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Abstract

This paper addresses the prediction of the median peak floor acceleration (PFA) demand of elastic structures
subjected to seismic excitation by means of an adapted response spectrum method. Modal combination is
based on a complete quadratic combination (CQC) rule. In contrast to previous studies, in the present
contribution closed form solutions for the correlation coefficients and peak factors entering the CQC rule are
derived using concepts of normal stationary random vibration theory. A ground motion set, which matches
the design response spectrum for a specific site and a target dispersion, is used to define the stochastic
base excitation. The response spectrum method is tested for various planar and spatial generic high-rise
structures subjected to this particular ground motion set. A comparison of the outcomes with the results
of computationally more expensive response history analyses shows the applicability and accuracy of the
proposed simplified method.

Keywords: CQC rule, peak factor, peak floor acceleration demand, random vibration theory, response
spectrum method, seismic excitation

1. Introduction

A modal combination procedure is presented aiming at assessing the median peak floor acceleration
(PFA) response of elastic structures subjected to normal stationary base excitation. In order to avoid
computationally expensive procedures such as response history analysis (RHA), the latest seismic codes and
guidelines provide the engineering community with simplified approaches. For instance, the FEMA P-58-15

document [1] proposes methods to estimate the statistical distribution of the PFA demand even for inelastic
structures. Based on the type of lateral load bearing structure (moment resisting frame, braced frame, or
structural wall) different coefficients rule the handling of the mathematical framework. Another possibility
is to use the method of the nonstructural components (NSCs) chapter of the U.S. standard ASCE 7-10
[2]. Here, the ratio between the seismic design force and the mass of the NSC delivers an estimate of the10

median PFA demand, implying that the NSC is rigid. The bottom line is that these simplified procedures
are adequate for a quick pre-design, however, lack generality in application.

In many cases a more sophisticated procedure is required to estimate the PFA demand, because, in
general, load bearing structures have a three dimensional setup and may exhibit irregularities to fulfill the
functionality and architectural design of a building. Based on a parametric study of both elastic and inelastic15

structures, Chaudhuri and Hutchinson [3, 4] recommended empirical equations and a modified square-root-
of-the-sum-of-the-squares (SRSS) method to estimate the PFA demand. The SRSS modal combination rule
originally developed by Rosenblueth et al. [5] provides a statistical combination of modal peak responses, and
can be used for any relative response quantity such as relative displacements or internal forces. Accepting the
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assumptions of the stationary random vibration theory [6], Der Kiureghian derived the complete quadratic
combination rule [7, 8], where additionally the correlation between modal displacements is considered. It is
of great importance to note here that modal displacements are relative response quantities. In his further
research the method is referred to as the CQC combination rule [9, 10]. Non-stationary stochastic processes
are a more realistic representation of structural responses due to earthquake loading. Therefore, Cacciola et5

al. [11] developed a modal correction method, which is able to estimate first- and second-order statistics of
relative response quantities due to stationary and non-stationary stochastic input. The numerical procedure
introduced by Schenk et al. [12] can be used to estimate efficiently the second-order statistics of relative
response quantities of structures responding linearly and non-linearly due to stationary and non-stationary
stochastic input.10

Recently, Taghavi and Miranda [13] and Taghavi [14] derived the extended CQC rule, which allows the
prediction of the PFA demand in elastic structures by fitting the correlation coefficients and peak factors
based on real ground motions recorded in earthquake events. Results of a pilot study by the authors of the
present study revealed that the extended CQC method yields reasonable results for planar systems, however,
for spatial structures with closely spaced natural frequencies a more robust formulation is required. Pozzi15

and Der Kiureghian [15] concluded from their assessment of the PFA response that modal acceleration
combination according to the SRSS rule may lead to an incorrect prediction of the absolute acceleration. In
their most recent paper [16] they presented a response spectrum method for PFA demands using the CQC
rule and numerically derived correlation coefficients and peak factors.

The present contribution also provides a response spectrum method for PFA demands of elastic struc-20

tures. In contrast to the latter study [16], closed form solutions of the correlation coefficients and peak
factors for the CQC rule are derived rigorously based on normal stationary random vibration theory. In
application examples the PFA demands of six-, twelve-, and 24-story planar as well as spatial generic struc-
tures are estimated, and the outcomes are set in contrast to results from RHA. The results demonstrate
that the proposed method delivers an excellent prediction of the PFA response.25

2. Modal response history analysis

Consider an elastic multi-degree-of-freedom (MDOF) frame structure subjected to a uniform base exci-
tation üg(t). The coupled set of equations of motion for any instant in time reads as [17]

Mü(rel)(t) + Cu̇(rel)(t) + Ku(rel)(t) = −Meüg(t) (1)

in which M denotes the mass matrix, C the damping matrix, and K the stiffness matrix of the structure.

Vector u(rel)(t) contains the N relative deformations related to the N dynamic degrees of freedom with
respect to the motion of the ground. The right hand side of Equation (1) represents the forcing function in
terms of inertia forces due to the base excitation üg(t). Its spatial distribution is governed by the quasi-static30

influence vector e. Equation (1) describes the motion of a planar structure or of a spatial structure subjected
to horizontal ground motion in one principal direction. The extension to base excitation in both horizontal
principal directions is straight forward, however, for the sake of clarity not further pursued.

The vector of total acceleration, ü(t) = ü(rel)(t) + eüg(t), is modally expanded into the N mode shapes
φi,i = 1, ..., N ,

ü(t) =

N∑
i=1

φiΓid̈i(t) =

N∑
i=1

φiΓid̈
(rel)
i (t) + eüg(t) =

N∑
i=1

φiΓid̈
(rel)
i (t) +

N∑
i=1

φiΓiüg(t) (2)

where Γi =
(
φ

ᵀ
i Me

)
/
(
φ

ᵀ
i Mφi

)
is the generalized participation factor and d̈i(t) = d̈

(rel)
i (t) + üg(t) the

total acceleration of the ith modal coordinate. The modal coordinate d
(rel)
i (t) is governed by the ith modal

oscillator equation,

d̈
(rel)
i (t) + 2ζiωiḋ

(rel)
i (t) + ω2

i d
(rel)
i (t) = −üg(t) (3)
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where ωi denotes the corresponding circular frequency and ζi the corresponding damping ratio.
Separation of Equation (2) into the first n modes and the N − n higher modes yields

ü(t) =

n∑
i=1

φiΓid̈i(t) +

N∑
i=n+1

φiΓid̈
(rel)
i (t) +

N∑
i=n+1

φiΓiüg(t) (4)

In practical applications the evaluation of the response considering all N modes is computationally expen-
sive. In an effort to reduce this expense, the high frequency modal contribution to the relative accelerations,
i.e., the second term of the right hand side of Equation (4), is neglected, and the high frequency modal
contribution of the ground, i.e., the third term in Equation (4), is expressed in terms of a residual vector,

r(n),

ü(t) ≈
n∑
i=1

φiΓid̈i(t) +

e−
n∑
i=1

φiΓi

 üg(t) = ü(n)(t) + r(n)üg(t) , r(n) = e−
n∑
i=1

φiΓi (5)

This approximation is consistent with the one presented in Pozzi and Der Kiureghian [15, 16]. Since in Equa-

tion (3) the term ω2
i d

(rel)
i (t) dominates the response for high frequency modes, this proposed approximation

of the absolute acceleration response is reasonable [15, 16, 18].

