N =

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Simplified fragility-based risk analysis for impulse governed blast loading
scenarios

Pierluigi Olmatf, Francesco PetrifjiDimitrios Vamvatsiko$ Charis Gantés
@ Tokyo Polytechnic University, Atsugi, Kanagawapda, Email: pierluigi.olmati@gmail.com
® Sapienza University of Rome, School of Civil andustrial Engineering, Rome, ltaly,

¢ National Technical University of Athens, SchoolGifil Engineering, Athens, Greece

Keywords. performance-based design, fragility analysis, tgafctor, steel built-up blast resistant

door, simplified SDOF model, Monte Carlo simulation

Abstract

Blast-loaded structures are presently assessedemighed following a deterministic approach,
where only a set of structural analyses under weasé design scenarios are carried out in order to
verify each limit state. As a rational alternatiae;onditional probabilistic approach is introduted
offer comprehensive risk assessment and to allevdésign with user-defined confidence in
meeting performance targets in view of uncertagfie simplify the probabilistic consideration of
the uncertain parameters, the determination oblhst hazard and the structural response are
decoupled into the evaluation of blast hazard cuarel structural fragilities curves, respectively,
by introducing a single conditioning intensity mags This is chosen to be the impulse density,
shown to be sufficient for impulse-governed scargrachieving a reduction of the computational
effort by several orders of magnitude without idioing bias. Furthermore a problem-specific
safety factor formulation is introduced to incorgtar the influence of uncertainties in a simple
manner, akin to current engineering practice. fpsodf-of-concept test, a steel built-up blast
resistant door is subjected to an accidental détwmaf mortar rounds in a military facility. The
equivalent single degree of freedom model is adbpt®rder to conduct the structural analyses,
while detailed finite element analyses are caroietfor validation. Finally, the conditional
approach risk analysis on the steel door is contbagainst the results obtained through the
comprehensive (probabilistic) unconditional apphpatiowing the validity of both the proposed

intensity measure and safety factor formulation.
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1 Introduction

As for any structural problem, in order to assbssrésponse of structures subjected to a detonation

the following tasks must be achieved:

a) hazard (blast) analysis [1, 2],
b) structural demand assessment (i.e. structural sisal?],
C) structure/component capacity assessment [2],

d) safety assessment (i.e., comparison of demandapatity) [3].

Usually the execution of all of the above stepsoisducted in a deterministic rather than a
probabilistic way. At the scale of the structurgdtem the global response can be assessed by
considering pertinent damage scenarios [4, 5] wdtibe scale of the single structural element
detailed numerical models are employed for theembmrediction of both blast demand [6 - 7] and
damage pattern of the structural element [8].

While, generally, the deterministic approach idgmed in order to design structures under blast
loads, a number of works can be useful in ordeatiorate probabilistic models and bound the
uncertainties affecting the design of blast resisséructures. Stewart and Netherton [9] studieal tw
types of window glazing system and investigatedctineial issue of selecting an appropriate
intensity measure for computing the fragility cusVer blast loaded structures. The fragility curves
are developed as a function of two different inignsmeasures (the explosive weight and the stand-
off distance) and several fragility curves are catef for specific cases of study. Netherton and
Stewart [10] investigated the accuracy of the Hi@atling prediction model, concluding that the
overall risk is sensitive to uncertainties of thasbload model. An example regarding the
complexity of the blast load modeling is shownhe tork of Ballantyne et al. [6] where the
clearing effect for finite width surfaces is invgstted. In the study of Wu et al. [11] a series of
different kinds of concrete slabs are tested ireotd both compare their blast resistance and
evaluate the uncertainty affecting the pressurienaibn procedures provided in the Unified
Facilities Criteria (UFC) 3-340-02 [2] manual. Clgeand Young [12] used Monte Carlo
simulations in order to estimate the probabilityaifure for windows subjected to blast load
induced by a vehicle bomb. Low and Hao [13] presgémésults of a parametric investigation on the
reliability of reinforced concrete slabs under blasding in order to establish appropriate
probabilistic distributions of the resistance paggens. Olmati et al. [14] carried out fragility

analyses for the performance-based design of aigdeall panels subjected to blast load by
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adopting the scaled distance as intensity meaancepresented a discussion about the effectiveness

of this choice.

The difference between deterministic and probahilepproach is that in the first case only one
blast load scenario is considered in order to éefre hazard, usually taken to be representative of
the worst case. Then, a single structural moddizegeon, typically incorporating average or
characteristic material properties, is analyzedhiain the corresponding Demari) (value.

Similarly the Capacity@) is assumed to be a single value describing aeruppeshold in the
response parameter of interest (e.g. rotationraimgt which when exceeded determines the
violation of the limit state. The safety comparisemerformed through the well-known equation

C>D; as a consequence, the result is a binary “saf&insafe” answer.

Conceptually, the probabilistic approach can besictared to be a repetition of the deterministic
assessment over many (ideally all) possible scesafihen, the safety assessment becomes an
evaluation of the probability that the demand ersdbe capacity, formally B&D), also known as
the probability of exceedance of the limit statattis tied to the capacity. For example, if one
considerdN, equally probable blast loadings; equally probable realizations of the structure and
N. equally probable capacity values, the@®D) is the fraction of th&ly,'Ns'N. scenarios where the

demand exceeds the capacity.

Both the advantages and disadvantages of usingrtiabilistic approach are well-discussed in the
literature [15 - 17]. They mainly revolve aroun@ ttomplexity of applying a probabilistic analysis
versus the additional insight, reliability and ofteconomy offered when one takes into account all
pertinent uncertainties. The emergence of perfoosdiased engineering and present abundance of
computational resources have allowed the adopfignadbabilistic methods in many fields of the

civil engineering [18 - 23], a trend that is, nowags, also moving into blast [9, 10, 14, 24]. Inwie

of such advancements, a streamlined method forapiti&tic performance-based blast analysis is
proposed here for impulse-governed loading of-finsde-dominated structures. Essentially it
confers all of its advantages while removing itecpezed complexity by having a low

computational footprint and closed-form solutioos$afety assessment.

