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Hysteretic energy dissipation is often employed as a measure of performance 

for systems subjected to earthquake excitation. This mainly stems from quasi-

static cyclic tests where fuller hysteresis loops (i.e., higher energy absorption) are 

taken to indicate better performance when comparing systems with similar 

strength under the same cyclic loading protocol. However, seismic loading offers 

a different proving ground, where energy absorption is strongly correlated with 

energy input while the non-stationary loads imply that the beneficial hysteretic 

effects observed in a cyclic test may never be realized. Given the current state of 

art in models and methods of Performance-Based Earthquake Engineering, we ask 

whether earthquake records at a given seismic intensity will cause peak/residual 

displacements or accelerations that favor models having fuller hysteresis. Using 

incremental dynamic analysis on story-level oscillators with varying hysteretic 

characteristics, it is demonstrated that hysteretic energy dissipation does not 

consistently correlate with seismic performance.  

INTRODUCTION  

The hysteretic energy absorbed by a structural system undergoing nonlinear deformation 

is typically recognized as a potentially useful seismic performance indicator (e.g., Park et al. 

1987; Bojorquez et al. 2011). The general intuition is that ground motion records contain 

certain amounts of energy at each frequency. This energy is imparted upon structures, e.g., in 

accordance to their eigenfrequencies, and must be dissipated quickly (or efficiently) to ensure 

low response. Thus, a system composed of members possessing stable hysteretic loops with 

large hysteretic energy dissipation capacity should be guaranteed a better system 

performance, implying that there is good correlation between dissipated hysteretic energy and 

inelastic deformation/acceleration demands. This notion is often founded on observations 

made in quasi-static cyclic tests, where it seems apparent that between two systems with 
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similar strength, tested under the same cyclic loading protocol, the one with the higher energy 

absorption, i.e., ñfullerò hysteresis loops, should exhibit superior performance. Thus, 

dissipated hysteretic energy is a term that has become synonymous to performance, at least 

conceptually rather than quantitatively, and it is so pervasive as to become common 

nomenclature of modern seismic codes, for example Eurocode 8 (CEN 2004) or the Japanese 

seismic code (Akiyama 1985, BSL 2009). 

Most tellingly, at the basis of seismic design, the definition of the behavior (reduction) 

factor q (or R) is often cast (e.g., in EN1998, paragraphs 3.2.2.5, 5.2.2.2) in the sense that the 

high strength of a linear elastic system having no energy absorption can be substituted by the 

equally effective dissipating behavior of an elastoplastic system with a base shear strength 

that is q times lower (at least for moderate and long periods where the equal displacement 

rule holds). While q is generally quantified on the basis of overstrength and ductility 

capacity, rather than dissipated energy capacity per se, a physical connection with the latter is 

often implied. The prevailing concept is that, in order to economize, it is important to 

compensate for strength by providing sufficient ductility and energy dissipation. While there 

is no question about the need for ductility and its connection to the behavior factor, the role 

of energy dissipation, a term that is often interchangeably used (e.g., in EN1998) to denote 

ductility capacity, is still imperfectly understood. There is only limited evidence that links the 

analytically computed energy capacity with what it is actually measured experimentally and 

with how the structure performs.  

Energy dissipation in analytical studies is typically thought of as a proxy for viscous 

damping, a concept that was perhaps first introduced by Jacobsen (1960) through the use of 

equivalent linearization techniques. Such methods provide an estimate of the (average) 

nonlinear displacement of elastoplastic oscillators by employing an equivalent linear single-

degree-of-freedom (SDOF) system characterized by a longer period (estimated at a secant 

stiffness) and an increased value of viscous damping. Crucially, the increase in damping is 

often provided as a function of the area under the force-deformation curve of the nonlinear 

oscillator, a quantity that is well correlated to the quasi-statically dissipated hysteretic energy. 

It is no wonder then that higher energy dissipation seems to be equivalent to higher damping, 

ergo better performance. Is this really true though and how much faith can be put in the 

analytically evaluated energy capacity of a system given the present modeling limitations? 