3. Ground motion modeling in the frequency domain5

The prediction of the seismic structural demand through a response spectrum method is commonly based
on an analytical model of the power spectral density (PSD) that characterizes the seismic hazard üg in the
frequency domain. Thus, the influence of the difference between the phase angles is neglected. In the present
study the Kanai-Tajimi PSD (subsequently referred to as KT-PSD), defined as [19, 20]

G(KT )
g (ν) = G0

1 + 4ζ2g
(
ν/νg

)2(
1−

(
ν/νg

)2)2
+ 4ζ2g

(
ν/νg

)2 (6)

describes the analytical median PSD model. Therein, the normalized PSD of the underlying white noise
process, G0, the characteristic frequency of the ground motion, νg, and damping ratio, ζg, of the ground are
calibrated to fit the seismic hazard of the considered site. An excellent overview of different strategies of
ground motion modeling in the frequency domain is provided in [21]. For instance, Spanos and Vargas Loli
[22] present a statistical approach to design spectrum compatible generation of seismic ground motions, based10

on an evolutionary power spectrum of a non-stationary stochastic process representing the accelerograms. In
this approach the power spectrum of the stochastic seismic ground motion is related to the target spectrum.
In a recent development Giaralis and Spanos [23] propose a two-step procedure to generate artificial seismic
accelerograms compatible with a given displacement target spectrum. In the first step of this procedure,
based on stochastic dynamic analysis a set of simulated non-stationary earthquake records is derived, whose15

response spectrum is on the average in good agreement with the target spectrum. The agreement depends
significantly on the adoption of an appropriate parametric evolutionary power spectral form, related to the
target spectrum. In the second step, using the family of harmonic wavelets, simulated records are modify
iteratively to satisfy the compatibility criteria for artificial accelerograms proposed in Eurocode 8 [24].

To validate the modal combination rule proposed in this contribution its outcomes are compared with20

results of RHA. RHA requires a set of ground motions adjusted to the site-specific seismic hazard, which is
usually defined in terms of the 5 % damped pseudo-acceleration response spectrum, Sad [2]. In the present
study, as an example the seismic hazard representative of Century City (Los Angeles, CA; 34.053 66◦N,
118.413 39◦W) is considered. In Figure 1 the corresponding response spectrum, Sad, is shown by the bold
solid line. The spectrum is linearly scaled to the design earthquake spectral response acceleration parameter25

at short periods (i.e., in the plateau domain of the response spectrum) SDS = 2.00 g. From the PEER NGA
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database [25] 92 site compatible ground motion records were selected providing that median and dispersion
of the record set matches this design response spectrum and a target dispersion of σt = 0.80 in the frequency
range of 0.33 Hz ≤ ω/2π ≤ 20 Hz (i.e., the period range of 0.05 s ≤ T ≤ 3.00 s). The underlying evolutionary
record selection algorithm is described in [26]. Figure 1 shows the target design spectrum, the target median
± one logarithmic standard deviation spectra, individual response spectra of the selected records, and the5

actual median, 16 % and 84 % quantile spectra.
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Figure 1: Target response spectra (bold black lines), response spectra of individual records (gray lines), and statistical
quantities (lines with markers) for a normal target dispersion σt = 0.80.

The gray line in Figure 2 shows the normalized median of the individual PSDs of the selected ground

motion records, G(GMs)
g , leaving the integral in the frequency range of 0.01 Hz ≤ ν/2π ≤ 20 Hz to unity,

2π

∫ 20

0.01

G(GMs)
g dν =

2π

SF

∫ 20

0.01

G
(GMs)
g dν = 1 (7)

in which G
(GMs)
g denotes the unscaled median of the individual PSDs of the selected ground motion records.

In the present case the scale factor, SF , is 1.45. Calibration of the characteristic parameters in the KT-PSD
model, Equation (6), to the normalized mean PSD of the records yields G0 = 0.18, νg/2π = 1.79 Hz, and

ζg = 0.78. In Figure 2 the fitted KT-PSD, G(KT )
g (ν), is shown by a black line. If the damping ratio for10

the soil model, ζg, tends to zero, the peak is located at the central frequency of the PSD. With increasing

ζg, the peak-frequency of the PSD is shifted to lower frequencies. If ζg tends to infinity, G(KT )
g (ν) becomes

constant. That is, the KT-PSD approaches the underlying white noise process G0, where each frequency is
excited by the same power, and thus, higher frequencies contribute more to the response.
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Figure 2: Modeling the ground motion in the frequency domain. Kanai-Tajimi power spectral density (KT-PSD)
(black line) fitted to the normalized median PSD of the ground motions (gray line).

4. Proposed response spectrum method for total accelerations

Expressing Equation (5) in terms of stationary random vectors [27], i.e., Ü ≡ Ü(t), Ü
(n) ≡ Ü

(n)
(t), and

stationary (modal) random variables, i.e., D̈i ≡ D̈i(t), Üg ≡ Üg(t), yields

Ü =

n∑
i=1

φiΓiD̈i + r(n)Üg = Ü
(n)

+ r(n)Üg (8)

Assuming that the ensemble of ground motions represents a Gaussian random process with zero mean,
Üg, the random response vector, Ü , is also Gaussian with zero mean [6]. Consequently, the mean square

acceleration, E
[
Ü

2
]
, corresponds to the variance of the response process. This notion allows the definition

of the peak value of any arbitrary random variable, here denoted as X = X(t), as the product of the

standard deviation, σX =
√
V ar [X], and the peak factor, pX , i.e., E

[
max

(
|X|
)]

= σXpX [28]. The peak

factor of the response process can be estimated by the mean of the first passage probability [29], as discussed
later. Since this concept is used to determine the expected value of the random vector of maximum absolute

acceleration demands, E

[
max

(
|Ü |
)]

, the computation of the variance of the response process represented

by Equation (8) is required,

V ar
[
Ü
]

= V ar

[
Ü

(n)
]

+
(
r(n)

)2
V ar

[
Üg

]
+ 2Cov

[
Ü

(n)
, r(n)Üg

]
(9)

The variance of a sum of random variables is equivalent to the double sum of their covariance [30, 31], and
thus

V ar
[
Ü
]

=

n∑
i=1

n∑
j=1

Cov

[
Ü

(n)

i , Ü
(n)

j

]
+
(
r(n)

)2
V ar

[
Üg

]
+ 2

n∑
i=1

Cov

[
Ü

(n)

i , r(n)Üg

]
(10)

Here, Ü
(n)

i denotes the ith and Ü
(n)

j the jth modal contribution of the multi-modal random vector Ü
(n)

.

