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Abstract

Analytical, closed-form solutions are derived for the computation of equivalent constant rates of limit-state exceedance for structures
under seismic loads whose capacity is degrading with time. Seismic guidelines currently designate constant, time-independent
probabilities or mean annual frequencies of exceedance that are assumed to remain invariable for the entire design life. These are
at odds with the time-dependent, ever-increasing exceedance rates of ageing structures. Based on the concept of social equity and
discounting of societal investments, the equivalent constant rate provides a basis for judging the safety of structures with time-
dependent capacity by allowing comparisons with the code-mandated rates of limit-state exceedance. Starting from the simple
SAC/FEMA solution and assuming a power-law degradation of capacity with time and a linear change in the combined epistemic
and aleatory variability of capacity, we provide general solutions for the equivalent constant rate and for the limiting case of the
average rate over the design life of the structure. The solutions are formulated both in the demand-based and in the intensity-based
format, the latter being suitable for all limit-states, even close to global collapse. By using a 7-story reinforced concrete building as
an example, we demonstrate the accuracy and the practicality of these approximations for the assessment of an existing structure.

Keywords: structures, performance-based earthquake engineering, mean annual frequency, equivalent constant rate, ageing,
capacity degradation

1. Introduction

The ageing of existing infrastructure has become a major is-
sue in the field of design and analysis. Structures are still be-
ing designed without due consideration of the ageing and the
weathering that they are subject to. Design codes typically
contain only some prescriptive requirements, e.g., mandating
a certain thickness for concrete cover or specific corrosion pro-
tection measures for steel members. It is simply implied that
such measures will let the structure retain the required capacity
for the duration of its design life. In a seismic environment, it
is precisely this unaccounted for, actual level of capacity that
will determine whether a failure will occur or not. Thus, while
both the seismic capacity and the weathering of structures have
received a lot of research interest, it is the combined effect of
the two that matters most in many situations.

On the seismic side, performance-based earthquake engi-
neering (PBEE) has recently emerged to explicitly enable the
assessment of structural performance under seismic loads. This
is exemplified by the framework adopted by the Pacific Earth-
quake Engineering Research (PEER) Center to estimate the
mean annual frequency (MAF) of exceeding designated limit-
states in terms of costs, casualties, downtime or simply struc-
tural response (Cornell and Krawinkler [1]). Such approaches
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have been greatly simplified by SAC/FEMA [2] that has cod-
ified a comprehensive compatible framework based on closed-
form solutions to estimate the MAF of limit-state exceedance
for steel moment-resisting frames. While such significant ad-
vances have taken place in this field, they all incorporate the as-
sumption that the structure will remain practically indefinitely
in the same initial condition. In other words, the MAFs cal-
culated for the initial state are assumed to be time-independent
and to extend to the entire design life of the structure, without
any consideration for weathering effects. This is a concept that
is integrated in our design methodologies as we typically think
of, e.g., the “10% in 50yrs” or the “2% in 50yrs” exceedance
probabilities as typical design objectives for buildings. While
the current PBEE approach may provide a comprehensive so-
lution to seismic assessment, it also introduces a large question
mark for structures that are subject to weathering effects and
their capacity tends to degrade with age.

Such effects may indeed not be critical for structures that are
not exposed to severe environments, but they may be detrimen-
tal for many others. Recent literature has come to acknowl-
edge this problem, especially in the case of bridges (for exam-
ple [3–5]). Several ideas have been put forward to deal with
such degrading-capacity problems in a rational way, often fo-
cusing on the life-cycle cost (e.g., [6]). Unfortunately, applying
these methods is not trivial: Estimating life-cycle cost can be
an elaborate and difficult operation, especially since one needs
to address the cost and the frequency of maintenance schemes.
Furthermore, inspection and maintenance actions are not the
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norm for most, if not all, buildings and many bridges. On the
contrary, any weathering consideration is typically assumed to
be provided via a proper initial design meant to maintain the
desired level of safety throughout the design life.

Thus, it becomes attractive to maintain a code-compatible
format based on the MAF by reconsidering the typical PBEE
approach. When capacity degradation is present, the use of a
constant-rate homogeneous Poisson process of limit-state ex-
ceedance events is not feasible anymore; the actual rate in-
creases with the age of the structure. Still, it is always useful
to derive a constant rate that will, in some reasonable sense,
be representative of the ever-changing risk faced by the build-
ing over its design life. In other words, we need some way
to transform time-dependent rates to the usual time-invariant,
constant-rates that are so ingrained in our design philosophy.

The early seeds of such an approach can be found in the defi-
nition of the average rate of exceedance proposed, e.g., by Cor-
nell and Bandyopadhyay [7], Amin et al. [8] and also indirectly
by Torres and Ruiz [9]. The latter actually provide estimates
for the expected number of limit-state exceedance events over a
time interval, which, when divided by the interval length, pro-
duces the average rate, a useful indicator in itself. Neverthe-
less, it is not obvious that such indiscriminate averaging is the
best solution. For example, from the owner’s perspective, ex-
ceedance events close to the end of a building’s lifetime might
not matter as much as events that happen while it is still new.

Seeking a more useful measure, we have turned to the equiv-
alent constant rate (ECR), based on the concept of social equity,
as introduced by Yeo and Cornell [10] and applied in [11] for
decision-making in an aftershock environment. Here, we shall
reformulate the ECR considering the problem of ageing struc-
tures under seismic loads and we will focus on the generation
of closed-form, simple-to-use expressions based on the popular
SAC/FEMA [2] approach.

2. Definition of ECR for ageing structures

In order to formulate the ECR for ageing structures we will
adapt the work of Yeo and Cornell [10] where it was origi-
nally defined for a structure subject to a time-varying aftershock
threat. Throughout this section we will closely follow in their
footsteps, modifying their derivations and definition to fit our
case of time-dependent capacity of ageing structures.

