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We are presenting a practical and detailed example of how to perform incremen-
tal dynamic analysis (IDA), interpret the results and apply them to performance-
based earthquake engineering. IDA is an emerging analysis method that offers
thorough seismic demand and capacity prediction capability by using a series of
nonlinear dynamic analyses under a multiply scaled suite of ground motion records.
Realization of its opportunities requires several steps and the use of innovative tech-
niques at each one of them. Using a nine-story steel moment-resisting frame with
fracturing connections as a testbed, the reader is guided through each step of IDA:
(1) choosing suitable ground motion intensity measures and representative damage
measures, (2) using appropriate algorithms to select the record scaling, (3) em-
ploying proper interpolation and (4) summarization techniques for multiple records
to estimate the probability distribution of the structural demand given the seismic
intensity, and (5) defining limit-states, such as the dynamic global system instabil-
ity, to calculate the corresponding capacities. Finally, (6) the results can be used
to gain intuition for the structural behavior, highlighting the connection between
the static pushover (SPO) and the dynamic response, or (7) they can be integrated
with conventional probabilistic seismic hazard analysis (PSHA) to estimate mean
annual frequencies of limit-state exceedance. Building upon this detailed example
based on the nine-story structure, a complete commentary is provided, discussing
the choices that are available to the user, and showing their implications for each
step of the IDA.

INTRODUCTION

An important issue in performance-based earthquake engineering (PBEE) is the estimation
of structural performance under seismic loads, in particular the estimation of the mean annual
frequency (MAF) of exceeding a specified level of structural demand (e.g., the maximum, over
all stories, peak interstory drift ratioθmax) or a certain limit-state capacity (e.g., global dynamic
instability). A promising method that has recently risen to meet these needs is incremental dy-
namic analysis (IDA), which involves performing nonlinear dynamic analyses of the structural
model under a suite of ground motion records, each scaled to several intensity levels designed
to force the structure all the way from elasticity to final global dynamic instability (Vamvatsikos
and Cornell2002a).

Applying IDA to determine the performance of a structure requires several steps. First, a
proper nonlinear structural model needs to be formed, and a suite of records must be compiled.
Then, for each record, the scaling levels must be selected, the dynamic analyses run and the re-
sults postprocessed. Thus, we can generate IDA curves of the structural response, as measured
by a damage measure (DM , e.g., peak roof drift ratioθroof or θmax), versus the ground motion
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Table 1. The set of twenty ground motion records used

No Event Station φ ◦ 1 Soil2 M3 R4 (km) PGA (g)

1 Loma Prieta, 1989 Agnews State Hospital 090 C,D 6.9 28.2 0.159
2 Imperial Valley, 1979 Plaster City 135 C,D 6.5 31.7 0.057
3 Loma Prieta, 1989 Hollister Diff. Array 255 –,D 6.9 25.8 0.279
4 Loma Prieta, 1989 Anderson Dam Downstream 270 B,D 6.9 21.4 0.244
5 Loma Prieta, 1989 Coyote Lake Dam Downstream 285 B,D 6.9 22.3 0.179
6 Imperial Valley, 1979 Cucapah 085 C,D 6.5 23.6 0.309
7 Loma Prieta, 1989 Sunnyvale Colton Ave 270 C,D 6.9 28.8 0.207
8 Imperial Valley, 1979 El Centro Array #13 140 C,D 6.5 21.9 0.117
9 Imperial Valley, 1979 Westmoreland Fire Station 090 C,D 6.5 15.1 0.074
10 Loma Prieta, 1989 Hollister South & Pine 000 –,D 6.9 28.8 0.371
11 Loma Prieta, 1989 Sunnyvale Colton Ave 360 C,D 6.9 28.8 0.209
12 Superstition Hills, 1987 Wildlife Liquefaction Array 090 C,D 6.7 24.4 0.180
13 Imperial Valley, 1979 Chihuahua 282 C,D 6.5 28.7 0.254
14 Imperial Valley, 1979 El Centro Array #13 230 C,D 6.5 21.9 0.139
15 Imperial Valley, 1979 Westmoreland Fire Station 180 C,D 6.5 15.1 0.110
16 Loma Prieta, 1989 WAHO 000 -,D 6.9 16.9 0.370
17 Superstition Hills, 1987 Wildlife Liquefaction Array 360 C,D 6.7 24.4 0.200
18 Imperial Valley, 1979 Plaster City 045 C,D 6.5 31.7 0.042
19 Loma Prieta, 1989 Hollister Diff. Array 165 –,D 6.9 25.8 0.269
20 Loma Prieta, 1989 WAHO 090 –,D 6.9 16.9 0.638

1 Component
2 USGS, Geomatrix soil class
3 Moment magnitude
4 Closest distance to fault rupture

intensity level, measured by an intensity measure (IM , e.g., peak ground acceleration, PGA, or
the 5%-damped first-mode spectral accelerationSa(T1,5%)). In turn these are interpolated for
each record and summarized over all records to estimate the distribution of demandDM given
intensityIM . Subsequently, limit-states (e.g., immediate occupancy or collapse prevention in
SAC2000a,b) can be defined on each IDA curve and summarized to produce the probability of
exceeding a specified limit-state given theIM level. The final results are in a suitable format to
be conveniently integrated with a conventional PSHA hazard curve in order to calculate MAFs
of exceeding a certain limit-state capacity, or a certain demand.

Building upon this foundation, we will discuss several topics of practical interest, showing
in detail the reasons behind the choices made in our example and the advantages or disadvan-
tages of each. In particular, subjects like the number of runs, the algorithms used for scaling-
level selection, and possible approximations used for the probabilistic calculations are going to
be presented showing their impact upon the accuracy of PBEE calculations.

MODEL AND GROUND MOTION RECORDS

To illustrate our methodology, we will use a centerline model of a nine-story steel moment-
resisting frame designed for Los Angeles according to the 1997 NEHRP provisions (Lee and
Foutch2002). The model has a first-mode period ofT1 = 2.37 sec and it incorporates ductile
members, shear panels and realistically fracturing reduced beam section connections, while it
includes the influence of interior gravity columns and a first-order treatment of global geometric
nonlinearities (P-∆ effects).

In addition we need a suite of ground motion records. Previous studies (Shome and Cornell
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1999) have shown that for mid-rise buildings, ten to twenty records are usually enough to
provide sufficient accuracy in the estimation of seismic demands, assuming a relatively efficient
IM , like Sa(T1,5%), is used. Consequently, we have selected a set of twenty ground motion
records, listed in Table1, that belong to a bin of relatively large magnitudes of 6.5 – 6.9 and
moderate distances, all recorded on firm soil and bearing no marks of directivity; effectively
they represent a scenario earthquake.

PERFORMING THE ANALYSIS

Once the model has been formed and the ground motion records have been selected, we
need a fast and automated way to perform the actual dynamic analyses required for IDA. This
entails appropriately scaling each record to cover the entire range of structural response, from
elasticity, to yielding, and finally global dynamic instability. Our task is made significantly
easier by using an advanced algorithm, likehunt & fill (Vamvatsikos and Cornell2002a). This
ensures that the record scaling levels are appropriately selected to minimize the number of
required runs: Analyses are performed at rapidly increasing levels ofIM until numerical non-
convergence is encountered (signaling global dynamic instability), while additional analyses
are run at intermediateIM -levels to sufficiently bracket the global collapse and increase the
accuracy at lowerIM s. The user only needs to specify the desired accuracy for demand and
capacity, select the maximum tolerable number of dynamic analyses, and then wait for a few
hours to get the results. Since the algorithm has been implemented in software (Vamvatsikos
and Cornell2002b) able to wrap around most existing analysis programs (e.g., DRAIN-2DX,
Prakhash et al.1992) it renders IDA almost effortless, needing no human supervision.

