameter systems) is idealized by an elastic perfectly plastic capacity 

curve that terminates at a displacement capacity of u (blue line in Fig. 7). Thus, only 

two points of base shear versus roof drift are needed to define the structural behavior, 

namely nominal yield and ultimate failure. Obviously, several aspects of masonry 

behaviour are neglected, e.g., the influence of cracking development that introduces a 

gradual reduction of stiffness in the ascending branch up to yield, and any residual 

strength that may be available after the ultimate displacement is reached (red curve in 

Fig. 7). Still, the above assumptions are considered acceptable in view of the 

considerable uncertainty surrounding masonry. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.  Idealized (blue) and actual (red) pushover curve for masonry structure. 

 

Determination of the performance point is tied to the control node displacement 

which acts as a multiplication factor on the normalized translational displacement 

shape of the structure in order to completely determine its local deformation 

(curvature, strain) profile. This is in essence akin to a displacement-based pushover 

analysis (e.g., Antoniou and Pinho (2004), Thermou et al. (2007)) in contrast to the 

typical force-based pushover where the load pattern is constant, with the load factor 

acting as the multiplier, while the displacement profile changes as the structure is 

loaded. The adopted approach dispenses with the need for a nonlinear static analysis 

as everything is determined by the control node displacement and the constant 

displacement pattern. Thus, in order to estimate the base shear for each given value of 

the midcrest displacement, all that is needed is the relationship between these two 

variables, which is implicitly conveyed in the normalized displacement shape.  

According to Fig. 6(a) it has been assumed that walls remain elastic up to the 

nominal yield point.  If it is temporarily assumed that this point is associated with 

yielding of the walls in direct shear, it follows that the shear strength y,vf  of the 

material is attained up to a given height, z, in the structure. If Aw(z) is the wall shear 

area at this level (comprising the cross sectional area of walls parallel to the plane of 

action), then the yield shear at this level is, 

                                                   )z(Af)z(V wy,v
'
y              (42.a)  

The corresponding value of the horizontal load, q
’
, to cause this level of shear can 

be found by dividing the above value by H – z, i.e., the loaded height of the wall 

above level z (uniform lateral load) whereas the corresponding yield base shear - 

assuming that failure occurs at z – is, 
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The actual base shear at yield is the minimum value of '
y,baseV , from among all 

possible failure events occurring at different levels in the structure. Although 

seemingly tedious, for typical square or rectangular openings, it suffices to check only 

the values for z at the base of the building (z = 0) and at the lowest level of each row 

of openings. 

The corresponding control node displacement ′y due to shear failure at nominal 

yielding may be found by enforcing nominal deformation limits on the displacement 

shape determined in the preceding.  For example for the walls yielding in shear this is 

Vbase 

 Vbase,y 

tot y u 

Vbase 



 

the top displacement for which the displacement shape results in a critical shear strain 

value equal to the milestone number of 0.0015 listed in the horizontal axis of Fig. 

6(a). This establishes the baseline elastic behaviour of the structure. If subsequent 

checks for “yielding” due to other mechanisms of failure (pertaining to Immediate 

Occupancy criteria, e.g., cracking of the transverse walls bending out of plane at 

midspan or at the corners) return a lower control node displacement, y, then the yield 

base shear Vby is proportionally re-adjusted along this elastic baseline: 
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The ultimate displacement is determined by Life Safety or Near Collapse criteria. 

Several acceptance criteria and associated limit-states may be recalled in assessing 

a masonry structure even when response is considered in simple translation as is 

proposed in the present study. These may be expressed in terms of force or 

displacement/deformation. The objective in each case is to quantify a limiting value of 

strain or curvature that may be associated with failure. This limiting value may be 

related to control node displacement through the deformation shape which enables 

implementation of the demand-to-capacity check. Four main failure scenarios are 

presented in the following. 