First, let us introduce the concept of “seismic-safety technol-
ogy”, i.e., a repair or rehabilitation scheme that, when imple-
mented on a structure, will improve its performance. Then, for
a given structure in a given state at time τ = 0 and for a specific
limit-state LS, let Q be the amount that, when invested by soci-
ety into such technology at time τ > 0 in the future, it instanta-
neously prevents the violation of LS due to a seismic event at τ
(Paté [12]). In order to properly account for the time-value of
money between τ = 0 and the time of LS exceedance, we define
α as the discount rate (adjusted for inflation) that is appropri-
ate for societal investments in seismic-safety technologies, hav-
ing typical values in the range of 3-5% (see Paté-Cornell [13]).
Assuming interest compounding in infinitesimal time-intervals
then, if the event is certain to happen at τ , we will need to invest

Qe−ατ at time zero. If λLS(τ) is the instantaneous rate of LS
violations at τ , then the probability of such an event happening
in [τ,τ + dτ ] is approximately λLS(τ)dτ . Accordingly, the ex-
pected amount that society should invest at time zero to prevent
a violation of LS at τ is approximately Qe−ατ λLS(τ)dτ .

For the same structure and limit-state LS and for a given de-
sign life, or period of interest, Td , we define λ ECR

LS as the time-
independent exceedance rate within [0,Td ] that is “equivalent”
to the time-dependent rate λLS(τ). Paralleling the definition in
[10], “equivalence” means that the expected investment for pre-
venting violation of LS in the future is the same for both cases.
Compared to the previous, time-dependent case, the only thing
that changes is the probability of an “equivalent” limit-state ex-
ceedance event in [τ,τ + dτ]; it is now λ ECR

LS dτ . Hence, the
expected amount of societal investment to prevent a violation
of LS around time τ is now Qe−ατ λ ECR

LS dτ approximately.
In both of the above cases, i.e., for the time-dependent λLS(τ)

and the constant λ ECR
LS , the total expected investment over the

lifetime of the structure can be found by integrating the “in-
stantaneous” amounts over the interval [0,Td ]. If, according to
our equivalence definition, we equate these totals we get:

Td∫
0

λ ECR
LS Qe−ατ dτ =

Td∫
0

λLS(τ)Qe−ατ dτ . (1)

If we cancel out Q, integrate the left side and arrange terms to
separate λ ECR

LS , we reach the following fundamental result:

λ ECR
LS =

α
1− e−αTd

Td∫
0

λLS(τ)e−ατ dτ . (2)

In the sections to follow, we shall develop closed-form ap-
proximations to the above equation using two different but
equally popular formulations, the IM-based and the EDP-based.
In the meantime, we will briefly discuss the time-independent
estimation of λLS and derive these two formulations.

3. Estimation of the MAF of limit-state exceedance

Estimating the mean annual frequency (MAF) of exceeding
a certain requirement can be conceptually described using the
framing equation adopted by the Pacific Earthquake Engineer-
ing Research Center [1, 14],

λ (DV ) =
∫∫∫

G(DV |DM) · |dG(DM|EDP)| ·

|dG(EDP|IM)| · |dλ (IM)| . (3)

To simplify the above equation and the ones to follow, we will
loosely use λ (X), f (X), F(X), and G(X) to denote the MAF
function, probability density function (PDF), cumulative distri-
bution function (CDF), and the complementary CDF (CCDF),
respectively, of their arguments. For example, f (X) actually
means fX (x) and is a different function from f (Y )≡ fY (y).

Actually, Eq. (3) is mostly a conceptual way to explain how
the exceedance of a key decision variable DV can be defined
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by breaking up the calculation according to the total probabil-
ity theorem into smaller, one-step-dependence calculations in
consecutive steps that involve the damage measure DM , the en-
gineering demand parameter EDP and the intensity measure IM .
It does not necessarily represent the most practical way to cal-
culate the MAF. As discussed in Vamvatsikos and Cornell [14],
if we are not interested in estimating decision variables such as
cost, downtime, casualties etc., we can simplify the above equa-
tion by using indicator variables for DV and DM to leave only
the MAF of exceeding a certain limit-state LS computed on the
basis of EDP and IM . Actually, in such cases, it will be quite
convenient to forego the complex Eq. (3) and try to derive the
MAF of limit-state exceedance from first principles. We will
take this route, simply to improve understanding of the two ba-
sic methods that can be used to calculate the MAF and will be
fundamental for the remainder of our development.

Let us start with the hazard curve λ (IM) which represents the
MAF of exceeding a certain IM value. At any given IM , the rate
of IM exceedance in its neighborhood [IM, IM +dIM] is approx-
imately constant: dλ (IM). Thus, “locally” we have a Poisson
process of seismic events that exceed the designated level of IM .
The “local” rate of limit-state LS exceedance dλLS defines an-
other Poisson process whose constant rate can be derived from
the seismic IM-exceedance process by filtering it (e.g., [15]) by
the probability of limit-state exceedance for a given IM as

dλLS(IM) = P(C < D|IM)dλ (IM) (4)

where C is the capacity associated with the limit-state and D
the corresponding demand generated by seismic loads. Now
the interesting part begins: The probability P(C < D|IM) of
limit-state exceedance given the IM , often termed the fragility
or vulnerability function, can be calculated in two equivalent
ways:

P(C < D|IM) = P(IMc < IM) = F(IMc|IM) (5)

or
P(C < D|IM) = P(EDPc < EDP|IM) (6)

In other words, a structure violates LS if the (random) EDP
demand due to earthquake (at a given level of IM) is above
the (random) EDPc capacity of the structure or the IM of the
earthquake is above the (random) IMc capacity of the structure.
To understand the above formulations it is useful to visualize
the cloud of capacity points associated with LS in the EDP-IM
plane, each i-th point placed at its own (E i

DPc, I
i
Mc) coordinates.

For readers familiar with IDAs (Vamvatsikos and Cornell [16])
these can be visualized as one point per single IDA curve, or
ground motion record, that signifies the level above which the
limit state is violated, both in EDP and in IM terms.