 

On the contrary, Miranda and Ruiz-Garcia (2002) have shown that using the actual area 

under the backbone of an elastoplastic system to define equivalent damping yields worse 

results for maximum displacement estimation compared to other more abstract approaches. A 

number of recent studies have also explored the effect of the type of cyclic hysteresis on the 

seismic performance of structural systems. Henceforth the term ñhysteresisò is used to refer 

exclusively to the set of rules that define the cyclic force-displacement behavior of a system, 

excluding its backbone capacity curve, as obtained under monotonic loading conditions. 

Thus, two SDOF systems may have the same backbone (e.g., elastic-plastic) but different 

hysteresis, or may have the same hysteresis (e.g., kinematic hardening) but different 

backbones. In many cases, it has been observed that either there is no clear correlation 

between the hysteresis type and the analytically evaluated ductility demands (Rahnama and 

Krawinkler 1993; Foutch and Shi 1998; Huang and Foutch 2009) or that the hysteresis type 

becomes important mainly when the system approaches its global collapse state (Ibarra et al. 

2005). Furthermore, with respect to the widely-used Park and Ang (1985) damage index, 

which is expressed as a linear function of the dissipated energy and ductility, it was 

demonstrated by Kappos (1997) that, for well-designed structures, the energy term of the 

damage index has a small contribution to the index value compared to the ductility term. 

Given that the hysteretic rules largely decide the amount of energy dissipation, questions may 

be easily raised. Similarly, when the connection of dissipated energy and performance is 

extrapolated from quasi-static tests to hysteretic models under non-stationary loads, i.e., 

actual ground motions, current ideas about the importance of hysteretic energy may not be 

generalizable. Such results have actually led Priestley (1993) to declare energy as ñone of 

more pervasive myths of earthquake engineeringò. 

Therefore, we want to pose the question of whether hysteretic energy dissipation remains 

a fundamental quality of system performance when we expand from the physical structure to 

the structural models. In other words, when comparing two analytical models having similar 

(or the same) backbone and subject to the same ground motion, we are asking whether the 

one with the ñfullerò hysteresis loops (as evidenced from classic quasi-static cyclic tests) or, 

more generally, the one dissipating more energy via hysteresis in dynamic loading, is the one 

having the edge on seismic performance as measured in terms of acceleration and 

displacement (or ductility). Or, viewed from a different angle, whether among two systems 

with the same cyclic hysteresis type but differing force-displacement capacity (backbone) 

curves, the one with the enveloping capacity curve always performs best. While these two 



 

questions tackle a very basic issue in hysteretic energy they are, nonetheless, not meant to be 

all-encompassing. Any issues related to material or member failure/degradation criteria and 

whether these should be based on dissipated hysteretic energy will not be discussed. Such 

questions can only be resolved unambiguously by experiments and not via computational 

studies, like the one that we are going to embark upon. However, it is still important to 

explore even on a purely computational basis and to the extent the available analytical 

models can simulate reality, whether energy dissipation is a useful indicator of seismic 

performance as currently employed in state-of-art Performance-Based Earthquake 

Engineering. Any relevant conclusions may be considered applicable to cases where fracture 

energy related catastrophic failure, e.g., due to material fracture by low-cycle fatigue, is not 

reached. Still, for the vast majority of computational models for component behavior, the 

present investigation should be quite relevant.  

ENERGY BALANCE EQUAT ION AND HYSTERETIC E NERGY 

The definition of dissipated hysteretic energy comes from the classic equation of motion 

for structural dynamics. For a damped SDOF system subjected to a horizontal ground motion 

record, this can be written as 

 gs umfucum ##### -=++  (1) 

where m is the mass of the system, c  is the viscous damping coefficient,sf is the restoring 

force, gu## is the ground acceleration and u ,u#,u## are the relative displacement, velocity and 

acceleration, respectively, of the mass with respect to the ground. The absorbed energy is 

evaluated according to the energy balance equation (Uang and Bertero 1990), derived from 

integrating over time Equation (1), representing the equilibrium of forces, multiplied by the 

instantaneous displacement dtudu #= :  