As an example, we will show in detail the computations resulting to theIM -levels selected
by hunt & fill when tracing record #14 from Table1. To express the scaling level we need an
initial, temporary choice ofIM , and we have chosenSa(T1,5%), a decision that need not restrict
us in any way: scaling can be re-expressed in any other scalableIM (Vamvatsikos and Cornell
2002a) that we wish after the runs are performed. Hence, inSa(T1,5%) terms, the algorithm
was configured to use an initial step of 0.1 g, a step increment of 0.05 g and a designated first
elastic run at 0.005 g, while a maximum of 12 runs was allowed for each record. Additionally,
we specified a resolution of 10% on the global collapse capacity, i.e., we expect the model to
develop numerical nonconvergence and show practically infiniteθmax at some high intensity
level, and we wish this level to be known within 10% of itsIM -value. Finally, we allowed
the demand resolution, i.e., the maximum difference between successiveIM -values, to run to
its best attainable value by expending all the 12 runs. Alternatively, we could have designated
some minimum satisfactoryIM -gap below which we do not wish to proceed, thus saving some
runs.

Using the above settings we get the sequence of runs shown in Table2. The first run is
meant to be in the elastic region. In the subsequent five runs, 2–6, we are hunting upwards till
the first numerical nonconvergence appears in the form of “infinite”θmax. Then, the dynamic
analysis algorithm does not converge thus either failing to complete the dynamic run (as hap-
pened for this record) or producing extreme values ofθmax, say 200%. The next two runs, 7–8,
are used to better bracket the first appearance of nonconvergence, closing within 10% of its
IM -value ((0.872−0.805)/0.805= 8.32%< 10%) so that the gap between highest converg-
ing and lowest nonconverging run is less that 10% of the former. Notice that instead of placing
each new run in the middle of the gap, the algorithm places it closer to the converging run, only
one third of the way to the nonconverging one. This ensures that the search will be somewhat
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Table 2. Sequence of runs generated by the hunt & fill tracing algorithm for record #14

No. calculations Sa(T1,5%) (g) θmax

1 0.005 0.05%

2 0.005+0.10 0.105 0.79%
3 0.105+0.10+1×0.05 0.255 2.02%
4 0.255+0.10+2×0.05 0.455 3.01%
5 0.455+0.10+3×0.05 0.705 5.85%
6 0.705+0.10+4×0.05 1.005 +∞
7 0.705+(1.005−0.705)/3 0.805 18.83%
8 0.805+(1.005−0.805)/3 0.872 +∞
9 (0.805+0.705)/2 0.755 9.18%
10 (0.705+0.455)/2 0.580 3.27%
11 (0.455+0.255)/2 0.355 2.96%
12 (0.255+0.105)/2 0.180 1.34%

biased towards converging runs, which are more informative than nonconverging ones (which
are essentially discarded). The rest of the runs, up to the maximum of 12, are used to fill in
the IDA at lower levels, being sequentially placed in the middle of the largestIM -gaps. Thus,
the large gaps left by the initial increasing steps to the flatline (runs 2–6), are filled in; this
step increases the demand resolution and, given enough runs, it ensures that the algorithm has
not missed an earlier collapse. Although it is a rare phenomenon in multi-degree-of-freedom
structural models, certain records may cause them to collapse for a range ofIM -values, but not
for some higherIM , an event we callstructural resurrection(Vamvatsikos and Cornell2002a).
By reducing theIM -gaps with runs 9–12, we are making sure that we have not missed such an
earlier (inIM terms) global collapse and the flatline we have found is the first one to occur.

Notice that the maximumIM -gap, i.e., the demand resolution, is about 0.13 g (but less
than half on average), while theIM -difference between the highest converging and lowest
nonconverging run (the capacity resolution) is much less than 10% of the highest converging
IM , about 0.06 g. Naturally, if we knew a priori the approximateIM -height of the flatline,
we could use a stepping algorithm with 12 runs and constant step of 0.1 g to achieve similar
results with a homogeneous distribution of the accuracy, but this scheme would fail with the
next records, producing either too few or too many runs, due to the large record-to-record
variability.

Assuming that the computational cost for each run is the same, then, the more the analyses
per record, the longer for IDA to complete but the better the accuracy. Still, with the use of
such an advanced algorithm no runs are wasted, thus 12 runs per record will suffice to strike
a good compromise between speed and accuracy. Nevertheless, it may be pointed out that
performing 240 dynamic runs for a model with thousands of degrees-of-freedom is a daunting
task. Yet, even for such a complicated model, it took less than 12 hours on two 1999-era
Pentium-class processors running independently. The process is completely automated and so
easily performed overnight that actually setting up the structural model can now be expected to
take substantially more (human) time than doing the analysis, while computer time is becoming
an ever-cheaper commodity.
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POSTPROCESSING

Equally important to the analysis is the postprocessing of the resulting data and perhaps
the most important issue is selecting a suitableIM and DM . There are several issues of
efficiency and sufficiency associated with theIM selection (Luco 2002). Since there are
no directivity-influenced records in our suite and the building is of medium height (hence
first-mode-dominated), the 5%-damped first-mode spectral accelerationSa(T1,5%) will be our
choice; it has been proven to be both efficient, by minimizing the scatter in the results, requiring
only a few ground motion records to provide good demand and capacity estimates, and suffi-
cient, as it provides a complete characterization of the response without the need for magnitude
or source-to-site distance information (Shome and Cornell1999). Similarly, selecting aDM
can be application-specific; for example, the peak floor accelerations are correlated with con-
tents’ damage and many types of non-structural elements’ damage, while the maximum peak
interstory drift ratioθmax (the maximum over time and over all stories of the interstory drift
ratios recorded during the timehistory analysis) is known to relate well (SAC 2000a) to global
dynamic instability and several structural performance limit-states upon which we intend to
focus. Therefore,θmax will be our DM -choice. Still, it must be emphasized that theseIM and
DM choices are by no means limiting. Assuming that additionalDM s have been recorded
from the analyses, they can be substituted instead ofθmax, and by employing the postprocess-
ing techniques presented, the IDA data can be expressed in a different scalableIM , without any
need to rerun the dynamic analyses.

Having selected ourIM andDM , we are still faced with an abundance of IDA-generated
data that need to be sorted out and presented in meaningful ways. It is a time-consuming
and challenging task that we are going to step our way through, but it can be rendered totally
effortless with the proper software. Actually, most of what follows is a direct description of
the inner workings of an automated postprocessing program (Vamvatsikos and Cornell2002b),
whose graphical output appears in the accompanying figures.

GENERATING THE IDA CURVES BY INTERPOLATION

Once the desiredIM andDM values (in our caseSa(T1,5%) andθmax) are extracted from
each of the dynamic analyses, we are left with a set of discrete points for each record that reside
in theIM -DM plane and lie on its IDA curve, as in Figure1. By interpolating them, the entire
IDA curve can be approximated without performing additional analyses. To do so, we may
use a basic piecewise linear approximation, or the superior spline interpolation. Based on the
concept of natural, coordinate-transformed, parametric splines with a centripetal scheme for
knot-selection (Lee1989, Farin1990), a realistic interpolation can be generated that accurately
represents the real IDA curve, as shown in Figure1 for our example of record #14 in Table2.
Having the complete curve available, it is now possible to calculateDM values at arbitrary
levels ofIM , allowing the extraction of more(IM ,DM ) points with a minimum of computation.

The spline comes inn cubic polynomial pieces and is parameterized on a single non-
negative parameter,t ∈ [0, t1]

⋃
. . .

