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SUMMARY

Approximate methods based on the static pushover are introduced to estimate the seismic performance
uncertainty of structures having non-deterministic modeling parameters. At their basis lies the use
of static pushover analysis to approximate Incremental Dynamic Analysis (IDA) and estimate the
demand and capacity epistemic uncertainty. As a testbed we use a nine-storey steel frame having
beam hinges with uncertain moment-rotation relationships. Their properties are fully described by
six, randomly distributed, parameters. Using Monte Carlo simulation with latin hypercube sampling,
a characteristic ensemble of structures is created. The Static Pushover to IDA (SPO2IDA) software
is used to approximate the IDA capacity curve from the appropriately post-processed results of the
static pushover. The approximate IDAs allow the evaluation of the seismic demand and capacity for
the full range of limit-states, even close to global dynamic instability. Moment estimating techniques
such as Rosenblackth’s point estimating method and the first-order, second-moment (FOSM) method
are adopted as simple alternatives to obtain performance statistics with only a few simulations. The
pushover is shown to be a tool that combined with SPO2IDA and moment estimating techniques can
supply the uncertainty in the seismic performance of first-mode dominated buildings for the full range
of limit-states, thus replacing semi-empirical or code tabulated values (e.g. FEMA-350), often adopted
in performance-based earthquake engineering. Copyright c© 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Structural analysis is plagued by both aleatory randomness, e.g. natural ground motion
record variability, and epistemic uncertainty, stemming from modeling assumptions or errors.
Design codes recognize the importance of uncertainty in the process of seismic design by
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implicitly including generic safety factors in the model, the material properties and the loads.
Unfortunately little data is available on the seismic demand and capacity epistemic uncertainty,
an issue that is ultimately dealt with tabulated values. Epistemic uncertainty usually receives
little attention due to the inherent difficulties and the computational cost in estimating it.
Since both randomness and uncertainty are important factors in performance-based earthquake
engineering, efficient estimation methods are always desirable.

Perhaps the first guideline that explicitly treats uncertainty in seismic design is FEMA-
350 (SAC/FEMA 2000 [1]). The SAC/FEMA project caused the widespread adoption of the
notion of uncertainty in earthquake engineering applications, and became a major motivation
to study rational ways to include the uncertainty in performance estimation. Cornell et al.
[2] formed the background of the SAC/FEMA approach for the probabilistic assessment of
steel frames which allows the inclusion of epistemic uncertainties simply by considering the
dispersion they cause on the median demand and capacity. Such concepts have been further
advanced by Baker and Cornell [3] who build upon the framework of the Pacific Earthquake
Engineering Research (PEER) Center to propagate the uncertainty from the model to the
decision variables (e.g., losses) using FOSM methods. Other efforts extend the SAC/FEMA
approach to the assessment of reinforced concrete buildings [4] or the development of decision-
making tools for the conceptual design of engineering facilites [5].

Although structural reliability analysis methods have considerably evolved during the last
few years (e.g., [6]) the need for new approaches to estimate uncertainty for complex nonlinear
structures still exists. Monte Carlo simulation methods are powerful tools that can handle
almost any problem, but they always come at the expense of a large number of computationally-
intensive nonlinear response history analyses. Other approximating methods such as first and
second-order reliability methods (FORM, SORM) have been successfully implemented for the
calculation of safety factors in most recent design code procedures, but for structures subjected
to large nonlinear deformations and transient actions, such methods are plagued by the need
for a failure function [6, 7].

For earthquake engineering applications, one method to handle the aleatory uncertainty
introduced by seismic loading is the Incremental Dynamic Analysis (IDA) [8]. IDA essentially
requires multiple nonlinear response history analyses with a suite of ground motion records to
provide a full-range performance assessment, from the early elastic limit-states to the onset
of collapse. To account for other sources of uncertainty, the IDA approach can be combined
with reliability analysis methods such as Monte Carlo simulation. Such methods have been
pioneered by Dolsek [9] who proposed using Monte Carlo simulation with efficient Latin
Hypercube Sampling (LHS) on IDA and Liel et al. [10] that used IDA and Monte Carlo or
FOSM with a response surface approximating method to study parameter uncertainty. More
recently, Vamvatsikos and Fragiadakis [11] have also discussed an IDA-based approach and the
possibility of reducing the computational effort by adopting approximate, moment-estimating
methods. Although such IDA-based methods are powerful, they necessitate the execution of
a large number of nonlinear response history analyses and therefore are beyond the scope of
many practical applications. While the above publications propose alternative approaches and
discuss either implicitly or explicitly the issue of computing cost, they all use nonlinear response
history analysis under multiple ground motion records. Clearly this may not be feasible at the
present time for practical, non-academic, applications. Simpler analysis methods are needed
that can provide estimates of the response statistics with minimum computing resources.

