The Hysteretic Energy as a Performance
Measure in Analytical Studies

Athanasia K. Kazantzi, ® and Dimitrios Vamvatsikos, @ M.EERI

Hysteretic energy dissipation is often employed as a measure of performance
for systems subjected to earthquake excitatidnis mainly stems from quasi
static cyclic test where fuller hysteresis loofise., higher energy absorptipare
taken to indicatebetter performance when comparing systems with similar
strength under the same cyclic loading protocol. However, seisaminlg offers
a different proving ground, where energy absorption is strongly correlated with
energy input while the nestationary loads imply that the beneficial hysteretic
effects observed in a cyclic test may never be reali@ackn the current statef
art in models and methods of PerformaBesed Earthquake Engineering, agk
whether earthquake records at a given seismic intensity will cause peak/residual
displacements or accelerations tfetor modelshaving fuller hysteresisUsing
incremental ginamic analysis on stoigvel oscillators with varying hystere
characteristicsjt is demonstrated that hystéic energy dissipation does not

consistently correlate with seismic performance

INTRODUCTION

The hysteretic energy absorbed by a structsyatem undergoing nonlinear deformation
is typically recognized as a potentially useful seismic performance indicator (e.getRérk
1987; Bojorquezt al 2011). The general intuition is that ground motion records contain
certain amounts of energy @ach fequency. This energy is imparted upon structures, e.g., in
accordance to their eigenfrequencies, and must be dissipated quickly (or efficiently) to ensure
low response. Thus, a systermpmsed of members possessing stable hysteretic loops with
large hysteretic energy dissipation capacity should be guaranteed a better system
performance, implying that there is good correlatietwien dissipated hysteretic energy and
inelastic deformation/acceleration demands. Tlagon is often founded on obseri@is

made in quasstatic cyclic tests, where it seems apparent that between two systems with
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similar strength, tested under the same cyclic loading protocol, the one with the higher energy
absorption, . e., i f u | xhileitr stiperdn erformanee Jhus |l oops
dissipated hysteretic energy is a term that has become synonymous to performance, at least
conceptually rather than quantitatively, and it is so pervasive as to become common
nomenclature of modern seismic codes, for example Eur@¢3&N 2004) or the Japanese

seismic code (Akiyama 1985, BSL 2009).

Most tellingly, at the basis of seismic design, the definition of the behavior (reduction)
factorq (or R) is often cast (e.g., in EN1998, paragraphs 3.2.2.5, 5.2.2.2) in the sense that th
high strength of a linear elastic system having no energy absorption can be substituted by the
equally effective dissipating behavior of an elastoplastic system with a base shear strength
that isq times lower (at least for moderate and long periods evhiee equal displacement
rule holds). Whileq is generally quantified on the basis of overstrength and ductility
capacity, rather than dissipated energy capacity per se, a physical connection with the latter is
often implied. The prevailing concept is tham order to economize, it is important to
compensate for strength by providing sufficient ductidibd energy dissipatiortWhile there
IS no question about the need for ductility and its connection to the behavior factor, the role
of energy dissipatiora term that is often interchangeably used (e.g., in EN1998) to denote
ductility capacity, is still imperfectly understood. There is only limited evidence that links the
analytically computed energy capacity with what it is actually measured experimemally

with how the structure performs.

Energy dissipation in analytical studies is typically thought of as a proxy for viscous
damping, a concept that was perhaps first introduced by Jacobsen (1960) through the use of
equivalent linearization téoiques. 8ich methods provide an estimate of the (average)
nonlinear displacement of elaptastic oscillators by employing an equivalent linear single
degreeof-freedom (SDOF) system characterized by a longer period (estimated at a secant
stiffness) and an increasedue of viscous damping. Crucially, the increase in damping is
often provided as a function of theea under the foredeformation curve of the nonlinear
oscillator, a quantity that is well correlated to the qustesiically dissipated hysteretic engrg
It is no wonder then that highenexgy dissipation seems to be equivalent to higher damping,
ergo better performance. Is this really true though and how much faith can be put in the

analytically evaluated energy capacity of a system given the presdeting limitations?