⋃
[tn−1, tn] , wheren is the number of convergent runs/points

including the default (0,0) point, i.e.,n = 10+1 = 11 for record #14, Table2. For each value
of the parametert, and depending on the interval[ti−1, ti ] where it lies, we get two polynomials,
one for theIM (thex-variable) and one for theDM (they-variable):

{
xi(t) = axi t

3 +bxi t
2 +cxi t +dxi

yi(t) = ayi t
3 +byi t

2 +cyi t +dyi
t ∈ [ti−1, ti ] , i = 1, . . . ,n (1)
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Figure 1. The numerically-converging dynamic analysis points for record #14, Table2, are interpolated,
using both a spline and a piecewise linear approximation.
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Figure 2. The limit-states, as defined on the IDA curve of record #14.

6



With the help of Equation1 we can approximate theDM -value at arbitrary levels ofIM
and vice versa. All we need is to solve the appropriatexi(t) polynomial piece given the value of
x to get the parametert and then replace at the correspondingyi(t) piece to get the appropriate
y-value (DM ), i.e.,

DM = y
(
x−1(IM )

)
, (2)

IM = x
(
y−1(DM )

)
, (3)

where the -1 superscript denotes the inverse of a function. All these operations only involve
polynomials, hence they are trivial to perform, especially if properly coded in a program.

The smooth IDA curve provided by the interpolation scheme offers much to observe. Even
for the single record depicted in Figure1 the IDA curve is not at all simple. It starts as a
straight line in the elastic range but then shows the effect of yielding and slightly “softens” at
0.3 g by displaying a tangent slope less than the elastic. Subsequently, it “hardens,” having a
local slope higher that the elastic, and the building apparently responds with almost the same
θmax≈ 3%for Sa(T1,5%) in the range of 0.35 g – 0.55 g. Finally, the IDA curve starts softening
again, showing ever decreasing slopes, i.e., greater rates ofDM accumulation asIM increases,
reaching the “flatline” atSa(T1,5%) ≈ 0.81 g, where the structure responds with practically
“infinite” θmax values and numerical nonconvergence has been encountered during the analysis.
That is when the building has reached global dynamic instability, when a small increment in
theIM -level results in unlimited increase of theDM -response.

Observing Figure1, it becomes apparent that the relation ofIM (or x) andt in Equation1
should always be monotonically increasing. The formulation presented does not strictly enforce
this property, but a properly fitted spline will always observe this restriction. Consequently,
Equation2 will always return only oneDM for a givenIM . On the other hand, the relation
of DM and t is often nonmonotonic, due to the occasional hardening of IDA curves, hence
Equation3 may generate more than oneIM solutions that produce a givenDM .

DEFINING LIMIT-STATES ON AN IDA CURVE

In order to be able to do the performance calculations needed for PBEE, we need to define
limit-states on the IDA curves. For our case study, we chose to demonstrate three: immediate
occupancy (IO), collapse prevention (CP), both defined inSAC(2000a,b), and global dynamic
instability (GI). For a steel moment-resisting frame with reduced beam section connections, IO
is violated atθmax = 2% according toSAC (2000a). On the other hand, CP is not exceeded
on the IDA curve until the final point where the local tangent reaches 20% of the elastic slope
(Figure2) or θmax = 10%, whichever occurs first inIM terms (SAC 2000a). The main idea is
to place the CP limit-state at a point where the IDA curve is softening towards the flatline but at
low enough values ofθmax so that we still trust the structural model. Finally, GI happens when
the flatline is reached and any increase in theIM results in practically infiniteDM response.

Calculating theIM -value of the flatline capacity is trivial, as our best estimate is actu-
ally somewhere between the highest numerically-converging run and the lowest nonconverging
one, as produced by the hunt & fill algorithm. We choose to use theIM -value of the highest
numerically-converging run as the estimate, e.g.,Sa(T1,5%) = 0.81g for record #14. We could
have used, for example, the average of the highest converging and lowest nonconverging run,
(0.81+ 0.87)/2 = 0.84 g, but the difference is negligible and gets smaller and smaller as we
increase our capacity resolution in the hunt & fill tracing algorithm.
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It is equally easy to calculate theIM -values for the IO limit-state; all we need to do is use
Equation3 for DM ≡ θmax = 2%, calculate all theIM -values that produceθmax = 2% and, if
more than one, select the lowest. This is the one that signals the very first exceedance of the
limit-state for the given record. For our example of record #14 in Figure2, IO is violated for
Sa(T1,5%)≥ 0.26g or θmax≥ 2%.

On the other hand, the CP points are harder to generate, as we need the tangent slope (i.e.,
the first-order derivative) of the IDA curve to find points where the local stiffness is 20% of the
elastic. We also need the curvature of the IDA curve, to discard candidate points that lie on a
hardening part of the curve, rather than the desired softening. The cubic spline interpolation is
by definition twice differentiable everywhere, so if we use the prime to denote differentiation by
the interpolation-parametert and apply the chain-rule, we can generate the first two derivatives
of IM (or x) givenDM (or y):

dx
dy

=
x ′

y ′
(4)

d2x
dy2 =

x ′′y ′−y ′′x ′

(y ′)3 (5)

According to the CP limit-state concept, we need to find the highest (inIM -value) point
where the IDA slope is equal to 20% of the elastic while the point also belongs to a softening
branch. Additionally, another candidate point is atθmax = 10%; therefore whichever comes
first (in IM ), the slope or theθmax limit, decides capacity. Hence, we specify:

dx
dy

∣∣∣∣
t
= 0.20

dx
dy

∣∣∣∣
t=0

(6)

d2x
dy2

∣∣∣∣
t
< 0 (7)

t = y−1(10%), (8)

All we need to do is solve for allt satisfying Equation6 and select the maximum sucht
(corresponding to the maximumIM ) that still satisfies Equation7. Then, we compare against
the minimumt that satisfies Equation8. Whichever is the smallest is thet that defines the CP
point. Following this procedure with record #14 we get:Sa(T1,5%) = 0.72 g, θmax = 6.4%
from Equations6 and7, andSa(T1,5%) = 0.76 g, θmax = 10%from Equation8. By choosing
the smallestt, or equivalently the smallestIM , we end up with the first of the two points, i.e.,
in this case the slope limit defines CP (Figure2).

SUMMARIZING THE IDAS

By generating the IDA curve for each record and subsequently defining the limit-state ca-
pacities, a large amount of data can be gathered, only part of which is seen in Figure3. There,
the IDA curves display a wide range of behavior, showing large record-to-record variability,
thus making it essential to summarize such data and quantify the randomness introduced by the
records. We need to employ appropriate summarization techniques that will reduce this data
to the distribution ofDM givenIM and to the probability of exceeding any specific limit-state
given theIM level.

The limit-state capacities can be easily summarized into some central value (e.g., the mean
or the median) and a measure of dispersion (e.g., the standard deviation, or the difference
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between two fractiles). Consequently, we have chosen to calculate the 16%, 50%, and 84%
fractile values ofDM (DM c

16%, DM c
50%, andDM c

84%, respectively) andIM (IM c
16%, IM c

50%, and
IM c

84%, respectively) for each limit-state, as shown in Table3, and also graphically depicted in
Figure4. For example, reading off Table3, at Sa(T1,5%) = 0.83 g or equivalently atθmax =
0.10, 50% of the ground motion records have forced the nine-story structure to violate CP.