2 Probabilistic basisfor perfor mance assessment
Assessing the probability of exceedance for anyt ktate of interest, B D), can be achieved by
several procedures that can be broadly categoirzib classes: the unconditional (UA) and

conditional (CA) approach. In the unconditional eggzh, samples of blast scenarios, model
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realizations, and potential capacity values areeggrd, then combined in order to determine
P(C<D) by a single Monte Carlo simulation. The uncormutél approach is exactly the generation
of theNp'Ns'N; scenarios described earlier, from which the faacthat violates (exceeds) the limit
state is evaluated. The main disadvantage of thenditional approach is the need for performing
Nb'Ns structural analyses, if the value of capacityssuaned not to influence the structural response,
or Ny'Ns'N¢ otherwise. This has led to the adoption of theated conditional approach, widely
used in earthquake engineering [25, 26]. Thereinngerface variable, called intensity measure
(IM), is introduced to be able to fully representcharacteristics of the hazard in a single scalar (o
rarely vector) variable. FormallyM needs to be "sufficient” [27]. Then, hazard analpgeds to
assess the distribution ¥l arising from the potential blast scenarios, whtleictural analysis is
reduced to computing the distribution of structueslponse conditioned on the value of the (scalar)
IM.

A blast scenario depends on multiple parameteasdsoff distance, charge weight, height of the
detonation, presence of barriers, etc.). Converselyinconditional approach would involve the
determination of structural response over the vemfthazard parameters, leading to a large number
of blast scenario realizatioi, and corresponding structural analyses. By introdua scalatM,

the conditional approach effectively reduces tinecstiral analysis effort by several orders of
magnitude. Perhaps the only downside is that tbkealnility of exceedance of the limit state is no
longer a simple fraction but instead necessitdtesntegration through the application of the total

probability theorem:

P(C < D) = f “bc <D | 1M) FUM) 9IM (1)

0

The target of structural analysis now becomes sessment of the conditional probability of
exceeding a limit state, @€D|IM), the so-called limit state fragility curve or fttiron [28].

P(C<D]|IM) is determined for a range ¥, ideally from a value ofM=0 to a value that causes the
probability of exceedance to become 1, essentjigiranteeing failurd(IM) is the probability
density function (PDF) of encountering a giyéhvalue and its determination is the target of the
blast hazard assessment. Thus, the problem iseetftie divided in two parts with the benefit that
the complete structural characterization, achidaethe fragility curve, can be used for any blast
scenario (different charge weights, stand-offs,) e&s both the demarid and the capacit¢ are
random variables, the actual evaluation of the gbdhy of exceedance can become more complex

than Eq. (1) implies. Following simplifying assunagpts and methods from performance-based
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engineering [29] a usefuM for performance-based blast assessment and desidpe presented,

together with the analytical evaluation of Eq. i(La format that is useful for practical applicaso

3 Theimpulse density asintensity measure

Two of the main parameters that determine the hdast on structures are: the scaled distaége (
and the amount of explosive or charge wei§lt (Fig. 1a shows their effect on blast presspje (
and blast impulse ) both taken as load parameters for the case tdiburst explosions [2]. The
stand-off distanc® is measured from the target to the explosive syurbile the scaled distange
is obtained by dividindR by the cube root of the explosive charge welWyhpo is the side-on
pressurep; is the reflected pressutig,andi, are the side-on and reflected impulse densities,
respectively [2]. Based on the UFC 3-340-02 [2] oedrihe blast load can be defined as an
equivalent triangular pulse as indicated in Fig.\ilaerety is the equivalent triangular pulse
duration. Via the functional relationships showrfFig. 1a in terms of the scaled distance and
explosive weight, a direct dependence of the itest on both peak pressusgax (pr in the case of

Fig. 1a) and impulse density) €an be observed.
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Fig. 1: (a) Blast load parameters [2]; (b) desitasbload shapes [2]

Fig. 2a represents an iso-response curve, i.erva of constant structural demadin this case
referring to the support rotati@), plotted as a function of both the peak presaunethe impulse
density of the blast load. The chart shown in Bayis called pressure-impulse diagram and it is
very common in blast engineering when designingcstiral elements [30]. The pressure-impulse
diagram indicates that the structural responseraipen both peak pressyrand impulse density

i. Therefore a comprehensiWd to adopt in blast design should be the veqigpy &nd consequently
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the fragility is best represented by a surfad®| () instead of a curve B(i) or PO|p). As
previously stated, identifying cases where thearecan be reduced to a scalar parameter is
advantageous, as it would reduce the computateffat by an order of magnitude.

The relationship betwearandp is well known in current design procedures thatlmsed on a
single pressure-impulse diagram for a component [B7]. Fig. 2a shows the different regions of
the pressure-impulse diagram: i) the impulsiveardlr) where only the impulse density is
relevant for the structural response of a compqgngrnhe dynamic region (R) where the structural
response of the component is governed by the loapesand the pressure magnitude; and finally
iii) the quasi-static region pwhere only the peak pressure is relevant fosthetural response

of a component. If a probabilistic approach is d@ddpan infinite number of such pressure-impulse
diagrams should be considered for the specificaesp level, each one corresponding to a single
value of the probability of exceedance betweendlarEach pressure-impulse diagram is a cross
section of the above mentionedRy,i) fragility surface, defined by a plane at constanabability

of exceedancB,. Each fragility curve RJ|i), where impulse is thidM, is a cross-section of Pfp,i)
defined by a plane at a constant pressure. Figh@as these cross-sections of the fragility surface
that define the fragility curves, each one for astant value of the pressure. This direct relahgns
between the constant-pressure fragility curves. (E&y and the pressure-impulse diagram (Fig. 2a)
is crucial because from the fragility curves of.Fig the pressure-impulse diagram for a constant
conditional probability of exceedance can be imratadlly obtained, e.g., as in Fig. 2a. Then, the
points of a certain pressure-impulse diagram cavidweed as a series of iso-probability impulse
values, each one belonging to a differer|P (fragility curve, as shown in the illustrative exgle

of Fig. 2.

