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Vector and Scalar IMs in Structural 1 

Response Estimation: Part II – Building 2 

Demand Assessment 3 

 4 

Mohsen Kohrangi,a)  Paolo Bazzurro,b) M.EERI and Dimitrios 5 

Vamvatsikos,c) M.EERI 6 

The advantages and disadvantages of using scalar and vector ground motion 7 

Intensity Measures (IMs) are discussed for local, story-level seismic response 8 

assessment of 3D buildings. Candidate IMs are spectral accelerations, at a single 9 

period (Sa) or averaged over a period range (Saavg). Consistent scalar and vector 10 

probabilistic seismic hazard analysis results were derived for each IM as 11 

described in the companion paper (Kohrangi et al., 2015b). The response hazard 12 

curves were computed for three buildings with reinforced concrete infilled frames 13 

using the different IMs as predictors. Among the scalar IMs, Saavg tends to be the 14 

best predictor of both floor accelerations and inter story drift ratios at practically 15 

any floor. However, there is an improvement in response estimation efficiency 16 

when employing vector IMs, specifically for 3D buildings subjected to both 17 

horizontal components of ground motion. This improvement is shown to be most 18 

significant for a tall plan-asymmetric building.  19 

INTRODUCTION 20 

Performance Based Earthquake Engineering (PBEE) has been the focus of research 21 

on seismic assessment of buildings and bridges for more than a decade. The main scope 22 

of PBEE is to support decision-making regarding the seismic performance of structures 23 

within a probabilistic framework. This methodology consists of four steps that require a 24 
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broad knowledge of: 1) Seismic Hazard Analysis; 2) Demand Analysis; 3) Damage 25 

Analysis and 4) Loss Estimation (Cornell and Krawinkler, 2000). The first step uses an 26 

IM of the ground motion to predict the distribution of the structural response in terms 27 

of different Engineering Demand Parameters (EDPs), such as Inter Story Drift Ratio 28 

(IDR) and absolute Peak Floor Acceleration (PFA). EDP distributions are then used to 29 

measure the structural/nonstructural damages using discrete damage states for each 30 

building component (FEMA-P-58 2012). Finally, the likelihood of occurrence or 31 

exceedance of monetary losses, injuries and estimated downtime is computed using the 32 

consequence functions that link damage states and their repair strategies to repair 33 

costs, repair time, and physical consequences to inhabitants. This paper focuses on the 34 

second step of this procedure namely: Probabilistic Seismic Demand Analysis (PSDA). 35 

The companion paper (Kohrangi et al., 2015b) addresses the first step that is 36 

Probabilistic Seismic Hazard Analysis (PSHA). 37 

PSHA evaluates the Mean Annual Rate (MAR) of exceeding certain levels of IM at the 38 

building site. Some classical IMs are the ground motion peak values expressed in terms 39 

of the peak ground acceleration, velocity or displacement (PGA, PGV or PGD, 40 

respectively), and the Spectral acceleration at the first mode period of the structure, 41 

Sa(T1). Of interest are the efficiency and sufficiency of such IMs (See Luco and Cornell, 42 

2007). An efficient IM provides low dispersion of the predicted response given IM and a 43 

sufficient IM offers statistical independence of the response given IM from ground 44 

motion characteristics, such as magnitude, distance, etc. Efficiency helps reduce the 45 

number of time history analysis for reliable assessment of response while sufficiency is 46 

a sine qua non requirement for combining PSHA with structural analysis results. For 47 

example, Sa(T1) is shown to be efficient and sufficient for assessing the response of 48 

some structures (e.g., first-mode dominated, low-rise buildings) and types of ground 49 

motion (e.g., ordinary far field motions) and not as effective in other cases, such as tall 50 

buildings (Shome and Cornell, 1999), and any building that are likely to be subject 51 

mainly to near source ground motions (Luco and Cornell, 2007). In addition, due to the 52 

3D nature of structures and the multi-directionality of ground shaking excitations, a 53 

single scalar IM at a single ordinate of the spectrum does not seem to be a good 54 
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predictor for the structural response (Faggella et al., 2013; Lucchini et al., 2011). In 55 

general, the response of the structure is correlated to the spectral acceleration at higher 56 

modes and, when beyond the elastic range, also to the spectral acceleration at elongated 57 

periods. In addition, the response in one direction might be correlated to the excitation 58 

of the orthogonal direction, especially for torsionally unrestrained buildings and when 59 

some local failure modes are triggered (e.g., out-of-plane collapse of walls being 60 

facilitated by loss of in-plane strength).  61 

Some more complex scalar IMs have been proposed by researchers to improve the 62 

predictive performance of traditional scalar IMs. For example, Tothong and Cornell 63 

(2007) showed that the inelastic displacement of the building could be effectively 64 

estimated by the Inelastic Spectral Displacement, Sdi(T1), of a nonlinear SDOF with 65 

vibration period consistent with the first modal period of the structure. Alternatively, 66 

for tall buildings, a combination of Sdi(T1) with elastic spectral displacement at the 67 

second mode, Sde(T2), and the elastic participation factors was shown to be an effective 68 

predictor of building deformation response. Cordova et al. (2000) followed by 69 

Vamvatsikos and Cornell (2005) and Mehanny (2009) introduced the power-law form, 70 

scalar-based seismic IM that was shown to reduce the dispersion in structural inelastic 71 

displacement response. Bianchini et al. (2010) proposed the similarly defined average 72 

spectral acceleration (Saavg), which is the geometric mean of the logarithmic spectral 73 

acceleration at multiple periods, in a relevant period range. At the other end, a number 74 

of record selection schemes have been introduced that rely on simpler IMs. First, Baker 75 

and Cornell (2005) employed epsilon, i.e. a measure of the difference between ground 76 

motion’s Sa(T1)  and the median estimate of a ground motion prediction Equation 77 