On the contrary, Miranda and Re@arcia (2002) have shown that using #otualarea
under the backbone of an elastoplastic system to define equivalent damping yields worse
results for maximum displacement estimation compared to otberx abstract approaches. A
number of recent studies have also explored the effect of the type of cyclic hysteresis on the
seismic performance of structural systeidencefortht he ter m Ahysteresi so
exclusively to the set of rules thatfie the cyclic forcedisplacement behavior of a system,
excluding its backbone capacity curve, as obtained under monotonic loading conditions.
Thus, two SDOF systems may have the same backbone (e.g.-giastic) but different
hysteresis, or may havthe same hysteresis (e.g., kinematic hardening) but different
backbonesIn many cases, it has been observed that either there is no clear correlation
between the hysteresis type and the analytically evaluated ductility demands (Rahnama and
Krawinkler 1993 Foutch and Shi 1998; Huang and Foutch 2009) or that tsterhgis type
becomes important mainly when the system approaches its global collapse statet(klarra
2005). Furthermore, with respect to thvedely-usedPark and Ang (1985) damage index,
which is expressed as a linear function thie dissipated energynd ductility, it was
demonstrated by Kappos (1997) that, for vedsigned structures, the energy term of the
damage index has a small contributionthie indexvalue compared to the ductilitgrm.
Given that the hysteretic rules largely decide the amount of energyal@siguestions may
be easily raised. Similarly, when the connection of dissipated energy dodr@ce is
extrapolated from quasitatic tests to hysteretic models unden-stationary loadsj.e.,
actualground motionscurrent ideas about the importanakehysteretic energy may not be
generalizableSuch results have actually |l ed Priest/|

more pervasive myths of earthquake engineeri:r

Therefore, we want to pose the question of whether hysteretic energy dissipation remains
a fundamental quality of system performance when we expand from the physical structure to
the structural models. In other words, when comparing two analytical mualaisy similar
(or the same) backbone and subject to the same ground motion, we are asking whether the
one with the Afull ero hyst er edaticscyclictestgy sr, (as e
more generally, the one dissijpy more energy via hystesis in dynamic loading, is the one
having the edge on seismic rfmance as measured in terms of acceleration and
displacement (or ductility). Or, viewed from a different angle, whether among two systems
with the same cyclic hysteresis type but diffigriforcedisplacement capacity (backbone)

curves, the one with ¢henveloping capacity curve alwagsrforms best. While these two



guestions tackle a very basic issue in hysteretic energy they are, nonetheless, not meant to be
all-encompassingAny issuegelated to material or member failure/degradation criteria and
whether these should be based on dissipated hysteretic energy will not be discussed. Such
guestions can only be resolved unambiguously by experiments and not via computational
studies, like theone that we are going to embark upon. However, it is still important to
explore even ora purely computationalbasis and to the extent the available analytical
models can simulate reality, whether energy dissipatioa isefulindicator of seismic
perfomance as currently employed in stabé-art Performanc8ased Earthquake
Engineering. Any relevardonclusions may be considered applicable to cases where fracture
energyrelated catastrophic failure, e.g., due to matdracture by lowcycle fatigue, isot
reached. Still, for the vast majority of computational models for component behavior, the
present investigation should be quite relevant.

ENERGY BALANCE EQUAT ION AND HYSTERETIC E NERGY

The definition of dissipated hysteretic energy comes from theiclaguation of motion
for structural dynamics. For a damped SDOF system subjected to a horizontal ground motion
record, this can be written as

méH e+ f = - méf (D)
where m is the mass of the systero,is the viscous damping coefficieriitjs the restoring

force, # is the ground acceleration and#, & are the relative displacement, velocity and

acceleration, respectively, of the mass with respect to the ground. The absorbed energy is
evaliated according to the energy balance equation (ldadgBertero 1990), derived from
integrating over timdequation (1) representing the equilibrium of forces, multiplied by the

instantaneous displacemetht = gt :

finérdt + Fpefdt+ i, it = - fjné erdt )

The energy balance equation is valid throughbetduration of the motion. The first term
depicts the fArelativeo kinetic energy of the
representing energy temporarily stored in the kinematics of the system. The second is the
damping energy dissipated biseous damping, and the third is termed the absorbed energy,
consisting of the irrecoverable hysteretic energy and the recoverable strain energy. Despite
the presence of the recoverable part, t he n:

integration is carried out until the system comes to rest, where strain energy vanishes. The



final term is the relative input energy imparted by the ground motion to the system, as
measured relative to the ground, excluding any rigid body translation. Still, if irniegres

carried out to the time when the system comes to rest this is essentially equivalent to the
absolute mput energy (Uang and Bertero 1990) rendering the distinction mostly academic.
The actual input energyduced to a system during an earthquakeneis thus dissipated in

its entirety by means of viscous damping and hysteretically absorbed energies.