The PDIi) fragility curves of Fig. 2a are practically coident when the pressure value belongs to
the impulsive region. This is because in the impalsegion a change of the pressure does not
imply a significant variation of the structural pesise and, consequently, of the structural fragilit
On the other hand, when the pressure value mowesdahe dynamic and quasi-static regions the

fragility curves become substantially different.
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Fig. 2: Probabilistic description of the blast resge for a structural component. (a) Generic

pressure-impulse diagram; (b) structural fragitibnditioned on impulse for different given

pressureg; (i = 1-6). Forp; in the impulsive region, the curves are essegt@incident.

For most blast-resistant structural elements thdiftg conditions due to detonations of high
potential explosives are generally associated thighmpulsive region of the pressure-impulse
diagram. Therefore the impulse densi)yig selected akVl to characterize the blast load. However,
for very stiff and heavy structures, the loadingditions can be on the dynamic or quasi-static
region of the pressure-impulse diagram; for thilkof structures the impulse density is an
insufficientIM and can lead to over estimation of the probabhidftgxceedance (i.e., bias).

In Fig. 3a a general pressure-impulse diagramas/shThe choice of as intensity measure means
that for a pressure valymg belonging to the impulsive region of the pressorpulse curve a range
of the impulseAi can be identified, spanning within points “a” IRCJi) =¢) and “c” (PO>Cli) =

1-¢) (wheree <<1) in Fig. 3a. In this region, the pressure-itsplcurve can be approximated only
by its impulsive asymptote. This trend defines eveuepresenting the structural fragility for
impulse sensitive structural elements; see FiglrBarder to obtain the above fragility curve, a
number of load samples (pairs of the explosivegdand the stand-off distance) can be
considered. Each load sample is defined by bo#e& pressure and an impulse density in order to
characterize, e.g., the triangular load shapenhgridtter case the decay coefficient should also be
defined [35]). The load sample should belong t@aapropriate region located in the pressure-

impulse plane around point “b”, as shown in In Bg.
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4  Probabilistically-consistent safety factor approach

The evaluation of the integral in Eq. (1) can be simplified by a number of appr@ssat@ptions.
First, both deman® and capacitL are assumed to be lognormally distributed, having median
values ofi, i, and dispersions (standard deviations of the log daf&) ahdgp. The latter are
numerically almost the same ¥sandVy, the coefficient of variations of the capacity and demand
respectively, at least for values less than about 0.6. Then, following the ideriva€Cornell et al.
[29], it can be shown that for uncorrelated demand and capacity, Eq. (1) becomes:

(2)

Ini. —Int
P(C < D) = 1—¢<¥>

VBE+ B
Where® is the cumulative distribution function (CDF) of the standard normal distributio. llet
X represent the Acceptable Probability of Exceedance (APEpe the inverse b, andKaee be
the standard normal variate corresponding to non-exceedance probabilitytbém-checking for
P(C<D) <x can be transformed via Eq. (2) into Eq. (3) and Eq. (4) [29, 38].

a

) = eKareBT < e (3)
ip

where
pr = /.Bcz +B5; Kppp =P (1 —x) (4)

The safety factorl] is defined by Eq. (3) and can be broken into familiar demand and capacity
factors, each ruled by the corresponding dispersion. Safety checking siropigdsea test of

whether the ratio df,./(1ip), exceeds 1.0.
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The proposed safety factor is thus intended topipdied as multiplier of the median demand
intensity for a probabilistically-consistent desfnstructural elements. Wherever a monotonic
relationship is available that connects impulsesdgrithelM) with structural response, this
relationship can be used to connect the mediaronsgpto the median intensity. Then, Eqg. (3) can
be used to incorporate the effect of uncertainty @esign decisions. For example an approximate
formula for predicting the maximum deflectigf.x of a component in case of impulse sensitive

structures is as follows [30]:

L1/ @A)? 5
Ymax (@) _E<m+d}’> ( )

In Eq. (5)Ais the loaded area of the elemens, the impulse density of the demaitlis the total
mass of the elemerts, andd, are the yield resistance and displacement resegctf the element,
andKy is the load-mass transformation factor (see fdhgvsections). The component must be
assured to maintaiex lower than the threshold valygs of the considered limit state. This can be
simply done by comparing s against the value ofux(1i), whered has been derived for the desired
APE and the appropriate dispersions of demand apdaity. Note that a lognormal PDF is not
necessarily preserved in the transformation ofaldeis from structural response to intensity, thus

Eq. (3) only becomes a rough but still useful agpmation.

5 Hazard analysisof the case-study

To showcase the proposed approach, we shall corssichese-study of a blast-resistant door subject
to accidental explosions of ammunitions. The gpedt-up blast resistant door under consideration
is located in the exterior side of a building bgmg to a military facility. Along the side of the
building there is a street transited by militaryniates carrying boxes of 60 mm mortar rounds in
various quantities. Each metal ammunition box aostéour High Explosive (HE) 60 mm mortar
rounds, each containing 160 g (0.34 Ib) of TNT [3U]je vehicles (jeep or van) generally carry
about twelve ammunition boxes leading to a mediaosive weight of 7.7 kg of TNT. At 25%

and 75% of the cases, no more than ten and fiile@nunition boxes are carried, respectively.
Consequently a lognormal distribution with the ¢oefnt of variation of 0.31 fits well with the

total amount of explosive on an arbitrary militashicle. Furthermore, the properties of the
lognormal probability density function allow ustiike into account rare cases where the vehicle is

loaded over the “maximum considered” number of amitimn boxes.
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228 As there are multiple identical blast doors aldmg length of the building, detonation is assumed to
229  occur right opposite one of them, with the vehmteupying any spot along the road cross-section
230 with the same probability. With reference to FigR4is the distance between the door and the edge
231 of the roadR; is R; plus the sidewalk length, and finaRg is the distance from the detonation

232 point to the sidewalkR; is equal to 2m, while the stochastic variaRies characterized by a

233 uniform (non-informative) PDF between 0 and 7m. $tend-off distance is the sumkf andRs.

Building 950

< >
—~ >

R, 125 350 125

——> —> >

Detonation
Door — R, <—§v3§

Road cross section

1

Fig. 4: Description of the blast scenario and ef ¢tbnsidered variables; distances in [cm]

234  The lognormal PDF of the impulse density, showRim 5, is obtained by extracting “l§amples
235 of both the explosive charge and the stand-offdist from their respective PDFs. The equivalent
236 triangular pulse is computed as shown in Fig. 1bth& terms in Fig. 1a are computed by the

237  procedure proposed in the UFC 3-340-02 [2] maniia. resulting median value and dispersion of
238 the impulse density demand are equal to 0.614 &Parsd 0.601, respectively.