2.7.1 Shear failure of walls 

This failure criterion is evaluated by checking the wall shear strain against the limiting 

strain of γlim. For this, the shear strain components in type I deformation are 

considered (being invariable with the transverse coordinate, y) by the first derivative 

of the corresponding displacement shape. Thus, the shear strain at any level z per 

meter of control node displacement is  
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Typically, the additional strain produced by an opening is localized exactly at the 

level of the opening (although the additional displacement it creates carries through to 

the top, Eq. (26)). Thus, the sum implied above may contain only one or two terms at 

each value of z, depending on the openings’ configuration. The minimum value of the 

midcrest displacement γ,lim corresponding to the attainment of a critical strain value 

of γlim can be estimated as: 
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The highest values of shear strain occur at the ground level and at the lowest 

extremity of each row of openings. Thus, the evaluation of the above equation is 

much simplified. 

2.7.2 Type II (out-of-plane) failure of transverse walls 

In response to type-II deformation of the transverse walls, the limited tensile strength 

of masonry leads to cracking and ultimately to failure. To check for this condition, the 

curvatures  of the transverse wall are estimated using Eq. (30):    
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The principal values of the curvatures 1, 2 may be obtained from standard 

coordinate transformation: 

 22
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where, 1 and 2 identify maximum tension strains either on the interior or the exterior 

façade of  transverse walls.  In absolute terms, 2 attains its maximum at the mid-

crest. This is where cracking typically starts on the exterior façade, propagating 

downwards along the midline and splitting to reach the two lower corners indicating 

an inverted-Y yield line (Fig. 8a). At the interior, 1 indicates disjoint cracking at the 

two upper corners and at the middle of the bottom (Fig. 8a), where the wall attempts 

to separate from the building. 

Figure 8. Type-II out-of-plane deformation of transverse wall for H = 5.6m, a = 8m, b = 8m, 

t = 0.625m: (a) minimum (tension on exterior façade) and (b) maximum (tension on interior 

façade) principal curvature contours. The ridges (dashed lines) indicate the cracking pattern.    

Failure may be defined by the appearance of exterior tension cracks along the top p 

fraction of the height. For the critical top half, yy dominates 2. For a control node 

displacement of φ,lim the failure condition is written as yy(y, z)·φ,lim = lim for y = 

b/2 and z = (1 – p)H, where ]1,0[p . Solving for lim, the result is: 
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Selecting an appropriate value for the limiting curvature lim and the percentage p of 

the cracked path associated with a given performance level are important. For walls 

without tiers the cracking strain of masonry divided by the distance to the neutral axis 

may be used, i.e., φcr=2(0.1fc
′
/Ewt). In the presence of tiers, the walls possess flexural 



 

ductility. Exceeding φcr may still result in cracking, however, actual failure is now 

associated with a higher ultimate curvature φu. The influence of any openings on the 

transverse wall can be accounted for by appropriately modifying p. For example, if it 

is requested that p = 50% of the wall height needs to reach φlim, then the height of any 

openings in the top 50% of the transverse wall (especially if close to its midline) can 

be used to directly reduce the required p. 

2.7.3 Type I flexural failure of walls 

The type 1 flexural component of deformation may induce failure of the longitudinal 

walls akin to typical beam bending. Their curvature along the vertical direction, using 

the more accurate shape proposed, is: 
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This is maximized at ground level (z=0), and equal to 4δf,I /H
2
. Assuming a typical 

linear distribution of strain along the horizontal dimension (length a) of the 

longitudinal wall and given a critical strain of εwu, it is requested that no more than a p 

percentage of the wall length has exceeded it. This corresponds to a simple limit on 

the length of the flexural crack that may appear in the long-wall and it is achieved at a 

curvature value of εwu/(pa). As the above estimate of curvature corresponds to a unit 

control node displacement, by simple analogy the limiting value of mid-crest 

displacement is: 
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2.7.4 Failure at wall corners 

The absolute value of the tension force over a strip of 1m height where the 

longitudinal wall is pulled apart from the transverse walls is: 
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where I = t
3
*(1m)/12 is the moment of inertia of a 1m wide horizontal strip of the 

longitudinal wall deforming out of plane (type II) and N,t is the control node 

displacement when this mode of failure controls. Division by the section area of the 

strip yields the axial stress that needs to be resisted to prevent cracking, starting from 

the top of the building and extending down to the value of z where the limiting tensile 

stress fwt is last exceeded. If the length of such a crack is required to remain less than 

pH, then, setting z = H (1 − p) and solving for N,t, the value of the associated 

displacement at the control node may be estimated: 
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3 Example application 