Given the computational obstacles, the usual practice to circumvent this problem is by
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assuming ad hoc values for the dispersions caused by uncertainties, e.g. in the model properties,
and either implicitly taking them into account or explicitly including them in the guidelines,
as in FEMA-350. For example, Yun et al. [12] discuss the rationale behind the tabulated
values of the FEMA-350 [1] guidelines. Evidently, the proposed parameters are semi-empirically
derived from a limited number of benchmark structures. These values can be seen as reasonable
placeholders that, unfortunately, in the absence of more rational and proven values, tend to
become the de facto standard.

In search for a compromise, we propose a novel methodology for estimating response
statistics using static pushover analysis. During the past few years, static pushover methods
(SPO) have become common in the earthquake engineering practice [13, 14] and therefore
this analysis approach lies in the core of the methods we are proposing. Furthermore,
a single static pushover requires considerably less computational resources compared to
the hundreds response history analyses of an actual multi-record IDA that are practically
beyond the scope of most projects. Similarly to IDA, our method maintains a full-range
performance evaluation capability using as link between SPO and IDA an R − µ − T (force
reduction factor - ductility - period) relationship, known as Static Pushover to Incremental
Dynamic Analysis (SPO2IDA)[15, 16]. SPO2IDA is an R − µ − T relationship that offers
accurate prediction capabilities even close to collapse using, instead of bilinear elastoplastic, a
multilinear approximation of the static pushover envelope. Having such a tool at our disposal
we can quickly perform all the necessary simulations and obtain an estimate of the effect
of uncertainty on the demand and capacity of structures. Using a nine-storey steel frame
as a reference structure we will employ Monte Carlo simulation and moment-estimation
techniques together with static pushover and SPO2IDA to achieve rapid evaluation of the
seismic performance variability due to epistemic uncertainty in our model parameters.

2. STRUCTURAL MODELS

The structure considered is a nine-storey steel moment-resisting frame with a singe-storey
basement, shown in Figure 1. The frame has been designed according to 1997 NEHRP
(National Earthquake Hazard Reduction Program) provisions for a Los Angeles site. We use a
centerline model with nonlinear connections created at the OpenSees [17] platform. The beams
are modelled with lumped-plasticity elements, thus allowing the formation of plastic hinges
at the two beam ends. The columns are considered elastic, consistent with a strong-column,
weak-beam design. Preliminary testing has shown that cases where column yielding occurs
are isolated and therefore this choice has a negligible effect on the accuracy of model while it
considerably reduces its complexity. Geometric nonlinearities have been incorporated in the
form of P−∆ effects, while the internal gravity frames have been explicitly modeled (Figure 1).
In effect, this is a first-mode dominated structure with a fundamental period of T1 = 2.35s
and a modal mass equal to 84% of the total mass that still allows for a significant sensitivity
to higher modes.

The connections are modeled using the “Hysteretic material” of the OpenSees library
[17]. This is a uniaxial moment-rotation relationship that allows modelling the fracturing
connections with rotational springs having moderately pinching hysteresis and a quadrilinear
backbone, shown in normalised coordinates in Figure 2 (see also reference [18]). The random
parameters considered refer to the properties of the quadrilinear backbone curve, which initially
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Figure 1. The LA9 steel moment-resisting frame.

Table I. Random parameters and their statistics.

