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SUMMARY

SPO2IDA is introduced, a software tool that is capable of recreating the seismic behavior of oscillators with
complex quadrilinear backbones. It provides a direct connection between the Static Pushover (SPO) curve and
the results of Incremental Dynamic Analysis (IDA), a computer-intensive procedure that offers thorough demand
and capacity prediction capability by using a series of nonlinear dynamic analyses under a suitably scaled suite
of ground motion records. To achieve this, the seismic behavior of numerous single-degree-of-freedom (SDOF)
systems is investigated through IDA. The oscillators have a wide range of periods and feature pinching hysteresis
with backbones ranging from simple bilinear to complex quadrilinear with an elastic, a hardening and a negative-
stiffness segment plus a final residual plateau that terminates with a drop to zero strength. An efficient method is
introduced to treat the backbone shape by summarizing the analysis results into the 16%, 50% and 84% fractile
IDA curves, reducing them to a few shape parameters and finding simpler backbones that reproduce the IDA
curves of complex ones. Thus, vast economies are realized while important intuition is gained on the role of the
backbone shape to the seismic performance. The final product is SPO2IDA, an accurate, spreadsheet-level tool for
Performance-Based Earthquake Engineering that can rapidly estimate demands and limit-state capacities, strength
reduction R-factors and inelastic displacement ratios for any SDOF system with such a quadrilinear SPO curve.
Copyright c© 2005 John Wiley & Sons, Ltd.

KEY WORDS: performance-based earthquake engineering; incremental dynamic analysis; static pushover;
oscillator; nonlinear; strength reduction factor

1. INTRODUCTION

Of great interest in Performance-Based Earthquake Engineering (PBEE) is the accurate estimation of
the seismic demand and capacity of structures. To accomplish the task several methods have emerged, a
promising one being Incremental Dynamic Analysis (IDA), a parametric analysis method that estimates
seismic demand and capacity by subjecting the structural model to several ground motion records,
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2 D. VAMVATSIKOS AND C. A. CORNELL

each scaled to multiple levels of intensity (Vamvatsikos and Cornell [1]). Still, the need for simplified
methods for professional practice remains, and the rational choice has often been the use of results
stemming from the dynamic analysis of single-degree-of-freedom (SDOF) approximations to the multi-
degree-of-freedom (MDOF) structural model. Such methods often use an oscillator with a backbone
curve that mimics the Static Pushover (SPO, also known as Nonlinear Static Procedure) curve of
the MDOF structure (e.g., FEMA [2]). However, most systematic demand research efforts have not
progressed further than using an oscillator with a bilinear backbone, allowing for either positive (e.g.,
Riddell and Newmark [3], Nassar and Krawinkler [4], Lee et al. [5]) or negative (e.g., Al-Sulaimani
and Roessett [6], Miranda and Akkar [7]) post-yield stiffness or, still more simply, an elastic perfectly-
plastic backbone shape (e.g., Newmark and Hall [8], Vidic et al. [9], Miranda [10]), while few, if any,
attempts have been made to quantify its dynamic, global-instability collapse capacity. As an extension
to existing procedures, we will apply IDA to SDOF systems featuring a variety of backbones and
attempt to quantify the resulting demands and capacities in a handful of comparatively simple empirical
equations.
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Figure 1. The backbone to be investigated and its five controlling parameters.

2. METHODOLOGY

To study the influence of the SPO curve on the dynamic behavior, we have chosen a piecewise linear
backbone that is composed of up to four segments (Figure 1). A full quadrilinear backbone starts
elastically, yields at ductility µ = 1 and hardens at a slope ah ∈ [0,1), then at ductility µc ∈ (1,+∞) it
turns negative at a slope ac ∈ [−∞,0), but is revived at µr = µc +(1−r+(µc−1)ah)/|ac| by a residual
plateau of height r ∈ [0,1], only to fracture and drop to zero strength at µ f ∈ [1,+∞). By suitably
varying the five parameters, ah, µc, ac, r and µ f , almost any (bilinear, trilinear or quadrilinear) shape
of the SPO curve may easily be matched.

To fully investigate the dynamic behavior of a single SDOF model, we will use IDA for a suite of
thirty ground motion records (Table I) that have been selected to represent a scenario earthquake; the
moment magnitude is within 6.5 – 6.9, they have all been recorded on firm soil (USGS type C or B) and
show no directivity effects. IDA involves performing a series of nonlinear dynamic analyses for each
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DEMAND AND CAPACITY ESTIMATION FOR OSCILLATORS WITH MULTI-LINEAR BACKBONES 3

Table I. The suite of thirty ground motion records used.

No Event Station φ◦ ∗ Soil† M‡ R§ (km) PGA (g)

1 Loma Prieta, 1989 Agnews State Hospital 090 C,D 6.9 28.2 0.159
2 Northridge, 1994 LA, Baldwin Hills 090 B,B 6.7 31.3 0.239
3 Imperial Valley, 1979 Compuertas 285 C,D 6.5 32.6 0.147
4 Imperial Valley, 1979 Plaster City 135 C,D 6.5 31.7 0.057
5 Loma Prieta, 1989 Hollister Diff. Array 255 –,D 6.9 25.8 0.279
6 San Fernando, 1971 LA, Hollywood Stor. Lot 180 C,D 6.6 21.2 0.174
7 Loma Prieta, 1989 Anderson Dam Downstrm 270 B,D 6.9 21.4 0.244
8 Loma Prieta, 1989 Coyote Lake Dam Downstrm 285 B,D 6.9 22.3 0.179
9 Imperial Valley, 1979 El Centro Array #12 140 C,D 6.5 18.2 0.143
10 Imperial Valley, 1979 Cucapah 085 C,D 6.5 23.6 0.309
11 Northridge, 1994 LA, Hollywood Storage FF 360 C,D 6.7 25.5 0.358
12 Loma Prieta, 1989 Sunnyvale Colton Ave 270 C,D 6.9 28.8 0.207
13 Loma Prieta, 1989 Anderson Dam Downstrm 360 B,D 6.9 21.4 0.24
14 Imperial Valley, 1979 Chihuahua 012 C,D 6.5 28.7 0.27
15 Imperial Valley, 1979 El Centro Array #13 140 C,D 6.5 21.9 0.117
16 Imperial Valley, 1979 Westmoreland Fire Station 090 C,D 6.5 15.1 0.074
17 Loma Prieta, 1989 Hollister South & Pine 000 –,D 6.9 28.8 0.371
18 Loma Prieta, 1989 Sunnyvale Colton Ave 360 C,D 6.9 28.8 0.209
19 Superstition Hills, 1987 Wildlife Liquefaction Array 090 C,D 6.7 24.4 0.18
20 Imperial Valley, 1979 Chihuahua 282 C,D 6.5 28.7 0.254
21 Imperial Valley, 1979 El Centro Array #13 230 C,D 6.5 21.9 0.139
22 Imperial Valley, 1979 Westmoreland Fire Station 180 C,D 6.5 15.1 0.11
23 Loma Prieta, 1989 Halls Valley 090 C,C 6.9 31.6 0.103
24 Loma Prieta, 1989 WAHO 000 -,D 6.9 16.9 0.37
25 Superstition Hills, 1987 Wildlife Liquefaction Array 360 C,D 6.7 24.4 0.2
26 Imperial Valley, 1979 Compuertas 015 C,D 6.5 32.6 0.186
27 Imperial Valley, 1979 Plaster City 045 C,D 6.5 31.7 0.042
28 Loma Prieta, 1989 Hollister Diff. Array 165 –,D 6.9 25.8 0.269
29 San Fernando, 1971 LA, Hollywood Stor. Lot 090 C,D 6.6 21.2 0.21
30 Loma Prieta, 1989 WAHO 090 –,D 6.9 16.9 0.638