The preceding sections presented a detailed derivation of the underlying mechanics 



 

in support of the proposed simplified method of seismic assessment of simple, box-

type URM buildings.  An advantage of the procedure is that the end results are given 

in a closed form expression, enabling automation of the necessary calculations in 

simple programmable spreadsheets.  Application of the methodology is demonstrated 

here on a simple unreinforced masonry model structure which was tested under 

simulated ground motions on a shake table by Bothara et al. (2009).  The building 

model was built at a scale of 1:2.  The specimen had 0.11m thick masonry walls, a 

rectangular floor plan of 2.88m x 1.92m and was a two storey structure with a first 

floor height of 1.34m, a second floor of 1.14m and a roof gable rising by 0.815m.   

Masonry prisms were tested to obtain the actual material strengths, as follows: 

fwc=16.2 MPa, wc,max=0.0035, Ew=6.1GPa, fv,y=0.93MPa (Eq. 33), fwt=0.42 MPa.  

Bed joint tensile strength is taken as ftm=0.1MPa. Shear modulus of the homogenized 

material Gw, was taken equal to 930MPa (the ratio of an assumed shear strength of 

0.93MPa at a cracking shear distortion of 0.1%), whereas the Poisson’s ratio was 

taken =0.25.  The specific weight w of clay bricks (single brick) was taken 20kN/m
3
, 

whereas for ceramic roof tiles the unit-area weight was taken r=1.5kN/m
2
 including 

roof trusses and sheathing. Additional masses were added at the gable walls, at the 

floor level and at the eaves level as follows: (a) for testing in the longitudinal direction 

added mass per gable was 0.04 ton, 2.1 ton at the floor level and 2.02 ton at the eaves, 

(b) for testing in the transverse direction, 2.1 ton masses at the floor level and an equal 

amount at the eaves level respectively.   The structure was first tested to a suite of 

ground motions in the longitudinal direction scaling the ground motion records to pga 

values in the range of 0.2 – 0.8g; testing was repeated by shaking the structure in the 

short direction of its plan.  In the beginning of the tests recorded fundamental period 

values were, Tlong = 0.072 s, Tshort = 0.102 s.  By the end of the tests, due to damage 

accumulation these values were elongated to Tlong = 0.11 s, Tshort = 0.14 s, 

respectively, i.e., an elongation by a factor of 25%.   The analytical model presented 

in the preceding was used to estimate the structure’s response parameters as listed in 

Table 1.  Due to lack of stiff floor panels and connections, no diaphragm action was 

assumed (i.e., λf,I = λf,II = 1.0 in Eq. 24.) 

 
Table 1: Model Parameters for the Bothara et al (2010) test structure for loading along the x-

axis (long direction) and the y-axis (short direction).  Values are calculated based on the 

proposed model.   

Description Variable Reference x-axis y-axis 

longitudinal wall length a (m) Fig.2a 2.77 1.81 

transverse wall length  b (m) Fig.2a 1.81 2.77 

roof height H (m) Fig.2b 2.48 2.48 

wall thickness t (m) Fig.2a 0.11 0.11 

shear modulus Gw (MPa) Fig. 6a 930 930 

shear strength fv (MPa) Fig. 6a 0.93 0.93 

wall mass mw (tn) Eq. (33) 5.09 5.09 

story mass mst (tn) Eq. (33) 2.10 2.10 

roof mass mrf (tn) Eq. (33) 3.19 3.27 

total mass mtot (tn) Eq. (33) 10.38 10.46 

horizontal “gravity” load q (kN) Eq. (5) 41.08 41.39 

wall total area  Aw (m
2
)  Eq. (7) 1.01  1.01 

wall box moment of inertia Iplan (m
4
) Eq. (13) 1.16 0.61 

resistance of wall plan w(m
3
) Eq. (14) 0.8 0.63 

wall plate stiffness factor Dplate (kNm) Eq. (19) 721.70 721.70 

Total crest acceleration at flexural cracking 

(H=2.48+0.5x0.815) 
Sa (m·s-2

) Eq. (14) 0.5g 0.38g 



 