Eq. (5) is straightforward to understand, as IM is given and
IMc is a random variable. Thus P(IMc < IM) is simply the CDF
of the capacity IMc (actually the CDF value at the level of IM),
easily estimated from the cloud of capacity points in the EDP-IM
plane. For example, we can just make the popular assumption
of lognormality and estimate its mean-log and standard devia-
tion of the logs of the IM-ordinates of the capacity points. On

the other hand, equation 6 is more difficult to apply, as both
EDP given IM and EDPc (which is independent of IM) are ran-
dom variables. In this case we need to use the total probabil-
ity theorem to calculate this probability by breaking it up into
smaller, more tractable pieces. By conditioning on the value of
the EDP:

P(C < D|IM) =

+∞∫
0

P(EDPc <x |EDP = x, IM)P(EDP =x |IM)dx

=

+∞∫
0

FEDPc|EDP=x(x) fEDP|IM (x)dx

=

+∞∫
0

F(EDPc|EDP) f (EDP|IM)dEDP (7)

where we have dropped the conditioning of EDPc on IM , since
we consider EDPc a property of the structure and not of the load-
ing level. Similarly to Eq. (5), F(EDPc|EDP) represents the CDF
of the EDP-capacity, or actually the CDF value at the level of
EDP. This distinction becomes helpful in the integrals to fol-
low; therefore we have kept this “conditioning” of EDPc on EDP
and IMc on IM in all expressions despite there being no real de-
pendence per se.

In summary, there are two equivalent ways to estimate the
probability of exceeding a certain limit-state LS in the EDP-
IM plane. The first one is based on the IM , and although con-
ceptually simpler it has been traditionally termed the indirect
method, (e.g., Shome et al. [17]). The other method, called the
direct one, is based on the EDP and needs an additional integra-
tion to work properly.

The reason behind this historical naming convention is the
apparent difficulty in estimating P(IMc < IM) when operating
outside an IDA setting, since the way timehistory analyses are
run is that one prescribes the IM and estimates an EDP response.
Assuming that the LS capacity is defined based on the values of
response parameters, it seems more natural to express the ca-
pacity in EDP terms rather than IM , as one should iterate on the
prescribed IM value to get the proper responses that will define
capacity and ultimately get the proper IMc. This is akin to the
classic way of estimating response statistics for single-degree-
of-freedom oscillators as ductility µ given the force reduction
R-factor, which needs no iteration, or as R-factor given the duc-
tility µ , which requires iterations on R. Actually, in an IDA
setting such iterations can be easily removed by clever post-
processing [14], thus equating the computational needs of both
approaches. Therefore, since the original thinking behind these
names is no longer as intuitive as it used to be, we will hence-
forth name them according to the variable that they are based
on, as for example was done by Jalayer [18]. Thus, method 1
(the indirect) will be the IM-based and method 2 (the direct) the
EDP-based.

Actually, in theory both of the above methods are equiva-
lent. There is no theoretical advantage in using one or the other.
Still, in practice, the extra integration needed for the EDP-based
method, together with the thorny issue of collapse tends to tilt
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the balance towards the IM-based way. The problems arise both
analytically and numerically when we need to estimate the in-
tegral in Eq. (7). When trying to implement closed-form solu-
tions, this immediately becomes a bit of a problem that needs
some extra approximations to be analytically integrable. The
matters are further complicated due to the eventual collapse of
the structure above a certain IM-level, where essentially small
increases in the IM lead to disproportionately large increases in
the response EDP, leading to practically “infinite” value of re-
sponse (e.g., [16]). These values may be difficult to deal with
numerically but become even worse analytically, especially in
closed form. The reader is directed to Jalayer [18] for a com-
prehensive treatment of this subject.

In our opinion, it suffices to say that we prefer the IM-based
method for three basic reasons:

a) The case of “infinite” (or very large) EDP-capacity due to
global instability is automatically taken care of. While this
is not important for serviceability, it needs special attention
for near-collapse limit-states in an EDP-formulation.

b) There is no need to discuss correlation between demand and
capacity (e.g., see Cornell et al. [19]).

c) As we will see later on, a closed-form solution can be de-
rived without the need to approximate the EDP-IM relation-
ship.

With that in mind, let us now discuss the estimation of λLS.
For both formulations, this can be done via a simple integration
of dλLS(IM) from Eq. (4) over all values of IM:

λLS =

+∞∫
0

dλLS(IM) =

+∞∫
0

P(C < D|IM)dλ (IM)

=

+∞∫
0

P(C < D|IM)

∣∣∣∣dλ (IM)

dIM

∣∣∣∣dIM (8)

Note that when changing variables from λ (IM) to IM the limits
of integration are inverted: As IM goes to 0, λ (IM) goes to +∞
and vice-versa. To retain the original integration limits we can
either introduce a negative sign that is canceled out eventually
by the negative values of the λ (IM) derivative or take the abso-
lute value of the derivative. As typically done (e.g., [18]), we
chose the second option.

Now, depending on the formulation that we choose to repre-
sent the conditional probability of limit-state exceedance P(C <
D|IM), we get two different versions of Eq. (8) or, equiva-
lently, two different ways to calculate the same λLS. For the
IM-formulation we have:

λLS =

+∞∫
0

F(IMc|IM)

∣∣∣∣dλ (IM)

dIM

∣∣∣∣dIM (9)

while for the EDP-based one:

λLS =

+∞∫
0

+∞∫
0

F(EDPc|EDP) f (EDP|IM)dEDP

∣∣∣∣dλ (IM)

dIM

∣∣∣∣dIM. (10)

These equations have appeared in several forms in the past (e.g.,
see Bazzurro et al. [20] and references therein) and they are
the same as the ones found in Vamvatsikos and Cornell [14],
the only difference from the latter being that we derived them
from first principles rather than transforming the PEER-integral
appearing in Eq. (3).

From now and on, we will use, as customary for most appli-
cations, Sa as the IM and θ as the EDP, thus remaining faithful
to the basic derivation by Cornell et al. [19]. It should be noted,
though, that different scalar quantities can be used as intensity
or response without any problem, as long as the approxima-
tions discussed below are respected. Actually, there have been
several recent proposals for better scalar IM parameters, e.g.,
in [21–24], that can improve the reliability of such calculations
dramatically.