The modal vector Ü
(n)

i is expressed in terms of the corresponding mode shape φi, effective participation
factor Γi, and random modal acceleration D̈i, yielding

V ar
[
Ü
]

=

n∑
i=1

n∑
j=1

φiΓiφjΓjCov
[
D̈i, D̈j

]
+
(
r(n)

)2
V ar

[
Üg

]
+ 2r(n)

n∑
i=1

φiΓiCov
[
D̈i, Üg

] (11)
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Pearson’s cross-correlation coefficient, ρX,Y , of two arbitrary random variables, here denoted as X and
Y , with zero mean corresponds to their cross-correlation function divided by their root-mean-square (RMS)
values. According to the Wiener-Khintchine relations [32, 33], the autocorrelation function and the power
spectral density are Fourier transform pairs [6]. Hence, the cross-correlation function and the cross power
spectral density of two random processes are Fourier transform pairs too [34, 35]. For strict stationary
processes with zero mean the autocorrelation function is constant, and thus, the covariance reduces to
the mean square value [6] of a single random variable, i.e., the probability density becomes an universal
distribution independent of time [6]. The generalization of this theorem implies that the cross-covariance
reduces to the expected value of the product of two random variables each with zero mean. Consequently,
their joint probability density is a universal time independent distribution, and thus, the mean of the product
of two random variables, X and Y , is equivalent to the integral of the cross power spectral density, GXY (ν).
That is, the integral of the mean PSD, which is a statistical average, is a statistical average itself [6], and
the correlation coefficient, ρX,Y , reads as

ρX,Y =
Cov [X,Y ]√

V ar [X]V ar [Y ]
=

E [XY ]√
E
[
X2
]
E
[
Y 2
] =

∫ ∞
0

GXY (ν) dν√∫ ∞
0

GXX(ν) dν

∫ ∞
0

GY Y (ν) dν

(12)

Strictly speaking, ρX,Y represents a cross-correlation coefficient since X and Y represent random variables
of different processes. However, in this study for simplicity ρX,Y is just referred to as correlation coefficient.

Now, the expected total peak acceleration demand of the kth degree of freedom of the structure, mPFAk
,

can be expressed as the product of the standard deviation and the corresponding peak factor [9],

E
[
max |Ük|

]
≡ mPFAk

=

√
V ar

[
Ük

]
pk (13)

Note that in a planar frame structure with lumped masses the kth degree of freedom corresponds to the kth5

floor. Thus, to put it simple from now on response quantities with subscript k are referred to the kth floor.
Accordingly, also the expected ith peak modal coordinate is expressed in terms of the corresponding

modal peak factor, pi, and the expected peak ground acceleration (PGA) in terms of the peak factor of the
ground acceleration, pg,

E
[
max |D̈i|

]
≈ Sa,i =

√
V ar

[
D̈i

]
pi (14)

E
[
max |Üg|

]
≡ mPGA =

√
V ar

[
Üg

]
pg (15)

in which Sa,i denotes the mean pseudo-spectral acceleration at the period of the ith mode and mPGA the

mean peak ground acceleration. In Equation (14) the total acceleration response spectrum, E
[
max |D̈i|

]
,

has been approximated by the pseudo-spectral acceleration response spectrum, Sa,i, providing that the
modal damping ratio is small, ζi ≤ 5 %, and the corresponding modal periods are shorter than 7 s [16].10

Substituting Equations (12) to (15) into Equation (11) leads to the proposed response spectrum method
in terms of the mean PFA demand of the kth floor [14],

E

[
max

(
|Ük|

)]
≡ mPFAk

=

 n∑
i=1

n∑
j=1

pk
pi

pk
pj

φi,kΓiSa,iφj,kΓjSa,jρi,j

+

(
pk
pg
mPGAr

(n)
k

)2

+ 2mPGA r
(n)
k

pk
pg

n∑
i=1

pk
pi

φi,kΓiSa,iρi,g

 1
2

(16)
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Herein, r
(n)
k is the kth element of r(n) (Equation (5)), and φi,k the kth element of φj . Note that at this stage

the correlation coefficient between the ith and jth modal total acceleration, ρi,j , the correlation coefficient
between the ith modal total acceleration and the ground, ρi,g, and the peak factors pk, pi and pg, are
unknown.

Response quantities due to earthquake excitation are assumed to be lognormal distributed [36, 37].5

Consequently, in the ground motion selection procedure the central value of the record set is represented by
the median rather than the mean, see Figures 1 and 2. Hence, in Equation (16) the mean, mPFAk

, must
be substituted by the median, m̆PFAk

. Accordingly, the same substitution must be applied to mean peak
factors and mean pseudo-acceleration spectral ordinates. In the subsequent considerations in all equations
the median instead of the mean is employed without changing the designations of the affected variables.10

5. Cross-spectral moments, correlation coefficients, and peak factors

5.1. Definition of cross-spectral moments

For further derivations the lth cross-spectral moment, λl,XY , of two arbitrary random response variables,
X and Y is defined [9],

λl,XY =

∫ ∞
0

νlGXY (ν) dν =

∫ ∞
0

νlG(KT )
g (ν)HX(ν)H∗Y (ν) dν , l = 0, 1, 2, ... (17)

based on the description of the ground excitation by the KT-PSD, G(KT )
g (ν), Equation (6). HX(ν) and

HY (ν) are transfer functions (often referred to as frequency response functions (FRFs)), the asterisk denotes
the complex conjugate. The spectral moment, λl,XX , is the cross-spectral moment for one random variable,15

X. As it is subsequently shown, the analysis of the correlation coefficients in Equation (16) is based on the
zeroth (l = 0) spectral and cross-spectral moments, for the peak factors additionally the first and the second
(l = 1, 2) spectral and cross-spectral moments are required.

5.2. Relation between cross-spectral moments and correlation coefficients

Comparison of Equation (17) with Equation (12) reveals that the correlation coefficients present in
Equation (16) can be expressed by means of the corresponding zeroth cross-spectral moment (l = 0),

ρi,j =
λ0,ij√
λ0,iiλ0,jj

ρi,g =
λ0,ig√
λ0,iiλ0,gg

(18)

Inserting the FRF of the ith total modal acceleration,

Hi(ν) =
ω2
i + 2iζiωiν

ω2
i − ν

2 + 2iζiωiν
(19)

and its jth modal counterpart into Equation (17) yields the cross-spectral moment λ0,ij . Spectral moments20

λ0,ii and λ0,jj are obtained by substituting two times Hi(ν), respectively Hj(ν) into Equation (17). When
evaluating λ0,ig and λ0,gg, Hg(ν) = 1 is inserted because for a rigid modal SDOF oscillator (as it is the
ground), the natural circular frequency is infinity, and consequently, the FRF Hg(ν) is unity.

5.3. Peak factors and the first-passage probability

The zeroth spectral moments (i.e., i = j) can be interpreted as mean-square total acceleration, i.e.,25

λ0,ii = V ar
[
D̈i

]
. Consequently, the ith modal peak factor, pi, corresponds to the ratio of the pseudo-

spectral acceleration (known through the response spectrum, Sa,i) at natural frequency ωi to the root of the

zeroth spectral moment,
√
λ0,ii, compare with Equation (14).