Table 3. Summarized capacities for each limit-state

Sa(T1,5%) (g) θmax

IM c
16% IM c

50% IM c
84% DM c

16% DM c
50% DM c

84%

IO 0.18 0.27 0.33 0.02 0.02 0.02
CP 0.57 0.83 1.29 0.07 0.10 0.10
GI 0.74 0.91 1.35 +∞ +∞ +∞

There are several methods to summarize the IDA curves, but the cross-sectional fractiles
are arguably the most flexible and robust with respect to the infiniteDM s introduced by the
flatlines (Vamvatsikos and Cornell2002a). Using the spline interpolation we can generate
stripes ofDM -values at arbitrary levels of theIM ; each stripe contains twentyDM -values,
one for each record, that may be finite or even infinite when a record has already reached its
flatline at a lowerIM -level. By summarizing theDM -values for each stripe into their 16%,
50%, and 84% percentiles, we get fractile values ofDM givenIM that are in turn interpolated
for each fractile to generate the 16%, 50%, and 84% fractile IDA curves, shown in Figure4.
For example, givenSa(T1,5%) = 0.4 g, 16% of the records produceθmax≤ 2.3%, 50% of the
recordsθmax≤ 2.5%, and 84%θmax≤ 6.5%. Under suitable assumptions of continuity and
monotonicity of the IDA curves (as shown at a later section), the fractiles can also be used in
the inverse way, e.g., in order to generate demandθmax = 4%, 84% of the records need to be
scaled at levelsSa(T1,5%) ≥ 0.31 g, 50% of the records atSa(T1,5%) ≥ 0.52 g, and 16% at
Sa(T1,5%)≥ 0.76g. Consequently, the 16%, 50%, and 84% IO points and GI flatlines actually
reside on the 84%, 50%, and 16% IDA curves respectively, a direct result of the definition of
these limit-states. On the other hand, no such general property exists for the CP points, but
experience has shown that they usually lie quite close and often on top of their corresponding
fractile IDAs, just like the other limit-state points.

PBEE CALCULATIONS

One of the goals of PBEE is producing mean annual frequencies (MAFs) of exceedance
for the limit-states. This can be easily accomplished with the summarized results that have
been calculated so far, especially if one considers the formats proposed by SAC/FEMA (SAC
2000a,b) or by the Pacific Earthquake Engineering Research Center (Cornell and Krawinkler
2000). The process invariably involves calculating the MAF of exceeding values of the chosen
IM , readily available forSa(T1,5%) from conventional PSHA, and appropriately integrating
with the conditional probabilities of exceeding each limit-state (given theIM or DM level) to
produce the desired MAFs of limit-state exceedance. It is a relatively straightforward method
that has been described in extent, for example, byCornell et al.(2002). However, the complete
process calls for the inclusion of the effects of epistemic uncertainties, e.g., due to the imperfect
model used (e.g., seeCornell et al.2002, Baker and Cornell2003). In the interests of simplicity
we will leave this step out, thus the final numerical results should be interpreted with this fact
in mind.
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Figure 5. Hazard curve for the Van Nuys Los Angeles site, forSa(2.37s,5%).

Here we will perform MAF calculations using a form of the framing equation adopted by
the Pacific Earthquake Engineering Research Center (Cornell and Krawinkler2000, Vamvatsi-
kos and Cornell2002a),

λ (DV ) =
∫∫

G(DV |DM ) |dG(DM |IM )| |dλ (IM )| (9)

To simplify the above equation and the ones to follow, we will loosely useλ (X), F(X), and
G(X) to denote the MAF function, cumulative distribution function (CDF), and the comple-
mentary CDF (CCDF), respectively, of their arguments. For example,λ (X) actually means
λX(x) and is a different function fromλ (Y)≡ λY(y).

In this paper we have generally usedSa(T1,5%) for theIM andθmax asDM for the limit-
states of interest. The decision variable,DV , here is simply a scalar “indicator variable”:
DV = 1 if the limit-state is exceeded (and zero otherwise).λ (IM )≡ λIM (x) is the conventional
hazard curve, i.e., the MAF ofIM exceeding, say,x. |dG(DM |IM )| is the differential of the
(conditional) CCDF ofDM givenIM , or fDM |IM (y|x)dy, i.e., it is the probabilistic characteriza-
tion of the distribution ofDM givenIM , offered by the fractile IDAs. Finally in the limit-state
(LS) case, when on the left-hand side of Equation9 we seek the MAF of exceeding the limit-
state,λ (DV=1) = λ (0) = λLS andG(0|DM) becomes simply the probability that the capacity
DM c is less than some level of theDM ; soG(0|DM ) = F(DM c|DM), whereF(DM c|DM) is
the CDF ofDM c, i.e., the statistical characterization of theDM -value of capacity, as offered,
e.g., by the fractiles ofDM -capacity.
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Thus, for our purposes, we can modify Equation9 to become:

λLS =
∫∫

G(0|DM ) |dG(DM |IM )| |dλ (IM )|

=
∫ DM=+∞

DM=0
F(DM c|DM )

{∫ IM=+∞

IM=0

∣∣∣∣
dG(DM |IM )

dDM

∣∣∣∣
∣∣∣∣
dλ (IM )

dIM

∣∣∣∣ dIM
}

dDM

=
∫ DM=+∞

DM=0
F(DM c|DM )

∣∣∣∣
dλ (DM )

dDM

∣∣∣∣ dDM (10)

where the integration overIM in the braces needs to be carried out either numerically or by
an appropriate analytic approximation (Cornell et al.2002) to produce the absolute value of
the DM hazard gradient|dλ (DM)/dDM |. Then we can proceed to integrate overDM and
estimateλLS. If, on the other hand, we first integrate-out theDM , then we can rewrite the
above equation to use theIM -value of capacity:

λLS =
∫

G(0|IM ) |dλ (IM )|

=
∫ IM=+∞

IM=0
F(IM c|IM )

∣∣∣∣
dλ (IM )

dIM

∣∣∣∣ dIM (11)

where the quantity in the absolute value is theIM hazard gradient andF(IM c|IM ) is the CDF
of the IM -value of limit-state capacity. In this case, all quantities in Equation11 are known,
and only one integration is needed to calculateλLS.

We can proceed to the MAF calculations using either theDM -form (Equation10) or the
pureIM -form (Equation11). There are several issues of compatibility with current guidelines
(e.g.,SAC 2000a) that may dictate the use of theDM -approach, otherwise theIM -form is
more attractive, as it needs only one integration rather than two; hence, it will be our method
of choice. Still, it must be emphasized that either of the two approaches should provide the
exact same results if the integrations are performed with sufficient accuracy (see alsoJalayer
and Cornell2002). These are just two ways to the same goal, and the choice lies with the user.

Table 4. MAFs of exceedance for each limit-state, calculated both numerically from Equation11 and
with the approximate analytical form of Equation12, using either a global or a local fit to theIM -hazard
curve

IO CP GI

numerical 0.019 0.0004 0.00010
analytical (global fit) 0.017 0.0002 0.00003
analytical (local fit) 0.008 0.0005 0.00040

The MAF calculations for any of the two approaches can be carried out either numerically
or with an analytical approximation. If a high degree of accuracy is desired, a trapezoidal rule
can be employed to directly integrate Equation11. All we need to do is assign1/20probability
to each of the 20 records, then derive the empirical CDF of theIM-value of capacity and
numerically integrate with values of the hazard curve slope, calculated either by differentiating
a smooth interpolation or by simply reading them off Figure5. On the other hand, if we
make some reasonable approximations, Equation11can be analytically integrated (Shome and
Cornell1999, Cornell et al.2002). We only need to assume that theIM -values of capacity are
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Figure 6. The median peak interstory drift ratios for all stories at several specifiedSa(T1,5%) levels.

lognormally distributed and then approximate theIM -hazard curve by fitting a straight line in
the log-log space,λ (IM ) = k0IM −k, either by a global regression, same for all limit-states, or
by a local fit at the medianIM -capacity for each limit-state. Then we arrive at the equation

λLS = λ (IM c
50%) ·exp

(
1
2
(k ·Sln IM c)2

)
(12)

whereSln IM c =
(
ln IM c

50%− ln IM c
16%

)
is (approximately) the standard deviation of the natural

logarithm of theIM -capacity.