4. IM-based formulation

In order to estimate the ECR via Eq. (2), we first need a
closed form solution to Eq. (9). This has been presented by Cor-
nell et al. [19] and explained in detail by Jalayer [18], whose re-
sults we will present here. First, we assume that the IM-capacity
is lognormally distributed and adopt the first-order assumption,
i.e., we assume that the epistemic uncertainty does not influ-
ence the median value, only the dispersion around the median.
This assumption is not entirely accurate, as shown e.g., by Liel
et al. [25] and Vamvatsikos and Fragiadakis [26], but still rea-
sonable. Furthermore, we assume that the hazard curve H(·),
i.e., the λ (IM) function of mean annual frequency of exceeding
values of the IM , or Sa, can be approximated in the area of the
median IM capacity, or Ŝa,c, by a power-law form, or, equiva-
lently, a straight line in log-log coordinates:

λ (IM) = H(Sa) = k0(Sa)
−k . (11)

Then, as shown in [18], the mean annual frequency of ex-
ceeding a limit-state LS can be approximated as

λLS = H(Ŝa,c)exp
(

k2

2
(β 2

RSa +β 2
USa)

)
(12)

where βRSa is the record-to-record dispersion (the standard de-
viation of the log-data) around the median capacity Ŝa,c and
βUSa represents the corresponding epistemic uncertainty. The
reader is referred, for example, to [26, 27] for a comprehensive
discussion of how these two quantities, especially βUSa, can be
estimated in the case of model parameter uncertainty.

The typical way that such equations are used is under the as-
sumption that the various parameters, Ŝa,c, βRSa, βUSa are con-
stant over time. Thus, we may consider Eq. (12) as valid for
the entire design life of the structure. This is an assumption that
provides a very clear meaning to the typical design situations
e.g., of “10% in 50 years”, signifying that for a homogeneous
Poisson process with a constant rate of λLS we can directly con-
nect λLS to the probability p = 10% of exceedance over the
lifetime Td = 50yrs as

p = 1− e−λLSTd . (13)
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Unfortunately, for the more realistic case of structures sub-
ject to environmental actions that slowly degrade their capac-
ity over time, e.g., due to fatigue, corrosion or other processes,
the above assumption of a constant rate λLS may not be ade-
quate. In other words we have to consider λLS as λLS(τ). In
such cases, we should treat Eq. (12) as a time-dependent func-
tion that is strictly valid only for a given time-instance τ . This
is possible as its derivation does not make use of any time-
invariance assumptions, thus making it also useable in a time-
variant framework. In the context of Eq. (2), Eq. (12) can ac-
tually be thought of as the result of an intermediate or internal
integration to derive λLS(τ). As discussed in previous sections,
it now becomes important to estimate an equivalent constant
value that is possible to use just like λLS in Eq. (13).

4.1. IM-based equivalent constant rate
Even with a closed form estimate for λLS, Eq. (2) is not

amenable to analytical solution, unless we assume simplified
expressions for the, potentially time-dependent, parameters in
estimating λLS via Eq. (12).

First of all, we will assume that Ŝa,c does not degrade dra-
matically. Then, we can use the same approximation for the
hazard curve for all times τ . Thus, in the form of Eq. (11) we
will assume that the constants k0 and k are time-independent.
In order to apply this practically, we cannot fit the hazard curve
via Eq. (11) just at the Ŝa,c point as proposed by Cornell et al.
[19]. The problem is the potential overestimation of the hazard
rate for low Sa’s. Since the hazard rates there are exponentially
higher, this is the area with the most significant contribution to
the integral in Eq. (9). Actually, as discussed by Vamvatsikos
and Cornell [14], both a global fit and a tangential point-fit at
a given Ŝa,c may sometimes be appropriate and other times in
gross error. Extensive testing [28] has shown that a better, more
robust approximation can be achieved through a local area-fit.
For example, for a given Ŝa,c it is better to fit within [0.25Ŝa,c,
1.25Ŝa,c], rather than right at Ŝa,c. This is a good strategy to
achieve a robust estimation even just at the Ŝa,c point for τ = 0,
namely Ŝ 0

a,c, with Eq. (12). As discussed later in the example’s
section, if we slightly extend this interval around Ŝ 0

a,c to cover
even lower values then, depending on the degradation rate of the
capacity, we can also achieve a good fit for multiple Ŝa,c values
as τ grows. Therefore, such a local area-fit strategy helps both
ways.

In approximating λ ECR
LS , the form of the degradation for the

Ŝa,c capacity of the structure over time τ is also important. Ini-
tially, we will assume that capacity degradation occurs (or con-
tinues) immediately from τ = 0, without delay, and it may fol-
low either a linear or a power-law form. Since, the latter choice
will make no difference on the approximations we need to em-
ploy to make Eq. (2) integrable analytically, we will go with the
second and more powerful option. Thus, we assume that

Ŝa,c(τ) = Ŝ 0
a,c − γτδ = Ŝ 0

a,c

(
1− γτδ

Ŝ 0
a,c

)
(14)

where, as stated earlier, Ŝ 0
a,c is the median Sa capacity at time

τ = 0. If δ = 1 we have the linear degradation case [e.g., 9],

while δ > 1 denotes an accelerating degradation case and δ < 1
a decelerating one. Each of these may be appropriate for differ-
ent situations and case studies.

Regarding the dispersions βRSa(τ) and βUSa(τ), we may ei-
ther assume that they are constant or take them to vary linearly
with τ . Again, both of these assumptions make no difference
for the analytical treatment of Eq. (2), thus we will use the sec-
ond and more powerful option:

βRUSa
2(τ) = βRSa

2(τ)+βUSa
2(τ) = β 0

RUSa
2
+ cβ τ (15)

where

β 0
RUSa =

√
β 0

RSa
2
+β 0

USa
2 (16)

is the combined aleatory and epistemic uncertainty in the me-
dian Sa capacity at time τ = 0. Note that the above formula-
tion allows us to deal with various phenomena that are inher-
ent in ageing. For example, the uncertainty associated with the
degradation process may change over time, probably increas-
ing. While at time zero there is no degradation-related uncer-
tainty (assuming that we know the present state of the structure,
or no degradation has occurred yet), once it starts its influence
will increase with time. The above framework allows us to cap-
ture this fundamental effect with relative ease.