∗ Component † USGS, Geomatrix soil class ‡ moment magnitude §closest distance to fault rupture

record by scaling it to several levels of intensity that are suitably selected to uncover the full range of
the model’s behavior: elastic, yielding, non-linear inelastic and finally global dynamic instability. Each
dynamic analysis can be represented by two scalars, an Intensity Measure (IM), which corresponds to
the scaling factor of the record (e.g., the strength reduction factor R = Sa(T1,5%)/S y

a (T1,5%), which is
equal to the 5%-damped first-mode spectral acceleration Sa(T1,5%) normalized by its value that causes
first yield) and an Engineering Demand Parameter (EDP), which monitors the structural response of
the model (e.g., peak ductility µ).

By suitably interpolating between the runs that were performed for a given record, we can plot on
the EDP-IM axes an IDA curve for each record, e.g., Figure 2(a). Each curve ends with a characteristic
“flatline” which indicates that the EDP rapidly increases towards “infinite” values for small changes in
the IM, thus signalling global dynamic instability and defining the global-collapse capacity at the IM-
value where the IDA curve effectively becomes flat. Such “capacity points” are visible as black dots in
Figure 2(a). A set of IDA curves can be summarized into 16%, 50% and 84% cross-sectional fractile
IDAs of response µ given the intensity R or R given µ , depending on how the cross-sections of the
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(a) Thirty IDA curves and flatline capacities
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(c) The fractile IDAs from (b) versus the SPO curve
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(d) The fractile IDAs, as estimated by SPO2IDA

Figure 2. Generating the fractile IDA curves and capacities from dynamic analyses versus estimating them by
SPO2IDA for an SPO with ah = 0.3, µc = 2, ac =−2, r = 0.5, µ f = 5.

curves are taken, e.g., at specified levels of R or µ (Vamvatsikos and Cornell [1]). Fortunately, under
suitable assumptions of continuity and monotonicity, the x%-fractile IDA µx%(R) (x ∈ {16,50,84}) of
µ given R, will be identical (or nearly identical if the assumptions are slightly violated, Vamvatsikos
and Cornell [11]) to the (100− x%)-fractile IDA R(100−x%)(µ) of R given µ as shown in Figure 2(b).
As a direct result, if we similarly summarize the capacity points, the (100− x%) global-instability
collapse capacity will always appear on the flatline of the x%-fractile IDA of µ given R (Figure 2(c)).

By thus summarizing the fractile IDA curves, we get both a characterization of the distribution of R
given µ and µ given R. While the individual IDAs are highly variable and often non-monotonic, i.e.,
higher values of R do not necessarily correspond to higher values of µ (Vamvatsikos and Cornell [1]),
the fractiles are much smoother and empirically are found to be almost always monotonic. They are
thus suitable to be modeled with relatively simple functions.

If we plot the SPO of the SDOF system on µ versus R = F/Fy axes (where F is the total base shear
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and Fy its value that causes first yield) we can make it appear versus the summarized IDA curves on the
same graph (Vamvatsikos and Cornell [1]), as in Figure 2(c). Such a comparison shows that the SPO
and the fractiles are composed of the same number of corresponding and distinguishable segments.
Moreover, each segment has its own nature. The elastic segment of the SPO naturally coincides with
the elastic IDA region for all three fractiles, while the yielding and hardening of the SPO forces the
16%, 84% IDAs to branch uniformly around the median which approximately follows the familiar
“equal displacement” rule (µ ≈ R) for moderate (and long) periods (Veletsos and Newmark [12]).
The SPO’s negative stiffness appears as a characteristic flattening of all three IDAs that stops when
the residual plateau is activated, causing the “revival” of the IDA curves towards higher R-values.
Ultimately, all IDA curves submit to the SPO fracturing and signal collapse by producing a flatline and
the corresponding fractile capacity point.

This consistent behavior makes it is possible to approximate each separate segment of the IDA by
its prominent features, e.g., the height of the flatline or the slope and intercept of a fitted line. By
examining a large enough population of SDOF systems with different backbone shapes, we can track
the evolution of the features of each segment, and subsequently model them as a function of the SPO
parameters. Thus, we are able to generate almost the same fractile IDAs and capacities (within some
acceptable tolerance) without needing to repeat the multiple dynamic analyses. This set of rules and
equations will be collectively called the SPO2IDA tool, a typical example of its accuracy visible in
Figure 2(d).