 ññññ -=++ dtuumdtufdtucdtuum gs
######## 2  (2) 

The energy balance equation is valid throughout the duration of the motion. The first term 

depicts the ñrelativeò kinetic energy of the system, as measured with respect to the ground, 

representing energy temporarily stored in the kinematics of the system. The second is the 

damping energy dissipated by viscous damping, and the third is termed the absorbed energy, 

consisting of the irrecoverable hysteretic energy and the recoverable strain energy. Despite 

the presence of the recoverable part, the name ñabsorbed energyò is perfectly valid when 

integration is carried out until the system comes to rest, where strain energy vanishes. The 



 

final term is the relative input energy imparted by the ground motion to the system, as 

measured relative to the ground, excluding any rigid body translation. Still, if integration is 

carried out to the time when the system comes to rest this is essentially equivalent to the 

absolute input energy (Uang and Bertero 1990) rendering the distinction mostly academic. 

The actual input energy induced to a system during an earthquake event is thus dissipated in 

its entirety by means of viscous damping and hysteretically absorbed energies. 

A simplistic interpretation of the energy equation would maintain that the earthquake 

contains some given amount of energy that is imparted to the structure and then dissipated 

through the two mechanisms of damping and hysteresis. On the contrary, the amount of 

energy input is not fixed for any ground motion record. While it naturally depends on the 

oscillator period and damping, as Equation (2) reveals it is also dependent on the details of 

the system force-deformation relationship. The ground motion acceleration is multiplied by 

the oscillator velocity at each time instant, resulting to either a positive or a negative energy 

increment. The same is true for the hysteretic energy as well, where the sign of the restoring 

force sf  and the velocity may become opposite. On the other hand, this is never the case for 

damping, as it offers an ever-present dissipating action due to the square on the velocity term 

(Equation (2)). Thus, increasing the damping has the straightforward effect of reducing the 

seismic demands. Changing the force-deformation characteristics, though, to amplify the area 

of the cyclic hysteresis loops or the area under the monotonic force-deformation curve, does 

not necessarily mean an improved performance. Such changes will not only affect the 

dissipated energy but also the input energy, thus rendering conclusion-drawing a difficult 

task. In other words, despite the fact that fixing the energy input will directly result in the 

model with the fuller hysteretic loops behaving better, it is quite probable that the 

aforementioned energy discrepancies, implied by the equation of motion, will shape things in 

quite an unpredictable way at a global level. 

For example, Figures 1a,b show the energy time histories of the same elastic-perfectly-

plastic SDOF oscillator, subjected to a single ground motion record but having two different 

cyclic hysteresis behaviors. In this case, the full loops of the kinematic strain hardening 

model happen to cause almost the same energy input as the skinnier loops of a peak-oriented 

system. Still, the first has lower hysteretic energy dissipation than the latter with the 

difference being taken up by the damping energy (despite both having 5% viscous damping). 



 

Even so, it is not easy to guess from Figure 1 which of the two cases registered the lowest 

peak displacement; actually, they were quite similar in that respect. 

At a different level, it is equally troublesome to try to derive conclusions regarding 

system performance based not on dynamically-absorbed energy but on quasi-statically 

absorbed instead. Such tests are typically performed under a displacement-controlled loading 

protocol that not only imposes certain displacements but, given the hysteretic model, 

essentially also prescribes the input energy. By virtue of removing any influence of damping, 

this also ensures that all the energy will be dissipated via hysteresis only. Clearly this is 

something that can never happen in dynamic tests therefore any connections would be 

difficult to justify.  

 
(a) kinematic hardening 

 
(b) peak-oriented 

Figure 1. Energy time histories of an elastoplastic oscillator with T = 0.5sec and 5% viscous damping 

for a single ground motion scaled to 2Say (i.e., twice the lowest spectral acceleration to cause yielding) 

and for two different hysteresis rules. 