By employing the above assumptions, the time-dependent
λLS(τ) can be written with the use of Eq. (12) as:

λLS(τ) =H(Ŝa,c(τ))exp
(

k2

2
βRUSa

2(τ)
)

=k0

[
Ŝ 0

a,c

(
1− γτδ

Ŝ 0
a,c

)]−k

exp
(

k2

2
(β 0

RUSa
2
+ cβ τ)

)

=λ 0
LS

(
1− γτδ

Ŝ 0
a,c

)−k

exp
(

k2

2
cβ τ
)

(17)

where

λ 0
LS =k0(Ŝ 0

a,c)
−k exp

(
k2

2
β 0

RUSa
2
)

=H(Ŝa,c)exp
(

k2

2
β 0

RUSa
2
)

(18)

is the rate of limit-state exceedance λLS at time zero, i.e., at the
start of the period of interest Td .

At its present form, Eq. (17) cannot be integrated analytically
unless k is an integer. Even then, the resulting expression will
depend on k’s value. Thus, we need to approximate the term
(·)−k with a simpler form. When the rate of degradation is rela-
tively close to linear, as observed in several cases (e.g., [9, 29]),
then we can use a single-parameter exponential function:

eϕτ ≈

[
1− γτδ

Ŝ 0
a,c

]−k

. (19)

ϕ can be estimated through regression or, simply, by matching
the two functions at times τ = 0 and τ = ρTd , where 0 < ρ ≤ 1.
Since the fit at τ = 0 is guaranteed by the exponential form
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Figure 1: The exponential approximation to the (·)−k-term for different values of δ for Ŝa,c(50yrs) = 0.6 Ŝ 0
a,c. Values δ > 2.5 and δ < 0.4 may introduce errors,

especially if the Ŝa,c degrades to low values. The ρ = 0.9 approximation is more accurate but the ρ = 1 is slightly conservative in most cases.

itself, we only have one parameter and one condition to fulfill,
leading to

ϕ =− k
ρTd

ln

[
1− γ(ρTd)

δ

Ŝ 0
a,c

]
. (20)

The above form has proven to be an accurate approximation
when using a value of ρ ∈ [0.85,1] and assuming the rate of
degradation is not too rapid or too slow. Actually, it works best
when, within the period of interest Td , Ŝa,c will not degrade
to less than 50% of Ŝ 0

a,c, or in other terms γT δ
d < 0.5Ŝ 0

a,c, and
δ is not too far from 1, i.e., δ ∈ [0.4,2.5]. The first condi-
tion is actually a prerequisite of our whole attempt to provide a
closed-form solution. Large changes in Ŝa,c will invalidate our
assumption that the hazard curve can be approximated reliably
by a straight line in log-log for all values of Ŝa,c. The second
assumption makes sure that the degradation rate of the expo-
nential function can reasonably match the power-law form. As

shown in Fig. 1, when these conditions are respected, the fit is
generally good.

By introducing the exponential approximation in Eq. (17),
the latter becomes:

λLS(τ) = λ 0
LS exp

(
k2

2
cβ τ +ϕτ

)
= λ 0

LS exp
(
ϕ ′τ
)

(21)

with ϕ ′ = ϕ + k2cβ/2 representing the rate of degradation.
Now, we can easily integrate Eq. (2) to get:

λ ECR
LS = λ 0

LS
α

α −ϕ ′ ·
1− e−(α−ϕ ′)Td

1− e−αTd
. (22)

The above equation is a simple, basic formula to estimate the
ECR for a structure with a starting rate of limit-state exceedance
λ 0

LS at time τ = 0 for a rate of capacity degradation equal to ϕ ′

and a societal discount rate α . Actually, Eq. (22) is very robust
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numerically and its behavior has a simple interpretation, as it is
directly controlled by the difference between the discount rate
and the degradation rate:

• If α > ϕ ′ then discounting is faster than degradation, and
ECR increases sublinearly with time,

• if α = ϕ ′ then discounting and degradation are equally
fast, and ECR increases linearly with time,

• if α < ϕ ′ then discounting is slower and ECR increases
superlinearly with time.

Of course, since ϕ ′ depends on time as well, albeit less strongly,
the above observations are only approximate, yet quite accurate
for a reasonable range of years around Td .

Note that there seems to be a possibility for numerical in-
stability for the, practically improbable, case of α = ϕ ′. Actu-
ally, Eq. (22) is numerically stable, thus if we supply values of
α and ϕ that differ only slightly, but their difference remains
away from the region of round-off error, then it will still yield
accurate numerical results. Alternatively, we can take its limit
as α → ϕ ′, or integrate again the simplified Eq. (2) to get the
result

λ ECR
LS = λ 0

LS
αTd

1− e−αTd
, (23)

which partially confirms our above observations on the behav-
ior of λ ECR

LS through Eq. (22).

4.2. IM-based average rate
Another way to derive a constant rate for the time period

[0,Td ] is by simply averaging the time-dependent λLS(τ) within
this range. Although this is not as theoretically attractive as the
ECR, the average rate λ AVG

LS is simple to define and understand,
while under stricter assumptions it is amenable to more accu-
rate analytical solutions. The seeds of the idea of an average
rate appear for example in the work of Torres and Ruiz [9] who
used an EDP-formulation to define the expected number of fail-
ures within a given time period, e.g., [0,Td ]. If we divide such a
result by Td , we can obtain the average rate λ AVG

LS , a much more
intuitive and usable parameter. More formally, we can define
this average rate as

λ AVG
LS =

1
Td

Td∫
0

λLS(τ)dτ . (24)

It becomes obvious from the above expression that we can
derive λ AVG

LS as the limit of λ ECR
LS for no discounting, i.e., for

α → 0. Thus, the absence of discounting assures that λ AVG
LS is

always greater than λ ECR
LS for a given building and time period.