Accordingly, the peak factor of the ground, pg, corresponds to the ratio of the known pseudo-spectral

acceleration at infinite frequency to the root of the zeroth spectral moment,
√
λ0,gg, see Equation (15).30
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The peak factor of the response process for the kth floor, pk, is the only remaining parameter of Equa-
tion (16) to be evaluated. As discussed in several studies such as [38, 39, 29], an estimation of any response
quantity of a normal stationary process can be computed if the first-passage probability is available. Since
the objective of this study is to provide a simple modal combination rule with an analytical foundation,
the computation of peak factor pk is based on the common assumption of the first-passage probability for
normal stationary random processes X(t) with zero mean as proposed by Vanmarcke [29],

FR (r) = P [R ≤ r] =

1− exp

(
−r

2

2

) exp


−2fat

(
1− exp

(
−
√

π
2 qer

))
1− exp

(
− r

2

2

)
 (20)

instead of the first-passage probability of a non-stationary random process, which would be a more realistic
representation of an ensemble of ground motions [40]. The reduced barrier level [29],

r =
edp

σX
=

edp√
λ0

(21)

is the numerical value (the barrier or a threshold level) that separates the safe and the unsafe response
values of the engineering demand parameter (EDP; here the demand PFAk) of interest [39, 29] normalized
with respect to the RMS value, σX , of the underlying random process X(t). The mean rate of B-crossings
[41], defined as crossings of the barrier level from below [39, 29], is

fa = f0 exp
(
−r2/2

)
=

1

2π

√
λ2
λ0

exp
(
−r2/2

)
(22)

where f0 denotes the zero up-crossing rate [29], often referred to as the average frequency of the response
process [38]. Consequently, the average period of the response process is

T0 =
1

f0
=

2π√
λ2

λ0

(23)

The shape factor of the PSD [42] of the response process reads as

q =

√
1− λ21

λ0λ2
(24)

According to [29] the empirical shape factor, qe, is an empirical modification of q by the power of a constant
b = 1.20,

qe = qb (25)

The evaluation of Equations (21) to (24) requires the first three spectral moments of the response process,
i.e., λ0, λ1 and λ2. While Vanmarcke [42] and Der Kiureghian [9] already have discussed the derivation of
spectral moments and their physical and geometric interpretation for displacements relative to the base
in detail, the properties of cross-spectral moments for the total acceleration response are explained in the
subsequent subsection.5

Ideally, the probabilistic distribution of R would be identical to the distribution obtained from RHA.
However, the traditional assumption in earthquake engineering of a log-normally distributed seismic response
behavior [43, 36] is inconsistent with the CDF of the first passage probability in Equation (20). Preliminary
studies of the authors have revealed that the difference between the log-normal CDF and the first passage
probability is small in domains close the central value. Additionally the log-normal distribution is fully10
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determined by the mean and dispersion of the corresponding normal distribution (m and σ) [31]. For
a first step towards the PFA assessment with the proposed closed form solution, the remainder of this
paper focuses on the estimation of the median results only rather than the approximation of the complete
statistical distribution, or approximation of the dispersion according to a log-normal distribution as assumed
for response quantities in earthquake engineering. Thus, the strategy in this paper is to estimate the median5

of log-normal distributed PFA demands by the mean of the first passage probability of the corresponding
response process. Generally, the expected value of a positive monotonic increasing function of an arbitrary
random variable X can be determined if the CDF of the random variable is available. Rewriting the expected
value in terms of a Riemann-Stieltjes integral [44] and subsequent application of integration by parts yields

E
[
g(X)

]
=

∫ ∞
0

g(x) dFX (x) =

∫ ∞
0

dg

dx

(
1− FX (x)

)
dx (26)

which is also referred to as the law of the unconscious statistician. Evaluating this integral for the first
passage probability according to Equation (20) reads

mR = E [R] =

∫ ∞
0

(
1− FR (r)

)
dr (27)

in which an adequate approximation of the first passage time, t, is the average period of the response process,10

T0, see Equation (23).
Specialization of the edp in Equation (21) for the expected value of the PFA demand in the kth floor,

mRk
=
mPFAk

σÜk

(28)

and comparison with Equations (13) to (15), respectively, reveals that mRk
corresponds to the desired peak

factor pk of the median PFA demand in the kth floor.
Based on these foundations the analysis of the peak factors for the proposed modal combination rule can

be summarized as follows. Since evaluation of Equations (22) to (24) requires the appropriate zeroth, first and
second multi-modal spectral moments, in a first step these quantities are determined. The spectral moments
of the response process, Ük, are determined as follows. The covariance reduces to the autocorrelation
function for a zero mean process, and thus, the concept of uni-modal spectral moments can be applied to
the multi-modal spectral moments of the response process [8]. Consequently, Equation (11) represents the
zeroth spectral moment of the response process, which can be rewritten in terms of the expansion of modal
cross-spectral moments [8]. For the kth floor the lth multi-modal spectral moment reads

λl,k =

n∑
i=1

n∑
j=1

φi,kΓiφj,kΓjλl,ij +
(
r
(n)
k

)2
λl,gg + 2r

(n)
k

n∑
i=1

φi,kΓiλl,ig (29)

As it will be shown later, the first and second moments of the ground acceleration, λ1,gg and λ2,gg, appearing
in the last term are infinite. Thus, in Equation (29) the second and third term associated to spectral moments
of the ground are neglected, leading to the following approximation

λl,k ≈
n∑
i=1

n∑
j=1

φi,kΓiφj,kΓjλl,ij , l = 0, 1, 2 (30)

The physical interpretation of Equation (30) is equivalent to disregarding truncated modes, which is physi-
cally more meaningful than simply neglecting the infinite terms.15

With the now readily available spectral moments, Equations (22) to (25), and Equation (20), are an-
alyzed. Substituting the outcome of Equation (20) into Equation (27) its evaluation finally results in the
desired peak factor, pk.
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5.4. Analytical cross-spectral moments for modal total accelerations

Substituting Equation (19) into Equation (17) yields the actual integrals for the cross-spectral moments
to be evaluated. Cauchy’s residue theorem is applied to solve the integrals for the zeroth and second
cross-spectral moment (l = 0, 2), yielding

λ0,ij = G0πωiωjνg


2∑

m=0

2∑
n=0

ζmi ζ
n
j ξ0,mn(ωi, ωj)

4ζgD4

+

2νg
4∑

m=0

2∑
n=0

ζmi ζ
n
j ψ0,mn(ωi, ωj)

D1

 (31)

λ2,ij = G0πωiωjν
2
g


νg

2∑
m=0

2∑
n=0

ζmi ζ
n
j ξ2,mn(ωi, ωj)

4ζgD4

+

2ω2
i

6∑
m=0

2∑
n=0

ζmi ζ
n
j ψ2,mn(ωi, ωj)

D1

 (32)

Evaluation of the first cross-spectral moment requires a partial fraction decomposition because the integrand
is antisymmetric (consequently, integration by Cauchy’s residue theorem for the integration limits from minus
to plus infinity yields zero). The result reads

λ1,ij = G0ωiωjν
2
g

 ωi
π2 − arctan

 ζi√
1− ζ2i





6∑
m=0

2∑
n=0

ζmi ζ
n
j ψ1,mn(ωi, ωj)√

1− ζ2iD1



+ ωj

π2 − arctan

 ζj√
1− ζ2j





6∑
m=0

2∑
n=0

ζni ζ
m
j ψ1,mn(ωj , ωi)√

1− ζ2jD2



+

arctan

 ζg√
1− ζ2g

− π

2




2∑
m=0

2∑
n=0

D4ζ
m
i ζ

n
j ξ1,mn(ωi, ωj) +D3ζ

n
i ζ

m
j ξ1,mn(ωj , ωi)

4ζg

√
1− ζ2gD3D4



+ ωi ln (ωi)


5∑

m=0

2∑
n=0

ζmi ζ
n
j ψ̂1,mn(ωi, ωj)

D1

+ ωj ln
(
ωj
)