METHODOLOGY  

To investigate the correlation between hysteretic energy and seismic performance in 

computational studies, a number of SDOF systems will be used, each having different force-

deformation characteristics. To evaluate their seismic performance Incremental Dynamic 

Analysis (IDA) is employed (Vamvatsikos and Cornell 2002). A suite of sixty ground motion 

records were selected from the PEER Strong Motion database from a relatively narrow 

magnitude and distance bin, having moment magnitude within 6.5 ï 6.7 and closest distance 

to fault rupture ranging from 13 to 32km (PEER 2011). The records can be characterized as 

óordinaryô in the sense that they do not raise any concerns regarding soft soil or near-source 

directivity. Their significant durations, as defined by their 5-75% Arias intensities (Bommer 

and Martinez-Pereira 1999), range within 3.3 to 19.6 sec, as typical for strong crustal 



 

earthquakes. Note that as records are scaled the number of the hysteretic cycles that go 

beyond yielding increases; thus, regardless of actual duration, the system will experience 

longer times of inelastic deformation through higher intensity. To define IDA curves of 

seismic intensity versus response, two scalars are now needed: An Intensity Measure (IM) 

and an Engineering Demand Parameter (EDP) to record the structural response.  

As an IM, the 5% damped spectral acceleration at the vibration period of the SDOF 

systems, Sa(T), was adopted, since it is considered to be efficient especially for SDOF 

oscillators (Shome et al. 1998). Moreover, to allow comparisons between the different 

models and periods investigated, the elastic spectral acceleration Sa will typically be shown 

normalized by its value Say at yield; this will provide the dimensionless ratio R = Sa/Say, 

which is akin to the strength reduction (or behavior) factor R. Subjecting SDOF systems to a 

record scaled by a factor of R or maintaining an unscaled record while reducing the yield 

strength by R is essentially the same thing; thus the motivation for employing this strength 

ratio. Still, R should be understood herein as indicative of the intensity of the earthquake 

relative to the yield strength, without necessarily implying any connection with codified 

values of reduction/behavior factors for actual structures.  

Regarding the EDP, displacements, energies and accelerations are all viable candidates. 

The peak absolute acceleration sustained aabs, or, equivalently, the inelastic spectral 

acceleration, correlates well with contentsô damage. The maximum displacement dmax will be 

employed as a measure for the peak seismic demands. Residual displacements dres will also 

be recorded as a useful indicator of whether a damaged building should be retrofitted or 

demolished (e.g., Ruiz-Garcia and Miranda 2006). Finally, the total absorbed hysteretic 

energy Ehyst will serve as the candidate indicator of performance, used to investigate 

correlations with the established aabs, dmax and dres. To allow an accurate estimation of 

quantities to be measured at the end of the analysis, i.e., residual displacements and total 

hysteretic energies, the oscillators are allowed to undergo several free vibration cycles at the 

end of each record until they return to rest.  

HYSTERETIC MODELS  

We consider a series of single-degree-of-freedom (SDOF) oscillators, all sharing 

practically the same elastic-plastic force-deformation backbone (allowing for some curved 

transition in one case) but with varying hysteretic characteristics to depict a wide spectrum of 

force-deformation behaviors. We shall investigate each system without entering the 



 

discussion of whether it is a fully realistic representation of physical systems, i.e., whether 

there might be other physical processes in action that dissipate energy beyond what is 

provided by the assumed hysteresis and viscous damping considered. After all, this is how 

they are employed in the literature to cover a wide range of structural behaviors.  

 
(a) Kinematic hardening model                   

(KH, eqst = 1.00). 

 
(b) Curved kinematic hardening model    

(Curved KH, eqst = 0.64). 

 
(c) Peak-oriented model (eqst = 0.58). 

 
(d) Flag-shaped model (eqst = 0.30). 

 
(e) Pinching model (eqst = 0.29). 

 
(f) Nonlinear elastic model (eqst = 0.00). 

Figure 2. Backbone and hysteretic loops of the considered nonlinear oscillators. 