To derive an analytical solution, we can use the same set of
assumptions as for λ ECR

LS to integrate Eq. (24) or simply take
the limit of Eq. (22) for α → 0. Both lead to the same result:

λ AVG
LS = λ 0

LS
eϕ ′Td −1

ϕ ′Td
. (25)

It suffices to say that in practice, one does not really need
the above formula, as applying a very small α , say 0.1%, in

Eq. (22) will still yield the same numerical result; it is quite
robust.

Finally, it is worthwhile to mention the limited case of λ AVG
LS

when we assume linear degradation of Ŝa,c (i.e., δ = 1) and
constant βRUSa (i.e., cβ = 0). Then, we can integrate Eq. (24)
without the need for the approximation in Eq. (21) to obtain the
“exact” result

λ AVG
LS = λ 0

LS
Ŝ 0

a,c

γTd(k−1)

(1− γTd

Ŝ 0
a,c

)1−k

−1

 . (26)

Representative figures of the results from Eqs (22) and (25)
appear in Fig. 2, showing that the error in the closed-form ap-
proximations highly depends upon the rate and magnitude of
Ŝa,c degradation with τ . Although this is not realistic for most
practical ageing problems, if Ŝa,c-degradation accelerates or de-
celerates too fast (i.e., δ ≫ 1 or δ ≪ 1) or it increases too much
(i.e., low Ŝa,c(Td)/Ŝ 0

a,c), then the error increases to levels higher
than the maximum 25% shown in Fig. 2(d).

4.3. Extension to include time of initiation
Several ageing processes may be considered as acting im-

mediately on the structure, i.e., starting (or continuing) from
the time designated as τ = 0 and progressing for the entire Td
life. Such cases are, for example, fatigue or the corrosion of
exposed steel. On the other hand, there is at least one signif-
icant case where weathering may not start immediately from
the initial state of the structure (designated as time zero) but
may take a number of years Ti to initiate. This is the typical
case of new reinforced concrete structures where there is a cer-
tain time needed for carbonation or for the chloride ions to pass
through the concrete matrix before reaching the reinforcement
and starting off its corrosion [e.g., 30]. This Ti depends on var-
ious factors, notable among them being the present state of the
structure, the environment and the quality and thickness of the
concrete cover.

In such cases, we can easily adapt the proposed expressions
to account for Ti, simply by transforming all functions depen-
dent on τ to use variable τ ′ = τ−Ti and letting them be applica-
ble only for τ ′ ∈ [0,Td −Ti], while remaining constant and equal
to their τ ′ = 0 value for any τ ′ ≤ 0. By separately performing
the integration of Eq. (2) in the [0,Ti] and [Ti,Td ] intervals:

λ ECR
LS =

λ 0
LS

1− e−αTd

{
1− e−αTi +

αe−αTi

α −ϕ ′

[
1− e−(α−ϕ ′)Tdi

]}
(27)

with

ϕ ′ =− k
ρTdi

ln

[
1− γ(ρTdi)

δ

Ŝ 0
a,c

]
+

k2cβ

2
, (28)

Tdi =Td −Ti . (29)

Similarly, for the average rate, we can use the same technique
to integrate Eq. (24). If for τ > Ti the value of Ŝa,c degrades in
a power-law form and β 2

RUSa varies linearly, then

λ AVG
LS = λ 0

LS

(
Ti

Td
+

eϕ ′Tdi −1
ϕ ′Td

)
, (30)
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Figure 2: The exact λ ECR
LS and λ AVG

LS versus their closed-form approximations for ρ = 0.9, α = 4% and various values of δ . The error varies from just 1% up to 25%
for values of δ further from 1 and large Ŝa,c degradation.

while in the case of linear Ŝa,c degradation and constant βRUSa
we get the analytically “exact” expression:

λ AVG
LS = λ 0

LS

Ti

Td
+

Ŝ 0
a,c

γTd(k−1)

(1− γTdi

Ŝ 0
a,c

)1−k

−1

 . (31)

5. EDP-based formulation

As discussed in previous sections, λLS can also be defined
on the basis of an EDP-formulation. Therefore, using a closed-
form solution of λLS in EDP-terms, we can develop a λ ECR

LS and
λ AVG

LS approximation on the same basis. Actually, Cornell et al.
[19] and Jalayer [18] have developed exactly such a solution,
where the mean annual frequency of exceeding a limit-state LS
can be approximated via an analytical formula if we use some
well-known approximations.

First of all we need the approximation of the hazard by a
power-law, as expressed by Eq. (11). In addition, we need a
power-law approximation of the relationship between the inten-
sity Sa and the median response θ̂ . This is typically obtained by
a linear regression in log-log coordinates and, in the framework
of IDA, it can be thought of as an approximation of the median
IDA curve:

θ̂ ≈ aSa
b. (32)

A complete description of the several possible ways one can
practically estimate the parameters a and b for the above equa-
tion can be found in Jalayer and Cornell [31]. For our purposes,
it suffices to say that in general b is approximately one for most
cases and a can be estimated by a few nonlinear dynamic anal-
yses. Alternatively, they can both be easily estimated through
IDA [14]. Still, the approximation needs to be used with care
when fitting close to the global-instability region, as discussed
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for example in [18]. In general, the conditioning on no-collapse
that is needed to make it work will preclude the derivation of a
closed-form solution. Otherwise, as shown in [19], λLS is found
to be:

λLS = H

( θ̂c

a

) 1
b
exp

(
k2

2b2 (βRθ
2 +βUθ

2)

)
(33)

where θ̂c is the median EDP-capacity and βRθ , βUθ represent
the associated record-to-record randomness and epistemic un-
certainty dispersions, respectively, for EDP demand and capac-
ity combined. Using this fundamental result, we can derive the
λ AVG

LS and λ ECR
LS using similar steps as in the IM-formulation for

any limit-state that lies away from the near-collapse region.