A simplistic interpretation of the energy equation would maintain that the earthquake
contains some given amount of energy that is imparted to thetwteuand then dissipated
through the two mechanisms of damping and hysteresis. On the contrary, the amount of
energy input is not fixed for any ground motion record. While it naturally depends on the
oscilator period and damping, as Equation (2) revéails also dependent on the details of
the system forceeformation relationship. The ground motion acceleration is multiplied by
the oscillator velocity at each time instant, resulting to either a positive or a negative energy
increment. The same is trfer the hysteretic energy as well, where the sign of the restoring

forcef, and the velocity may become opposite. On the other hand, this is never the case for

damping, as itfders an evepresent dissipating action due to the squaréhe velocity term
(Equation (2)). Thus, increasing the damping has the straightforward effect of reducing the
sebmic demands. Changing the fordeformation characteristics, though, to amplify the area

of the cyclic hyteresis loops or the area undee thonotonic forceleformation curve, does

not necessarily mean an improved performance. Such changes will not only affect the
disdpated energy but also the input energy, thus rendering concllisioing a difficult

task. In other words, despite the falgat fixing the energy input will directly result in the
model with the fuller hysteretic loops behaving better, it is quite probable that the
aforementioned energy discrepancies, implied by the equation of motion, will shape things in

quite an unpredictdé way at a global level.

For example, Figures 1a,b show the energy time histories of the same pdafstotly
plastic SDOF oscillator, subjected to a single ground motion record but having two different
cyclic hysteresis behaviors. In this case, thé lubps of the kinematic strain hardening
model h@pen to cause almost the same energy input as the skinnier loops of@ipatdd
system. Still, the first has lower hysteretic energy dissipation than the latter with the

difference being taken up by tdeamping energy (despite both having 5% viscous damping).



Even so, it is not easy to guess from Figure 1 which of the two cases registered the lowest

peak displacement; agtlly, they were quite similar in that respect.

At a different level, it is equallyroublesome to try to derive conclusions regarding
system performance based not on dynamieatiyorbed energy but on quasatically
absorbedristead. Such tests are typically performed under a displacemetnblled loading
protocol that not only imp@s certain displacements but, given the hysteretic model,
essentially also prescribes the input energy. By virtue of removing any influence of damping,
this also ensures that all the energy will be dissipated via hysteresis only. Clearly this is
somethingthat can never happen in dynamic tests therefore any connections would be
difficult to justify.
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Figure 1. Energy time histories of an elastoplastic oscillator With 0.5sec and 5% viscous damping
for a shgle ground motion scaled t&g, (i.e., twice the lowest spectral acceleration to cause yielding)
and for two different hsteresis rules.

METHODOLOGY

To investigate the correlation between hysteretic energy and seismic performance in
computational studies, nunber of SDOF systems will be used, each having differentforce
deformation characteristics. To evaluate their seismic performance Incremental Dynamic
Analysis (IDA) is employed (Vamvatsikos and Cornell 2002). A suite of sixty ground motion
records wereselected from the PEER Strong Motion database from a relatively narrow
magnitude and distance bin, having moment ritage within 6.5 6.7 and closest distance
to fault rupture ranging from 13 to 32km (PEER 2011). The records can be characterized as
ooirrdar ydé in the sense t haepardinghseftysoildbroneassoorde r ai s e
directivity. Their significant durations, as defined by ithB-75% Arias intensities Bommer

and MartinezPereira 1999 range within 3.3 to 19.6 secas typical fo strong crustal



earthquakesNote thatas records are scalethe number of the hysteretic cycles that go
beyond yielding increasgshus, regardless of actual duration, the system will experience
longer times of inelastic deformation through higher intgnsfo define IDA curves of
seismic intensity versus response, two scalarsianeneeded: Anintensity Measurd€lM)

and arEngineering Demand Parame(BDP) to record the stctural response.