However, the complexity of the backbone has forced us to initially limit the scope of our investigation
to SDOF systems that share an identical moderately pinching hysteresis model with no cyclic
deterioration, developed by Ibarra [13], having ξ = 5% viscous damping and T = 0.92s period.
The results will thus be a good approximation for the moderate period range, providing the basis
for an extension to short and long periods. Still, the full investigation of a five-dimensional space
of parameters requires a staggering amount of dynamic analyses, especially since the parameters do
not influence the IDAs independently of each other. Nevertheless, there are several facts that allow
us to reduce the size of the problem. First, since we are measuring the peak ductility, at any given
value of µ the IDA will only be influenced by the segments of the SPO backbone that appear at
lower or equal ductilities. This would not be true if we were monitoring, say, permanent deformation.
So, in fitting the hardening branch, the negative stiffness is of no consequence, while in fitting the
negative branch, the plateau plays no part. Therefore, we can cut the problem into smaller pieces, as
we only need to investigate a bilinear elastic-hardening, a trilinear elastic-hardening-negative but still,
a full quadrilinear for the plateau. Furthermore, some of the SPO parameters seem redundant, so their
influence can be summarized in only one or two new parameters which combine them. Effectively we
are going to search for “equivalent backbones” (for the same damping and period), in the sense that
such oscillators would share very similar dynamic behavior in the region of interest, as manifested by
their displaying the same fractile IDAs.

When modeling the IDA features we will use least-squares fits of polynomials, either in the linear
or in the log-domain. To simplify the expressions to follow, we will represent linear combinations
of n functions pi (y1, . . . ,yk) of given variables y1, . . . ,yk, as a sum ∑i bx%,i pi (y1, . . . ,yk), where the
appropriate functions pi, i = 1, . . . ,n, and coefficients bx%,i, (corresponding to the x%-fractile) will be
provided in tables.

As a general principle, note that the relatively small number of records, the record-to-record
variability and the fitting error, combine to introduce some noise which tends to become larger as
the ductility response itself increases. So we will generally fit elaborate models but only as complex
as the noise in the IDA results allows. Still, as we try to interpolate as closely as possible given the
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6 D. VAMVATSIKOS AND C. A. CORNELL

noise, we are risking eliciting criticism for “overfitting”, in the sense that a simpler model might do
only a little worse. The idea is to provide as a complete and objective model as the record-to-record
noise allows aiming towards a highly accurate computer tool rather than simplified but less accurate
expressions that can be applied by hand.

3. MODERATE PERIOD PINCHING MODEL

3.1. Fitting the hardening branch of the IDA

Fitting the hardening part is the easiest task, and much research exists (e.g., Nassar and Krawinkler
[4], Lee et al. [5], Miranda [10]), sometimes for a wider variety of parameters (e.g., site conditions,
cyclic strength deterioration etc.) than what we will use here. This fit is relatively straightforward as
it involves a single parameter, the hardening slope ah. We will use a second-order polynomial model
in the log-space to fit the fractile ductilities given R and then we will fit the resulting coefficients for
several values of ah. Thus, for each of the three fractile IDAs the model becomes

ln µx% = βx% lnR+ γx% ln2R, R ∈ (1,R(100−x)%(µc)] (1)

where βx%, γx% = ∑
i

bx%,i pi (ah) , for any ah ∈ [0,0.9)

where the coefficients and functions can be found in Table II. An example of its application appears in
Figure 2(d) for 1 < µ ≤ 2.

The results are actually only mildly dependant on ah, especially for low ductilities. So we can
roughly approximate the median IDA by the “equal displacement rule”, under which µ50%(R) ≈ R,
and generate the 16%, 84% fractiles as the edges of a 60%-wide band centered on the median (in the
log-space), i.e., µ(50±34)%(R)≈ µ50%(R)1±0.3 ≈ R1±0.3.

0 1
0

1

ductility, µ = δ / δ yield

st
re

ng
th

 r
ed

uc
tio

n 
fa

ct
or

, R
 =

 F
 / 

F y
ie

ld

 µ
peak

 µ
eq

 µ
end

 R
max

 µ
c

a
h
=0

a
h
=1

Figure 3. An elastic-hardening-negative backbone and the two extremes of its “equivalent” set.

3.2. Fitting the negative branch of the IDA

Negative stiffness is found in SPOs of structures such as non-ductile reinforced-concrete frames, braced
steel frames, moment-resisting steel frames with fracturing connections and P-∆ sensitive systems.
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The most prominent feature of the negative branch is the characteristic flattening of the summarized
IDAs which results in a flatline unless it is arrested by the residual plateau, as seen in Figure 2(c), for
2 < µ ≤ 2.4. By accurately capturing this feature, the entire branch could be modeled as a continuous
convex curve that smoothly departs from the hardening segment at ductility µc to blend into the
flatline at µend = µc +(1 + ahµc− ah)/|ac|. Still, appropriately modeling the negative branch flatline
requires a trilinear (elastic-hardening-negative) backbone that involves three independent parameters
(ac, ah and µc). It was found empirically that this flatline height and, even more, the complete
negative part of the IDA are very similar for the set of backbones that have coincident negative
branches, like those in Figure 3. Actually, the flatline height among such an equivalent set varies
only a little and always in a consistent linearly increasing fashion between the two extremes, i.e.,
the ah = 0 and the ah = 1 cases where the negative branch starts at µeq = µc + ah(µc− 1)/|ac|, and
µpeak = (µc|ac|+1+ah(µc−1))/(1 + |ac|) respectively. So we only need to model the capacities for
the extreme values of ah and linearly interpolate in-between. The final recommended model becomes:

R(100−x)%(µend) = R(100−x)%(µc)+
(

eβx% −1
)[

leq
(100−x)% +ah

(
µpeak− leq

(100−x)%

)]
, (2)

leq
(100−x)% = (µeq)γx% , (3)

where βx%,γx% = ∑
i

bx%,i pi(ac), for any ac ∈ [−4,−0.01], ah ∈ [0,1), µc ∈ [1,9]

where the coefficients are found in Table II.
As a first, simpler approximation for moderate values of the negative slope ac, one may assume that

in log-space the 16% and 84% flatlines are roughly 30%-lower and 30%-higher than the median, i.e.,
R(50±34)%(µend) = R50%(µend)1±0.3.