239

0.012
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0.008 -

Z 0.006
= ]
0.004 {

0.002 1
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0 0.5 1 1.5 2 25
i [kPa sec]

Fig. 5: Lognormal probability density function dfetimpulse density

240 6 Limit statedefinition for fragility analysis of the case-study

241  UFC 3-340-02 [2] provides the state of practicedesigning structural elements against accidental

242 explosions. A specific section of the UFC 3-340FPPmanual is focused on special considerations
Page 10 of 32



243  about blast resistant doors, where basic procednm@gerformance requirements are defined. More
244  detailed design procedures for such elements aheded in the Unified Facilities Guide

245  Specifications (UFGS) 08-39-54 [39]. Blast resist@wors are conceived to contain an explosion
246  and therefore prevent the propagation of pres$iveball leakage and fragments inside the

247  protected area [40 - 43].

248  There are different typologies of blast doors, sifeed on the basis of their structure (e.g. single
249 leaf or double leaf) and on the basis of the opgmiede (e.g. vertical lift and horizontal sliding).
250 There are also several kinds of standard performeaguirements for categorizing the blast doors

251 according to their function. Performance requiretaamclude:

252 — protection of personnel and equipment from extebtadt pressures resulting from an
253 accidental explosion;

254 — prevention of accidental explosion propagation amaexplosive storage area;

255 — maintain complete serviceability for doors desigasgart of a containment cells

256 commonly used in the repeated testing of explosives

257 — maintain integrity for doors designed as part aftachment structures commonly used to
258 protect nearby personnel and structures in thetefean accidental explosion.

259  For our case-studylg.= 2500 mm high antdy= 1400 mm wide built-up steel door with a single
260 leafis considered. The door is made by weldinglgikates to a steel beam grid. The grid is made
261  up of UPN 80 beams on the boundaries that supportlf 80x60/7 spandrel beams. On top of
262  them, the exterior plate is 5 mm thick and therinteplate is 1 mm thick (see Fig. 6).

1400

A
7 SECTION B-B’
. 1400
Blast side ;5
. T
Blast side 2500
. 86
UPN 80
B1 I: S
Side away 1
....... from blast
A

(@) (b)
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Fig. 6: Details of the case-study blast resistaatr dFrontal view (a); section along the width (b);

section along the height (c). Dimensions in [mm].

Adopting a performance-based philosophy four listéites are considered related to Serviceability,
Operability, Life Safety and Critical Failure ofetlblast resistant door (Table 1). For this purpose
one or more response parameters and appropriathtiid values of these parameters need to be

defined. The selected response parameters arsupipert rotation) and the ductility ratior):

6 = arctan (Z}Zrlax> €))
. (6)
o (b)

Whereymy is the maximum displacement of the componéis the yield displacement (measured
at the same position as the maximum), Bnadtl is the span of the component. In this dasis
considered because, being shorter thait leads to a larger support rotation; more detie
provided in the following sections.

A general consensus concerning the threshold vatueke different limit states has not been
reached in the scientific community. The adopteldies have been chosen by means of a critical
examination of both the literature and the physicihe problem, also with the support of
appropriate numerical analyses described belowe Mhatt different threshold values of a response
parameter are expected for different typologiethefblast resisting doors. In order to give an idea
of the uncertainty affecting the threshold valieQualitative Confidence Index (QCI) [44] is
provided in the table, ranging from “high” (low kehof uncertainty) to “low” (high amount of
uncertainty).

The first limit state is Serviceability, the blakior should be fully operable after the event witho
need for repair. Damage to both the door strucncedoor accessories (like the panic opening
system) is not allowed. The ductility ratio m ig tlesponse parameter chosen for this LS, with a
threshold value (indicating violation) equal to.1F@r Operability the door should be able to be

opened. Damage to the door structure is allowetddamnage to the door accessories is not. Thus,
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the door should remain operable after the evemtn épermanent deformations are present. This is
important for avoiding failure and/or blockage bétpanic opening system of the door in a way that
both the evacuation of the building and the policahen operations can be easily conducted. In
the case of Operability the support rotation iesked as the response parameter with a threshold
value of 2 degrees [2, 42]. For Life Safety thep@@bility of the door after the event is accemabl
but the structure must not fail; significant permandeflections of the door are still allowed; to
satisfy the Life Safety criteria the support ratatis limited to a threshold value of 10 degredssT
value is chosen on the basis of the results oldaigea static pushover analysis of the case-study
built-up door (see next sections). The last linates is the Critical Failure and it occurs when the
structural response of the door is causing theeptimn of the door itself or parts of it into the

protected space.

Finally, as qualitatively assessed by the QCldispersion on the thresholds defining the limit
states can be taken into account by considerinthtieshold values as stochastic variables. By
using Eg. (3) to estimate the safety factor, tlspelision of each limit state can be taken into

account as shown in Eq. (7) wheée is the additional epistemic uncertainty dispersbthe limit

]
Br= [p2+p3 4% ")

Further investigations should be undertaken inot@assign a probability density function to the

state threshold.

threshold values of the limit states in case aldbeilt-up blast resistant doors. Threshold valies

the limit states are assumed here as determipiatameters.

Limit State  Serviceability Operability Life Safety Critical Failure
The doorhasno Thedooris  The door has not The door has
permanent operable, but it failed, but it has failed
Damage - S
deflections has permanent  significant
level .
deflections permanent
deflections
Response Ductility ratio  Support rotation Support rotation Support rotation
parameter (m) (9) (9 (@)
Threshold <1 <90 <10° >10°
values
QCI High Medium Low Low

Table 1: Considered limit states and thresholdeslu
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7 The Simplified Stochastic Model (SSM)

As early mentioned, a Simplified Stochastic Mod&$5M) has been used to evaluate the fragility of
the blast door. The SSM is an equivalent SinglerBegf Freedom (SDOF) model of the steel
built-up door, taking into account both the alegtand epistemic uncertainties.