(GMPE) for the given earthquake scenario, while Bradley (2010) proposed the 78 

Generalized Conditional Intensity Measure (GCIM) to select records using one or more 79 

simple IMs and record parameters to allow accounting for the conditional distribution 80 

of ground motion characteristics to remove issues of insufficiency.  81 

There is no theoretical limitation forcing us to considering a scalar IM for response 82 

prediction. If advantageous, one could consider a vector of several relevant IMs for 83 

structural response estimations. The use of a set of different scalar IMs was introduced 84 
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by Bazzurro (1998) as a vector that included two spectral accelerations at different 85 

periods. Vamvatsikos and Cornell (2005) studied the efficiency of a vector of Sa(T1) and 86 

a ratio of spectral accelerations at T1 and a secondary period, while Baker and Cornell 87 

(2005, 2008a, 2008b) also investigated the further addition of epsilon. Although, it is 88 

intuitive to expect that the use of a vector IM would provide more efficiency and 89 

sufficiency in response estimation, it has not caught on in the scientific community due, 90 

in part, to the complexity of linking the response assessment with the joint hazard 91 

estimation at the site via Vector Probabilistic Seismic Hazard Analysis (VPSHA). In 92 

addition, some researchers, such as Rajeev et al. (2008) using a 2D model, did not find 93 

the gain in response prediction accuracy worth the extra effort.  94 

This paper and its companion (Kohrangi et al., 2015b), intend to offer a fresh look 95 

into the issue of using scalar and vector IMs for probabilistic response estimation of 3D 96 

buildings under two horizontal components of ground motion. Three building examples 97 

of common Mediterranean construction practice in reinforced concrete (RC) were 98 

examined. The companion paper (Part I) presents the approaches followed to carry out 99 

VPSHA. This paper (Part II) covers the record selection approach, the structural 100 

modeling and analysis, as well as the response estimation. Finally, the results obtained 101 

are discussed, with emphasis on the effectiveness of several scalar and vector IMs as 102 

response predictors to obtain the localized-response hazard curves for these buildings.  103 

BUILDING EXAMPLES AND MODELING DESCRIPTIONS 104 

This study considers three examples of 3-, 5- and 8-story buildings representative of 105 

typical Southern Europe old constructions designed without specific provisions for 106 

earthquake resistance (Figure 1). The 3-story RC frame building (SPEAR) is non-107 

symmetric in X and Y directions with 3.0 m story height. The full-scale structure was 108 

built and tested within a European research project at JRC-ELSA (Fardis, 2002). The 5- 109 

and 8-story buildings are models of real RC buildings in Turkey. The 5-story is regular 110 

in plan and height with 2.85 m story height, whereas the 8-story is irregular in plan (i.e., 111 

stiffer in Y than X direction) and height (i.e., first floor story height is 5.0m and other 112 

stories 2.7m). Detailed information about the 5- and 8- story structures is available in 113 
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Bal et al. (2007). The outer frames of all three buildings are filled with masonry walls 114 

except for the 8-story building in which no walls are present at the ground floor in the X 115 

direction.  116 

Figure 1. Plan view of the three considered structures (dimensions in cm) 

 117 

3-D nonlinear models of the building structures were created in OpenSees 118 

(McKenna, 2000). Beams and columns are modeled using force-based distributed 119 

plasticity elements and the actual properties of the floor diaphragms are considered by 120 

means of equivalent X-diagonal braces that represent the in-plan stiffness of the slab. 121 

The masonry infill panels were considered based on the model proposed by 122 

Kadysiewski and Mosalam (2009). All material and structural properties are taken at 123 

their best deterministic (typically mean) estimates. The results of the modal analysis 124 

after application of gravity loads are listed in Table 1.  125 

The fundamental translational modes of the buildings have mass participation 126 

factors that are generally lower than 80%. The sole exception is the X-direction 127 

response of the 8-story building in which 99.04% of the modal participation is reached 128 

in the first mode due to the presence of a soft first story in this direction only. In 129 

addition, the translational response of all three buildings is coupled with torsion at least 130 

in one of the two horizontal directions, even for the 8-story structure: Due to the 131 

alignment of all walls with the Y axis, the 8-story building is flexible along X with a 132 

vibrational period of 1.30s and stiff along Y with a period of 0.44s. The pushover curves 133 

of all three buildings with and without masonry infill walls in the two orthogonal 134 

directions are shown in  135 

Figure 2. The difference between the stiffness and the base shear capacity in the two 136 

orthogonal directions of the 8-story building could be noticed in  137 

Figure 2(c). Note also that, because of the absence of infills at the ground floor, the 138 

values of the base shear capacity of the 8-story building in the X axis computed with and 139 

without infill walls are basically the same. More discussion about the building 140 

properties and modelling can be found in Kohrangi (Kohrangi, 2015a).  141 
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Table 1. Periods and participating mass ratios (PMR) of buildings’ eigen modes for the 

translational (X, Y) and rotational (RZ) degrees of freedom after the application of gravity 

loads. The prefix Σ denotes the cumulative sum of the modes. 

 Mode      

No. 