3.3. Fitting the residual part of the IDA

The residual plateau in the SPO is encountered, for example, in braced frames or fracturing moment-
resisting frames. Only limited inspection of such models has appeared in the literature (e.g., Stear and
Bea [14]). The SPO residual plateau allows the IDA to escape the negative-branch flattening and move
to higher R-values in an almost linear fashion, e.g., Figure 2(c) for 3 < µ < 5. We can model this feature
by a linear segment in log-space and capture this entire IDA region by a continuous convex curve that
smoothly rises from the negative-branch flattening. This would depend on all five backbone parameters
but for the empirical finding that, in this region of the IDA, the full quadrilinear model displays virtually
the same behavior as an equivalent trilinear (elastic-negative-plateau) model that has the same negative
slope ac and a reduced plateau height of req = r/(1+ah(µc−1)). Actually, req is the residual plateau
height of the full model but measured relative to the peak R-value, Rmax = 1+ah(µc−1), reached by
the SPO (Figure 3), instead of relative to the yield strength. This leaves only two parameters, ac and
req, resulting in the model:

ln µx% = βx% + γx% lnR, R ∈ (
R(100−x)%(µr),R(100−x)%(µ f )

]
(4)

where βx%, γx% = ∑
i

bx%,i pi
(
ac,req

)
, for any ac ∈ [−4,−0.01], req ∈ [0.05,0.90]

where the coefficients can be found in Table II. An example of this model’s application can be seen in
Figure 2(d) for 3 < µ ≤ 5.

By observing the results, one can derive that the median IDA does behave much like a secant linear
segment that takes on smaller slopes as req decreases, eventually becoming one with the flatline induced

Copyright c© 2005 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2005; 00:1–20



8 D. VAMVATSIKOS AND C. A. CORNELL

Table II. Coefficients and functions needed for fitting the IDA hardening, negative and residual parts in
Equations (1), (2), (4).

bx%,i for βx% bx%,i for γx%

hardening 16% 50% 84% 16% 50% 84%

1 0.6164 0.7132 1.0024 0.1454 0.2928 0.4003
ah -0.1697 -0.0415 1.5907 -0.1394 -0.6415 -3.0742

(ah)2 1.3103 1.5158 -7.1722 -0.2576 0.0347 9.7763
(ah)3 -1.9551 -2.5525 10.3472 0.6156 0.9604 -12.8813
(ah)4 1.2201 1.3921 -4.8024 -0.3707 -0.6620 5.8376

negative 16% 50% 84% 16% 50% 84%

1 0.2252 0.3720 0.6130 |ac|−1 -0.5111 -0.3817 -0.4118
ln |ac| -0.1850 -0.3023 -0.4392 1 -0.6194 -0.3599 -0.2610
ln2 |ac| 0.1039 0.1056 0.0847 |ac| 0.0928 -0.0019 -0.0070

|ac|2 0.0163 0.0186 0.0158

residual 16% 50% 84% 16% 50% 84%

1 -0.3615 0.2391 0.9557 1.1022 1.0846 1.0176
ln |ac| -0.0729 -0.0297 -0.0696 0.0180 0.0081 0.0203
lnreq -0.4557 -0.4907 -0.4759 0.1111 0.1218 0.1086

lnreq · ln |ac| -0.0372 -0.0272 -0.0308 0.0136 0.0086 0.0061

by the negative branch of the SPO. So, by restricting ourselves to (quite practical) ductilities of 10 or
less, we could model the residual branch of the median IDA as a secant by assuming γ50% = 1, while
generating the 16%, 84% fractiles as a 100%-wide band centered on the median (in log-space), i.e.,
µ(50±34)%(R) ≈ µ50%(R)1±0.5 ≈ β50% ·R1±0.5. The existing β50% coefficients are not optimal but can
still be used for this rough approximation.

3.4. Joining the pieces: The SPO2IDA tool

We have separately modeled the three segments and we have chosen to keep track of only the flattening
caused by the negative SPO and the “secant” caused by the residual. To join them into smooth and
continuous curves that accurately resemble the fractile IDAs we need two “filleting curves” that will
connect the negative branch flatline to the hardening and the “secant”. A simple but less accurate
method is to linearly extend all three separate segments to a point of mutual interception. Alternatively,
we can generate splines through a knot-insertion algorithm (Farin [15]), which provides a smooth
transition from segment to segment, while at the same time offering computational simplicity and
robustness, as it preserves convexity and can be made to be monotonic (as the fractile IDAs are
empirically known to be). Thus, we gain an almost complete description of the IDA for any ductility,
modeled as an invertible one-to-one function of either µ or R, an advantage of the equivalency of the
fractiles given R or µ . We are only missing the flatline, caused by the SPO’s ending at ductility µ f . This
can be accurately modeled by adding a flatline to the IDAs at R(100−x)%(µ f ), simultaneously producing
the (100− x)%-fractile of global-collapse capacity. By implementing in software the modeling and
joining of the IDA segments, a process explained in more detail by Vamvatsikos [16], we have
generated the SPO2IDA tool. It is free-source program, available as a spreadsheet [17] or an internet
application [18], that accurately reproduces the behavior of oscillators, as Figure 2(d) demonstrates.
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Figure 4. Demonstrating SPO2IDA: the median demand and collapse capacity as the SPO changes.
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3.5. Illustrative Results and Observations

The ease of computation provided by such a tool, plus the unique perspective offered by the IDA-
versus-SPO picture, can offer remarkable intuition into the seismic behavior of systems. As a
demonstration of the SPO2IDA tool we present Figure 4, an array of cases to briefly study the influence
of the backbone on the seismic demand and capacity. In each figure we select a basic backbone, vary
one or two of its parameters and then generate the median IDA responses and the corresponding global
instability collapse-capacities for each case. Figure 4(a) shows the benefit of delaying the negative
branch of the SPO and allowing hardening to reach higher ductilities. Each increase in µc allows the
median to stay on “equal displacement” longer, proportionally increasing the capacity. On the other
hand, in Figure 4(b), radically changing the hardening slope ah but keeping an identical negative branch
generates an equivalent set of trilinear SPOs, whose capacities only slightly increase with ah. Actually,
the difference in the capacity is small enough to be within the noise in the fitted data, so the resulting
capacities are not strictly increasing with ah. Decreasing the negative slope ac in Figure 4(c) has a
beneficial effect when no residual plateau is present, as the milder slopes allow higher capacities.
Still, if we include an extensive enough residual plateau (Figure 4(d)), the benefits of the milder
slope are restricted to the somewhat lower µ-demands that may influence some earlier limit-states;
the global instability collapse capacity is almost the same for all cases, as the backbones have the
same req, therefore the milder ac’s are providing only a small advantage. Figure 4(e) shows the benefits
of increasing the residual plateau that consequently increases the slope of the “secant” that the IDA
follows, thus improving capacities and decreasing the demands. And finally, Figure 4(f) shows the
obvious advantage of allowing higher fracturing ductilities µ f . The value of µ f literally decides where
to terminate the IDA, at times fully negating the effect of the plateau if it becomes too small; at µ f = 4
the IDA hardly receives any benefit from the plateau. As intuitive or surprising as some of the pictures
in Figure 4 may be, they are only a glimpse of what our new tool can really do.