The equivalent SDOF system is obtained by evalgatppropriate transformation factors for the
system’s mass, damping, load and resistance. Fartine, inherent within a SDOF analysis is the
assumption that the system behaves only in a sdeflection shape. In general, as the system
begins to deflect under the blast load, it evehyuaélds and forms plastic hinges at various
locations depending on the applied boundary camulti Thus in reality, the system’s mode shape
changes with the progression of plastic hingesrdtbee, the transformation factors are adjusted to
take into account the change of the mode shapea Bionply supported one way panel under
uniform loading, it is assumed that a single ptasinge is formed at the center of the element. The
resistance-deflection relationship for such a p@&atsumed to have an elastic-perfectly plastic
shape. Thus, at a certain yield deflection, themment will continuously deform at near-constant
resistance until an ultimate deflection limit iscled; at that point the component will fail. This
resistance-deflection relationship (resistancetiong serves as constitutive relation for the non-

linear stiffness in the equation of motion

The displacement field of the component can beesgad as(x,t)=y(X)y(t), wherey(X) is the
assumed deformed shape of the component undelatstddnd and(t) is the displacement of the
component at the location of maximum deflectiotimae t. Furthermore, displacement of the

component is obtained by the SDOF equation:
KiM3(t) + Cy(®) + S(y(1)) = F(£) (8)

whereM is the total mass of the compones{y(t)) is the resistance as a function of the
displacement expressed in unit forE) is the blast pressure multiplied by the loadea@ Are
expressed in force unit€,is the damping (the percentage of the critical giagnis assumed to be
1% in the analysesl, v is the load-mass transformation factor, that isaétp the ratio oKy and

K. (the mass transformation factor and the load toamsation factor respectively). The last two are
evaluated by equating the energy of the two sys{emterms of work energy and kinetic energy
respectively). The load-mass transformation fakigr is different at each deformation stage of the
component response; for a bilinear resistance ilmeéivo values oK,y need to be defined: the

first for the elastic and the second for the ptastnge of the response [2, 45].
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The built-up blast door considered is a two-dimenal orthotropic structure and it is made
equivalent to a SDOF model with a bilinear resiséafunction. For obtaining such a resistance
function, the yield pointRy) needs to be defined, characterized by the yilelst lpressurerg) and
the corresponding yield displacemedtj) ©f the door. In order to define tingand thed, both

aleatory and epistemic uncertainties are introduced

In Eq. (6) the formulas for computimgandd, are shown.

12
=TT (Mpsx + X4 Mpy)  (2)
x Ly

K, = Xy —Lx) () ©)
Ly L,
T
dy =% ©

where K is the stiffness of the SDOE, andL, are the longer and shorter dimensions of the door
respectively, andt is the Young’s modulus of steel. The coefficieXtsandXg are taken equal to
1.374 and 198.6 respectively, and they are valisfthotropic plates witlh,/Ly equal to 1.78 [2,

45, 46].J, andJy are the moments of inertia, whi&,x andM,, are the flexural plastic moments of

the two orthogonal cross sections of the built-aprd

L« Ly, andE are assumed to be deterministic parameterswedl. known for a steel door; instead
bothJ, andJy, and consequentiM,x andM,, are considered as stochastic parameters in arder t
take into account the epistemic uncertainties. Meoee, the aleatory uncertainty affecting the yield

stress of steel is considered.

With reference to Fig. 6 the door moments of imeatie computed by Eq. (10)

Jxo =2 ]Jypn + (Ly t13)/12 + (Ly t23)/12 (@

Jyo = Ny Ju + 2 Jupy + [(Lx t)) ((H, +0.5t,) — dG)z] +[(Ly t2) (0.5 t, + dg)?] (10)
b
+(Ly t,3)/12 4 (Ly, £,3) /12 ®)

where,N, is the number of spandrels orthogondltoJ, andJypy are the moments of inertia of the
spandrels and of the external frame respectivebndt, are the thicknesses of the plates on the

blast side plate and the opposite side respectiaelyds is the center of mass of the composite
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354  section. For computindyo the additional moment of inertia due to the plasasot considered

355 because there are no spandrels connecting the jallateg the. direction.

356  Noting that in the following the subscrigt ‘is adopted in order to indicate the single sangblthe
357 Monte Carlo simulation and the stochastic coeffitieis introduced to take into account the
358 uncertainty of the moments of inertia. The samplei®s),; andJy; are evaluated as shown in Eq.
359 (11).

Jxi = @i Jxo (8.)
Jyi =ailyo (b)

(11)

360

361 My andMp,; are computed by Eq. (12) considering also Eq..(13)

]xi

Mpyi = Oygi @i Q; ™ )]
* (12)
] .
Myyi = Oyq; @i @; bll (b)
y
362
Oyqi = Oyj DIFL (a)
DIF, =1+ DIFy; (b) (13)
pi =14+ @ (c)
363

364 Inthe above equatiors andby are the longest distances between the center 4 aval each of
365 the two external sides of the cross sections, wile@ndoy; are the sample values of the dynamic
366 and static yield stress of steel, respectivelyymesl to be random. The sample vall€; of the

367 Dynamic Increase Factor, is obtained as one pkusléisimal parDIFq;, the latter assumed to be
368 random to consider epistemic uncertainty. Fingllis the sample value of the plastic coefficient
369 obtained as one plus the decimal gartgde is assumed as a stochastic variable affected by

370  uncertainty.

371 The considered stochastic variables are summainz€dble 2 together with their distribution

372 characteristics. The mean valuena$ set equal to unity; the mean valuespis estimated by

373  assuming a strength factor equal to 1.1 [45], leqthh a mean value e equal to 302.5 MPa for a
374  steel having tensile strength equal to 450 MPantban value of is estimated by fitting the
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375 resistance of the SSM with the static pushoveregomputed by the FE model as described in
376  what follows; finally the mean value of tidF is provided in the Methodology Manual for the
377 SDOF Blast Effects Design Spreadsheets [45] faraqanvalent grade of steel. With regard to the
378 dispersion of these coefficients, the coefficieintariation ofoy is taken from the study of Enright
379 and Frangopol [47]; while the coefficient of vartat of botha and¢ are estimated by means of the
380 dispersion oPy with respect to the static pushover curve obtatmethe FE model. The coefficient
381 of variation of theDIF is estimated by the values of thé& provided by the Methodology Manual
382 for the SDOF Blast Effects Design Spreadsheetsfg¥geveral strain rate velocities.