Period   

(s) 

PMRX  

(%) 

PMRY  

(%) 

PMRRZ 

(%) 

ΣPMRX 

(%) 

ΣPMRY 

(%) 

ΣPMRRZ 

(%) 

3 story 

1 0.66 5.78 50.21 26.40 5.78 50.21 26.40 

2 0.57 77.16 8.28 0.03 82.94 58.49 26.43 

3 0.43 2.60 23.43 60.37 85.54 81.91 86.80 

5 story 

1 0.67 0.00 80.70 0.00 0.00 80.70 0.00 

2 0.46 71.28 0.00 10.45 71.28 80.70 10.45 

3 0.42 10.07 0.00 72.54 81.35 80.70 82.99 

8 story 

1 1.30 99.04 0.00 0.03 99.04 0.00 0.03 

2 0.46 0.02 18.48 73.00 99.07 18.48 73.03 

3 0.44 0.04 68.43 18.66 99.10 86.91 91.69 

 142 

 143 

Figure 2. Pushover curves for three buildings with and without infill panels (Solid line: Y axis, 144 
Dotted line: X axis) 145 

GROUND MOTION DATABASE 146 

Nonlinear Dynamic Analysis is used to obtain the distribution of structural response, 147 

as expressed in terms of engineering demand parameters (e.g., MIDR and PFA), for 148 

different IM levels. Given the approximations included in the first of the four-step PEER 149 

approach, where the complexity of ground motions is represented most often by a 150 

single IM, the ground motion record selection may often play a key role in ensuring 151 

accuracy in the estimation of the responses. Loosely speaking, the ground motions 152 

selected should appropriately reflect the distribution of seismological characteristics 153 

not accounted for by an insufficient IM at the given site. Given the limitations in the 154 

existing databases of real accelerograms, any available method for record selection is 155 

imperfect. In this study we used the selection method (Jayaram, et al., 2011; and Lin et 156 

al., 2013a) based on the Conditional Spectrum, CS, to assemble three sets of input 157 

ground motion records. In this methodology, a suite of ground motions is selected and 158 

scaled such that each resulting suite collectively matches the entire conditional 159 

distribution of spectral accelerations given the IM value as represented by the CS. This 160 

way, both the mean and variance of the record set spectra are consistent with the 161 

seismic hazard at the site.  162 
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For this study, 10-12 intensity levels of spectral acceleration, ��(��), were used for 163 

the 3- and 8-story buildings and 12 levels for the 5-story building. Numerically they 164 

range from 0.037g to 2.46g and they were selected to cover the entire range of response 165 

from elastic to severely inelastic. Each stripe consists of both horizontal components of 166 

20 accelerogram pairs in which the geometric mean of the spectra of the two 167 

components is used to match the corresponding anchoring point of the CS at the period 168 

�� . The GMPE of Boore & Atkinson (2008) and mean magnitude, distance and epsilon (169 

M , R  and ε ) obtained from disaggregation results for each intensity level were used for 170 

computing the CS. The conditioning period (��) in all cases is the average of the first 171 

mode building vibration periods in X and Y directions, ( )1 1 / 2x yT T T= + , as proposed by 172 

FEMA P-58 for period-specific scalar IMs case to be used for assessing the response of 173 

3D buildings.  174 

Table 2. Summary of the mean M, R and ε values obtained via disaggregation for the selected 175 
levels of ��(��) for the three considered buildings. 176 

Intensity 
Level 

��(��) 
[g] 

3- story 
 (�� = 0.62�) 

5- story 
 (�� = 0.57�) 

8- story  
(�� = 0.87�) 

�� �� � ̅ �� ��  � ̅ �� ��� � ̅

IML1 0.04 68.7 5.7 0.7 69.3 5.6 0.7 66.3 5.9 0.8 
IML2 0.07 57.0 5.9 0.9 57.5 5.9 0.9 54.0 6.2 0.9 
IML3 0.12 43.4 6.2 0.9 44.0 6.2 0.9 39.7 6.5 1.0 
IML4 0.22 31.0 6.5 1.1 31.5 6.4 1.1 28.6 6.7 1.2 
IML5 0.33 25.4 6.6 1.3 25.7 6.6 1.3 23.7 6.7 1.6 
IML6 0.50 21.2 6.7 1.7 21.5 6.7 1.6 19.8 6.8 1.9 
IML7 0.61 19.4 6.7 1.8 19.6 6.7 1.7 17.7 6.8 2.2 
IML8 0.74 17.5 6.7 2.1 17.7 6.7 2.0 15.6 6.8 2.2 
IML9 0.90 15.3 6.7 2.2 15.7 6.7 2.2 12.2 6.7 2.2 
IML10 1.35 6.3 6.5 2.1 7.7 6.5 2.1 2.6 6.4 2.4 
IML11 2.01 - - - 2.6 6.4 2.4 - - - 
IML12 2.46 - - - 2.5 6.7 2.5 - - - 

 177 

Figure 3. (a) The mean conditional spectra (CMS) at 12 intensity measure levels and the 178 
selected ground motion suites used as input to the nonlinear dynamic analysis of the 5-story 179 
building, (b) “Hazard consistency” verification of the selected ground motion records for the 8-180 

story building based on the conditioning period 0.87T s=  for CS matching (dashed line: Direct 181 
hazard curve from PSHA, solid line: Hazard curve from the selected records). 182 