5.1. EDP-based equivalent constant rate
Following our previous derivation, λ ECR

LS is defined accord-
ing to Eq. (2). To make it amenable to analytical treatment, we
need to make similar approximations like for the IM-based case.
Again, most important is the degradation-law for the θ̂c capac-
ity of the structure over time τ . We will assume one more time
a power-law form

θ̂c(τ) = θ̂ 0
c − γτδ = θ̂ 0

c

(
1− γτδ

θ̂ 0
c

)
(34)

where θ̂ 0
c is the median θ capacity at time τ = 0. Regarding the

dispersions βRθ (τ) and βUθ (τ), we may either assume that they
are constant [e.g., 9], or take them to linearly change with time
τ . Again, both of these assumptions make no difference for the
analytical integrability of Eq. (2), thus we will use the second
option:

βRUθ
2(τ) = βRθ

2(τ)+βUθ
2(τ) = β 0

RUθ
2
+ cβ τ (35)

where
β 0

RUθ =

√
β 0

Rθ
2
+β 0

Uθ
2 (36)

is the combined aleatory and epistemic uncertainty dispersion
in the EDP demand and capacity at time τ = 0.

Following the same steps that we used before, we arrive at
the exact same result of Eqs (22),(27) for zero or non-zero Ti
respectively. Only the constants change to become

λ 0
LS =H

( θ̂c

a

) 1
b
exp

(
k2

2b2 β 0
RUθ

2
)

(37)

ϕ =− k
bρTd

ln

[
1− γ(ρTd)

δ

θ̂ 0
c

]
(38)

ϕ ′ =ϕ +
k2cβ

2b2 (39)

where Tdi should replace Td in Eq. (38) for non-zero weathering
initiation time Ti.

Each one of our observations from the IM-based formula also
applies here. As long as we avoid the near collapse region and
respect the limits of our approximations, both the IM and the
EDP formulations should yield equivalent λ ECR

LS results.

  4.0m
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  2.7m

  2.7m

  2.7m

  2.7m
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  6.1m   6.1m   6.1m

Figure 3: The 7-story Van Nuys reinforced concrete frame studied.

Table 1: The capacity characteristics for the example structure over 50yrs, as
determined by IDA for τ = 0 and random generation for τ > 0.

τ(yrs) Ŝa,c (g) βRSa βUSa βRUSa

0 1.074 0.33 0.40 0.52
10 1.040 0.31 0.42 0.53
20 0.988 0.30 0.46 0.55
30 0.914 0.29 0.47 0.56
40 0.847 0.30 0.51 0.59
50 0.795 0.28 0.53 0.60

5.2. EDP-based average rate

Similarly to the previous sections, we can derive λ AVG
LS as the

limit of λ ECR
LS for no discounting, i.e., as the limit of Eq. (22) for

α → 0. Alternatively, we can directly integrate Eq. (24). In both
cases we find the same result as Eqs (25),(30) using of course
the constants defined above for the EDP-based formulation.

A more accurate analytical result may be derived in the
limited case where we assume linear degradation of θ̂c (i.e.,
δ = 1) and constant βRUθ (i.e., cβ = 0). Then, we can inte-
grate Eq. (24) directly, without the exponential approximation,
to obtain:

λ AVG
LS = λ 0

LS
θ̂ 0

c

γTd
( k

b −1
) [(1− γTd

θ̂ 0
c

)1− k
b
−1

]
, (40)

where λ 0
LS should be taken from Eq. (37). The case of non-zero

Ti can be treated in the same way resulting to

λ AVG
LS = λ 0

LS

{
Ti

Td
+

θ̂ 0
c

γTd
( k

b −1
) [(1− γTdi

θ̂ 0
c

)1− k
b
−1

]}
. (41)

As discussed previously, these equations are similar to the one
derived by Torres and Ruiz [9] for the average number of fail-
ures in a given period Td . To estimate such a number, we only
need to multiply λ AVG

LS by Td .
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Figure 4: Approximating the hazard curve at T = 0.8s by a straight line in
log-log coordinates.
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6. Examples of application

To show an example of applying the proposed equations on
an existing building, we used the transverse frame of the Holi-
day Inn Hotel in Van Nuys, CA [18]. It is a 7-story hotel located
in California’s San Fernando Valley, northwest of downtown
Los Angeles. The hotel was designed in 1965 according to the
1964 Los Angeles City Building Code, and built in 1966. In
plan, the building is rectangular, 19.2m by 45.7m, 3 bays by 8
bays, 7 stories tall (Fig. 3). The structural system is a reinforced
concrete moment-frame with flat-plate slabs, but the reinforcing
steel lacks ductile detailing.

We have estimated its response and capacity statistics at time
zero using IDA [16]. We choose to focus on the Global Insta-
bility limit-state, a choice that necessitates the use of the IM-
based formulation as discussed earlier. By postprocessing the
IDA results [32] we came up with an initial median Sa-capacity

of Ŝ 0
a,c = 1.07g and an associated record-to-record dispersion

βRSa = 0.33. In order to calculate the variability in Ŝ 0
a,c due to

epistemic uncertainties, at least in the model parameters, one
can use, for example, the methods in Liel et al. [25], Vamvatsi-
kos and Fragiadakis [26], Dolsek [27]. In our case it was simply
assumed that βUSa = 0.40 at time zero.

We should normally repeat the above calculations to deter-
mine Ŝa,c, βRSa and βUSa for the corroded state of this struc-
ture at several ages of this building within the design life pe-
riod of Td = 50yrs, for example at times τ =10,20,30,40 and 50
yrs. This entails determining the changes in the structure due to
weathering, appropriately modifying the model to account for
them and performing IDA to estimate the distribution of limit-
state capacity. A comprehensive case-study that actually imple-
ments these steps can be found in Celarec et al. [29]. In our case
and in order to simplify our example, we decided to simulate the
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degraded state of the building by adopting some deterministic
degradation rules for all needed quantities with time τ and then
randomizing by adding some white noise. Thus, we assumed
that due to reinforcement corrosion the Ŝa,c capacity degrades
with time, βRSa slightly decreases due to the lower record-to-
record variability at lower Sa-values while βUSa increases due
to extra epistemic uncertainty, e.g., due to the corrosion process
itself. All such degradation processes start immediately from
τ = 0 since at this time the structure is already several decades
old, thus it is reasonable to assume that Ti = 0. The final results
appear in Table 1.