Mean c.o.v Lower Upper
bound bound

aMy 1.0 0.20 0.70 1.30
ah 0.1 0.40 0.04 0.16
µc 3.0 0.40 1.20 4.80
ac -0.5 0.40 -0.80 -0.20
r 0.5 0.40 0.20 0.80
µu 6.0 0.40 2.40 9.60

allows for elastic behavior up to aMy times the nominal yield moment My, then hardens at a
non-negative normalised slope of ah and terminates at a rotational ductility µc. Beyond this
point, a negative stiffness segment starts having a normalised slope ac. The residual plateau
appears at a normalised height r, delaying the failure of the connection until the ultimate
rotational ductility µu. Thus to completely describe the backbone of the monotonic envelope
of the hinge moment-rotation relationship, six parameters are necessary: aMy, ah, µc, ac, r
and µu, assuming similar behavior for both positive and negative moments. This is essentially
a complex backbone that is versatile enough to simulate the behavior of numerous moment-
connections. Other sources of epistemic uncertainty (e.g. stiffness and/or mass uncertainty)
are not examined here, although our methodology can be easily extended to those parameters
also.

The backbone properties of the plastic hinges are considered as random variables and hence
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are the only source of epistemic uncertainty. The parameters are modeled to be independently
normally distributed with mean and coefficient of variation (c.o.v) as shown in Table I. The
mean values represent best estimates of the backbone parameters, while the c.o.v values were
assumed, since for most parameters there is no explicit guidance in the literature. Thus we used
a c.o.v equal to 40% for all the parameters except for the yield moment where 20% was used
instead. To avoid assigning the random parameters with values with no physical meaning, e.g.
ah > 1, or r < 0, their distribution is appropriately truncated within 1.5 standard deviations
as shown in Table I. All distributions were appropriately rescaled to avoid the concentration
of high probabilities at the cutoff points. The resulting connection model is flexible enough
to range from fully-ductile, nearly elastoplastic connections (e.g. r = 0.80, µu = 9) down to
outright brittle cases that suddenly fracture at low ductilities (e.g. µu = 2.4).

To account for parameter uncertainty stemming from the properties of the connections
of a steel moment frame, the plastic hinge properties can be varied simultaneously for the
whole structure, or individually, by applying local changes to several connections. In the
later case the precise locations of the connections are randomly assigned thus assessing the
global performance when the capacity of a number of connections is uncertain e.g. due to
poor manufacturing or localised phenomena. Luco and Cornell [19] studied the response of
moment-resisting frames with random fracturing connections typical to those of pre- and post-
Northridge steel buildings. On the other end, varying together the properties of every frame
connection, i.e. assuming that all have the same normalised properties, is expected to have a
more pronounced effect on the response, pinpointing the influence of each of the six parameters
on the global capacity. This scenario is the one we are going to adopt as it is consistent with
the case where the engineer does not have sufficient data for the individual moment-rotation
backbones and their spatial correlation, thus his/her model relies on empirical values and
judgment.

3. PERFORMANCE EVALUATION WITH THE STATIC PUSHOVER TO
INCREMENTAL DYNAMIC ANALYSIS TOOL

3.1. Incremental Dynamic Analysis

Incremental Dynamic Analysis (IDA) is a powerful analysis method that offers thorough
seismic demand and capacity prediction capability [8]. It involves performing a series of
nonlinear response history analyses under a multiply scaled suite of ground motion records.
By selecting proper Engineering Demand Parameters (EDPs) to characterise the structural
response and choosing an Intensity Measure (IM), e.g. the 5%-damped, first-mode spectral
acceleration Sa(T1, 5%), to represent the seismic intensity, we can generate the IDA curves of
EDP versus IM for every record and then estimate the 16%, 50% and 84% summarised curves.
The EDP typically adopted is the maximum interstorey drift, θmax, that previous research
has shown that is a good measure of structural damage, while other EDPs can be adopted as
in cases where non-structural acceleration-sensitive damage is of interest. On the IDA curves
the desired limit-states (e.g., immediate occupancy or collapse prevention according to [1]) can
be defined by setting appropriate limits on the EDPs and then estimating the corresponding
capacities and their probabilistic distributions. Such results combined with probabilistic seismic
hazard analysis [8] allow the estimation of mean annual frequencies (MAFs) of exceeding the

Copyright c© 2009 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2009; 00:1–16
Prepared using eqeauth.cls



6 M. FRAGIADAKIS & D. VAMVATSIKOS

0 1
0

1

normalized rotation, ! / !yield

no
rm

al
iz

ed
 m

om
en

t, 
M

 / 
M

yi
el

d
 

µc(3) µu(6)

 ah(10%)  ac(−50%)

 r (50%)

Figure 2. The moment-rotation relationship of the beam point-hinge in normalised coordinates.

limit-states (e.g. reference [20]) thus offering a direct characterization of seismic performance.
Even for simple structures, IDA comes at a considerable cost, since it requires the use of
multiple nonlinear response history analyses that are usually beyond the abilities and the
computational resources of the average practicing engineer. Therefore, a simpler and faster
alternative is always desirable.