3.6. SPO2IDA error estimates for moderate periods

Since the SPO2IDA tool is based on fitting over only a small subset of the SDOF backbones it can
simulate, just showing the fitting error over the sample of oscillators that we have used would greatly
underestimate the true prediction error. In order to be objective we have generated a large separate
test sample of randomly chosen bilinear, trilinear and quadrilinear backbones that were analyzed both
through full IDA and SPO2IDA. Thus, for each backbone and each of the three x%-fractiles we are
presented with two IDA curves, the “real” curve R(100−x)%(µ) and the approximate R̂(100−x)%(µ), or
equivalently expressed in µ given R coordinates, µx%(R) versus µ̂x%(R).

We are interested in knowing the error in two different settings: error in estimating a demand µ given
a certain level on intensity R and error in estimating a capacity R given a certain level of demand µ .
In both cases, the absolute difference between exact and approximate results tends to increase rapidly
when we progress further into the nonlinear range, making this measure unsuitable. We choose instead
to quantify the errors by integrating the relative absolute difference of each approximate x%-fractile
IDA curve versus the real one over their length, either in µ or R coordinates accordingly, a concept
similar to the one used by Lee et al. [5]:

(εR)x% =
∫ µ f

0

∣∣R(100−x)%(µ)− R̂(100−x)%(µ)
∣∣

R(100−x)%(µ)
dµ (5)

(εµ)x% =
∫ R f

0

|µx%(R)− µ̂x%(R)|
µx%(R)

dR (6)
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Table III. Average fractile-demand and fractile-capacity errors for moderate periods and a variety of backbone
shapes, as caused by the fitting in SPO2IDA and by the record-to-record variability and limited record suite size

in IDA.

SPO2IDA 10 records 30 records

x% = 16% 50% 84% 16% 50% 84% 16% 50% 84%

elastic-hardening

εR 0.02 0.01 0.02 0.11 0.07 0.07 0.06 0.04 0.04
εµ 0.01 0.01 0.02 0.06 0.06 0.09 0.04 0.03 0.05

elastic-hardening-negative

εR 0.02 0.03 0.03 0.09 0.06 0.06 0.05 0.03 0.03
εµ 0.02 0.03 0.03 0.07 0.05 0.06 0.04 0.03 0.04

elastic-hardening-negative-plateau

εR 0.16 0.14 0.18 0.20 0.12 0.13 0.12 0.08 0.07
εµ 0.09 0.11 0.18 0.20 0.18 0.23 0.11 0.11 0.14

In each case, the fractile-capacity error (εR)x% is calculated over the full demand spectrum from zero
to µ f , and the fractile-demand error (εµ)x% is similarly calculated up to R f , the earliest flatline of the
compared curves.

What is more important to the user is an assessment of SPO2IDA’s estimation error, caused by
imperfect fitting, as compared to the full IDA estimation error caused by the record-to-record variability
when using a limited sample of records. To provide such a standard for comparison, we will use
the bootstrap method (Efron and Tibshirani [19]) to estimate the (εR)x% and (εµ)x% errors that one
would expect to encounter when using only 10 or 30 randomly chosen records from the same scenario
earthquake. The original 30 records are sampled with replacement to generate numerous alternate
samples of 10 and 30 records, which are then applied to each of the randomly-chosen backbones, thus
resulting to a large number of alternate estimates of the fractile IDAs for each test-case. Then, using the
original 30-record suite results as “exact”, the average (over all bootstrap samples) (εR)x% and (εµ)x%
are calculated, as shown in Table III.

Before we interpret these results, it is important to understand that SPO2IDA was based on the
30-record IDA, thus its error, as calculated in the table, comes in addition to the error induced by the
record-to-record variability in the 30-record fractile IDAs, i.e., SPO2IDA cannot be more accurate than
a 30-record IDA. Still, if the additional (fitting induced) error it incurs is small enough, it will disappear
(as when taking the square root of sum of squares of the two errors) under the considerable (record-
variability induced) error in estimating the fractiles with a 30-record IDA. Thus, by comparing the
(εR)x% and (εµ)x% of SPO2IDA versus the average such errors due to the record-to-record variability,
we observe that SPO2IDA can estimate the fractile demands or capacities with an error comparable
to the record-to-record noise around the 10-record full IDA results. This means that, statistically, the
difference between the full IDA and SPO2IDA results is on average insignificant when only 10 records
are used. If 30 records are employed for IDA, SPO2IDA again performs very well for all backbones
except the complex quadrilinears where it has, on average, an error somewhat more significant, but
still comparable to the record-to-record induced noise. All in all, SPO2IDA is proven to be remarkably
accurate, able to outperform the 10-record full IDA and in many cases match the 30-record IDA.

The values in Table III only describe the performance of SPO2IDA averaged over numerous
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12 D. VAMVATSIKOS AND C. A. CORNELL

backbone shapes and over the length (either in R or µ terms) of the fractile curves. Some individual
backbone shapes may be captured better than others and within the curves themselves some segments
may be more accurately matched. As evident from Table III, the error tends to increase for more
complex backbones, partly due to the cascading of the models; as more segments are added to the
backbone, each additional segment relies on the accuracy achieved in the previous ones. Thus, we
should expect higher error in the later segments (e.g., the residual plateau). Even within the same
segment of the curve, the distribution of the error is not homogeneous, neither for the full IDA, nor
for the SPO2IDA. In the IDA results, as the ductility increases beyond yielding, the record-to-record
variability and the error it induces increase as well. This, in turn, introduces higher noise in the fitted
data, thus making the fitted equations less accurate at higher ductilities. So, in general, one should
expect errors lower than average at low ductilities and higher than average at high ductilities for both
methods. Finally, since we have used regression to fit the IDA curves, these equations will perform
better in the middle of the fitted dataset and worse at the edges (Weisberg [20]). So, one should
generally expect higher errors closer to the edges, e.g., at ac = −0.01 for Equation 2 or at req = 0.9
and ac =−0.01 in Equation 4. In conclusion, there are combinations of backbone parameters that may
cause SPO2IDA to produce a mediocre estimate for some segment of the IDA, but in our experience
even these cases are rare.