As an example, the MAFs of exceeding each of the three limit-states (IO, CP, and GI) were
calculated using both the approximate analytic approach (with either the global or the local fit
to the hazard curve) and the “exact” numerical integration (Table4). In general, it seems that
by approximating the hazard curve with a global fit, the MAFs are consistently underestimated.
On the other hand, the local fit seems to cause overestimation for all limit-states but IO. The
approximations may sometimes miss the MAFs by a factor of three or get as close as 10%.
Still, the large record-to-record variability coupled with the limited size of our suite of twenty
records may generate considerable standard errors around these estimates, possibly making the
approximate results statistically indistinguishable from the exact MAF for some limit-states.
This is an issue that is going to be investigated in a later section.

TAKING ADVANTAGE OF THE DATA: SPO VERSUS IDA

Beyond the essential calculations needed for PBEE, there is much more information that we
could easily glean out of the IDA by taking a closer look at the results and plotting them in new
ways. For example, Figure6 displays a story-to-story profile of the median peak interstory drift
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Figure 7. The IDA curves of the odd stories for record #1.
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ratios at severalSa(T1,5%)-levels. As the intensity increases, then, in a median sense across
all records, the fifth floor seems to accumulate most of the deformation. On the other hand,
in Figure7 the individual story drift IDA curves are plotted for record #1, showing a record-
specific picture of the odd-numbered stories. Most interesting for this record is the sudden
change of behavior that occurs aroundSa(T1,5%) = 0.82 g, when the top floors suddenly start
accumulating more and more deformation asIM increases, while the previously leading lower
floors are held back, displaying almost constant peak interstory drifts.

It is also very informative to visually compare on the same figure the static pushover (SPO)
curve (also known as the nonlinear static procedure curve, e.g.,ATC 1997) versus the median
(50%-fractile) IDA. Since the SPO curve usually comes in base shear versusθroof (peak roof
drift ratio) coordinates, it needs to be transformed intoIM andDM axes. In our case, the
θmax response can be easily extracted from the SPO analysis results, while the base shear can
be converted to acceleration units by dividing with the building mass times some (ad hoc)
factor chosen to make the curves match in their elastic range. This can be achieved for our
structure by dividing the base shear with 85% of the total building mass (which is very close
to the ratio of the first modal over the total mass). By thus plotting the two curves together, as
pictured in Figure8, we see that they correspond to each other. The elastic region of the IDA
matches the SPO by construction, and the post-yield non-negative SPO segment corresponds to
a continuation of the elastic region in the IDA, where the IDA is following the familiar “equal
displacement” rule for moderate period structures (Veletsos and Newmark1960). When the
SPO turns into a negative slope, the IDA softens and acquires a local slope less than the initial
elastic that gradually decreases till the IDA becomes flat. Essentially, the ending of the SPO at
zero strength signals the end of the IDA by the flatline.

The question then arises as to why this relationship exists. Some light can be shed on this
issue if we simplify the problem and think in terms of a single-degree-of-freedom system with
a force-deformation backbone that has the shape of the building’s SPO curve. Then we need to
realize that in terms of dynamics, where the IDA is concerned, an ascending part of the “back-
bone” generally means a “dynamically stable” part while a descending branch corresponds to
a “dynamically unstable” part (e.g.,Macrae and Kawashima1997). For each dynamic run the
θmax value serves as an indicator of whether the building has remained completely in the as-
cending parts (approximatelyθmax < 5% in Figure8) or it has ventured into the descending
branch as well. So, for lowerIM s, approximatelySa(T1,5%) < 0.6 g in Figure8, the building
(in a median sense, i.e., for at least 50% of the records) oscillates along the ascending part of its
“SPO backbone” thus the increase inθmax is controlled and stable in the median. But for higher
IM s the building (in a median sense again) also sustains more and more cycles in the descend-
ing part of the “SPO backbone,” thus the medianθmax increases uncontrollably towards infinity.
This can help us understand why the behavior of the median IDA changes so drastically when
the medianθmax is higher than 5%, as it shifts from an ascending to a descending branch. On
the contrary, the median IDA remains virtually indifferent when this moderate period structure
passes from the elastic part to the non-negative post-yield segment of the SPO, since both are
ascending branches.

Observing these facts, one could stipulate that some more direct, perhaps quantitative rules
may be devised to connect the two curves. Actually, one such attempt has been tried out both for
single (Vamvatsikos and Cornell2004b) and multi-degree-of-freedom systems (Vamvatsikos
and Cornell2004a) with encouraging results.
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DISCUSSION OF CHOICES AND THEIR INFLUENCE ON IDA

We took the reader through a direct, hands-on example of how to perform IDA and apply it
for the purposes of PBEE. At each step we had to make some choices, e.g., how to set up the
dynamic analysis algorithm, what tracing algorithm and interpolation scheme to use, how to
summarize the IDAs (using stripes given theIM instead of stripes given theDM ) or how many
records and how many runs per record to allow. Still, we chose not to focus on such details;
instead we proceeded by making seemingly ad hoc choices. Now, armed with the knowledge
of the complete IDA process, we can discuss such choices, explain the reasons behind them
and understand their influence to the final results.

NUMERICAL CONVERGENCE

The details of the analysis and the structural model play an important role in generating
accurate IDA curves. Especially in the region of global dynamic instability, the very existence
of the flatline and the associated numerical nonconvergence may often generate several accu-
racy problems. Ideally, the structural model would be composed of (numerically) robust and
well-tested elements, while the dynamic analysis algorithm should be able to accurately track
the structural response through, e.g., yielding events, sharp strength drops, load redistribution
and geometric nonlinearities; it would fail to converge only when the structure has exhausted
its reserves to become dynamically unstable, thus correctly matching global dynamic instabil-
ity with numerical nonconvergence. Unfortunately, most algorithms and element models have
not really been designed or tested to operate in such extreme ranges of behavior. As a result,
some records may cause a premature nonconvergence, creating a characteristic halting of the
IDA curve which does not resemble a flatline.

All the flatlines in our model normally occur beyondθmax = 12%(Figure3), meaning that
the model can remain stable at least up to suchθmax-values. Still, in our initial attempt to trace
the IDA curves, two of the twenty records failed prematurely, atθmax≈ 2%, barely past the
end-of-elasticity value ofθmax≈ 1%. The main reason is the use of a large, complex model
with many degrees of freedom, plus the adoption of the fracturing connection model (Shi and
Foutch1997) with sharp strength drops that probably tend to destabilize the solution algorithm
of DRAIN-2DX (Prakhash et al.1992). Further confirmation is provided by the SPO-to-IDA
connection, asθmax values in the order of 2% are still on the ascending branch of the SPO in
Figure8, thus deemed unable to cause collapse. Actually, each IDA curve should be able to
behave stably at least up to the start of the SPO’s negative slope, at aboutθmax= 7%. Still, this
comparison should not be carried too far; while the SPO ends atθmax = 37%, the post-peak
part of the SPO is often very load-pattern dependent, and an arbitrary load pattern may result in
very optimisticθmax-values that do not reflect the dynamic behavior (Vamvatsikos and Cornell
2004a).