383

Parameter Median value COV Distribution

oy 302.5MPa  0.12 lognormal

a 1 0.1  lognormal

do 0.3 0.1  lognormal
DIF, 0.19 0.2 lognormal

384
385 Table 2: Probabilistic distributions of the stodimsariables

386

387 By substituting the sample values obtained in Ed),((12) and (13) into the Eq. (9), the sanfple
388 of the yield pointPy of the resistance function is computed. The regplinhedian value aof, andd,
389 are 306 kPa and 6.8 mm respectively, while thegffcdent of variation are 0.16 and 0.125

390 respectively.

391 8 Validation of the SSM by the Finite Element model

392 In order to validate the SSM a detailed Finite EdatrModel (FE model) is developed, using the
393 commercial FE solver LS-Dyfid48] and employing shell elements for the constitLparts of the
394 blast door. The support frame of the door is alq@ieitly modeled in order to accurately take into
395 account the unilateral boundary conditions by mgkise of contact elements. Additional contact
396 elements are provided for the door opening hingelsdmor locking system for allowing the

397 rebound response. In total the model consists 8984hell elements and 85062 nodes. The shell
398 elements are of Belytschko-Tsay type [48] and th&act algorithm is the automatic surface to
399 surface [48].

400 With regard to steel, a piecewise linear plastioitydel [48] is adopted, see Fig. 7. The engineering
401  stress-strain curve is taken from the study of Kla#iretis et al. [49] by a quasi-static experimenta

402 test considering the length and the initial crasgisnal area of the specimen; instead the true
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stress-strain curve is obtained analytically byiasag logarithmic strains [48]. Furthermore, a
fracture criterion is implemented without takingaraccount the effect of the stress triaxialitye th
fracture occurs when the effective plastic straimches the value 0.2473 corresponding to the
maximum resisting stress before softening. Therstede effect is taken into account bipE-
computed by the Cowper and Symonds model shows.id£[48], wher& is equal to 500 [1/s]
andy is equal to 6 [45].

- (;f "

It is crucial to highlight that the steel yieldests shown in Fig. 7 does not match the mean vélue o
the steel yield stress of Table 2. In order todatk the SSM by the FE model, the input parameters
are assumed to have the mean values and the tsésststrain relationship shown in Fig. 7.
Furthermore ®IF equal to 1 and 1.19 for the case of the staticdyma@mic response respectively
has been assumed for the SSM.

60C
—. 500 ~
© i
S 400 -
»n 300 -
a 1 i
% 200 1 ——True stress-strain’
100 1 - Engineering stress-strain
1 e e e True plastic stress-strain
0 T T L
0 0.1 0.2 0.3 0.4

e []
Fig. 7: Stress strain relationship [49]

In Fig. 8a the FE model and details of the builtd@or are shown. A magnified view of the FE
model is presented in Fig. 8a. The characteristieedsion of the single rectangular finite element
is 15 mm and it is quite constant for the entirsimeé\s needed, a sensitivity analysis has been
conducted regarding the mesh refinement, whosétseme not reported here for the sake of

brevity.
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AX . Umla?eral BCs
and hinge system ——

Blast side plate t=5mm

UPN 80 ~.

L 80x60/7
Unilateral BCs x

L 80x60/7 and hinge system

2500 mm

b > Blast side plate
Unilateral BCs NRNNANN t=5mm

and hinge system “Sa

Away from blast plate t=Imm
(not in view)

(a) (b)
Fig. 8: Details of the FE model used in the anayse

8.1 Deterministic static resistance function

In order to obtain the static resistance functibthe built-up blast door a static pushover analisi
carried out by applying a uniform load to the bkidge plate. The uniform pressure is applied quasi-
statically by a ramp load function until the cokepof the door is reached. In Fig. 9 the static
resistance functions computed by the SSM (by assythe mean values of the input parameters)
and the FE model are shown. In Fig. 9a the stafiistance function is plotted as a function of the
mid-span displacememt while in Fig. 9a it is plotted as a function bétsupport rotatioi defined

in Eq. 6. Especially for the range of support riotafrom O to 2 degrees there is a good agreement
between the two predictions, while introducing aipee stiffness post-yield stress-strain model
would easily extend this to rotations of 6 degr@eshore. However, only appropriate experimental

tests could fully confirm the results.

0.5 0.
0.4 0.4 -
=031 T T 0.3 -
IS 4 o {
5021/ 2024 ;
~ o117 ——FEM 1
B SSM 011
o — o L.
0 10 20 30 40 50 60 70 0
y [mm]
(a) (b)

Fig. 9: Static resistance function of the caseystimbr (the adopted steel is the one having the

stress-strain relationship shown in Fig. 7).

8.2 Deterministic dynamic structural response
The FE model and the SSM are then compared in tefiahgnamic structural response. The built-

up door is subjected to four detonations and thectiral response is computed by both the SSM
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436  and the FE model. All the detonations occur at B0 from the ground and at 6 m away from the
437  door. The explosive charges of the four detonatavesassumed to consist of 10, 15, 20, 25 kg of
438 TNT. The blast pressure is assumed as uniformlyiloiged in the SSM, but it is properly

439  evaluated as non-uniformly distributed in the FEdeldy the LS-Dyna function named load blast
440 [48]. Only the positive phase of the shock waviaken into account by the equivalent triangular

441 pulse, alternatively an exponential decay law camadopted [35].

442  Concerning the parameters characterizing the SB&vdlues adopted for comparison purposes
443  with the FE model arei=340 MPag=1.3,a=1, andDIF=1.19; thus it is important to recall that, as
444  mentioned above, for the successive computatiotisediragility curves and of the safety factor,
445  the mean value afy is assumed to be 302.5 MPa. In Fig. 10 the corspatetween the time

446  histories of the support rotatighobtained with the FE model and the SSM are reddaeall the

447  four detonations.