4. EXTENSION TO ALL-PERIODS PINCHING MODEL

Up to now we have described a procedure used to obtain the fractile IDA curves of a fairly limited
model. Still, this can be easily extended to other periods, dampings, or hysteretic models. What we
have really introduced above is a methodology that permits the accurate modeling of the SDOF fractile
IDA curves for complex backbones by investigating only a small number of them. If one wishes to
capture the behavior of a different SDOF system, or use a different suite of ground motion records,
all that is needed is repeating the above three fits for the hardening, negative and residual part to
include the new parameters. As an example, we are going to extend SPO2IDA to both short and long
periods, still using the same suite of 30 records, moderately pinching hysteresis and viscous damping
of ξ = 5%. The overall concept will be precisely the same as for the moderate periods, simply the
necessary coefficients will be given by more complicated equations that, in addition to the backbone
parameters, will now include the oscillator period T .

Unfortunately, the period influences each of the backbone regions in a complex, coupled way, that
makes it impossible to assume independence. So, where we had mostly one or two dimensional fits,
now we will have two and three dimensional ones. This fact increases the number of oscillators that we
have to investigate by an order of magnitude. Still, the fundamental results that we previously employed
to reduce the number of backbones investigated are not period dependent. For example, when fitting
the flatline heights induced by the negative branch, although for non-moderate periods they may vary
significantly within an “equivalent” set, they are still found to depend linearly on ah.

4.1. Fitting the hardening, negative and residual branch of the IDA

We can use Equations (1)–(4) that accurately capture the features of the corresponding part of the IDA;
we only need to provide fits for the coefficients βx% and γx% that include dependance on T :

lnβx% = ∑
i

bx%,i px%,i(ah,T ), ln(γx% +1) = max

(
∑

i
bx%,i pi(ah,T ) , 0

)
, (7)
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for any ah ∈ [0,0.9],T ∈ [0.2s,4s]

βx% = ∑
i

bx%,i pi(ac,T ), γx% = min

(
∑

i
bx%,i pi(ac,T ),1

)
(8)

for any ac ∈ [−4,−0.02], T ∈ [0.2s,4s]

βx%, γx% = ∑
i

bx%,i pi(ac,req,T ), (9)

for any ac ∈ [−4,−0.05], req ∈ [0.05,0.90], T ∈ [0.2s,4s]

The coefficients bx%,i and corresponding functions can be found in Table IV for the hardening
(Equation 7), the negative (Equation 8) and the residual (Equation 9) part of the IDA curves.

As expected, the results are relatively similar in the moderate and long period range especially for the
hardening branch where the median is predictably following the “equal displacement” rule; even there
the situation is much different in the short period domain. In that region there is significant dependance
on T , making any simplifications of the above equations quite difficult.
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Figure 5. Median IDAs for a backbone with ah = 0.2, µc = 2, ac =−0.5, r = 0.5, µ f = 6 but varying periods.

4.2. Illustrative Results and Observations

Using splines to connect the above presented three fits and to integrate them into SPO2IDA, we have
generated a tool that can accurately capture the behavior of a complex quadrilinear backbone for a
wide range of periods, from 0.2s to 4s (Vamvatsikos [21]). An example of its application is presented in
Figure 5. Therein the median IDA curve of an elastic-hardening-negative-plateau backbone is recreated
for several oscillator periods. Starting at a moderate period of T = 1s, the flatline happens at R≈ 4.1,
but if we decrease the period down to T = 0.3s, we observe that the IDA becomes more aggressive;
softening commences at very low values of R and the flatline is reached very quickly, at R ≈ 2.7
for T = 0.3s. On the other end, when the period is increased, the median IDA is “milder”, it rises
and straightens out, staying longer on the “equal displacement” rule, i.e., on the µ = R line. Thus,
the flatline is greatly delayed, occurring at R ≈ 5.5 at T = 4s. Obviously, the oscillator period has a
significant effect on the flatline but also on all the features of the fractile IDAs. The only exception
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Table IV. Coefficients needed for fitting the IDA hardening, negative and residual part in Equations (7)–(9).
bx%,i for βx% bx%,i for γx%

hardening 16% 50% 84% 16% 50% 84%

ln−1(T +1) -0.1520 -0.1985 -0.6344 0.1925 0.3689 0.9434
1 -0.5027 -0.0955 0.2649 0.1246 0.0480 0.0277

lnT -0.0542 -0.0316 0.0818 -0.1045 -0.1747 -0.4226
ln2 T 0.0181 0.0291 -0.1250 0.0605 0.1364 0.3241

ah ln−1(T +1) -0.1520 -0.1985 -0.6344 0.1925 0.3689 0.9434
ah 0.8058 0.3737 -0.0954 -0.1989 -0.2105 -0.0297

ah lnT 0.2037 0.2334 0.5720 -0.0822 -0.1916 -0.5081
ah ln2 T -0.2572 -0.3683 -0.5508 0.1711 0.3816 0.5662√

ah ln−1(T +1) -0.1520 -0.1985 -0.6344 0.1925 0.3689 0.9434√
ah -0.3675 -0.3041 -0.1600 0.0713 0.1533 -0.0010√

ah lnT -0.1520 -0.1985 -0.6344 0.1925 0.3689 0.9434√
ah ln2 T 0.2258 0.3128 0.6418 -0.2237 -0.4964 -0.8851

negative 16% 50% 84% 16% 50% 84%

1 0.2391 0.3846 0.5834 1 -0.2508 -0.2762 -0.2928
lnT 0.0517 0.0887 0.1351 |ac| -0.5517 -0.1992 -0.4394