shear deformation Δs (mm) Eq. (9) 0.135 0.135 

flexural deformation (Type I) Δf,I (mm) Eq. (12b) 0.026 0.053 

1
st
 floor doors shear deformation Δs,add,1 (mm) Eq. (18) 0.010 0.010 

1
st
 floor windows shear deformation Δs,add,2 (mm) Eq. (18) 0.009 0.009 

2
nd

 floor windows shear deformation Δs,add,3 (mm) Eq. (18) 0.002 0.002 

flexural deformation (Type II) ΔII (mm) Eq. (19) 0.35 1.454 

type 1 deformation participation δI Eq. (25) 0.345 0.127 

type 2 deformation participation δΙΙ Eq. (25) 0.655 0.873 

ESDOF generalized mass m (tn) Eq. (34c) 3.01 2.50 

ESDOF generalized stiffness K  (kN/m) Eq. (35) 39892 5386.7 

ESDOF period T  (sec) Eq. (36) 0.055 0.135 

ESDOF earthquake excitation factor Le (tn) Eq. (38) 4.76 4.01 

ESDOF effective mass ratio m
*
/Mtot Eq. (39) 74% 62% 

ESDOF participation factor Γ Eq. (39) 1.61 1.60 

 

Based on the analysis results tabulated above, the estimated period values were 

remarkably close to the experimental ones.  This is important as the period value 

controls the spectral demand in practical assessment.   Reducing the material moduli 

to account for cracking to 2/3 of their reference values, produced the same degree of 

change to the computed periods as reported in the tests.  According to test reports, the 

building did not collapse.  Cracking was observed early in the tests and then gradually 

became more intense and propagated.   For an indicative moderate value of mid-crest 

acceleration equal to Sa(T1) = 1g in both directions (note that in many of the test runs 

reported by the authors amplification for the crest point for transverse walls was 

beyond the 2.5 value assumed by the Type-I EC8-I (2005) Spectrum for the periods of 

interest), the damage pattern as estimated by the model for two failure conditions is 

evaluated here, i.e., the shear deformations of the longitudinal walls and the out-of-

plane deformation of the transverse wall for each direction of loading. 

Due to estimated cracking for the intensity of the applied ground motions, 

assuming cracked elastic stiffnesses (2/3 value for Ew and Gw) the analytical values for 

the elongated periods and the corresponding displacement demands are as follows: 

(a) For the longitudinal direction, Tlong = 0.055 (2/3)
-1/2

 =0.07s, Sd = g  [0.07 / 

(2·3.14)]
2
 = 1.22mm.  This value correlates excellently with the reported value of 

Texp=0.072 s (=13.7 Hz) obtained from longitudinal white noise testing of the 

structure before cracking.  The target displacement was, Dtarget (Eq.  40) = 1.61  

1.22mm =2mm for C1=1.   

(b) Similarly, in the transverse direction, Ttrans=0.135  (2/3)
-1/2

 = 0.165s.  The 

calculated value correlates adequately with the reported value of Texp=0.102 s 

(=9.8 Hz) obtained from white noise testing of the structure in the transverse 

direction before the application of ground motion shaking in that direction.  

Displacement demand is Sd=g[0.165/(2x3.14)]
2
 = 6.9mm, with a target 

displacement,  Dtarget (Eq.  40) = 1.606.9mm =11mm for C1=1.  Note that these 

displacement values may be further amplified in the presence of inelastic response 

(i.e. C1>1).   

Nevertheless, it is worth noting here that the top recorded displacement at the crest 

was near 2mm for longitudinal shaking, and ranged between 10mm and 20mm for 

various strong shakings in the transverse direction; also, based on the experimental 

evidence, lateral displacement profile had a shape of long={1,0.7} and trans={1,0.3}, 

on average, referred to at the centers of floor mass.    