5∑
m=0

2∑
n=0

ζni ζ
m
j ψ̂1,mn(ωj , ωi)

D2



+ ln
(
νg
)


2∑
m=0

2∑
n=0

D3ζ
m
i ζ

n
j ξ̂1,mn(ωi, ωj) +D4ζ

n
i ζ

m
j ξ̂1,mn(ωj , ωi)

2ζgD3D4




(33)

Functionals ξl,mn(ωi, ωj), ψl,mn(ωi, ωj), etc., in the summands of these equations are sorted with respect5

to the exponent of the damping ratios, m and n, which allows us to linearize the CQC combination rule
with respect to the damping coefficients. In the Appendix the resulting cross-spectral moments including
all required functions and functionals are listed. The subscript l, l = 0, 1, 2, of ξl,mn denotes the functional
for the lth cross-spectral moment. This notation allows the definition of matrices of functionals, Ξl and Ψl,
as shown in detail in the Appendix. The column and row indexes, m and n, of these matrices start at zero10

to be consistent with the exponent of the damping ratios.
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The lth cross-spectral moment between the ith modal acceleration and the ground acceleration, λl,ig, is
derived from λl,ij setting the limit of ωj to infinity,

lim
wj→∞

(
λl,ij

)
= λl,ig (34)

5.5. Behavior of the correlation coefficients

Substitution of the zeroth cross-spectral moments, defined in Equation (31), into Equation (18) yields the
correlation coefficients. Figure 3 shows the correlation coefficients between the modal total accelerations,
ρi,j , in the frequency domain for damping ratios ζi = ζj = 0.05. It is readily observed that for closely
spaced modes correlation is important. For instance, from Figure 3b it can be observed that an offset5

from the diagonal along the normalized ωi or ωj axis of about 1 Hz reduces the correlation coefficient only
to ρi,j = 0.75. For high frequency modes, i.e., ωi/2π � 5 Hz and ωj/2π � 5 Hz, the minimum correlation
coefficient is approximately ρi,j = 0.25.
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Figure 3: Modal correlation coefficient, ρi,j , for ζi = ζj = 0.05. (a) Surface plot, and (b) contour plot.

Figure 4a shows the correlation coefficients based on damping ratios ζ = ζi = ζj = 0.01, 0.05 and
0.10, respectively, for frequencies ωj/2π = 1 Hz, 5 Hz, 10 Hz and 15 Hz. In Figure 3b these frequencies are10

highlighted by dashed lines. These figures confirm that the correlation between the modes increases with
growing damping, leading to a wider distribution of the correlation coefficient around full correlation for
ωi = ωj . It is evident that the correlation is dominant in the domains of resonance. However, if ωi exceeds
the resonance frequency ωj , ωi � ωj , the correlation in these frequency regions is also considerably large,
and the correlation coefficient ranges approximately between ρi,j ≈ 0.20 for ζi = ζj = 0.01, and ρi,j ≈ 0.7515

for ζi = ζj = 0.10. Consequently, this frequency domain is characterized by a relatively strong correlation
regardless of the modal separation. Comparable results where obtained by Pozzi and Der Kiureghian [15, 16]
and Taghavi and Miranda [13, 14] for total acceleration demands based on numerical evaluations, and by
Der Kiureghian and Nakamura [18] for modal displacement demands in the high frequency domain.

Figure 4b shows the correlation coefficient between the modal total acceleration and the ground accel-20

eration, ρi,g, Equation (18), as a function of normalized frequency ωi/2π. It is revealed that the correlation
coefficient strongly depends on the damping ratio. For high frequency modes, ωi � νg, ρi,g approaches
unity, indicating a quasi-static response [18] of this particular mode. This becomes obvious from evalua-
tion of Equation (3), because if ωi approaches infinity, the largest contribution to balance the right side

11



of this equation is associated to the third term, ω2
i d

(rel)
i (t). Consequently, the first and second term can

be neglected, and the response becomes quasi-static. If the damping ratio increases, the second term of
Equation (3) significantly contributes to the response, graphically shown in Figure 4b. This results are
consistent with observations of Pozzi and Kiureghian [15], and Taghavi and Miranda [13, 14].
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Figure 4: (a) Influence of different damping ratios, ζ = ζi = ζj = 0.01, 0.05 and 0.10, on modal correlation coefficient
ρi,j , and (b) correlation coefficient ρi,g for the ith modal total acceleration and the ground acceleration.

6. Application5

6.1. Planar structures

In a first series of application the proposed CQC method is employed to estimate the PFA demands
of a six-, a twelve-, and a 24-story generic elastic, planar, regular single-bay steel moment resisting frame
(referred to as SMRF) subjected to the Century City record set. These frame structures exhibit the following
properties.10

- Fundamental modal properties: The fundamental period is determined by the simplified procedure
according to ASCE 7-10 [2], and depends on the number of stories and the type of the load bearing
structure. The fundamental mode shape is assumed to be linear.

- Seismic mass: The seismic active mass per floor, 2 ×mf = 2 × 45.36× 103 kg, is concentrated in the
beam-column (BC) connections. To each BC connection the same mass is applied, except at the roof15

level, where only the half is used. This mass distribution leads to more realistic responses since the
structure is designed for lateral loads only.

- Geometric properties: For all structures, the story height is h = 3.66 m, and the bay width is assumed
to be b = 2h.

- Stiffness: Young’s modulus for steel is assumed to be ES = 2.10× 1011 N/m2.20

- Damping: Rayleigh type damping is considered with a modal damping ratio of ζ = 0.05 assigned to
the frequency of the first mode and to the frequency of the 95 % cumulative mass participating mode.

Detailed information regarding the computation of structural and modal properties can be found in [45].
The remaining structural properties are determined by the procedure described in Medina and Krawinkler
[46].25

The application of the proposed response spectrum method is described in detail for the six-story SMRF
structure. The amplitudes of the mode shapes at the story levels expressed in terms of the normalized height
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of the structure, hrel, and the modal properties of the six-story frame are listed in Tables 1 and 2. In Table 2
Ti = 2π/ωi denotes the ith structural period. It is important to note that for a correct estimation of the
peak factors the median PSD and the median response spectrum must be consistent. Thus, it is essential to

substitute the scaled average PSD, G
(GMs)
g (the integrand in Equation (7)), into the corresponding equations.