ln |ac| -1.2399 -1.3531 -1.4585 a2
c 0.0941 -0.0031 0.0683

ln |ac| lnT -0.0976 -0.1158 -0.1317 |ac|−1 0.0059 0.0101 0.0131
ln2 |ac| 0.0971 0.1124 0.1100 lnT 0.1681 0.2451 0.1850

ln2 |ac| lnT 0.0641 0.0501 0.0422 |ac| lnT 0.1357 -0.0199 0.1783
ln3 |ac| -0.0009 0.0041 0.0056 a2

c lnT -0.0127 0.0091 -0.0305
ln3 |ac| lnT 0.0072 0.0067 0.0074 |ac|−1 lnT 0.0010 -0.0075 -0.0066

ln2 T -0.1579 -0.0135 0.0027
|ac| ln2 T 0.2551 -0.0841 0.0447
a2

c ln2 T -0.0602 0.0222 -0.0151
|ac|−1 ln2 T 0.0087 -0.0003 -0.0025

residual 16% 50% 84% 16% 50% 84%

1 -0.2226 0.1401 0.7604 1.0595 1.0635 1.0005
ln |ac| -0.0992 -0.0817 -0.1035 0.0236 0.0177 0.0283
lnreq -0.4537 -0.5091 -0.5235 0.1237 0.1466 0.1607

lnreq · ln |ac| -0.0398 -0.0236 -0.0287 0.0111 0.0048 -0.0004
lnr−1

eq 0.0829 -0.0364 -0.0174 -0.0023 0.0102 0.0021
lnr−1

eq · ln |ac| 0.0193 -0.0126 -0.0118 0.0008 0.0019 0.0035
lnT -0.1831 -0.2732 -0.5651 -0.0881 -0.1044 -0.1276

lnT · ln |ac| -0.0319 0.0015 0.0437 -0.0077 -0.0137 -0.0413
lnT · lnreq 0.1461 0.1101 0.0841 -0.0239 -0.0090 -0.0085

lnT · lnreq · ln |ac| -0.0227 -0.0045 0.0159 0.0025 -0.0014 -0.0198
lnT · lnr−1

eq -0.0108 0.0333 0.0033 0.0082 -0.0003 0.0037
lnT · lnr−1

eq · ln |ac| -0.0081 -0.0000 0.0033 0.0007 -0.0013 -0.0043
ln2 T 0.1660 0.1967 0.0929 0.0317 0.0038 0.0673

ln2 T · ln |ac| -0.0124 -0.0304 0.0130 0.0006 0.0065 0.0074
ln2 T · lnreq 0.0273 0.0396 0.0580 -0.0173 -0.0484 -0.0737

ln2 T · lnreq · ln |ac| -0.0167 -0.0209 -0.0144 0.0056 0.0068 0.0255
ln2 T · lnr−1

eq -0.0182 0.0311 0.0221 0.0007 -0.0112 -0.0073
ln2 T · lnr−1

eq · ln |ac| -0.0097 -0.0047 0.0007 0.0004 0.0008 0.0005
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Table V. Average fractile-demand and fractile-capacity errors for short, moderate and long periods and a variety of
backbone shapes, as caused by the fitting in SPO2IDA and by the record-to-record variability and limited record

suite size in IDA.

SPO2IDA 10 records 30 records

x% = 16% 50% 84% 16% 50% 84% 16% 50% 84%

elastic-hardening

εR 0.04 0.04 0.05 0.09 0.07 0.09 0.06 0.04 0.05
εµ 0.02 0.03 0.04 0.06 0.06 0.09 0.04 0.04 0.06

elastic-hardening-negative

εR 0.05 0.04 0.05 0.08 0.06 0.09 0.05 0.04 0.04
εµ 0.05 0.03 0.04 0.07 0.07 0.10 0.04 0.04 0.04

elastic-hardening-negative-plateau

εR 0.20 0.18 0.20 0.21 0.16 0.18 0.14 0.10 0.12
εµ 0.19 0.24 0.26 0.20 0.17 0.24 0.12 0.12 0.15

appears for moderate and long periods in the region where the backbone is still hardening. There the
median IDA follows the equal displacement rule and thus becomes insensitive to the (moderate or
long) period. As observed at least for the median in Figure 5, SPO2IDA is now able to capture all such
period-dependent effects.

4.3. SPO2IDA error estimates for all periods

Similarly to the moderate period model, we have generated a separate test-sample of various oscillators
with randomly generated backbones and periods. Then we calculated the fractile demand and capacity
errors (εµ)x% and (εR)x% according to Equations (5)–(6) both shown in Table V. Therein we have also
included the bootstrapped (εµ)x% and (εR)x% values for a full IDA with 10 and 30 records.

Once again, the SPO2IDA error is, practically speaking, comparable to the error induced by the
record-to-record variability in a full 30-record IDA for all cases, except the last, the quadrilinear one.
Same as before, the most complex backbone shapes are harder to capture, but still, the SPO2IDA
error remains within reasonable limits. Similarly to the moderate period case, the errors in Table V
are averaged over numerous backbones, periods and along each individual fractile curve. Therefore,
individual cases may perform better or worse than the posted values. The only difference from the
moderate period case is the additional consideration of period. Generally, in the short period range,
the record-to-record variability is higher thus degrading the accuracy of both IDA and SPO2IDA. Still,
barring some isolated below-average-accuracy estimates, the results are very reliable.

5. FROM THE IDA TO THE INELASTIC DISPLACEMENT RATIOS

On a more practical aspect, SPO2IDA can directly produce R-factors and inelastic displacement ratios,
often used in seismic guidelines (e.g., FEMA [2]). The direct mapping of the µ-given-R to the R-
given-µ fractiles effortlessly provides fractile R-factors. Similarly, one can easily generate (Cµ)x%, the
x%-fractile of inelastic to elastic displacement ratio given µ , and (CR)x%, the x%-fractile of inelastic
to elastic displacement ratio given R, as defined in Miranda [22]. Actually the fractiles of the two
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ratios are equivalent as (Cµ)x% = (CR)x% = µx%(R)/R = µ/R(100−x)%(µ). By modeling the fractiles
in SPO2IDA we can use the same fits to generate the R-factors and both the inelastic displacement
ratios; had we chosen to model the mean response, we would need a separate fit for each of the three
quantities (Miranda [22]).