0 [deq]

(d)
Fig. 10: Comparison between the time historiehefdupport rotatiofi obtained with the FE

model and the SSM (SDOF in legend). 10 kg of TNT 1& kg of TNT (b); 20 kg of TNT (c); 25
kg of TNT (d).

448

449 In Fig. 11, where the boundary conditions and pigigosite to the blast side are removed from the

450 view for allowing the checking of the spandrel® piastic strains on the door obtained by the FE
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model are plotted. Plastic strains are represantbthck color while in grey is the elastic staal (

the black zones the dynamic yield stress of thel stas reached).

With reference to Fig. 10 it can be appreciated gleaerally there is a good agreement between the
predictions of the support rotations obtained ley$$M and the FE model. However the SSM
seems to be slightly conservative with respechéoRE model. Furthermore due to the non-linear
boundary conditions implemented in the FE mode,rébound response and the time of the max
support rotation are somewhat different, but thisat relevant for the purpose of the SSM thab is t

estimate only the maximum support rotation of thatfup door.

It is noteworthy that the SDOF can well predict tielection but no local damage. However, the
SDOF is able to predict the global behavior ofdber and its failure due to excessive mid-span
displacement or support rotation, something thatféicient for the purposes of this paper, with
enormous reduction of the computational effort wekbpect to the FE analysis.

(b)
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(c) (d)
Fig. 11: Plastic strains on the door obtained leyfB model. 10 kg of TNT (a); 15 kg of TNT (b);

20 kg of TNT (c); 25 kg of TNT (d).

On the basis of the plastic strain results showign 11, it can be stated that the non-uniform
distribution of the blast load does not lead taetipularly non-uniform structural response of the
built-up door: the plastic strains on the spandae¢squite uniform. Furthermore, it can be argued
that the door develops a flexural resistant medmarsince only limited plasticity is developed at
the connection of the spandrels with the extenmraahé. In the case of 25 kg of TNT, Fig. 11(d), the
blast side plate shows spread of plasticity bmtatntains the ability to transfer the load on the
spandrels; note that the previously mentioned diractriterion is implemented in the FE model and

an eventual fracture of the blast side plate wbeadletected.

9 Computing thefragility curves
In this section the fragility curves for the builp- blast door are developed for each limit state
previously defined. The fragility curve is compuaaint by point using a Monte Carlo- based
algorithm [24] and the resulting points are fitdbjognormal CDF in order to obtain a smooth curve
to use in computing the probability of exceeding lilmit state and the corresponding safety factor.
The flowchart representing the steps in computnegftagility curves is shown in Fig. 12. Looking
at the flowchartN is the number of the points in which the fragilityrve is numerically evaluated,
j is the loop counter identifying the Monte Carlmalation which is performed to evaluate the
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single point FG of the fragility curve, corresponding to thth valuelM; of the intensity measure
(impulse density). Fg—1 a Monte Carlo simulation is carried out andabrditional probability of
exceedance is estimated. The next step is to centipatsuccessive point of the fragility curve, then
for the new value of theVl a new Monte Carlo simulation is performed anddbeditional

probability of exceedance is estimated. This cikkepeated untjEN.

* IM;: impulse density

* FC: numerical Fragility Curve

* FC(j): the jth point of the FC

 MC analysis: Monte Carlo
analysis

* N: number of FC points

* Interpolated FC: lognormal
interpolated FC

Lognormal
Interpolation

Interpolated
FC

Fig. 12: Flowchart of the procedure for the evabrabf the fragility curves. FC= fragility

curve.

The first fragility curve obtained by the algoritrehown in the flowchart of Fig. 12 is called
“numerical fragility curve”. The final step conssif fitting the points of the numerical fragility
curve in order to obtain the analytic lognormadbfligy curve defined by the mean value and the
standard deviation of the corresponding normakitn 13 the fragilities curves obtained for the
Serviceability, Operability, and Life Safety linstates are shown. Their median valugg énd

coefficient of variationsf,) are shown in Table 3.
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(a) (b) (c)
Fig. 13: Fragility curves obtained by the SSM. S=Fability (a), Operability (b), and Life Safety

(©)
492
Limit State Serviceability Operability Life Safety Critical Failure
Response Par ameter y<d, 0<2° 0 <10° 0 >10°
FC _An [kPa sec] 0.3080 0.8700 1.9800 1.9800
Pin 0.1518 0.0748 0.0785 0.0785
493

494  Table 3: Characterization of the fragility curves the examinated limit states.
495

496  The number of samplesljj used in the Monte Carlo simulation to computesingle point FGQ|
497  of the numerical fragility curve is not constaNf;is chosen for eaghin order to maintain the
498  coefficient of variation COV;) of the estimated value (representative of therefue to sampling)

499  under a maximum acceptable threshold. TR, is quantified as:

COV;y,

_ \/1 -P[p>cli] (15
p>clyl  |P[D > C| ij] N
500 With regard to the fragility curve associated witie Operability limit state, the variation of both
501 the number of samples and coefficient of variatiatin the conditional exceedance probability
502 P[D > C|i] is shown in Fig. 14. The number of samples deeeagponentially from the lowest to
503 the highest probability of the numerical fragildyrve. Regardless of tli&0V, though, a practical
504 maximum and minimum number of samples of 46d 18 respectively, is adopted. As shown in
505 Fig. 14 the maximum coefficient of variation isdd@kan 0.1 for a conditional exceeding probability
506 of 0.001 and it decreases quickly; for exampls legs than 0.02 for®{D > C| i] of 0.1.
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Fig. 14: Variation of botiN; andCOV with P[D>C] ] for the Operability limit state

10 Performance assessment

Following the conditional approach, Eq. (1) carebaluated numerically by making use of the
fragility curve PD>C|i] and of the probability density function of thepmise density(i) shown in
Fig. 5:

+00 N
P[D > (] = f P[D>C|i]f() aiEZP[D>(;|i]]_f(i)inj (16)
iy j=0

Table 4 provides the probabilities of exceedaneepded by both the conditional and

unconditional approaches.