 183 

Since the same GMPE was applied both here and in the PSHA calculations, the 184 

results of the record selection could be considered accurate. However, some 185 

approximations might be introduced by neglecting the different causal earthquake 186 
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scenarios that may not be adequately captured by the average M, R and ε values 187 

considered in the process (see Lin et al., 2013, for more details). The records in this 188 

database can be classified into two groups: ordinary far field records and pulse-like 189 

records. Based on the method proposed by Shahi (2013), in this database 9 records for 190 

the 3-story building, 8 records for the 5-story building, and 22 records for the 8-story 191 

building are classified as pulse like. 192 

As an example, Figure 3(a) shows the Mean of Conditional Spectra (CMS) at 12 193 

intensity levels as well as the geometric mean of the spectra of the two components of 194 

all 240 (selected and scaled) individual records used as input to the nonlinear dynamic 195 

analysis of the 5-story building. The approach proposed by Lin et al. (2013b) was used 196 

to verify the hazard consistency of the selected records for the three buildings. Figure 197 

3(b) compares the direct hazard curves of the site with the rate of exceedance of 1( )Sa T , 198 

1(0.5 )Sa T⋅  and 1(1.5 )Sa T⋅  in the record data set selected for the 8-story building. The 199 

consistency of the selected records with the hazard curves at different structural 200 

ordinates of the spectrum is acceptable. Although omitted here, this consistency was 201 

also verified for the record sets selected for the 3- and the 5-story buildings. 202 

NONLINEAR DYNAMIC ANALYSIS, INTENSITY MEASURES AND ENGINEERING 203 

DEMAND PARAMETERS 204 

Nonlinear Dynamic Analysis was performed for the risk-based assessment of the 205 

three buildings using the CS-based records. It is emphasized that the difference between 206 

what is done here and the well-known Incremental Dynamic Analysis (IDA) approach 207 

(Vamvatsikos and Cornell, 2002) is that this study uses different records for the lower, 208 

middle and higher stripes, whereas in IDA the same records are incrementally scaled up 209 

until collapse of the structure is reached. Thus, the present study does not depend as 210 

much on the quality of the IM to achieve reliable results. 211 

Structural and non-structural deformation-sensitive damage is typically correlated 212 

to the peak (in time) inter story drift ratios (IDRX and IDRY) at each story. As a single 213 

indicator of global collapse, the respective maxima over height, MIDRX and MIDRY, may 214 
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also be employed. For simplicity, the directionless square root of the sum of the squares 215 

(SRSS) of the corresponding X and Y EDPs in the two directions, termed IDR for 216 

individual stories or MIDR for the whole building, is sometimes used instead. In this 217 

study, as torsion may be an issue, such values are averaged over the four corners of the 218 

building’s rectangular plan. To assess the acceleration-sensitive losses of nonstructural 219 

components and contents, the absolute peak floor acceleration is also employed. This is 220 

also taken as the peak (in time) of the SRSS of the floor accelerations in the two main 221 

orthogonal directions at the middle point of the floor slab. Note that the IDRs in X or Y 222 

direction are more suitable for monitoring the response of single components according 223 

to their orientation and, therefore, we chose to show the results of IDR for two 224 

orthogonal directions, separately.  For PFA, however, for which the direction has less 225 

significance, we present the SRSS results instead. On the other hand, the use of 226 

directionless SRSS values may understate the magnitude of change observed in a 227 

specific direction, somewhat softening the perceived impact of 3D ground motion 228 

excitation and the improvement brought on by some of the more specialized IMs tested. 229 

The global response of the buildings in terms of (directionless) IDR and PFA is 230 

shown in is shown in Figure 4. The thin gray lines represent the maximum floor 231 

response of individual analyses while the thick blue lines identify their median at 232 

different IM levels. Two collapse criteria were considered. The first is the global side-233 

sway collapse that we equated to non- convergence of the analysis after large lateral 234 

displacements were reached. In addition, we considered a local collapse criterion that 235 

can be associated to the loss of load bearing capacity of the non-ductile columns (Aslani 236 

and Miranda, 2005). This was set at an IDR value of 0.04, on average. 237 

 238 

Figure 4. Structural response of for the 8-story building obtained from nonlinear dynamic 239 
analysis carried out for the CS-based selected records. Each thick blue line is the median of the 240 
responses for each stripe analysis. 241 

 242 
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The set of scalar and vector IM candidates considered are listed in Table 3. A 243 

detailed summary of the tested IMs and the criteria employed for selecting them are 244 

presented in companion paper (Kohrangi et al., 2015b).  245 

 246 

Table 3. IMs considered in the response estimation  

INTENSITY MEASURE (IM) **  
ABBREVIATION* 

SCALAR IMs 
Natural logarithm of arbitrary spectral acceleration at the first modal period  

[ ]1ln ( )x xSa T or 1ln ( )y ySa T   .   

 

 

Natural logarithm of the geometric mean of spectral acceleration at the average period, 

.  

  
 

( )( ) ( )( )
1/m1/

1 1

ln ln

nn m

x xi y yj
i j

Sa T Sa T
= =

          ⋅                
∏ ∏ ,  §   

Natural logarithm of the geometric mean of Peak Ground Acceleration, ��[����.�.]  

VECTOR IMs  

1 11
1

1 1 1

( ) (1.5 )(1.5 )
ln ( ), , ,

( ) ( ) (1.5 )
y y y yx x

x x
x x y y x x

Sa T Sa TSa T
Sa T

Sa T Sa T Sa T

 ⋅⋅ 
 

⋅  
  

  

 
 

( )( ) ( )( )
1/m1/

1 1

ln ,

nn m

x xi y yj
i j

Sa T Sa T
= =

                             

∏ ∏ ,   

*All the IMs are based on natural logarithm transformation. The notation ln is removed from the abbreviations for brevity 

** �� is equal to 0.8, 0.2 and 0.2 for the 3-, 5- and 8-story, respectively. �  is equal to 1.5 in all cases.  

§ The periods are equally spaced. 