On the other hand, instead of the fractiles, the mean R-factors or mean inelastic displacement ratios
may be of interest. If E[·] is the expectation operator, then we want to estimate E[R], E[Cµ ] = µE[1/R]
for a given value of µ and E[CR] = E[µ]/R for a given value of R. Actually, for values of R higher than
any of the flatlines, E[µ] and correspondingly E[CR] become infinite. At lower R-values the distribution
of µ given R is approximately lognormal (Shome and Cornell [23]) and so is the distribution of R
given µ for any µ-value. In those ranges we can use the properties of the lognormal distribution (e.g.,
Benjamin and Cornell [24]) to show that

E[R] = R50%(µ) · exp
(

1
2

σ2
lnR

)
, σlnR =

1
2

(lnR84%(µ)− lnR16%(µ)) (10)

E[CR] =
E[µ ]

R
=

µ50%(R)
R

· exp
(

1
2

σ2
ln µ

)
, σln µ =

1
2

(ln µ84%(R)− ln µ16%(R)) (11)

E[Cµ ] = µE
[

1
R

]
=

µ
R50%(µ)

· exp
(

1
2

σ2
− lnR

)
, σ− lnR = σlnR (12)
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Figure 6. Comparing estimates of mean Cµ ratios generated by SPO2IDA for the special elastic-perfectly-plastic
case versus the real data and results from Miranda [10] for µ = 1.5,2,3,4,5,6.

In Figure 6(a) we have used Equation (12) to calculate average Cµ ratios using SPO2IDA for
an elastic-perfectly-plastic system over a range of periods from 0.1s to 3s using SPO2IDA. On the
same figure we also plot the average Cµ calculated directly from the 30 record suite through IDA,
without the use of any approximation or fit. Clearly, the SPO2IDA results closely match the exact ones,
except perhaps for the shortest of periods. As a further comparison, we have recreated in Figure 6(b)
the Cµ results from the proposed equation in Miranda [10], generated for an elastic-perfectly-plastic
model with kinematic hardening, using over 200 records that have a wide magnitude and source-to-
site distance range, and that were all recorded on firm soil. As expected, the results are comparable
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(c) Kinematic hysteresis for elastic-negative system, ac =
−0.2, T = 1s for record #29 at intensity R = 2.4.
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T = 1s for record #29 at intensity R = 2.4.

Figure 7. The different effect of the hysteresis model on oscillators with elastic-perfectly-plastic and elastic-
negative backbones.

everywhere but in the short period range, where the record-to-record variability is maximum. Of course,
such a specialized fit should be expected to outperform SPO2IDA, especially in the short periods. Still,
our tool is proven to be suited to many applications, even beyond estimating the fractile IDAs that it
was originally designed for.

6. LIMITS OF APPLICABILITY

By mostly focusing on the oscillator backbone we have restricted our effort in several other aspects;
ground motion records were selected from a narrow magnitude and distance bin and correspond to firm
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soil only, while hysteresis-wise, we have only considered a 5% damped, moderately pinching model.
Some of these choices may have a significant impact on the response of oscillators thus accordingly
restricting the applicability of SPO2IDA.

Regarding the selection of the records, the issue of magnitude, source-to-site distance and soil
site appear. Only the case of the elastic-perfectly-plastic and the elastic-hardening system have been
documented in the literature: The resulting mean R-factor, Cµ and CR are not significantly influenced
by magnitude, except maybe in the shorter periods (Ruiz-Garcia and Miranda [25]), or distance, unless
near-fault directivity exists (e.g., Nassar and Krawinkler [4], Miranda [10]). Still, such issues remain
open when dealing with the post-peak response. Regarding the soil-site, Miranda [10] has found little
dependance within different firm soil sites, but Miranda [26] and Rahnama and Krawinkler [27] confirm
that soft soil sites can be significantly different and their effect needs to be taken into account when
applicable.

The oscillator hysteresis details, e.g., the degree (or existence) of pinching or the cyclic deterioration,
are another interesting issue. For example, for a moderate period elastic-perfectly-plastic system
(Figure 7(a)) the effect of using a pinching, a modified Clough or a kinematic model [27] is practically
negligible; they generate the same median (and similarly all fractile) IDA curves. For an elastic-
negative backbone, as shown in Figure 7(b), the median IDA (and actually any individual IDA curve) of
the kinematic shows consistently higher µ-demands and lower R-capacities, while the other two models
are quite similar. Figure 7(c) shows that on the descending branch of the backbone the kinematic model
cannot maintain the full loops achieved by the pinching (Figure 7(d)) or the modified Clough models
[see also 27–29], thus arriving to an early collapse. In general, various hysteretic details may become an
important parameter once we go past the peak of the backbone, while others may remain insignificant.
For a more comprehensive treatment of this issue the reader is referred to Ibarra [13].

7. CONCLUSIONS

A complete methodology has been presented that accurately accounts for the effect of the backbone on
the seismic behavior of an oscillator with arbitrary period. The investigated backbone shapes range
from simple bilinear to complex quadrilinear with an elastic, a hardening and a negative-stiffness
segment plus a final residual plateau that terminates with a drop to zero strength. It was found that
(1) long hardening segments significantly improve performance, while their slope has only a small
effect, (2) the steeper the slope of the negative-stiffness segment, the higher the demands and the
lower the capacities past the peak of the backbone, (3) residual plateaus that are higher in terms of
strength or longer in terms of ductility, both benefit the post-peak performance and (4) the oscillator
period significantly influences the effect of all segments except the hardening one in the moderate
or long period ranges. Probably the most important fact is that (5) many different backbones exist
that produce similar dynamic behavior, often defying current engineering intuition. Thus, only some
basic backbone shapes need to be investigated, allowing a complete quadrilinear backbone to be
captured with only a handful of equations. The result is a flexible, publicly available software tool
for performing fast assessments of the (median and dispersion of) demand and capacity of virtually
any oscillator. In conjunction with an appropriate methodology that extends predictions to MDOF
structures (Vamvatsikos and Cornell [30]), an engineer-user is able to effortlessly get an accurate,
spreadsheet-level estimate of seismic performance without having to perform the costly analyses,
providing ready insights into the relative advantages and disadvantages of possible design or retrofit
alternatives.
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