As an IM, the 5% damped spectral acceleration at the \dbrageriod of the SDOF
systems, S(T), was adopted, since it is considered to be efficient especially for SDOF
oscillators (Shomeet al 1998). Moreover, to allow comparisons between the different
models and periods investigated, the elastic spectral sateteS: will typically be shown
normdized by its valueSy at yield; this will provide the dimensionless ratb= S/Syy,
which is akin to the strength reduction (or behavior) faBtdsubjecting SDOF systems to a
record scaled by a factor & or mantaining an unscaled record while reducing the yield
strength byR is essatially the same thing; thus the motivation for employing this strength
ratio. Still, R should be understood herein as indicative of the intensity of the earthquake
relative to the eld strength, without necessarily implying any connection with codified
values of reduction/behaviord@ars for actual structures.

Regarding the EDP, displacements, energies and accelerations are all viable candidates.
The peak absolute acceleration tauged aans Or, equivalently, the inedic spectral
acceleration, correlates well witdmnxwlldbat ent so
employed as a measure for the peaknsiei demands. Residual displacemedits will also
be recorded as a uséfindicator of whether a damaged building should be retrofitted or
demolished (e.g., Rui@arcia and Miranda 2006). Finally, the total absorbed hysteretic
energy Enyst will serve as the calidate indicator of performance, used to investigate
correlationswith the establishedaps Odmax and dres TO allow an accurate estimation of
guantities to be measured at the end of theyaisali.e., residual displacements and total
hysteretic energies, the oscillators are allowednttetgo several free vibration dgs at the

end of each record until they return to rest.

HYSTERETIC MODELS

We consider a series of singldegreeof-freedom (SDOF) oscillators, all sharing
practically the same elastpastic forcedeformation bakbone (allowing for some curved
transitian in one case) but with varying hysteretic charagties to depict a wide spectrum of

force-deformation behaviorsWe shall investigate each system without entering the



discussion of whethat is afully realistic representatioaf physical systems, i.ewhether
there might be other physical processes in action that dissipate energy beyond what is
provided by the assumed hysteresis and viscous damping considered. After all, this is how

they are employed in the literature to cover a wide range of stalibehaviors.
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Figure 2. Backbone and hysteretic loops of the considered nonlinear oscillators.

The six systems considered are presented in Figure 2, arranged in order of decreasing
guasi-statically absorbed Isyeretic energy. At the very top of the group, a classic
elastoplastic system with kinematic strain hardening (Figure 2a) was chosen to serve as the



benchmark for comparing the performance of the more elaborate systems to follow. Adding a
curved trangion between the elastic segment and the plastic plateau while maintaining
ki nemati c strain hardening defines t he Acur
degradation is introduced tofféirent degrees of severity by the pealented and the
pinching sgtems (Ibarrat al.2005) in Figures 2c and 2e, which are chosen to slightly depart
from the norm by having elastic unloading branches that extend somewhat below zero
strength. Recent advances in smdhtering sstems (Christopouloset al. 2002) are
represented by the flaghaped hysteretic loops of Figure 2d. Finally, thaelinearelastic
oscillator of Figure 2f lies at the opposite extreme compared to the kinematic hardening,
having the same backbone but no hysteretic energy dissipation capaeitgh case, %
viscous dampingvas employednd a range of periods, from 0.5 to 2.0seas investigated

All analyseswere carried owia OpenSees (McKenret al.2000).

The hysteretic energy dissipation capacity under egtasic cyclic loads was evali¢al

on the premise of the energy ragi@:

Eh i
eqst =" (3)
Ehyst,KH

whereEnyst,iis the hysteretic energy absorbed by mad®id Enyst kH is the energy absorbed

by the kinematic hardenin@g{H) model, when both are subjected to the same cyclicrigadi
protocol. The correspondirgyst ratios are reported in Figure 2 for eacktesn and they vary

from one to zero, with one representing Ki¢ model (Figure 2a) and zero associated with

the nonlinear elastic model (Figure 2f). It is worth noting that ¢he ratios for the
moderately pinching (Figure 2e) and the fidwpped (Figure 2d) models are almost identical,

at least for this example. Note that hysteretic energy is often employed in the literature in a
normalized form, e.g., divided by the prodo€tyield strength and displacement (Bojorquez

et al 2011). This makes no difference for the energy ratios defined herein as the systems

compared have the same (nominal or actual) yield point.