The six systems considered are presented in Figure 2, arranged in order of decreasing 

quasi-statically absorbed hysteretic energy. At the very top of the group, a classic 

elastoplastic system with kinematic strain hardening (Figure 2a) was chosen to serve as the 



 

benchmark for comparing the performance of the more elaborate systems to follow. Adding a 

curved transition between the elastic segment and the plastic plateau while maintaining 

kinematic strain hardening defines the ñcurvedò system of Figure 2b. Cyclic stiffness 

degradation is introduced to different degrees of severity by the peak-oriented and the 

pinching systems (Ibarra et al. 2005) in Figures 2c and 2e, which are chosen to slightly depart 

from the norm by having elastic unloading branches that extend somewhat below zero 

strength. Recent advances in self-centering systems (Christopoulos et al. 2002) are 

represented by the flag-shaped hysteretic loops of Figure 2d. Finally, the nonlinear-elastic 

oscillator of Figure 2f lies at the opposite extreme compared to the kinematic hardening, 

having the same backbone but no hysteretic energy dissipation capacity. In each case, a 5% 

viscous damping was employed and a range of periods, from 0.5 to 2.0sec, was investigated. 

All analyses were carried out via OpenSees (McKenna et al. 2000). 

The hysteretic energy dissipation capacity under quasi-static cyclic loads was evaluated 

on the premise of the energy ratio eqst: 
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where Ehyst,i is the hysteretic energy absorbed by model i and Ehyst,KH is the energy absorbed 

by the kinematic hardening (KH) model, when both are subjected to the same cyclic loading 

protocol. The corresponding eqst ratios are reported in Figure 2 for each system and they vary 

from one to zero, with one representing the KH model (Figure 2a) and zero associated with 

the nonlinear elastic model (Figure 2f). It is worth noting that the eqst ratios for the 

moderately pinching (Figure 2e) and the flag-shaped (Figure 2d) models are almost identical, 

at least for this example. Note that hysteretic energy is often employed in the literature in a 

normalized form, e.g., divided by the product of yield strength and displacement (Bojorquez 

et al. 2011). This makes no difference for the energy ratios defined herein as the systems 

compared have the same (nominal or actual) yield point. 

To evaluate the systemsô performance under dynamic loads, we also need to assess their 

behavior in terms of energy, acceleration and displacement. For simplicity, the dynamic 

responses will be normalized for each system, ground motion record and intensity level 

considered by the corresponding results of the benchmark KH model. For example, for the 

peak-oriented system with T = 1.0sec, Figure 3a presents the ñspaghetti plotò of 60 IDA 

curves of dmax ratios versus the normalized intensity R. All such curves are naturally 



 

coincident in the elastic region, i.e., until R = 1.0. Past the yield point considerable record-to-

record variability manifests itself, making the summarization of these results a necessity. This 

is achieved by estimating at each level of R the x% fractile values, over all records, of the 

hysteretic energy ratio edyn, the maximum displacement ratio rmax (equivalent to the max 

ductility ratio as all systems share the same nominal yield displacement), the residual 

displacement ratio rres and the peak absolute acceleration racc defined for each system i with 

respect to the KH hysteresis: 
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Figure 3. (a) The 60 IDA curves and (b) the estimated fractile values of maximum displacement 

response ratio, rmax, of the peak-oriented over the KH system (T = 1.0sec). 

Typical values for x include 50%, i.e., the median as a central value, and 16, 84% to 

evaluate the associated dispersion. The corresponding results appear in Figure 3b, where the 

peak-oriented and the KH system are shown to have the same median dmax response (i.e., a 

ratio of practically 1.0) at all levels of intensity, in agreement with past studies (Rahnama and 

Krawinkler 1993; Vamvatsikos and Cornell 2006). This unit ratio comes with a coefficient of 

variation of roughly 20% for all R-values greater than 1.0. This essentially means that 84% ï 

16% = 68% of the records will not generate differences higher than Ñ20% between the two 

models. Such differences are about equally probable to favor one or the other model, being 

symmetric around the median. 