Having gathered all the data, we need to follow five discrete
steps to determine λ ECR

LS and λ AVG
LS , the first two of which are

actually the same ones we would use to determine the λLS of
any structure according to the SAC/FEMA guidelines [2]:

a) Fit the hazard curve with a power-law to obtain k [Eq. (11)].
b) Estimate λ 0

LS [Eq. (18)].
c) Fit Ŝa,c vs. τ with a power-law to get γ , δ [Eq. (14)].
d) Fit βRUSa vs. τ with a straight line to get cβ [Eq. (15)].
e) Estimate λ ECR

LS and λ AVG
LS [Eqs (22), (25)].

Fitting the hazard curve is probably the most critical step. We
need to make sure that the line is fitted in such a way as to be ap-
propriate for all the degraded states of the structure, i.e., for low
enough values of Ŝa,c. Since the structural Sa-capacity degrades
by 20% at the end of Td = 50yrs, we chose to fit in the region
[0.8 ∗ 0.25Ŝ 0

a,c,1.20Ŝ 0
a,c]. The resulting line appears in Fig. 4

with a slope of k = 2.58. We used the results to estimate λ 0
LS at

the initial, non-weathered state of the structure. This came out
as λ 0

LS = 0.0064 via the closed-form solution of Eq. (12), a very
accurate result as verified by a numerical integration of Eq. (9)
that results to just 0.0063.

The fitting of the Ŝa,c values with time is also simple and it is
shown in Fig. 5. Care needs to be exercised, though, when us-
ing the power-law form: Fitting a straight line in log-log coordi-
nates via linear regression may not be robust to small changes
in Ŝa,c for early τ-values. Due to the log-log transformation,
the higher changes in Ŝa,c that appear later get severely down-
played, sometimes leading to an overall mediocre fit. Thus, it is
often better to fit directly in the power-law form via nonlinear
regression. This is what we did to find γ = 0.0024 and δ = 1.23.
In such cases though, especially if δ is close to 1, it is simpler
and almost as accurate to just fit a straight line in linear coor-
dinates and avoid nonlinear regression. Fig. 5 presents both of
the above choices.

Next, we need to fit the epistemic uncertainty βRUSa(τ). We
can either use the average βRUSa and ignore the changes with
time, or perform a linear fit. The results are shown in Fig. 6,
where the slope for the second option was determined to be
cβ = 0.0019.

Finally, we have everything we need to apply Eq. (22). For
α = 3% discounting and over the period of Td = 50yrs, we
found λ ECR

LS = 0.0100. Direct numerical integration of Eq. (2)
results to 0.0087, confirming the above result. If the aver-
age rate is sought, it can be calculated via Eq. (25) to find
λ AVG

LS = 0.0115, higher than λ ECR
LS as expected. Alternatively,

if we assume a constant βRUSa and a linear degradation of Ŝa,c,
we can apply Eq. (26) to find λ AVG

LS = 0.0093. Both of these
values are quite accurate as numerical integration results to
0.0097. In all cases, the error is in the order of 15%. In gen-
eral, though, our experience from a range of tests with the same
structure shows that the error may reach up to 20% or 25%,
especially when the hazard curve fit lies in its steeper, more
rapidly-changing part and the changes in Ŝa,c are larger over Td .
This may be better understood by looking at Fig. 7 where we
show the estimates of λLS found via numerical integration ver-
sus the approximations calculated analytically via Eq. (12). The
closed-form approximation remains accurate enough when we
are allowed to fit the hazard curve locally. Still, as Ŝa,c moves
away from Ŝ 0

a,c with time, the constant k-slope assumption that
we have made for all τ will start to hurt us and drive the λLS
estimate away from its true value. Although we never directly
estimate λLS(τ) for any time other than τ = 0, its estimation
via a constant k is actually incorporated into our analytical so-
lutions. Nevertheless, in practice we do not expect dramatic
changes with ageing, therefore, within such rational limits, the
proposed formulas can be considered reasonably accurate for
practical use.

In conclusion, as promised from the start, we can now un-
derstand the effect of corrosion on the seismic safety of the
structure over its design life. If we ignore it for this exam-
ple, we will determine a mean annual frequency of collapse
of λ 0

LS = 0.0063, or once every 160 years on average. On the
other hand, if we take ageing into account, then, for a soci-
etal discounting of 3%, we will get an equivalent mean annual
frequency of λ ECR

LS = 0.0087, or once every 115 years. The al-
most 20% decrease in Ŝa,c resulted in a roughly 40% increase in
the frequency of limit-state violations. Although such numbers
come from a, largely, virtual example and should not be taken
at face value, they hint at the potential effects of ageing and
showcase our simple and practical way to factor them into the
performance-based analysis and design of structures, at least in
cases where inspection and maintenance schemes are not con-
sidered.

7. Conclusions

We have presented closed-form expressions for the estima-
tion of the equivalent constant rate of limit-state exceedance
for ageing structures with degrading, time-dependent capacity.
Based on the idea of societal investment discounting and social
equity, the equivalent constant rate is a time-invariant measure
that allows direct comparison with code-mandated values typ-
ical of seismic guidelines. Alternatively, another possible but
less theoretically-attractive candidate is the average rate which
represents the limiting case of no discounting.

For each case, two equivalent formulations are possible. The
first is based on the engineering demand parameter, i.e., the re-
sponse, and while more intuitive it is only useful for limit-states
away from global instability. The second is directly based on
the intensity measure and is both simpler and more robust to
use, being applicable to the full range of structural behavior.
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Using as a basis the SAC/FEMA approximation of the mean
annual frequency of limit-state exceedance, simple analytical
formulas can be derived using only a few assumptions. Most
importantly, as long as the structural capacity does not degrade
excessively and the rate of degradation does not change too rap-
idly with time, the closed-form solutions remain accurate for all
practical purposes. Using an ageing 7-story reinforced concrete
frame as an example, we present a comprehensive and simple
to follow example showing the practicality of our approach.
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