Figure 3a shows thirty single-record IDA curves for the LA9 steel frame. Each curve has been
obtained from fourteen response history analyses using the hunt-and-fill algorithm and then
interpolating with appropriate splines [20]. The table of the ground motion records used for
this analysis is given in reference [11]. In Figure 3a, the collapse limit-state appears at a θmax
value approximately equal to 0.1, signifying the initiation of the flatline branch. The thirty
single-record IDAs are summarised to produce the median and the 16%, 84% percentile curves
of Figure 3b. The median, or 50% fractile, provides a ‘central’ capacity curve, while the 16%,
84% percentiles give a measure of the dispersion around the median. The fractile capacities
can be summarised either in terms of Sa(T1, 5%) with respect to θmax, i.e. Sa(T1, 5%)|θmax, or
in terms of θmax given the spectral acceleration Sa(T1, 5%), i.e. θmax|Sa(T1, 5%). In practice
[20] and provided that a reasonably large number of records is used, both approaches are
expected to yield equivalent results (Figure 3b) and therefore the final choice of the post-
processing method depends on the problem at hand. In the remainder of the paper we mainly
concentrate on the Sa-capacity given θmax statistics, but this does not restrict our methodology
since our results can be easily translated to θmax-demand given the IM statistics.

3.2. Static Pushover to Incremental Dynamic Analysis (SPO2IDA)

IDA is a comprehensive, yet computer-intensive method. It is possible to approximate the
results of IDA both for single and for multi-degree-of-freedom systems utilising information
from the force-deformation envelope (or backbone) of the static pushover to generate the
summarised 16%, 50% and 84% IDA curves [15, 16]. The prediction is based on the study of
numerous SDOF systems having a wide range of periods, moderately pinching hysteresis and
5% viscous damping, while they feature backbones ranging from simple bilinear to complex
quadrilinear, as shown in Figure 2. Having compiled the results into the SPO2IDA tool,
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available online [21] we can get an approximate estimate of the performance of virtually any
oscillator without having to perform the costly analyses, and quickly recreate the fractile IDAs.
SPO2IDA is in essence an R − µ − T relationship that will provide not only central values
(mean or median) but also the dispersion, due to record-to-record aleatory randomness, using
only a multilinear approximation of the static pushover curve.

For SDOF structures, IDA curves can be appropriately represented in normalized
coordinates of the strength reduction factor R, versus the ductility µ. The strength reduction
factor R is defined as the ratio Sa(T1, 5%)/Syielda (T1, 5%), where Syielda (T1, 5%) is the
Sa(T1, 5%) value to cause first yield, while the ductility, µ, is the oscillator’s displacement,
δ, normalised by the yield displacement, δyield. Thus once the period and the properties of the
force-deformation relationship are known for the SDOF system, SPO2IDA directly provides
its median and the 16, 84% fractile demand and capacity in normalised R, µ coordinates.
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Figure 3. Incremental Dynamic Analysis (IDA) curves for the LA9 steel structure: (a) thirty single-
record IDAs, and (b) summarisation of the thirty IDA curves into their fractile curves of θmax given

Sa(T1, 5%), or Sa(T1, 5%) given θmax.

3.3. SPO2IDA for multi-degree of freedom systems (MDOF)

The SPO2IDA tool has been extended to first-mode dominated MDOF structures [16], enabling
an accurate estimation of the fractile IDA curves even close to collapse without the need of any
nonlinear response history analysis. In addition, it has been shown to only slightly increase
the error in our estimation, resulting to an accuracy that can be compared to that of the
actual IDA using a smaller number, e.g. ten, ordinary ground motion records. Thus SPO2IDA
can approximate the summarized IDA results, offering an efficient and simple method for
estimating the uncertainty associated with the limit-state capacities, given the variability in
the backbone parameters of the beam plastic hinges. In the following paragraphs we explain in
detail its application on our testbed structure and we propose a simplified method (compared
to reference [16]) that can be used for epistemic uncertainty estimations within Monte Carlo.