Such illegitimate and premature collapses are thus relatively easily identified, either by
looking at the SPO or at the IDAs of other records, but how are they to be fixed? Of course,
if the model or the elements or the algorithm are deficient in the first place, the situation is
hopeless. Experience has shown that this is not the case with the well-tested DRAIN-2DX; it
is more a problem of correctly setting up the analysis parameters, rather than anything else.
The best strategy is to tweak the analysis knobs, e.g., reduce the integration time-step, adopt
a variable-step solution or experiment with the parameters of the event-to-event solver. In our
case study, the dynamic analyses of the two problematic records had to be repeated at a reduced
time-step, one-fourth instead of one-half of the acceleration timehistory time-step, thus easily
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resolving convergence issues. Note that after such false, premature collapses are dealt with,
then further (reasonable) changes in the parameters of the solution algorithm will make only
small arbitrary changes to the IDA results. For example, it has been found empirically that
changing the integration time-step can incur arbitrary changes of up to 10% to the flatline
heights, where, surprisingly, smaller steps do not necessarily mean more stability (i.e., higher
flatline heights). This is simply the effect of small errors piling up on each step of the time-
integration that may affect convergence when the structure is close to the flatline, sometimes
causing it to collapse a bit earlier and sometimes not. This is the reason why when tracing each
record, we specified a capacity resolution of only 10%; a better accuracy does not have much
meaning in the presence of these analysis uncertainties.

Such inaccuracies remain relatively insignificant when good analysis software is used. Ac-
tually, we cannot stress enough the need for reliable, bug-free algorithms and well-tested, robust
element models. Such tools are exactly what makes the difference in such analyses, especially
for the limit-states close to global dynamic instability, and when available, with only a little
attention to the analysis details allow us to easily obtain accurate IDA curves.

CHOICE OF TRACING ALGORITHM

When tracing the IDA curve for each record, the choice of theIM -level for each run is
a decision left to the automated tracing algorithm that we use. We have theoretically argued
about the superiority of the hunt & fill algorithm versus the use of a constantIM -step (i.e., the
stepping algorithm) inVamvatsikos and Cornell(2002a), so it is time to see in detail what the
true differences really are when both are applied to the nine-story structure.

Before we proceed, keep in mind that given the same structural model, analysis program
and computing platform, still not all runs are equal in computational cost. In general, the closer
the run is to the flatline (either at a lower or a higherIM ) the longer it takes to complete the
analysis. On the other hand, both converging and nonconverging runs that are far away from the
flatline will be significantly faster, as convergence or nonconvergence will be achieved within
a minimum of iterations. Still, when comparing the tracing algorithms, we will assume that
the intent is to trace the whole IDA curve and a similar amount of runs will be spent both
high and low in the curve (inIM terms). Thus, looking at each record as a whole, the total
amount of runs (converging and nonconverging alike) spent for it provide a very accurate idea
of the computational time needed, while the number of converging runs accurately describes
the accuracy achieved.

The most important task that a user faces when applying either of the two algorithms is
setting up their parameters correctly. For the stepping algorithm, the only parameter is the step
size, while for the hunt & fill the most important ones are the initial step, the step increment
and the allowed number of runs per record. Both algorithms were used to trace the IDAs of the
nine-story structure for the suite of 20 records, using various settings for their parameters, the
results shown in Table5. Obviously, changing the step size of the stepping algorithm generates
huge differences in the total number of runs. Still, if we let the minimum number of converging
runs generated for any of the 20 records be our standard for accuracy, we need at least a step
size of 0.05 g, or 475 runs to get at least 11 runs per record and reach the standards of hunt &
fill. Also, if we do not set the stepping size correctly, we either get too few or too many runs,
the resolution easily dropping to 1 or 2 runs in the worst case, if we happen to set a step size of
0.2 g or 0.3 g. On the other hand, we can change the initial step or the step increment for the
hunt & fill within a wide range, increasing them or reducing them by two or four times, and the
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Table 5. Comparing the sensitivity to parameters of the stepping versus the hunt & fill algorithm

Algorithm Parameter (g) Total C+NC1 min C 2 max C2 average C2

stepping 0.05 475 11 45 22.8
(step-size sensitivity) 0.075 318 7 30 14.9

0.1 244 5 22 11.2
0.2 128 2 11 5.4
0.3 87 1 7 3.4

hunt & fill 0.05 280 12 13 12.2
(initial-step sensitivity) 0.1 280 12 13 12.2

0.2 280 11 13 12.0
0.3 280 11 12 11.8

hunt & fill 0.025 280 11 13 12.4
(step-increment sensitivity) 0.05 280 12 13 12.2

0.1 280 11 13 12.0
0.2 280 11 13 11.9

1 Converging and nonconverging runs for all records
2 Converging runs per record

hunting algorithm remains practically unchanged, constantly providing at least 11 converging
runs per record. In essence, it has the right knobs to be tuned to the tolerance limits that we
wish and allows us to do the runs the way we want, not the way nature decides through the
records.

Still, one may notice that if we over-increase the initial step or the step increment, then
the accuracy starts to slowly drop, as the algorithm overshoots the flatline by a lot and spends
many nonconverging runs to find its way down. But still the effect is minor, not overwhelming.
Notice also that keeping both parameters relatively small seems to improve accuracy both on
average and in the minimum. Still, we should not decrease them too much because as the steps
become smaller we are risking expending all the allotted runs before reaching the flatline.

Coming back to our example, in Table2, we usedSa(T1,5%) to measure theIM -value for
our runs. Why not anotherIM ? We could have used pretty much any monotonic and scalable
IM (Vamvatsikos and Cornell2002a) that we might want, but the less efficient it is, the further
dispersed the IDA flatlines would be, and we would start having some resolution discrepancies
within tracing, i.e., a greater difference between the observed number of minimum and maxi-
mum convergent runs per record in our suite. By using at leastSa(T1,5%), we are assured that
our algorithm, be it hunt & fill or stepping, will be efficient for a wide range of conditions.
If another, more efficientIM appears that can drastically reduce the record-to-record flatline
variability, then the hunt & fill would only marginally benefit, but the stepping algorithm would
significantly improve. In conclusion, the hunt & fill procedure desensitizes IDA from theIM
selection and the setting of the algorithm’s parameters, easily achieving the desired resolution,
in contrast to the very sensitive stepping algorithm. Additionally, it fixes the number of total
runs performed, so we can plan ahead and assign enough computers to run in parallel so the
IDA is computed in time.
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Figure 9. Linearly interpolated IDA curve for record #14, traced with a different total number of con-
verging runs.
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Figure 10. Spline-interpolated IDA curve for record #14, traced with a different total number of con-
verging runs.
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INTERPOLATION ISSUES

By interpolating the discrete points to generate each record’s IDA curve we are gaining one
enormous advantage: we do not need to have our runs in stripes of the sameIM -level. The
consequences are very important. First, this allows us to use the hunt & fill algorithm instead
of the stepping one, thus gaining in all the aspects described previously. Second, it allows us
to express the IDA results in anyIM . All we need is to calculate the newIM for each run,
replot the IDA curves and re-interpolate versus the newIM . In this way, IDA becomes truly
independent of theIM used for tracing, allowing us to reuse the same data again and again,
without needing to run any more analyses.

But why use complex spline schemes instead of the simpler linear interpolation? In Fig-
ures9 and10, we present a comparison of the linear and the spline interpolation scheme, pitted
against each other for a given number of converging runs. We have tweaked the hunt & fill
tracing so that in all cases the flatline is accurately reached with the same number of runs, and
then the algorithm is allowed to fill in the gaps using up to a total of 4, 6, 8, or 18 runs. Unless
we are only interested in the flatline, 4 converging runs are just too few to capture the IDA
adequately, regardless of the interpolation scheme used. Clever postprocessing cannot make
up for gross data gaps. On the other hand, if we allow only 2 more runs, for a total of 6, the
results are markedly better, but only if we are using a spline scheme. Had we used 6 linearly
interpolated runs we would be grossly underestimating the CP limit-state capacity, finding a
capacity point at onlySa(T1,5%) = 0.63 g, θmax = 4% instead of the correct 0.72 g and 6.4%.
At 8 and 18 runs, the spline interpolations are practically indistinguishable, while the linear
ones are close enough but still can be told apart. In conclusion, if we allow enough runs, the
interpolation scheme doesn’t really matter, both schemes will provide good results. On the
other hand, if we use too few runs, it doesn’t really matter again because both schemes are
going to give us bad results. But there is a gray area in between, where using a better and
smarter interpolation can make the difference to increase the accuracy in our final IDA curve.
In retrospect, this is precisely what gives us confidence to reduce the allotted number of runs
and save on computational resources.