 

RESPONSE ESTIMATION AND IM EFFICIENCY ASSESSMENT 247 

The selection of an appropriate IM is driven mainly by its efficiency and sufficiency 248 

(Luco and Cornell, 2007). An efficient IM is one which, when used as predictor of an 249 

EDP, results in a relatively small variability in the EDP given the value of the IM. 250 

Sufficiency, on the other hand, reflects the independency of the distribution of EDP 251 

given IM from other ground motion characteristics, such as magnitude of the causative 252 

1SSa

( )( ). . 1 1ln / 2g m x ySa T T T = +  
2SSa

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 1 1ln x x x x x u x y y y y y u ySa T Sa T Sa T Sa T Sa T Sa Tα α α α ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  3SSa

1 1 1, 10i uT T T m nα α⋅ ≤ ≤ ⋅ = = 4SSa

PGA

1VSa

. . . .
. .

. . . .

(0.5 ) (1.5 )
ln ( ), ,

( ) (0.5 )

g m g m
g m

g m g m

Sa T Sa T
Sa T

Sa T Sa T

 ⋅ ⋅ 
 

⋅  
2VSa

( ) ( ) ( ) ( ) ( ) ( )
1/31/3

1 1 1 1 1 1 1 1ln ,x x x x x u x y y y y y u ySa T Sa T Sa T Sa T Sa T Sa Tα α α α   ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅     
3VSa

1 1 1, 10i uT T T m nα α⋅ ≤ ≤ ⋅ = = 4VSa



 

Kohrangi—11 

 

earthquake, distance of site from the source, epsilon of the record, etc. Higher efficiency 253 

results in the reduction in the necessary number of records needed to obtain a reliable 254 

estimate of the EDP|IM. Higher sufficiency results in decreased (or non-existent) bias. 255 

Due to the careful record selection approach adopted, we shall assume that sufficiency 256 

is achieved, at least with respect to spectral shape, and we will only concentrate on 257 

efficiency. As such, the efficiency of the examined IMs is gauged by the variance of the 258 

residuals of the linear regression analysis of the EDP as a function of the IM. For vector 259 

IMs, each element IMi of the vector was employed separately as a predictor. The 260 

regression models adopted for response prediction and efficiency checking appear in 261 

Equation (1) and Equation (2), these having linear and complete quadratic IM terms, 262 

respectively. It should be noted that for scalar IMs the additional quadratic terms 263 

introduced in Equation (2) are not as useful, thus only Equation (1) is used. 264 

( ) ( )0 ln |
1

ln ln
n

i i r EDP IM
i

EDP b b IM ε σ
=

 = + ⋅ + ⋅ ∑  (1) 

( ) ( ) ( ) ( )

( )

0
1 1 1

2

ln |
1 1

1
ln ln ln ln

2

1
ln

2

n n n

i i ij i j
i i j

n n

ii i r EDP IM
i j

EDP b b IM b IM IM

b IM ε σ

= = =

= =

  = + ⋅ + ⋅ ⋅ ⋅   

 + ⋅ ⋅ + ⋅ 

∑ ∑∑

∑∑
 (2) 

In these equations the bi values are the regression parameters; ln |EDP IMσ  is the standard 265 

error of estimation, and εr is the standardized error term. The advantage of the linear 266 

regression method is that it provides a well-developed theory regarding model 267 

selection and confidence intervals for regression coefficients, but there are a few 268 

disadvantages as well. Firstly, this approach assumes homoscedasticity, namely a single 269 

standard deviation of the error for the entire data range, whereas it is shown in earlier 270 

studies (e.g., Modica and Stafford, 2014, to name one of the most recent references) that 271 

structural response in terms of MIDR is indeed heteroscedastic, which in this case 272 

means that the response variance increases with increasing IM values. Secondly, the 273 

regression model extrapolates in the data range that is not covered well by the 274 

observed data points. For example, in the case of a vector of IMs, for certain values of T1 275 

it is rare to have real records with a low Sa(T1) value and a high Sa(1.5·T1)/Sa(T1) value 276 
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from a real ground motion. Luckily, this issue is not a very serious one because the 277 

mean rate of occurrence of such unlikely pairs of spectral acceleration values in the 278 

joint hazard is so small as to render irrelevant the perhaps inaccurate extrapolations of 279 

the model. Thirdly, the significance of each component of the vector of IMs might be 280 

different across the range of the data. For example, for low levels of Sa(T1) when the 281 

structure behaves mainly linearly, Sa(1.5·T1) is less effective in predicting the IDR 282 

response, whereas for high values of Sa(T1), when the structure is highly nonlinear, 283 

Sa(1.5·T1) has a significant predictive power on the nonlinear IDR response. This 284 

implies that IM interaction terms should be included in the multiple linear regression 285 

model (e.g., Baker, 2007) when used for the vector IM cases. Modica and Stafford 286 

(2014), in fact, used a quadratic functional form consisting not only of interaction terms, 287 

ln( ) ln( )i jIM IM⋅ , but also of quadratic ones, [ ]2ln( )iIM , when assembling the prediction 288 

model for estimating EDPs.  289 

An alternative method for response estimation is the non-parametric running 290 

median (or in general running quantile) approach. In this method, the median of a 291 

moving window of the data is computed and the standard deviation is obtained using 292 