To quantify C1, the behavior factor needs to be estimated in both directions; during 

the most intense of tests, recorded peak base shear reached 65% and 55% of W in the 

longitudinal and transverse directions, respectively.   These numbers are confirmed 



 

from the analytical results of Eq. (41) for the total acceleration levels considered, 

when the effective participating mass is substituted from the results of Table 1:  

Vbase
long

=m*·Sa = 74%mtot·1g =0.74W, and Vbase
trans

=m*·Sa=62%mtot·1g = 0.62W; 

(W=104 kN based on the mtot value of Table 1).   

For the level of shear force, average shear stresses at the base of the wall (Table 2) 

are well below the strength level of 0.93 MPa; thus, only localized modes of failure 

can threaten the integrity of such a box-type structure as seen in the experiments 

(where only serious damage to the gables was observed).  

 
Table 2:  Response Estimates of the Model 

Description Variable Reference x-axis y-axis 

Average shear stress at wall base  fv V/(2·t·a) 0.12MPa 0.15MPa 

Average shear stress at the lower floor 

openings (V/Aw,red)  

fv
’
 Eq. 42.a 0.2 MPa 0.18MPa 

Average Shear Distortion of walls // shaking  I*Dtarget/H I: Table 1 0.0275% 0.05% 

Relative displacement at midcrest (relative to 

the corners);  
II*Dtarget II: Table 1 1.31mm 9.6mm 

Horizontal drift:   II*Dtarget/(b/2)  0.037% 0.68% 

Crest transverse displacement at vertical 

splitting through openingsŧ 
,cr 

(p=50%mm, of 

which half  is 

in the opening) 

Eq. (50) 0.65mm 1.23 

ŧcr = 2·0.42MPa/6100MPa/110mm =1.25·10
-6

/mm. 
 

The above results illustrate that the patterns of anticipated failure would be owing 

to outwards deflection of the walls orthogonal to the direction of shaking; this is 

consistent with the experimental reports.  Average horizontal drift ratio (relative 

transverse displacement of the wall midcrest normalized with half the transverse 

length) is below the 0.1% limit which represents the cracking limit. However, when 

localized deformation due to out-of-plane curvature is considered for the walls 

orthogonal to the direction of shaking, it is seen that mid-crest cracking would 

propagate down to 25% of the building height, to the top row of the widows, which 

would correspond to splitting open the transverse walls down to the mid-height of the 

structure with no further resistance, at a mid-crest horizontal displacement of 0.65mm 

for longitudinal shaking, and 1.23mm for shaking in the short direction.  In light of the 

fact that total expected displacement for the level of imposed acceleration is 2mm and 

11mm for the two directions of shaking, it is evident that the corresponding 

displacement ductility demands were in the order of long=2mm/0.65mm = 3, and 

trans=11mm/1.23mm = 9, values that are excessive considering the limited 

deformation capacity of masonry.  However, these levels of deformation are 

consistent with the observed level of damage which, in the end of the tests was 

marked with scattering and falling of unsecured tiles, cracking of the gables and 

extensive cracking of walls in out of plane bending, with vertical cracks propagating 

through the building’s openings.   

 

4 Conclusions 

A simplified methodology has been presented for the seismic vulnerability 

evaluation of box-type traditional buildings with flexible diaphragms.  In structures of 

this category, the budgets available and the degree of complexity in assessing the 



 

seismic demands and capacities can be disproportionately complex than the level of 

knowledge and uncertainty surrounding their condition and properties.  The simple 

model developed in the present paper may serve as a tool for rapid assessment of a 

single building, but also for collective vulnerability evaluation of clusters of such 

traditional buildings located in historical settlements.  The model reproduces the 

global vibration characteristics while also employing a local deformation shape to 

allow estimating typical local failures. For the sake of completeness, the detailed 

derivation of the underlying mechanics in support of the proposed simplified method 

was presented in the paper.  Of the total number of analytical expressions, those that 

are needed for seismic assessment of simple, box-type URM buildings are listed in the 

example case of Table 2.  In all cases, no complex structural analysis is needed.    