5

Table 1: Mode shapes of the six-story SMRF structure.

hrel
mode shapes

φ1 φ2 φ3 φ4 φ5 φ6

1/6 0.17 −0.26 −0.50 −0.91 −0.95 0.75
2/6 0.33 −0.44 −0.64 −0.54 0.31 −1.00
3/6 0.50 −0.48 −0.25 0.70 0.85 0.74
4/6 0.67 −0.30 0.46 0.82 −1.00 −0.35
5/6 0.83 0.15 0.74 −1.00 0.44 0.09
6/6 1.00 1.00 −1.00 0.54 −0.14 −0.02

Table 2: Modal properties of the six-story
SMRF structure.

i Γi Ti / s ωi / rad/s ζi

1 1.48 0.86 7.33 0.05
2 −0.74 0.34 18.44 0.04
3 −0.35 0.20 30.74 0.05
4 −0.19 0.13 48.20 0.07
5 −0.14 0.09 73.48 0.10
6 0.10 0.06 106.63 0.14

Figure 5a shows the PFA demands of each story of the six-story structure, subsequently referred to as
profiles. To evaluate the accuracy of these outcomes additionally the “exact” reference results of RHA are
depicted: the PFA profiles for each single record of the complete set are shown by gray thin lines, and the10

corresponding median by a solid thick black line. For the sake of completeness the corresponding 16 % and
84 % quantiles are also depicted. Solid lines with markers refer to the median PFA demands obtained from
modal combination rules. Circular markers refer to the outcome of the proposed CQC rule based on a first
mode approximation, diamond markers refer to the CQC solution when considering the 95 % cumulative
mass participating modes. Additionally, triangular markers highlight the first mode approximation using15

the common SRSS method [5]. It is seen that for this particular structure subjected to the Century City
record set the first mode representation of the proposed CQC method yields a reasonable approximation
of the median PFA demands, in contrast to the first mode approximation of the traditional SRSS method.
Since the first mode is linear, the spatial redistribution of the first mode pseudo spectral acceleration based
on the SRSS rule is linear too. The first mode PFA approximation of the CQC rule is, however, nonlinear20

because the residual vector rn contains truncated modes, which describe the spatial distribution of the PGA,
included in the second and the third term of Equation (16). The peak factors modify the amplitudes of the
first mode PFA approximation but do not impose additional nonlinearities to the PFA profile, because the
median peak factor of the response process, pk, is almost constant with respect to the story number, as it is
shown in Figure 5b, and the fundamental modal peak factor is obviously not affected by the story number.25

When including the 95 % cumulative mass participating modes in the proposed CQC modal combination
rule, its outcome matches the “exact” median PFA profiles based on RHA very well.

Figure 5b shows profiles of the peak factors pk at the kth floor level, k = 0, ..., 6, for different number of
modes approximating the median PFA demand. At the base (k = 0), i.e., at hrel = 0, the depicted peak
factor corresponds to the peak factor of ground acceleration, pg. It is seen that the variation of pk from30

the first to the sixth floor is small. Considering the fundamental mode only, pk is the same for all floors,
under-predicting at each floor the pk profile including all modes. In contrast, a three mode approximation
of pk is close to its full mode description.

Figure 6 shows the median PFA profiles of a twelve-story (ω1 = 4.22 rad/s) and a 24-story (ω1 =
2.42 rad/s) SMRF structure. A full description of the modal properties of these structures can be found35

in [45]. Thin lines with markers represent median PFA demand approximations found by the proposed
CQC response spectrum method based on different numbers of modes: circular markers correspond to a
fundamental single mode approximation, square markers to a two mode approximation, and triangle markers
to the outcome considering all modes up to the 95 % cumulative mass participating mode. The “exact”
median PFA demand obtained from RHA is shown by a bold solid line. For both structures the single40

mode CQC approximation of the median PFA demand is nonlinear with respect to the structural height
because the last two terms of Equation (16) contain truncated modes, as discussed before. When including
two modes, the results of the proposed CQC rule follow the shape of “exact” PFA profiles. However, in

13



0 0.5 1 1.5 2 2.5 3

1/6

2/6

3/6

4/6

5/6

6/6

m̆PFAk
/g

h
r
e
l

RHA: single rec.; SRSS: mode 1

RHA: Median; CQC: mode 1

RHA: 16 %, 84 %; CQC: mode 1 to 95 %

(a)

pk(hrel = 0) = pg

1 1.1 1.2 1.3 1.4 1.5 1.6

1/6

2/6

3/6

4/6

5/6

6/6

pk

h
r
e
l

pk: mode 1; pk: mode 1 to 2

pk: mode 1 to 3; pk: all modes

(b)

Figure 5: (a) PFA demand profiles of a six-story SMRF structure. RHA benchmark solution (median and quantiles),
median PFA outcomes of the CQC modal combination rule based on a single mode, and 95 % cumulative mass
participating modes, respectively, and single mode SRSS method approximation. (b) Corresponding median peak
factor profiles considering different number of modes.

particular for the 24-story structure the roof PFA demand is under-predicted by almost a factor of two,
whereas considering the 95 % cumulative mass participating modes yields to close match of the roof PFA
demand.
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Figure 6: Median PFA demand profiles of (a) a twelve-story SMRF structure, and (b) a 24-story SMRF structure.
RHA benchmark solution and outcomes of the CQC modal combination rule based on one mode, two modes, and
95 % cumulative mass participating modes, respectively.

6.2. Spatial structures

For further evaluation of the proposed CQC rule spatial six-story, twelve-story, and 24-story generic5

structures are analyzed, which represent an extension of the previously considered planar frames to the
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spatial domain. Each floor of these structural models is composed of four massless columns and a horizontal
rigid diaphragm, to which an eccentric lumped mass is assigned. The lumped mass at the roof level is only
half of the lumped mass at the story levels within the building. Two types of structures are considered: SMRF
structures, and structures composed of shear walls (referred to as WALL). Each column of an SMRF structure
is modeled as a simple beam-column element with discrete elastic springs at both ends, representing the5

flexural stiffness of the story beams. The models of the WALL structures are composed of the same elements,
however, they are stiffer in the lateral direction than SMRFs. Consequently, the modal properties of SMRF
and WALL generic structures are also different: the fundamental mode shape of a symmetric SMRF structure
(i.e., the lumped masses are centered) is assumed to be linear, while for a symmetric WALL structure a
parabolic shape with respect to the height is assumed. In the considered generic spatial structures the center10

of mass of each rigid floor is eccentric with respect to the center of stiffness: eM = [x = 0.30 m, y = 0.30 m]
ᵀ

(schematically depicted in Figure 7a). Thus, these structures exhibit closely spaced modes, which is desirable
for evaluation of the proposed CQC modal combination rule. Figure 7b shows a sketch of the lower stories
of these structures. The fundamental frequencies of the structures match the values given in ASCE 7-10
[2]. The first three angular natural frequencies are: ω1 = 7.20 rad/s, ω2 = 7.33 rad/s, ω3 = 7.96 rad/s15

(six-story SMRF); ω1 = 4.14 rad/s, ω2 = 4.21 rad/s, ω3 = 4.59 rad/s (twelve-story SMRF); ω1 = 2.38 rad/s,
ω2 = 2.42 rad/s, ω3 = 2.64 rad/s (24-story SMRF); ω1 = 12.58 rad/s, ω2 = 12.59 rad/s, ω3 = 31.48 rad/s (six-
story WALL); ω1 = 7.55 rad/s, ω2 = 7.55 rad/s, ω3 = 30.95 rad/s (twelve-story WALL); ω1 = 4.49 rad/s,
ω2 = 4.49 rad/s, ω3 = 28.2 rad/s (24-story WALL). Rayleigh type damping is considered with a modal
damping ratio of ζ = 0.05 assigned to the fundamental mode and to the 95 % cumulative mass participating20

mode. Further details to these structures are found in [45].
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Figure 7: (a) Plane view of the eccentric mass at the kth floor level, and (b) isometric view of the first two stories
of the spatial structure.