SENSITIVITY OF THE LIMIT-STATE CAPACITIES TO THEIR DEFINITION

Several limit-states were defined on the IDA curves, often through the use of ad hoc rules.
For example, the IO limit-state was defined atθmax = 2%, while the CP limit-state was based
on the arbitrary 20% fraction of the elastic slope (or stiffness) and the additionalθmax = 10%
limit (SAC 2000a). On the other hand, the GI limit-state was unambiguously defined to be on
the flatline of the IDA, being subject to no such arbitrary rules. Therefore, it is of interest to
investigate the sensitivity of the summarizedIM , DM capacities to these choices, both for the
IO and the CP limit-state.

For the IO limit-state, the simplicity of the definition makes it easy to understand what is
happening. If we look at Figure4, it is obvious that IO is occurring in the “equal displacement”
region of the fractile IDAs, i.e., the fractiles are almost straight lines resembling a continuation
of the elastic segment. In turn, this means that moderate changes to the defining value for IO,
i.e., fromθmax = 2% to 1% or 3% will proportionately increase or decrease theIM andDM
values of capacity.

On the other hand, the definition of the CP limit-state is quite more complicated. The
elastic stiffness fraction controls how much the IDA has to soften, i.e., how close to the flatline
it can come, before CP is reached. Hence, increasing this fraction will force the CP points
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(a) ResultingSa(T1,5%) andθmax capacities when theθmax = 10%limit is not imposed.
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Figure 11. The sensitivity of the fractile (16%, 50%, and 84%)Sa(T1,5%) andθmax capacities for the
CP limit-state to the elastic stiffness fraction used (20% is the standard bySAC 2000a). The results are
less sensitive if theθmax = 10%limit is used.
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(e.g., Figure3) to move to lowerIM s andDM s. The influence of theθmax = 10% limit is
more straightforward. It enforces a rigid limit on the capacity points, restricting theθmax value
they can reach, i.e., it is another way to restrict the CP points from coming close to the flatline.
Actually, in our case of the nine-story building, Figure3, it becomes obvious that by changing
theθmax= 10%limit to, say, 8% or 12%, theIM -value of capacity will only slightly change, but
theDM -value will be highly influenced, the 50% and 84%θmax capacities actually becoming
8% or 12%, respectively.

To show the combined influence of the two rules on the CP limit-state, the fraction of the
elastic stiffness has been varied from 10% to 60% and the resulting fractileSa(T1,5%), θmax

capacities have been plotted, both when theθmax= 10%rule is imposed (Figure11b) and when
it is not (Figure11a). In the latter case, theIM capacity becomes relatively sensitive, almost
linearly, to the elastic stiffness fraction. TheDM capacity is even more sensitive, decreasing
in a geometric fashion as the fraction increases. This makes absolute sense given the shape
of the IDAs (Figure3); close to global collapse, each IDA softens towards the flatline, hence,
as the slope-fraction decreases, the CPIM capacity approaches the flatlineIM -height. On the
other hand, theDM capacity is destabilized by the same flattening, since by definition, in the
vicinity of the flatline, small changes in the elastic stiffness fraction result to large changes of
theDM -value.

If we include theθmax = 10%limit, as in Figure11b, both theIM and especially theDM
capacity are stabilized, as this hard upper limit simply cuts off all higher values. Furthermore,
this limit seems to drastically reduce theDM -capacity dispersion, at all levels of the elastic
stiffness fraction. Obviously, several records now have the same CP limit-stateDM capacity,
namelyθmax = 10%. Therefore, the 10% limit makes the CP capacity more stable, but no less
arbitrary, as theθmax = 10%limit is often the governing rule. Actually, looking at the tables
in SAC (2000a,b) it becomes obvious that 10% is often the quoted medianθmax-capacity for
all but the tallest buildings. Is, then, this arbitrarily imposedθmax = 10% a problem? From
an MAF-sensitivity point-of-view, the answer is negative. In Equation11 it becomes apparent
that it is only theIM -value of capacity that truly matters. As we have observed, at least for this
structure, theIM -value of CP-capacity is only mildly sensitive to the definition of the rules,
thus yielding similarly mildly sensitive MAFs. Even if the calculation is done using theDM -
form in Equation10, assuming that the integrations are accurately performed, the conclusions
will still be the same.

There are also several other details and corresponding sensitivity issues in the implementa-
tion of the CP limit-state definition, that may or may not make a difference. For example, in
Yun et al.(2002) the 20% fraction is applied to the median elastic stiffness of all records and
the resulting reduced stiffness is used for the capacity point estimation. On the other hand, we
have used the 20% fraction on the elastic stiffness of each individual record to define its CP
capacity. In this case, the summarized capacities show negligible difference between the two
approaches. On the other hand, inYun et al.(2002) CP is defined to occur at the first point
where the IDA curve softens to 20% of the (median) elastic slope, while we use the last point
where it reaches the reduced stiffness. This may make a large difference for some records
that alternately harden and soften before global collapse, and may be interpreted as another
sign of sensitivity to the CP definition. Still, for reasons explained inVamvatsikos and Cornell
(2002a), we believe it is more consistent with the CP limit-state concept to use the last rather
than the first such point, thus resolving this problem.

22



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

maximum interstory drift ratio, θ 
max

"f
irs

t−
m

od
e"

 s
pe

ct
ra

l a
cc

el
er

at
io

n 
S

a(T
1,5

%
) 

(g
) fractiles of θ given Sa

fractiles of Sa given θ

50% IDA of θ | Sa vs 50% of Sa | θ

16% IDA of θ | Sa vs 84% of Sa | θ

84% IDA of θ | Sa vs 16% of Sa | θ

Figure 12. Summarization into fractiles ofIM givenDM versus fractiles ofDM givenIM .
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Figure 13. Two stripes, one givenDM and one givenIM , converging on the same median (the star).
The records are No.18,5,19,6,9,10,13 from the highest to the lowestIM at θmax = 4%.
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SUMMARIZATION GIVEN IM OR DM

When summarizing the IDA curves, we decided to use stripes ofDM given levels ofIM ,
instead of stripes ofIM given DM . It often becomes an issue in the literature (e.g.,Miranda
2001), whether one should summarize givenIM or DM . The first approach can be thought of
providing the distribution of demandDM that a given level of intensityIM can generate in
the structure, while the latter is the distribution of intensitiesIM that are required to produce a
given level of damageDM . Clearly, if we use the mean and standard deviation to summarize
such stripes, the results will be very different between the two approaches (e.g.,Miranda2001).
When fractiles are employed, though, this is not so; as shown in Figure12, the 16%, 50%, and
84% fractiles givenIM (Sa(T1,5%)) almost perfectly match the 84%, 50%, and 16% fractiles
respectively, givenDM (θmax).

The reasons behind this surprising fact become apparent in Figure13. There, we have
selected a subset of only seven records and have generated a (vertical) stripe ofIM s given
DM ≡ θmax = 4%. The median falls on the fourth, the middle of the seven curves, and is
estimated to beSa(T1,5%) = 0.53 g (represented by a star). A (horizontal) stripe givenIM is
generated at this precise level and, remarkably, the medianDM givenSa(T1,5%) = 0.53 g is
found to lie on the same IDA curve, right at the star, atθmax = 4%. To better illustrate this,
we use white dots for IDA crossings on the left of the horizontal stripe and on the top of the
vertical, but black dots at the bottom of the vertical or to the right of the horizontal. Local
continuity and monotonicity assure that any IDA curve can only have two dots of the same
color, i.e., each IDA curve will remain on the same side of the median curve.