To evaluate the systems®é pesoheedtmassessegheiunder
behavior in terms of energy, acceleration and displacement. For simplicity, the dynamic
responses will be normalized for each system, ground motion record and intensity level
considered by the corresponding results of the benchKidrknodel. For gample, for the
peakoriented system witi = 1. O0s ec, Figure 3a presents thi

curves of dmax ratios versus the normalized intensi® All such curves are naturally



coincident in the elastic region, i.e., urll= 1.0. Past the yield point considerable reetrd
record variability manifests itself, making the summarization of these reswdtessity. This

is achieved by estimating at each levelRofhe x% fractile values, over all records, of the
hysteretic energ ratio eqyn, the maximum displacement ratigax (equivalent to the max
ductility ratio as all systems share the same nominal yield displacement), the residual
displacement ratiores and the peak absolute acceleratigqa defined for each systeimwith

respect to th&H hysteresis:
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Figure 3. (a) The 60 IDA curves and (b) the estimafeattile values of mamium displacement
response ratigmax Of the pealorientedoverthe KH system(T = 1.0sec).

Typical values forx include 50%, i.e., the median as a central value, and 16, 84% to
evaluate the associated dispersion. Theespanding results appear in Figure 3b, where the
peakoriented ad theKH system are shown to have the same medianresponse (i.e., a
ratio of practically 1.0) at all levels of intensity, in agreement with past studies (Rahnama and
Krawinkler 1993; Vamvatsikos and Cornell 2006). This unit ratio comes with a gesffuf
variation of roughly 20% for alR-values greater than 1.0. This essentially means thati84%
16% = 68% of the records wildl not generate d
models. Such differences are about equally probable to favorrahe other model, ding

symmetric around the median.

PERFORMANCE COMPARIS ONS BETWEEN THE ANAL YTICAL MODELS

The performance of the five hysteretic models has been compared vergi$ slgstem
across multiple periods. For brevity, only resultsTat 0.5se& and T = 1.0sec will be

reported. Results at longer periods are pecally the same introducing only marginal



differences. A summary of results fo= 1.0sec appears in Table 1 where the six systems are
compared at three different levels of intendRy; 1.5, 2.0 and 4.0, to highlight the diféace

in response in the near and far pgisid region(note that the responses of the six systems
have been evaluated over a rang&ohlues between-8.0 despite the fact that the results in
Table 1 are pres¢ed for only thred levels) First, it becomes apparent that dymealy and
statically absorbed energiéss analytically computedre not well correlated. For example,
atR = 1.5, all the systems, except the fisttaped and nonlinear elastic modelsab more
energythanthd ¢ (i n a median sense). The curved sys
hysteretic energy of the KH model, despite having almost 40% lower-spaéisi energy
absorption. At the same intensity, the skinny loops of the pinching system absorb only half
the energy of the peairiented system in quastatic loading, yet it has almost 30% higher
disgpation for dynamic loading. These energy ratios are slowly evened out at higher
intensities, albut the two selcentering systemseaching nearly unity & = 4.0. Actually,

by R= 4.0 the KH has slightly overtaken most of the other systems.

Table 1.Summarized comparison of the quasitically and dynamically dissipated hysteretic energy
versus the displacement and acceleration response for the considamrdtitymodelsT = 1.0sec).

All quantities are shown as median values of response ratios normalized by the kinematic strain
hardening system

Loadin Response curved peak- flag- inchin nonlinear
9 P KH oriented shaped P 9 elastic
Quask
static €gst 0.64 0.58 0.30 0.29 0.00
€dyn,50% 2.35 1.39 0.79 1.83 ~0
Dynamic I max,50% 0.90 1.04 1.04 1.03 1.17
R=15 I res,50% 0.22 1.34 ~0 0.76 ~0
I'acc,50% 0.56 1.00 1.00 1.00 1.02
€dyn,50% 1.52 1.22 0.81 1.36 ~0
Dynamic I max,50% 0.92 1.02 1.07 1.04 1.33
R=2.0 I res,50% 0.18 1.48 ~0 0.81 ~0
F acc,50% 0.64 0.99 1.01 1.00 1.05
€dyn,50% 0.96 1.02 0.69 0.86 ~0
Dynamic I max50% 0.99 0.95 1.14 1.06 1.50
R = 40 rre5‘50% 029 128 -~ 0 070 -~ 0
F acc,50% 0.80 0.98 1.03 1.00 1.08