An advantage of the procedure is that the end results are given in closed form 

expressions, enabling automation of the necessary calculations in simple 

programmable spreadsheets.  A disadvantage is that the assumptions made, in order to 

simplify the procedures, restrict the applicability of the shape-function used for 

derivation of the ESDOF properties to simple box-type buildings with rectangular 

floor plan and flexible floor diaphragms.  Although internal dividing walls may be 

easily incorporated, application of the model to irregular structures is not 

recommended.  In these cases a detailed linear elastic F.E. analysis under a 

gravitational field in the direction of earthquake action may be a more appropriate 

way to estimate a shape of lateral translation for the building (Pardalopoulos et al. 

(2013)).  Similarly, if stiff diaphragms are present, further simplifications may be 

possible such as the equivalent frame method (Lagomarsino 2009).  

Application of the procedure to an example URM structure with a rectangular floor 

plan and flexible diaphragms was included in the paper.   A scaled model of the 

structure had been tested on a shake table to a variety of excitations in the primary and 

secondary directions of its floor plan. To illustrate the simplicity of calculation 

possible through the model, the results from essential calculations needed to estimate 

translational period, displacement demand, base-shear demand, shear-strength 

estimates and localized capacities are also listed.   It is shown that the proposed 

procedure estimated with very good accuracy the translational periods of the structure 

in both directions of action, the magnitude of the demands, the pattern of lateral 

displacement distribution and the tendency for out of plane damage.  The 

requirements for a benchmark presentation of the derivation did not allow for further 

expansion into the parametric sensitivities of the model; however, such evaluation 

against many more experimental investigations on URM structures will be pre-

requisite to its use for more general fragility curves for this class of structures.    
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APPENDIX 

The contribution of type I and type II flexural deformations of the walls to the global 

control node displacement of the system is moderated by two reduction factors, λf,I 

and λf,II. The best approach to estimate them would involve finite element simulations, 

yet, for the benefit of a simple approach, crude linear approximations may also be 

employed as follows. 

Let λf,Ι = f (θ), where θ is the ratio of the bending stiffness of the diaphragm over 

the bending stiffness of the transverse walls: 
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A concrete slab of ts thickness is often used as a retrofit measure at each story level, 

while a perimeter beam of a uniform cross sectional width bw and depth tb is a 

common retrofit measure at the crest. In this context it is assumed that the two 

perimeter beams at the crest partially restrain the flexural deformation of the 

longitudinal walls. Note that in this case the transverse wall length, b, affects the 

resulting values of θ in Eq. (55), while for a slab the term b cancels out. The full 

restraining effect corresponding to λf,I = 0 can be represented by a slab with Ec = 

25GPa, Ew = 5GPa, H = 3m, tw = 0.6m ts = 0.2m, or a stiffness ratio of θ = 0.2. Then, 

an appropriate linear function for λf,I is defined as  

  0,51max,  If  (56) 

Factor λf,IΙ is a function of the axial (extensional) stiffness of the diaphragm, kd. For 

the purposes of a simple approximation, a linear function is assumed, taking on the 

value of 1 for kd = 0 (i.e., when the crest boundary is unrestrained in out-of-plane 

translation) and 0 when the diaphragm stiffness ratio exceeds a certain critical limit 

corresponding to the full restraining action of a concrete slab, set here at 60GN/m 

(which corresponds to full support of the crest boundary against out-of-plane 

displacement). Then 
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To estimate kd a slab can be treated like a deep beam of height “a” and span “b”, 

where a, b are the plan dimensions of the structure. By solving this as a Timoshenko 

beam that includes both bending and shear deformations (Timoshenko 1940) we find 

its midpoint deformation d when subjected to a uniform load of q∙b. Then, a measure 

of the slab’s stiffness at the wall midcrest can be obtained as 
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For a critical rigid slab assumed of ts=0.2m, a = b = 5m, using Ec = 25GPa and ν = 

0.25 for concrete we get a value of about 25GN/m. If, instead, a simple perimeter 

beam is the highest stiffness element restraining the out-of-plane wall bending, a 

simple Bernoulli beam solution (neglecting shear deformation) can be used to find 

that two such beams (one on each transverse wall), assumed clamped on both ends, 

would have a total midpoint stiffness of 
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