84th and the 16th percentiles of the residuals with the assumption of the normal or 293 

lognormal distribution of the data (Vamvatsikos and Cornell, 2005). The primary 294 

advantages of this method are that it provides a standard deviation that varies across 295 

the data range, which is more faithful to the data, and that it does not need a parametric 296 

assumption for the error term. In addition, because it uses a quantile of the data (e.g., 297 

the 50% quantile for median), it can deal with collapse data points and non-collapse 298 

data points at the same time. Although appealing, this method may work well for scalar 299 

IMs but it becomes impractical as the number of components of the vector IM increases 300 

(e.g. more than 2) since the data points tend to be sparse in a multi-dimensional space. 301 

Hence, the need for fitting a model becomes unavoidable.  302 

IM EFFICIENCY FOR INTER STORY DRIFT RATIOS 303 

 304 

Figure 5 and  305 
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Figure 6 compare the response dispersion profiles expressed in terms of IDRX, IDRY 306 

and PFA for the three buildings computed using different IMs. Note that, as explained 307 

earlier, the linear regression analysis of the response data points provides single 308 

dispersion at all IM levels. As such, in these figures the dispersion is not related to a 309 

specific IM level. The lowest dispersion of IDR|IM in the lower stories and in almost all 310 

cases and for both directions is provided by the vector SaV1. The decrease in dispersion 311 

of IDRX, IDRY given SaV1 compared to the simplest scalars SaS1 and SaS2 is significant, 312 

whereas it is negligible when compared against vectors SaV3 and SaV4 for the 3-story 313 

building and moderate for the 5- and 8-story buildings. This could be explained by the 314 

fact that, the averaged spectral accelerations used as components of SaV3 and SaV4 315 

indiscriminately combine Sa values at multiple periods, thus introducing a slight 316 

disadvantage for the taller structures.  317 

 318 

Figure 5. Comparison of the dispersion ln |EDP IMσ  profiles of IDRX, IDRY using different IMs for 319 

the 3-, 5- and 8-story buildings (note: Single dispersion is estimated for all IM levels) 320 

 321 

For instance, in an average Sa, generally indicated as Saavg henceforth, incorporating 322 

only two spectral accelerations at T1 and 1.5·T1, one record with Sa(T1)=0.8g and 323 

Sa(1.5·T1)=0.4g will provide the same value of Saavg of a record with the values 324 

switched (i.e. Sa(T1)=0.4g and Sa(1.5·T1)=0.8g), even though the response of the 325 

structure to these two records will be different. Therefore, a vector with separated 326 

spectral accelerations such as SaV1 is expected to show a better performance in this 327 

case, as can be observed from the results here. The only saving grace of such 328 

indiscriminate averaging is the relative scarcity of one of the two equal- Saavg pairs (as 329 

discussed earlier). In addition, given the concentration of the nonlinearity in the lower 330 

floors for our case-studies, the IDR response of these floors is highly correlated with the 331 

spectral accelerations at elongated periods and less with the ones lower than T1. That is 332 

why, even if SaV1 does not reflect the spectral accelerations at the low range periods, it 333 

remains the best predictor of the response in the lower floors. In upper floors, on the 334 

other hand, where the higher mode effects become more important, SaV1 slightly loses 335 
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its effectiveness due to its lack of spectral accelerations at lower periods whereas SaV3 336 

and SaV4 which contain such terms, become superior. SaV2 being a vector IM, is similarly 337 

more effective compared to its corresponding scalar, SaS2. On the other hand, it is less 338 

efficient compared to other vector IMs used here, something that may be attributed to 339 

its use of the geometric mean Sa at each period rather than of the arbitrary component 340 

Sa. 341 

Among the scalar IMs, SaS3 and SaS4 are superior to SaS1 and SaS2. SaS2 shows 342 

specifically a poor performance for the 8-story building with widely different periods in 343 

the two orthogonal directions (1.3s and 0.44s for X and Y directions, respectively). The 344 

difference in the dispersion estimated by SaS3 and SaS4 is very small which suggests the 345 

superiority of SaS3 to SaS4 because it is a simpler application of Saavg with only 6- 346 

components compared to 20 components of SaS4. It should be highlighted that there can 347 

be cases where the more complex SaS4 becomes a better solution. For instance, for 348 

structures with multiple important higher modes, providing more weight to spectral 349 

accelerations at periods lower than T1, essentially helps to improve the efficiency of this 350 

IM for such structures. The periods used in SaS4 and SaV4 are equally spaced between the 351 

minimum and maximum periods in this study, providing almost equal number of 352 

periods lower and higher than T1, and consequently giving the same weight to the 353 

nonlinear elongated and linear higher mode response. On the other hand, using equally-354 

spaced periods in a logarithmic scale will give more weight to periods lower than T1. 355 

Such an IM could be more effective for structures with relatively significant importance 356 

of higher modes or for the estimation of PFA as discussed in the next section. 357 