PERFORMANCE COMPARIS ONS BETWEEN THE ANAL YTICAL MODELS  

The performance of the five hysteretic models has been compared versus the KH system 

across multiple periods. For brevity, only results at T = 0.5sec and T = 1.0sec will be 

reported. Results at longer periods are practically the same introducing only marginal 



 

differences. A summary of results for T = 1.0sec appears in Table 1 where the six systems are 

compared at three different levels of intensity, R = 1.5, 2.0 and 4.0, to highlight the difference 

in response in the near and far post-yield region (note that the responses of the six systems 

have been evaluated over a range of R values between 0-4.0 despite the fact that the results in 

Table 1 are presented for only three R levels). First, it becomes apparent that dynamically and 

statically absorbed energies (as analytically computed) are not well correlated. For example, 

at R = 1.5, all the systems, except the flag-shaped and nonlinear elastic models, absorb more 

energy than the Ⱦȼ (in a median sense). The curved system actually absorbs nearly twice the 

hysteretic energy of the KH model, despite having almost 40% lower quasi-static energy 

absorption. At the same intensity, the skinny loops of the pinching system absorb only half 

the energy of the peak-oriented system in quasi-static loading, yet it has almost 30% higher 

dissipation for dynamic loading. These energy ratios are slowly evened out at higher 

intensities, all but the two self-centering systems reaching nearly unity at R = 4.0. Actually, 

by R = 4.0 the KH has slightly overtaken most of the other systems. 

Table 1. Summarized comparison of the quasi-statically and dynamically dissipated hysteretic energy 

versus the displacement and acceleration response for the considered hysteretic models (T = 1.0sec). 

All quantities are shown as median values of response ratios normalized by the kinematic strain 

hardening system 

Loading Response 
curved 

KH  

peak-

oriented 

flag-

shaped 
pinching 

nonlinear 

elastic 

Quasi-

static 
eqst 0.64 0.58 0.30 0.29 0.00 

       

Dynamic 

R = 1.5 

edyn,50% 2.35 1.39 0.79 1.83 ~ 0 

rmax,50% 0.90 1.04 1.04 1.03 1.17 

rres,50% 0.22 1.34 ~ 0 0.76 ~ 0 

racc,50% 0.56 1.00 1.00 1.00 1.02 

       

Dynamic 

R = 2.0 

edyn,50% 1.52 1.22 0.81 1.36 ~ 0 

rmax,50% 0.92 1.02 1.07 1.04 1.33 

rres,50% 0.18 1.48 ~ 0 0.81 ~ 0 

racc,50% 0.64 0.99 1.01 1.00 1.05 

       

Dynamic 

R = 4.0 

edyn,50% 0.96 1.02 0.69 0.86 ~ 0 

rmax,50% 0.99 0.95 1.14 1.06 1.50 

rres,50% 0.29 1.28 ~ 0 0.70 ~ 0 

racc,50% 0.80 0.98 1.03 1.00 1.08 

 

The apparent peculiarity of these analytical results can be explained by looking into the 

details of the hysteretic behavior. For example, the handicap of the KH system at low 

intensities is a consequence of its purely elastic unloading-reloading behavior. The KH model 

can only dissipate energy when it deforms along the yield plateau. Thus, the ground motion 

acceleration spikes that are not strong enough to cause plastification in either direction are 



 

instead wasted in non-dissipative unloading/reloading. They cause this energy to be 

temporarily stored as recoverable strain energy. This is the cause of the many jagged peaks 

above the five plateaus representing the successive nonlinear excursions of the KH system 

registered for R = 2 and T = 1.0sec in Figure 4a. On the contrary, the pinching model, 

subjected to the same ground motion record, displays hysteretic absorption even when 

cycling below the plastic plateau, thus steadily dissipating energy (rather than temporarily 

storing it). The difference is better understood by inspecting the corresponding force-

displacement hysteretic responses in Figure 4b: Where the KH system spends most of its time 

in elastic unloading-reloading, the pinching one displays a distinctive rhomboid dissipative 

region that largely accounts for the observed difference in absorbed energies. Still, for this 

particular scaled ground motion, the pinching system, despite its superior energy dissipation 

capacity exhibits a higher peak deformation (Figure 4b) compared to the KH system. 