Of course, it often happens that IDA curves are neither continuous, nor monotonic as due to
hardening increasedIM s may sometimes produce lower or the sameDM -response (Figure1).
But even then, significant discrepancies (e.g., serious hardening in several curves at the same
time) must occur to influence the robust fractiles, thus only slightly disturbing the matching of
the fractiles givenDM and givenIM , and only in isolated places.

Why then are the 50% and 84% flatlines in Figure12 not exactly matching? In the case of
the seven curves in Figure13, the median is conveniently falling right on the fourth of the seven
curves. Since in Figure12 a sample of 20 records is used, none of the three fractiles matches
one of 20 curves. In that case, there are several ways to approximate the fractiles, and the one
that we use involves linear interpolation between the closest two curves. For example, for 20
records, the median is calculated as the average of the 10th and the 11th record, as ordered on
the relevant stripe. Obviously such interpolation generates different results givenIM or DM .
This problem becomes more apparent close to the flatline, where for summarization givenDM
we always have finite values ofIM to interpolate, while for the summarization givenIM , one
of the closest two records produces infiniteDM (which cannot be used for interpolation). If we
use a larger sample, such discrepancies are reduced and eventually eliminated. Similarly, we
could use another method to approximate the fractiles, e.g., select the lower of the two points
that we use for the interpolation and similarly eliminate the problem. In any case, given the
record-to-record variability, the fractiles are close enough and increasing the sample size they
will actually converge to the same curves, no matter what method we use to estimate them.

SENSITIVITY TO THE RECORD SUITE SIZE

The IDA curves display significant record-to-record variability, as becomes obvious in Fig-
ure3. It is only natural to investigate the accuracy of the results given the limited sample size
of twenty records. Traditional analytical forms are difficult to implement for the fractiles or
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the MAFs, hence we turn to the bootstrap method (Efron and Tibshirani1993) to fill this gap.
Application of the bootstrap involves sampling with replacement from the twenty records to
generate an arbitrary number of alternate record suites and a corresponding number of summa-
rized capacities or MAF estimates. From such samples of estimates, one can easily calculate
the standard error or confidence intervals of the desired coverage (e.g., percentile bootstrap
confidence intervals) for both fractileIM , DM capacities and MAFs.

The bootstrap estimate of the standard error, plus a 90% bootstrap confidence interval on
the medianIM andDM limit-state capacities appear on Table6. It becomes obvious that using
only 20 records provides a relatively accurate estimate of the capacity values for this structure;
the medianIM capacities show very small dispersion that predictably increases for limit-states
closer to global dynamic instability. We should expect comparable, albeit higher, standard
errors (and wider confidence intervals) for the 16% and 84% fractiles, as they are closer to
the edges of the sample and thus relatively more variable. On the other hand, the fractileDM
capacities have practically negligible standard error. In the case of IO and GI, this is a direct
result of their definition, as they both lie at fixed values ofθmax (2% and+∞, respectively).
Similarly, the medianDM capacity for CP is almost always dominated by theθmax = 10%
rule, drastically reducing its dispersion. Again, this difference in the standard errors does not
imply that using theDM -based form (Equation10) instead of theIM -based (Equation11),
will result in higher confidence (less dispersion) in the MAFs estimate. The results should be
identical even in this aspect when using any of the two approaches.

The influence of the number of records becomes more apparent if we realize that the stan-
dard error of the mean estimate (and approximately of the median as well) tends to fall of with
a rate of1/

√
n wheren is the number of records (e.g.,Benjamin and Cornell1970). Hence,

quadrupling the number of records to use a total ofn = 80, results in only half the dispersion,
while decreasing it by a factor of four, to use onlyn = 5, will (approximately) double the
dispersion.

Table 6. MedianIM andDM capacities for each limit-state, shown versus the bootstrapped standard
error and the 90% confidence interval on the median estimate

Sa(T1,5%) (g) θmax

IM c
50% SE1 90% CI2 DM c

50% SE1 90% CI2

IO 0.27 0.02 [0.24, 0.30] 0.02 - -
CP 0.83 0.14 [0.72, 1.13] 0.10 0.004 [0.09, 0.10]
GI 0.91 0.17 [0.75, 1.20] +∞ - -
1 Standard Error
2 Confidence Interval

How do the standard errors in the fractile capacities translate to the estimates of the MAFs?
By applying the bootstrap to both the “exact” numerical (Equation11) and the approximate
analytic form (Equation12) with either a local or a global fit to the hazard curve, we get the
results shown in Table7. As seen from the “exact” results, the limited sample of 20 records
causes standard errors in the order of 50% in the estimates of theλLS for all limit-states. On
the other hand, the approximation through Equation12 considerably increases the standard
error; in some cases it is in the order of 200% but sometimes the approximation totally fails
and considerably overestimates the MAF. For the IO limit-state, it is the approximation with
a global fit that may be destabilized, while at the CP and GI limit-state, it is the local fit that
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Table 7. MAFs for each limit-state, calculated both numerically and with the approximate analytical
form (global or local fit). The bootstrapped standard error and 90% confidence interval on the MAF
estimate are also presented. Additionally, we test the hypothesis that the approximateλLS is equal to the
exact at the 95% confidence level

limit-state method λLS SE1 90% CI2 “equal” to exact?

IO exact 0.019 0.011 [0.007, 0.04]
global 0.017 > 1000 [0.005, 0.33] yes
local 0.008 2.5 [0.004, 0.04] yes

CP exact 0.0004 0.0002 [0.0002, 0.0009]
global 0.0002 0.0008 [0.0001, 0.0004] yes
local 0.0005 > 1000 [0.0001, 0.7] yes

GI exact 0.0001 0.00007 [0.0001, 0.0003]
global 0.00003 0.00006 [0.00001, 0.00002] yes
local 0.0004 > 1000 [0.00003, 160] yes

1 Standard Error
2 Confidence Interval

may become highly inaccurate. What happens is that individual bootstrap samples violate the
assumptions needed to derive Equation12; in some cases theIM -capacities are not nearly-
lognormally distributed and in other cases either the global or the local fit fail to capture the
shape of the hazard curve.

The bootstrap also offers us a way to investigate the accuracy of the approximate versus the
“exact” calculation of the MAFs, given that we have only used 20 records. By bootstrapping
the difference of the “exact” minus the approximate MAFs, a 95% confidence interval can be
generated for each limit-state. If the interval contains zero, then, at the 95% confidence level,
we cannot reject the hypothesis that the analytical and the numerical method produce the same
results. As seen in Table7, given the record-to-record variability and the limited sample size,
the approximate results cannot be distinguished from the exact ones for any limit-state. In
general, as long as we take care not to violate the stated assumptions, Equation12will provide
good estimates.

CONCLUSIONS

The step-by-step practical application of incremental dynamic analysis has been demon-
strated for a nine-story steel moment-resisting frame. By using publicly available software it
has become almost trivial to perform the analysis, interpolate the IDA curves, estimate limit-
state capacities and summarize the results into a format that can be easily integrated with mod-
ern PBEE frameworks. IDA offers a complete methodology to handle the abundant data from
numerous analyses and extract useful conclusions. Still, the attention to detail is important:
How many records, how many runs per record, how well interpolated, the use of approxima-
tions, are just some of the issues that can make a difference in the accuracy of the final IDA
results. The methods that have been presented are designed to strike a favorable compromise
between speed and accuracy and thus resolve such issues. Perhaps, the single most important
thing to remember is the wealth of information that can be found in IDA if only we take ad-
vantage of ever-cheaper computing power and automated methods to investigate the structure’s
behavior.
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