IM EFFICIENCY FOR PEAK FLOOR ACCELERATION 358 

PGA is a superior predictor of PFA at the ground and maybe some additional lower 359 

floors than any other IM tested here, but it becomes progressively less effective with 360 

height. This could be simply explained by an example of a single-story single-degree-of-361 

freedom (SDOF) system in which the PFA at the ground floor matches the PGA, while by 362 

definition it matches Sa(T1) at the level of the roof. This is why PGA will always be the 363 

best predictor for the ground floor. Recall that the PFA results shown here are the SRSS 364 
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of the values for the two orthogonal directions of the building. This is the reason why a 365 

small dispersion of 10% is observed at the ground floor, since the PGA used as IM is 366 

based on the geometric mean (rather than the SRSS) of the two record components 367 

regardless of the times when the peaks occur. Sa(T1), on the other hand, is one of the 368 

worst IMs at the ground floor and its efficiency progressively improves with height. This 369 

might suggest the idea of using a vector IM including both PGA and Sa(T1), to cover the 370 

efficiency at the lower and upper floors for PFA prediction. However, since PGA is not a 371 

good predictor of IDRs for any but the shortest-period buildings, such a vector IM will 372 

not be globally effective, unless, for example the estimation of losses at the lowest floors 373 

is deemed to be the most significant contributor to losses. 374 

Another interesting point is that PFA is more closely related to the seismic forces 375 

applied to the structure than deflections. When the structural ductility after yielding 376 

increases and the stiffness reduces, the seismic forces stabilize and do not increase 377 

appreciably, akin to an isolation effect. Therefore, the PFA values in most analyses are 378 

observed at a time or IM level where the structure is still in the linear elastic regime or 379 

close to it. This fact is even more emphasized for RC infill frames, such as those analyzed 380 

here, in which the stiffness of the structure is initially high due to the presence of the 381 

infill panels but decreases abruptly after they fail. This can explain the vector SaV1 not 382 

providing considerable improvements compared to the corresponding scalar SaS1, since 383 

SaV1 is more appropriate for nonlinear response prediction as was shown in the 384 

previous section. Scalars SaS3, SaS4 and their corresponding vector IMs of SaV3, SaV4 are 385 

fairly efficient IMs for PFA prediction and perform favorably well all along the height 386 

and for all the buildings tested here.  387 

 388 

Figure 6. Comparison of the dispersion, ln |EDP IMσ , profiles of PFA using different IMs for the 3-, 389 

5- and 8-story buildings (note: uniform dispersion is estimated for all IM levels) 390 

 391 

As explained earlier, these IMs could become even more effective in PFA prediction 392 

by giving more weight to the spectral acceleration at periods lower than T1. However, 393 

by doing so, they will lose some of their efficiency in IDR response estimation. This fact 394 
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could be seen well expressed by the slight improvement of SaS4 and SaV4 compared to 395 

SaS3 and SaV3, as they contain spectral acceleration at several more periods lower than 396 

T1. Having said that, it should also be emphasized that for the vector IMs in case of SaV3, 397 

SaV4 there is no traceable improvement compared to their counterpart scalar IMs of 398 

SaS3, SaS4. The reason is related to the fact that PFA here is an SRSS of the values at two 399 

main orthogonal directions of the structure, therefore, separating the excitation for X 400 

and Y directions apparently does not help to improve their efficiency. This fact can also 401 

explain the effectiveness of SaV2 in the lower floors. This IM contains the geometric 402 

mean of spectral acceleration at 10.2 T⋅ , which is very close to the geometric mean of 403 

PGA, the top IM for PFA at the ground floor. 404 

RISK ASSESSMENT  405 

Following Shome and Cornell, 1999, the rate of exceeding different values of an EDP, 406 

( )EDP edpλ > , can be computed using the conditional complementary cumulative 407 

distribution function of EDP|IM for the non-collapsed data, ( )P | NC,EDP edp IM> , and the 408 

probability of collapse given IM, |col IMP , along with the rate of occurrence of the scalar or 409 

vector IM of interest, ( )IMλ , formally: 410 

( ) ( )| |( ) P | NC, 1 col IM col IM

IM

EDP edp EDP edp IM P P d IMλ λ > = > ⋅ − + ⋅ ∫  (3) 

 411 

Logistic regression (Kutner et al., 2004) was used to compute the probability of 412 

collapse for each IM level while linear regression (Equation (1)) was used to model413 

( )| NC,P EDP edp IM> . As an example of the results obtained,  414 

Figure 7 shows the response hazard curves for MIDRX and for maximum PFA all 415 

along the height for the 5-story building. The results for all other EDPs are similar. In 416 

this particular example, MIDRX values in the order of 3 to 4% are associated with 417 

collapse occurrence estimates of mean annual rates. The latter vary by an order of 418 

magnitude among the different IMs, that is from 2x10-5 (when SaS4 was used as 419 

response predictor) to 2x10-4 (for SaS1). In theory, though, since even the lowly SaS1 is 420 

riding on the back of careful CS-based record selection, there is no obvious argument 421 
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that would lead us to prefer one estimate over another. Still, the remarkable consistency 422 

in the estimates provided by the vector IMs does lend some credence to the notion that 423 

they probably represent a more accurate estimate. Until further research provides a 424 

more concrete answer, we cannot assign bias to any of these bonafide estimates: We are 425 

bound to uniformly treat the entirety of the variance shown in Figure 7 as a product of 426 

epistemic uncertainty. 427 

 428 

Figure 7. Comparison of response hazard curves obtained using different scalar IMs and a 429 
vector of IMs for the 5-story building: a) MIDRX, b) maximum PFA along the building height. 430 

 431 

The fidelity of the linear regression analysis was checked for various IMs based on 432 

the confidence intervals of regression coefficients and their corresponding p-values. All 433 

the parameters used in the regression analysis were thus shown to be significant with 434 

few exceptions. For instance, for the 8-story building the elongated period in Y 435 

direction, ( ) ( )1 1/y u y x u xSa T Sa Tα α⋅ ⋅ , was shown to be insignificant in predicting MIDRX 436 

when SaV1 is the IM. It should be noted that using spectral accelerations instead of the 437 

ratios of spectral accelerations in SaV1 and SaV2 would have led to wider confidence 438 

intervals for many of these coefficients making them less effective in response 439 

estimation. In addition, the results of the EDP hazard curves using regression with 440 

linear and quadratic terms showed some small differences in the low ranges of IDR, 441 

differences that are due to the effect of the interaction terms as explained previously.  442 