To provide the “exact” PFA demands, RHA is conducted exposing the structures in the x-direction
to the 92 ground motions of the Century City record set. That is, each support is excited by the same
ground acceleration series, which represents the second derivative of the ground displacement uxg. For
each ground motion the PFA demand is computed at each floor level for corner point A in the x-direction,25

PFAk, k = 1, 2, ..., N , see Figure 7, and subsequently, the median demand is determined.
In Figure 8 the “exact” median profiles obtained from RHA are depicted by a thick solid line. The

results of the left column refer to the six-story (first row), the twelve-story (second row), and the 24-story

15



(third row) SMRF structure, those of the right column to the WALL structures in the same sequence. As
observed, the median PFA demand of the WALL buildings is larger compared to the outcomes of the SMRF
structures. This can be explained by the fact that the first few periods of the the WALL structures are
close to the corner periods of the median response spectrum, and thus, contribute significantly to the PFA
response. Moreover, with increasing height of the WALL structures the S-shape of the median PFA demand5

becomes dominant, and consequently, simplified estimation of this response quantity by a straight line, such
as proposed in [2], is deemed to fail.

The response approximations obtained by the proposed CQC method considering different number of
modes are also shown in the same figure. It is seen that this method yields excellent predictions of the
median PFA demand of the low- (six-story) and mid-rise (twelve-story) spatial buildings when considering10

95% modal mass participation modes, represented by the graphs with triangle markers (Figures 8a to 8d).
Approximations of profiles on the high-rise 24-story buildings are still adequate. For instance, the median
PFA demand of the SMRF structure between the base and 20 % of the relative height is slightly under-
estimated by the CQC method, see Figure 8e. In contrast, the proposed method leads to moderate PFA
overestimations, see Figure 8f. These differences can be led back to the assumptions of the normal stationary15

random vibration theory, in which stationary Gaussian random processes represent a rough approximation
of recorded ground motions.

Comparison of PFA approximations by the proposed CQC method (Figure 8) and by the common SRSS
rule [5] (Figure 9) demonstrates the superiority of the novel approach. The common SRSS method neither
accounts for modal correlation, nor considers peak factors and truncated modes. Thus, the graphs with20

circular markers in Figure 9 are indeed proportional to the fundamental mode only, i.e., an almost linear
variation with respect to height for SMRF structures and an almost parabolic variation for WALL structures.
As previously discussed, the fundamental mode approximation of the PFA demand based on the proposed
CQC method (see Figure 8) is nonlinear because truncated modes are included, thus improving the median
PFA demand prediction at the lower floor levels compared to the common SRSS rule.25
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Figure 8: Median PFA demand profiles of a six-story (first row), a twelve-story (second row), and a 24-story
(third row) spatial SMRF (left column) respectively structural WALL (right column). RHA benchmark solution
and outcomes of the CQC modal combination rule based on one mode, two modes, and 95 % cumulative mass
participating modes, respectively.

17



0 1 2 3 4 5

1/6

2/6

3/6

4/6

5/6

6/6

m̆PFAk
/g

h
r
e
l

(a)

0 1 2 3 4 5

1/6

2/6

3/6

4/6

5/6

6/6

m̆PFAk
/g

h
r
e
l

(b)

0 1 2 3 4 5

2/12

4/12

6/12

8/12

10/12

12/12

m̆PFAk
/g

h
r
e
l

(c)

0 1 2 3 4 5

2/12

4/12

6/12

8/12

10/12

12/12

m̆PFAk
/g

h
r
e
l

(d)

0 1 2 3 4 5

4/24

8/24

12/24

16/24

20/24

24/24

m̆PFAk
/g

h
r
e
l

(e)

0 1 2 3 4 5

4/24

8/24

12/24

16/24

20/24

24/24

m̆PFAk
/g

h
r
e
l

(f)

RHA: Median; SRSS: mode 1; SRSS: mode 1 to 2; SRSS: mode 1 to 95 %

Figure 9: Median PFA demand profiles of a six-story (first row), a twelve-story (second row), and a 24-story (third
row) spatial SMRF (left column) respectively structural WALL (right column). RHA benchmark solution and
outcomes of the common SRSS modal combination rule based on one mode, two modes, and 95 % cumulative mass
participating modes, respectively.
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7. Summary, conclusions, and outlook

A closed form solution of a modal complete quadratic combination (CQC) rule for estimating seismic
peak floor acceleration (PFA) demands in elastic structures has been proposed. The derivation has been
shown in detail, beginning with modal response history analysis, and subsequent transition to random
vibration theory, specialized to normal stationary processes of absolute accelerations. A rigorous analytical5

derivation has been presented for the first three cross-spectral moments of response processes based on the
Kanai-Tajimi power spectral density. In contrast to existing CQC rules based on numerical approximations,
closed form solutions for the correlation coefficients and an analytical approximation of the peak factors for
the CQC rule have been derived. These analytical representations provide new insights into the correlation
and statistics of peak acceleration response, offering a valid fully analytical counterpart to the original CQC10

method. The method has been applied to various planar and spatial generic structures subjected to a set
of recorded ground motions, which match the design response spectrum of Century City, LA, and a given
target dispersion. The outcomes have been validated with median PFA demands obtained from “exact”
response history analysis and traditional modal combination rules. From these results it can be concluded
that the proposed CQC rule closely approximates the median PFA demands of elastic structures, and thus,15

represents a significant enhancement of the state of the art of modal combination rules.
The application of the proposed approach within the PBEE framework, however, requires the approxi-

mation of fragility curves, i.e., the conditional cumulative distribution function P
[
PFA ≥ pfa|IM = im

]
.

This involves the prediction of inelastic PFA demands, which is still a challenging task. Generally, nonlinear
dynamic methods and nonlinear static methods in terms of static pushover analysis are widely accepted to20

estimate the seismic demand of structures responding inelastically. Static approaches are computationally
more efficient than dynamic ones, and thus generally preferred by engineers. Still they cannot provide PFA
information. Interestingly enough, though, PFA demands are essentially strength controlled quantities that
quickly saturate when a structure enters the inelastic range. Thus, for instance, FEMA P-58-1 [1] can offer
generic modification factors that translate elastic to inelastic PFA demands, given the lateral strength ratio.25

When applying such procedures the bottleneck has been the estimation of elastic demands. The present
contribution solves exactly this problem offering a firm basis for the inelastic PFA assessment.
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8. Appendix: Required functions and functionals

8.1. Functionals in the denominators of the cross-spectral moments

The functionals D1, D2, D3, and D4 in the denominators of the cross-spectral moments given by Equa-
tions (31) to (33) can be expressed as

D1 = K(ωg, ζg, ωi, ζi)K(ωg, ζg,−ωi, ζi)K(ωi, ζi,−ωj , ζj)
D2 = K(ωg, ζg, ωj , ζj)K(ωg, ζg,−ωj , ζj)K(ωi, ζi,−ωj , ζj)
D3 = K(ωg, ζg,−ωi, ζi)K(ωg, ζg, ωj , ζj)

D4 = K(ωg, ζg, ωi, ζi)K(ωg, ζg,−ωj , ζj)

(35)

with

K(ωm, ζm, ωn, ζn) =
(
ω2
m − ω

2
n

)2
+ 4ωmωn

(
−ω2

mζmζn + ωmωnζ
2
m + ωmωnζ

2
n − ω

2
nζmζn

) (36)

Here, subscripts m,n = i, j, g indicate the ith mode, the jth mode, and the ground motion g (for consistent5

notation, if m,n = g then ωg ≡ νg).