The apprent peculiarity of these analytical results can be explained by looking into the
details of the hysteretic behavior. For example, the handicap of the KH system at low
intensities is a consequence of its purely elastic unloagiogding behavior. The Khhodel
can only dissipate energy when it deforms along the yield plateau. Thus, the ground motion

acceleration spikes that are not strong enough to cause plastification in either direction are



instead wasted in nedissipative unloading/reloading. They sauthis energy to be
temporarily stored as recoverable strain energy. This is the cause of the many jagged peaks
above the five plateaus representing the successive nonlinear excursions of the KH system
registered forR = 2 andT = 1.0sec in Figure 4a. Otie contrary, the pinching model,
slbjected to the same ground motion record, displays hysteretic absorption even when
cycling kelow the plastic plateau, thus steadily dissipating energy (rather than temporarily
storing it). The difference is better undemd by inspecting the corresponding ferce
displacement hgteretic responses in Figure 4b: Where the KH system spends most of its time
in elastic unloding-reloading, the pinchingne displays a distinctive rhomboid dissipative
region that largely accounter the observed difference in absorbed enerd@éd, for this
particular scaled ground motion, the pinching system, despite its superior erssigaticin
capacity exhibits a higher peak deformation (Figure 4b) compared to thes@thsy
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At lower intensity levels, this difference is further accentuated, as shown for example in

Figure 5a. Therein, at R = 1.2, the KH system manages gisgke nonlinear excursion and



only one third of the energy dissipation of the pinching oscillator. When scaling to higher
levels (or equivalently reducing the oscillator yield strength), then more complete load
reversals happen, increasing the KH energgogption (Figure 5b). Eventually, the fuller
loops of the KH will assert themselves in terms of energy dissipation at higher intensities, as
shown, e.g., by the shape of the fractile IDA results in Figures 6a and 6d, and should provide

it with the advantge suggeaed by quasstatic experiments.

Il nterestingly, t hough, Table 1 shows that
computational studies of the examined hysteretic models in terms of maximum or residual
displacement. At all levels dhtensity, the KH, peakoriented, pinching and curved KH
models share practically the sadi@xresponse. This trend remains consistent for practically
all R-values, as shown for the pinching model in Figures 6b and 6e. Furthermore, the
pinching and curved KH modelsedrly have superior performance in terms edidual
displacement compared to the KH at all levels of intensity. For example, Figures 6¢ and 6f
shows the relatively good behavior of the pinching system that sustains residual
displacements in the order 0d-200% of the KH, at least in the median;iwidual records
showresratiosto bewidely distributed in [0.3,4].

The peak absolute acceleration response is also insensitive to energy dissipation. All
modeled systems display the same demand for any mitesrsity with the notable exception
of the curved KH oscillatgra fact also observed by Wiebe and Christopoulos (2013
absolute acceleration is the sum of the relative and the ground accelerations, thus it is
essentially bounded by the sum of theeak values. For stems sharing the same
elastoplastic backbone, the peak relative acceleration folRanmyl is equal to the yield
strength divided by the mass, while the peak ground acceleration (PGAl}inses the
unscaled PGA of the ground motiorheél'peak bsolute acceleration will be less than or equal
to their sum, its actual value largely dependent on timing. On a median sense this turns out to
be practically the same for all systems. The only glarirgegtion is the curved KH
oscillator whose &ckbone lies consistently below the elastoplastic for all but the highest
intensities. It is no wonder then that its peak acceleration response is significantly lower than
the KH response foR = 1.5 and steadily catches up to it as thensitg increasesThe
nonlinear elastic system also shows a statistically significant deviation from the KH system

results, but at a-B% difference this is still not of practical importance.



(&) T = 0.5sec, total hyeretic energy raticgsyn  (d) T = 1.0sec, totdhysteretic energy raticguyn

(b) T = 0.5sec, max dplacement ratiofmax (e) T = 1.0sec, max displacemeatio, rmax

(c) T=0.5sec, residual displacemeatia, res (f) T=1.0sec, residual displacemeatia, res

Figure 6. The 16, 50, 84%ractiles of theratio oftotal dissipated hysteretic energy and of maximum
and residual displacemefdr the pinchingover the KH model forT = 0.5sec left) and T = 1.0sec

(right).
It is worth noting that the pealriented model was found to sustain Heg residual

displacement demands compared to the KH across the entire intensity rangeedxia

Table 1. This may seem to go against the results reported by other researche@a(Biaiz

and Miranda 2006; Christopoules al 2003) that favor sinar rather than unequal demands.
Actually, the observed difference is a direct @uence of the details of the hysteresis
adopted. As pointed out earlier, in our case the elastic unloading branch does not terminate at