DISCUSSION 443 

Based on the data produced in this study and by looking at the results, only part of 444 

which is shown here, the following observations can be made: 445 

• In general, one cannot claim with certainty which of the approaches applied 446 

provides the most accurate risk-based assessment and consequently is the most 447 

reliable method to be used for loss estimation; however, it is legitimate to expect 448 

that, given the lower dispersions suggested by some of the scalar or vector IMs used 449 

here, those IMs could be considered to be better options.  450 
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• We could say that among the applied scalar IMs, the ones based on Saavg are 451 

preferred. However, for asymmetric buildings or buildings with well-separated 452 

periods into the two orthogonal directions, like the 3- and 8-story buildings herein, 453 

other vector IMs, such as { },avgX avgYSa Sa , could provide a better solution. Such a 454 

vector IM consisting of two components is easier to compute and more practical to 455 

handle (e.g., in data fitting and programming) compared to three or four element 456 

vectors. 457 

• A multi-element vector IM, such as SaV1 can better discern the contribution of 458 

separate spectral ordinates, thus it should be a more effective IM compared to the 459 

simpler vectors or scalars based on the average of the same or similar ordinates, 460 

such as SaS3, SaS4, SaV3 and SaV4. However, the addition of further spectral ordinates 461 

is easier to handle with scalar or two-component vector IMs using averaging, rather 462 

than adding too many elements in a vector. Computing a scalar hazard curve for 463 

spectral averages would not grow appreciably more complex with the number of 464 

spectral ordinates, while computing a joint hazard for a vector IM with more than 5 465 

components, although theoretically doable, is practically cumbersome, 466 

computationally intensive, and prone to numerical inaccuracies. In addition, the “467 

curse of dimensionality” will haunt model fitting in multiple dimensions via 468 

Equations (1) and (2), as the inherent scarcity of data in multi-element vector spaces 469 

will eventually defeat any attempt to properly represent the IM-EDP relationship 470 

with the required detail. 471 

• As a corollary, the higher efficiency of vector IMs, contrarily to what it implies for 472 

scalars (Luco and Cornell, 2007), should not necessarily mean that fewer records 473 

could be used in nonlinear dynamic analysis for achieving the same accuracy in the 474 

EDP estimates. The complexity of fitting a regression model using more than two 475 

predictors suggests always using a reasonably high number of analyses and records 476 

in order to provide reliable results. It can be stated here, however, that the smaller 477 

dispersion of EDPs given vector IMs is more likely to produce response estimates 478 
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and, in turn, risk estimates that are not biased compared to those achieved using IMs 479 

that show a higher level of dispersion. 480 

• Among the IMs tested, the response hazard curves based on different vector IMs are 481 

more consistent, showing only a small variation among them, whereas the scalar 482 

IMs produce less consistent results that more widely vary around their mean. While 483 

the best scalar candidates can get close to the performance of the vectors, some very 484 

bad scalar choices are obviously available that will lead the assessment to erroneous 485 

results. The MIDRX, MIDRY and maximum PFA (along the height) hazard curves of 486 

the individual (dotted lines) and the mean of all (solid line) are shown in  487 

• Figure 8 in the left panels. In the right panels the Coefficient of Variation (C.o.V) of 488 

the MAR of response exceedance for all three buildings is presented. Clearly, the 489 

closer the building is to collapse, the more uncertain the result. 490 

 491 

 492 

Figure 8. Left panels: Response hazard curves (Dotted lines: individual IM results; solid lines: 493 
mean), Right panels:  Coefficient of Variation (C.o.V) of the response exceeding rate for three 494 
building cases tested here (blue = 3-story, red = 5-story, green = 8-story).  495 

CONCLUSIONS 496 

An ideal IM for 3D structures should be efficient in response prediction at any story 497 

within the building at both linear and nonlinear states of the structure. For a linear 498 

SDOF system or for a linear first mode dominated building, Sa(T1) is an appropriate IM. 499 

However, as the structure becomes nonlinear, the spectral acceleration at longer 500 

periods is needed. For MDOF systems, such as the ones tested herein, the effect of 501 

higher modes and spectral shape on the response becomes important. In addition, for a 502 

3D structural model, with coupled response in two orthogonal directions, this IM should 503 

contain separated information about the excitations in both directions. Moreover, such 504 

an ideal IM should have fairly balanced predictive potential for different structural 505 

response types such as IDR and PFA and work well all along the height of the building. 506 

As a scalar IM, average spectral acceleration is shown to be an appropriate IM for 507 

response prediction of both PFA and IDR.  However, we observed here that its efficiency 508 
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is relatively lower for 3-D asymmetric buildings or buildings with well separated 509 

periods in two main orthogonal directions. As such, a superior approach is offered that 510 

considers the average spectral acceleration of two orthogonal directions in a two-511 

component vector IM. Such an IM, at least for the examples considered here, can 512 

enhance all of the advantages mentioned earlier for 3D buildings in terms of PFA and 513 

IDR. The use of a vector IM, however, comes at a price since vector hazard estimation 514 

needs to be performed rather than the routine scalar PSHA for carrying out long-term 515 

response hazard or loss calculations. This vector IM route is more accessible if one uses 516 

the indirect method to vector hazard analysis, discussed in the companion paper 517 

(Kohrangi et al. 2015), rather than its original formulation.     518 
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