The application of the SPO2IDA tool on the base-case, mean-parameter model of the LA9
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Figure 4. (a) The SPO curve for a nine-storey steel structure and its approximation with different
multilinear models, (b) SPO2IDA predictions for the trilinear and the quadrilinear approximations of

the SPO in R,µ coordinates.

moment-resisting steel structure is schematically shown in Figure 4. The process involves
approximating the static pushover curve with a multilinear envelope to allow extracting
the properties of the backbone curve (Figure 4a). The complete theoretical justification and
discussion on the application of SPO2IDA on MDOF structures can be found in [16]. Typically
for first-mode dominated structures, SPO2IDA allows the use of a bilinear, trilinear or full
quadrilinear approximation of the structure’s pushover curve. While the accuracy of the
approximation rises accordingly, so does the complexity of the automated fitting algorithm
to estimate the appropriate parameters, an issue that we discuss in the section that follows.
For the sake of comparison, we will attempt both a trilinear and a quadrilinear fit as shown,
e.g. in Figure 4a.

The choice of the lateral load pattern has a significant effect on the SPO envelope and
therefore Vamvatsikos and Cornell [16] report that the proper application of SPO2IDA on
MDOF structures entails the identification of the most-damaging lateral load pattern. For
this realisation of the LA9 steel frame it was found that a triangular or a first-mode pattern
will provide sufficiently accurate results, close to the worst-case scenario. Thus we are spared
the need to search for the most damaging pattern for every realisation of the structure in
the Monte Carlo simulation. In the general case, alternative lateral load patterns have to be
tested for every frame realisation to find the one that seems to be the most damaging. For the
methodology discussed here, this has to be performed only for the base-case, mean parameter
structure.

Moreover, although SPO2IDA provides all three 16,50,84% fractile curves, we may simplify
its application by using only the 50% curve together with the typical first-order assumption [22],
where the base-case mean parameter model is assumed to provide the overall mean/median
response and the parameter uncertainty is only considered to add variability around this
mean/median. This was shown by Vamvatsikos and Fragiadakis [11] to be a viable assumption
for this structure, thus, in the interest of simplicity, this will be our main proposal. Nevertheless,
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PERFORMANCE UNCERTAINTY ESTIMATION USING STATIC PUSHOVER METHODS 9

the ability to compute the 16 and 84% fractiles allows the application of this method in a more
general sense.

Having approximated the SPO curve, the backbone parameters can be easily extracted.
Following the terminology of SPO2IDA (for a backbone description similar to that of Figure 2)
the extracted parameters will be: FSPOy (instead of My in Figure 2), aSPOh , µSPOc , aSPOc . For

the trilinear approximation rSPO is set equal to zero and µSPOu is defined as the intersection
of the horizontal axis with the descending branch, while for the quadrilinear model they are
extracted from the SPO as the remaining parameters. The six parameters are then given as
input to SPO2IDA to produce the median capacities shown in Figure 4b.

Figure 4b shows in R− µ coordinates the SPO2IDA-produced capacities together with the
corresponding SPO. The difference between the trilinear and the quadrilinear approximation
is the truncation of the tail of the SPO (Figure 4a) which results to a slight underestimation of
the R capacity when the trilinear model is adopted. Figure 4b also shows the capacity predicted
with a simpler code-prescribed R−µ−T relationship, such as that of the FEMA-440 guidelines
[14]. For medium to long periods (typically T1 ≥ 1) almost every such relationship follows the
equal-displacement rule and thus the ratio of R over µ is equal to one. FEMA-440 also sets
an upper limit on the maximum R-value considerable, Rmax, which adopting the notation of
this paper is calculated as follows:

Rmax = µSPOh +
(αSPOc )−t

4
(1)

where t = 1 + 0.15 ln(T1). FEMA-440 uses this limit to introduce the physical bounds of
the R − µ − T relationship indicating that when Rmax is exceeded more elaborate methods
of analysis need to be considered. This relationship can be considered as an alternative to
SPO2IDA that can be implemented at a 30-40% underestimation in the near collapse region
(Figure 4b.)