8.2. Recursion equations for the zeroth and the second cross-spectral moment

The recursion equations for the functions in the zeroth and the second spectral moment are derived as

ξl,mn(ωi, ωj) =

{
−ξ1,mn(ωi, ωj)− 2ilζg ξ̂1,mn(ωi, ωj) if m+ n is even,

+ξ1,mn(ωi, ωj)− 2ilζg ξ̂1,mn(ωi, ωj) if m+ n is odd.

ψ0,mn(ωi, ωj) =


ψ1,mn(ωi, ωj)

2
if m = 0,

ψ1,mn(ωi, ωj)− ψ̂1,mn(ωi, ωj)

2
if m > 0.

ψ2,mn(ωi, ωj) =

{
ψ1,mn(ωi, ωj) if m > 4,

ψ1,mn(ωi, ωj)− ψ0,mn(ωi, ωj) otherwise.

(37)

in which subscript m = m− 1, and l = 1, 2.

8.3. Functionals for the first cross-spectral moment10

The functionals in the first cross-spectral moment read as

ξ1,01(ωi, ωj) = −ξ1,10(ωj , ωi) ξ1,02(ωi, ωj) = ξ1,20(ωj , ωi)

ξ1,12(ωi, ωj) = −ξ1,21(ωj , ωi) ξ̂1,01(ωi, ωj) = −ξ̂1,10(ωj , ωi)

ξ̂1,02(ωi, ωj) = ξ̂1,20(ωj , ωi) ξ̂1,12(ωi, ωj) = −ξ̂1,21(ωj , ωi)

(38)

Note that the off-diagonal elements of Ξ1 and Ξ̂1 are determined by considering the sign and changing
the frequencies ωi and ωj of their off-diagonal counterpart. All other elements of Ξ1 and Ξ̂1 can be express
in terms of the functionals
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ξ1,00(ωi, ωj) = ωiωj

(
ν2gX

(
ωj , ϕ

′
3,−ϕ2

)
+ ω2

iX
(
ωj ,−ϕ1, ϕ

′
3

))
ξ1,01(ωi, ωj) = 2ωiνgζg

(
−ν2gX

(
ωj , 2ϕ

′
3, 3
)

+ ω2
iX
(
ωj , 2ϕ1, ϕ2

))
ξ1,02(ωi, ωj) = 4ωiωjν

2
gX

(
ωi,−ϕ1, ϕ

′
3

)
ξ1,11(ωi, ωj) = −4ϕ′3ν

6
g + 16ϕ1ω

2
i ω

2
j ν

2
gζ

2
g + 8ϕ2ν

4
gζ

2
g

(
ω2
i + ω2

j

)
ξ1,12(ωi, ωj) = −8ωjν

3
gζgX (ωi, 2ϕ1, ϕ2)

ξ1,22(ωi, ωj) = −16ϕ1ωiωjν
4
g

ξ̂1,00(ωi, ωj) = −ωiωjζg
(
ν2gX

(
ωj , 1,−2

)
+ ω2

iX
(
ωj , 4ζ

2
g , 1
))

ξ̂1,01(ωi, ωj) = ωiνg

(
ν2gX

(
ωj ,−4ζ2g , 1

)
− ω2

iX

(
ωj ,
(

4ζ2g

)2
, ϕ′2

))
ξ̂1,02(ωi, ωj) = −4ωiωjν

2
gζgX

(
ωi, 4ζ

2
g , 1
)

ξ̂1,11(ωi, ωj) = 4ν2gζg

(
ν2gX

(
ωj , ϕ

′
2, 1
)

+ ω2
iX

(
ωj ,
(

4ζ2g

)2
, ϕ′2

))

ξ̂1,12(ωi, ωj) = 4ωjν
3
gX

(
ωi,
(

4ζ2g

)2
, ϕ′2

)
ξ̂1,22(ωi, ωj) = −64ωiωjν

4
gζ

3
g

(39)

For the elements of the matrices Ψ1 and Ψ̂1 holds

ψ1,mn = 0 if m+ n is even

ψ̂1,mn = 0 if m+ n is odd
(40)

The remaining elements of Ψ1 and Ψ̂1 can be expressed in terms of the functionals

ψ1,01 = 2ω3
i Ŷ1(ωi) ψ̂1,00 = ωj

(
ω2
j − ω

2
i

)
Ŷ1(ωi)

ψ1,10 = ωj

(
ω2
jY1(ωi) + Y2(ωi)

)
ψ̂1,02 = 4ω2

i ωj Ŷ1(ωi)

ψ1,12 = 4ω2
i ωjY1(ωi) ψ̂1,11 = 4ωi

(
ω2
j Ŷ1(ωi) + Ŷ2(ωi)

)
ψ1,21 = 4ωi

(
ω2
jY1(ωi)− Y3(ωi)

)
ψ̂1,20 = ψ1,30 +

ψ1,50

2
+ 8ω6

i ωjν
2
g

ψ1,30 = 4ωjν
2
g

(
ω2
jY4(ωi) + 4ω4

i ν
2
gζ

2
g − ω

6
i

)
ψ̂1,22 = ψ1,32 +

ψ1,52

2

ψ1,32 = 16ω2
i ωjν

2
gY4(ωi) ψ̂1,31 = ψ1,41 +

ψ1,61

2

ψ1,41 = 16ωiν
2
g

(
ω2
jY4(ωi) + 4ω4

i ν
2
gζ

2
g

)
ψ̂1,40 = ψ1,50

ψ1,50 = 64ω2
i ω

3
j ν

4
gζ

2
g ψ̂1,42 = ψ1,52

ψ1,52 = 256ω4
i ωjν

4
gζ

2
g ψ̂1,51 = ψ1,61

ψ1,61 = 256ω3
i ω

2
j ν

4
gζ

2
g

(41)
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where the required functions read as

ϕ1 = 1 + 4ζ2g − 8ζ4g ϕ4 = 1− 12ζ2g ϕ′2 = 1 + 4ζ2g

ϕ2 = 1− 4ζ2g ϕ5 = 1 + 24ζ2g − 48ζ4g ϕ′3 = 1 + 2ζ2g

ϕ3 = 1− 2ζ2g

(42)

X(ωi, a, b) = aω2
i + bν2g

Y1(ωi) = −ϕ5ω
4
i ν

2
g − 2ϕ4ω

2
i ν

4
g + 3ν6g + 4ω6

i ζ
2
g

Y2(ωi) = ω2
i ν

2
g

(
3ω4

i − ν
4
g + 2ω2

i

(
4ϕ3ω

2
i ζ

2
g − ϕ

′
2ν

2
g

))
+ 4ω8

i ζ
2
g

Y3(ωi) = ω2
i ν

2
g

(
ω2
i

(
16ν2gζ

2
g + ϕ2

2ω
2
i

)
+ ν4g

)
Y4(ωi) = 8ϕ3ω

4
i ζ

2
g − ν

4
g − 20ω2

i ν
2
gζ

2
g

Ŷ1(ωi) = ϕ2
2ω

4
i ν

2
g − 2ϕ2ω

2
i ν

4
g + ν6g + 4ω6

i ζ
2
g

Ŷ2(ωi) = ω2
i ν

2
g

(
ω4
i − ν

4
g + 8ω2

i ζ
2
g

(
ϕ3ω

2
i − ν

2
g

))

(43)
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