W= 7.7 kgCOV=0.3 lognormal distribution
R =2m 0<R;<7 uniform distribution

. Conditional Unconditional Closed-form
Limit Sate Approach (CA) Approach (UA) A=CA-UA Solution (Eq. 2)
Serviceability 0.8303 0.6343 0.1960 0.8553
Operability 0.1830 0.2065 -0.0230 0.2490
Life Safety 0.0195 0.0078 0.0117 0.0179

Table 4: Probabilities of exceedance obtained thighconditional and unconditional approaches

versus the simplified closed-form solution.

For the Operability and the Life Safety limit ssteoth the conditional and the unconditional
approach provide quite the same probability of ede@ce, the slight difference between the two
approaches is probably due to the differencesdrctiefficient of variations of the computed
probabilities of exceedance (Fig. 14). On the otfard, for the Serviceability limit state the
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difference between the two estimations is gredian in the previous cases and the probability of
exceedance computed by the conditional approdaigl®r. This is because the hypothesis of
impulsive loading is not respected as can be arfjoed Fig. 15 and detailed below. For all
practical purposes, as long as the structure islisiyely loaded, the two methods can be

considered to be almost the same.

By adopting the mean values of the above mentistmthastic parameters (see Table 2 and Eq.
13), the pressure-impulse curves correspondingdb Bmit states (average pressure-impulse
curves) are obtained by the SSM and shown in EigTherein théM samples used in the
evaluation of the probabilities of exceedance &g, showing that thev samples fall in the
impulsive region for the Operability and Life Saféitnit states, while they fall close at least he t
dynamic region for the Serviceability limit state.

Pressure [MPa]
N

O : T T T F'v’ T T T T T T T T T T T T T T T
0 0.5 1 15 2 25
impulse [kPa sec]

Fig. 15: Load samples and their relative positiotin\iespect to the average pressure-impulse

curves related to the considered limit states
Finally, in Fig. 16 the safety factor obtained floe case-study blast resistant door via Eq. (3) is

plotted as function of the acceptable probabilitgxceedance (APE) for the Serviceability,

Operability, and Life Safety limit states.
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Fig. 16: Safety factor as function of the accemtaisbbability of exceedance. The2’ and9=10

curves are practically coincident.

From Eq. 3a the dispersion measg¥elepends on the dispersion of both the capacitytiand
demand. In the case study, looking also at Tablee3dispersion of the capacities obtained from
the fragilities related to the Operability and LBafety limit states are practically the same; this
leads to a nearly identical safety factor as ationof the acceptable probability of exceedance fo
these two limit states, as shown in Fig. 16. Camoegrthe Serviceability limit state, the coefficien

of variation of the capacity is greater than thesaf the Operability and Life Safety limit staseé¢
Table 3), but it still remains quite small with pest to the dispersion of the demand (which is equa
to 0.601 as said in section 5). In other words dispersion due to the structural model uncertainty
is vastly inferior to the dispersion of the hazésdmething that has also been observed for other
hazards as well, e.g. earthquakes) and the lditeowsly dominates.

For illustrative purposes, the dispersion on tlieghold value of the Operability limit state is add

in computing the total dispersion shown in Eq.g4)shown in Eq. (7), thus the updated safety
factor is compared with the one shown in Fig. Ii6aio APE of 0.2. The probability density

function of the limit state threshold value is ased as lognormal with a dispersion of 0.4,
therefore Eq. (7) provides a total dispersion etuél.68, and consequently the safety fa&(0r2)

is equal to 1.77. Considering that the origit(8l.2) is equal to 1.6, it is evident that adding th
dispersion to the threshold value of the limitstacreases the value of the safety factor. As kg
this additional variability is inferior to the imfae hazard dispersion (0.4 versus 0.6), the square-
root-sum-of-squares combination rule in Eq. (8) nscthat the hazard still dominates and the safety
factor remains relatively similar. Otherwise, ibsiid be expected to increase substantially.

Finally, a practical example is presented on usiregproposed safety factor to perform a simple
assessment of the steel blast resistant door. 4. ebnsider the Operability limit staté=@°). The

median resistance function is defined by the ypeloht values of, andd, equal to 306 kPa and 6.8
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mm respectively, while the median value of the itapudensity is 0.614 kPa sec. Both the median
values of the yield point and of the impulse dgnare computed by extracting samples as shown in
the previous sections. By applying Eq. (5) withoegard for variability, the maximum support
rotation is 1.4°, thus the Operability limit stagethought to be satisfied. However, by applying Eq
(5) using the safety factdf0.2) equal to 1.6 (see Fig. 16) the maximum supqation becomes
3.1°, meaning that the Operability limit state ¢¢ satisfied due to the effect of uncertainties.

11 Conclusions

An investigation has been conducted on the usengdligying approaches for probabilistically
estimating the performance of structures subjebtast hazard. First, a conditional approach has
been introduced using the impulse density as aserif intensity measureNl) for decoupling the
evaluation of blast hazard and the determinatiostroictural response for impulse-governed case
studies. This essentially reduces the, otherwisessary, Monte Carlo simulation into the
evaluation of théM hazard distribution and the fragility of the stuwral system, and thus decreases
the computational load by several orders of mageitsecond, a safety factor approach, similar to
existing load-and- resistance-factored design (LR#eDmats, has been suggested to offer even
simple estimates of the probability of violating timit state. Moreover, the relationship between
the fragility (surface and curve) and the pressomedise diagram of a component has been
clarified.

A steel built-up blast resistant door was emploge@ tested to determine the probability of
exceedance through the conditional, the unconditj@nd the safety factor approach. As expected,
as long as the component demand is governed hyauisive load, the conditional method based
on the impulse density can significantly reducedbmputations needed to determine the system’s
performance. The proposed closed-form safety fantoraged to offer a practical estimate of the
probability of limit-state violation at the expenstesome additional error. Moreover, such analytic
solutions were shown to offer useful insight. Feample, as known in other fields of engineering,
when the dispersion of the demand is greater thalispersion of the capacity, the overall
estimates of probability mainly depend on the héizather than the model uncertainty. Thus, one
can often forego the variability in the model witihdiasing the analysis. In summary, we hope that
the groundwork has been established for using #iegblprobabilistic procedures for the

Performance-Based Design (PBD) of structures stdajdo blast.
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