  

Figure 4. (a) Hysteretic energy time histories and (b) force-displacement hysteretic loops for 

kinematic hardening and pinching models (T = 1.0sec), for a single record scaled to R = 2.0. 

  

Figure 5. Hysteretic energy time histories for kinematic hardening and pinching hysteretic behavior 

(T = 0.5sec), for a single record scaled to (a) R = 1.2  and (b) R = 3.0. 

At lower intensity levels, this difference is further accentuated, as shown for example in 

Figure 5a. Therein, at R = 1.2, the KH system manages just a single nonlinear excursion and 



 

only one third of the energy dissipation of the pinching oscillator. When scaling to higher 

levels (or equivalently reducing the oscillator yield strength), then more complete load 

reversals happen, increasing the KH energy absorption (Figure 5b). Eventually, the fuller 

loops of the KH will assert themselves in terms of energy dissipation at higher intensities, as 

shown, e.g., by the shape of the fractile IDA results in Figures 6a and 6d, and should provide 

it with the advantage suggested by quasi-static experiments. 

Interestingly, though, Table 1 shows that no such ñadvantageò ever appears in the 

computational studies of the examined hysteretic models in terms of maximum or residual 

displacement. At all levels of intensity, the KH, peak-oriented, pinching and curved KH 

models share practically the same dmax response. This trend remains consistent for practically 

all R-values, as shown for the pinching model in Figures 6b and 6e. Furthermore, the 

pinching and curved KH models clearly have superior performance in terms of residual 

displacement compared to the KH at all levels of intensity. For example, Figures 6c and 6f 

shows the relatively good behavior of the pinching system that sustains residual 

displacements in the order of 70-100% of the KH, at least in the median; individual records 

show rres ratios to be widely distributed in [0.3,4].  

The peak absolute acceleration response is also insensitive to energy dissipation. All 

modeled systems display the same demand for any given intensity with the notable exception 

of the curved KH oscillator, a fact also observed by Wiebe and Christopoulos (2010). The 

absolute acceleration is the sum of the relative and the ground accelerations, thus it is 

essentially bounded by the sum of their peak values. For systems sharing the same 

elastoplastic backbone, the peak relative acceleration for any R > 1 is equal to the yield 

strength divided by the mass, while the peak ground acceleration (PGA) is R times the 

unscaled PGA of the ground motion. The peak absolute acceleration will be less than or equal 

to their sum, its actual value largely dependent on timing. On a median sense this turns out to 

be practically the same for all systems. The only glaring exception is the curved KH 

oscillator whose backbone lies consistently below the elastoplastic for all but the highest 

intensities. It is no wonder then that its peak acceleration response is significantly lower than 

the KH response for R = 1.5 and steadily catches up to it as the intensity increases. The 

nonlinear elastic system also shows a statistically significant deviation from the KH system 

results, but at a 5-8% difference this is still not of practical importance.  

 



 

 
(a) T = 0.5sec, total hysteretic energy ratio, edyn 

 
(d) T = 1.0sec, total hysteretic energy ratio, edyn 

 
(b) T = 0.5sec, max displacement ratio, rmax 

 
(e) T = 1.0sec, max displacement ratio, rmax 

 
(c) T = 0.5sec, residual displacement ratio, rres 

 
(f) T = 1.0sec, residual displacement ratio, rres 

Figure 6. The 16, 50, 84% fractiles of the ratio of total dissipated hysteretic energy and of maximum 

and residual displacement for the pinching over the KH model for T = 0.5sec (left) and T = 1.0sec 

(right). 

It is worth noting that the peak-oriented model was found to sustain higher residual 

displacement demands compared to the KH across the entire intensity range examined in 

Table 1. This may seem to go against the results reported by other researchers (Ruiz-Garcia 

and Miranda 2006; Christopoulos et al. 2003) that favor similar rather than unequal demands. 

Actually, the observed difference is a direct consequence of the details of the hysteresis 

adopted. As pointed out earlier, in our case the elastic unloading branch does not terminate at 