Since the capacities of SPO2IDA are in dimensionless R − µ coordinates, they need to be
scaled to another pair of IM, EDP coordinates, more appropriate for MDOF systems, such
as the Sa(T1, 5%) and the maximum interstorey drift ratio θmax. The scaling from R − µ to
Sa(T1, 5%)− θmax is performed with simple algebraic calculations:

Sa(T1, 5%) = R · Syielda (T1, 5%) (2)

θroof = µ · θyieldroof (3)

where the bold font denotes a vector. Once θroof is known, θmax can be extracted from the
results of the SPO, since for every load increment the correspondence between the two EDPs
is always available.

Prior to applying Equations 2 and 3 we have to determine the values of Sa(T1, 5%) and
θroof at yield. This task is trivial for SDOF systems, but it is not straightforward for MDOF
structures mainly due to the effect of higher modes. Some records will force the structure to
yield earlier and others later, thus yielding will always occur at different levels of Sa(T1, 5%) and
θroof. Driven by our approximation to the SPO curve, we let the yield roof drift, θroof, be defined
as the apparent yield point of the multilinear approximation. This assumption is not strictly
true for MDOF structures and it becomes highly accurate only if the first mode is dominant,
but it is sufficient for our purpose. Therefore, the accurate estimation of Syielda (T1, 5%) comes
down to approximating the elastic “slopes” of the median IDA curves plotted with θroof as the
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Figure 5. The approximate capacity curves of Figure 4b, plotted against the actual median IDA.

EDP. The slope, denoted as kroof, is the median value obtained using elastic response history
analysis with a few ground motion records, or simply by using standard response spectrum
analysis. For first-mode dominated systems a quick estimate can also be obtained by employing
a first-mode approximation via the roof displacement participation factor, e.g. the C0 factor
defined by the FEMA-356 [13] or FEMA-440 [14] guidelines. For example, using the target
displacement equation of FEMA-356 and given that in the elastic range the coefficients C1,
C2, C3 are equal to one, the roof drift and the IDA slope kroof are obtained as:

θroof =
δroof

H
= C0Sa

T 2
1

4π2H
g (4)

kroof =
Sa(T1, 5%)

θroof
=

4π2H

C0T 2
1 g

(5)

where H is the height of the building and g the surface gravity acceleration in appropriate
units. Finally, Syielda (T1, 5%) will be:

Syielda (T1, 5%) = kroof · θyieldroof (6)

As long as the first-mode dominates the response, such estimates are accurate enough for
uncertainty estimation, an issue that we will discuss in a section that follows.

In summary, the process of producing an approximate IDA curve from a single static
pushover run involves the following steps. Initially perform a static pushover analysis with a
first-mode lateral load pattern and then approximate it either with a trilinear or a quadrilinear
model. Next SPO2IDA will provide the IDA curves in normalised R,µ coordinates. The final
step is scaling the IDAs to the Sa(T1, 5%), θmax coordinates. This requires the elastic slope of
the actual IDA, kroof, when θroof is used as the EDP. Therefore, a few linear elastic response
history or response spectrum runs are need, or alternatively the approximate Equation 5 can
be used. Note that in our case kroof has to be calculated only once for all instances of the
model since none of the uncertain parameters influences the elastic response. With the aid of
Equations 2 and 6 we obtain the IDAs in Sa(T1, 5%) − θroof coordinates. The final IDAs are
reached using the mapping between θroof and θmax, available from the results of the SPO.
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Figure 6. Different SPO curves and their multilinear approximation.

For the SPO curve of Figure 4, the median IDA obtained with SPO2IDA and the actual IDA
curve using thirty ordinary ground motion records [11] are shown in Figure 5. For our model,
the error in the procedure is typically 10–20%, while the computing time comes down from 2–3
hours required for a single IDA to just a couple of minutes for SPO2IDA, approximately two
orders of magnitude less. It is worthwhile to note that compared to the quadrilinear pushover
approximation, the trilinear curve slightly biases our IDA results towards lower Sa-capacities,
the reason being our truncating of the tail of the pushover as shown in Figure 4a. The FEMA-
440 relationship is accurate enough only for low elastic and nearly-elastic Sa(T1, 5%) intensities
thus leaving more elaborate relationships, such as SPO2IDA, to be the only alternative when
approximate capacity estimations are sought for high intensity, near-collapse levels. The small
discrepancies in the elastic range that appear between the four curves of Figure 5 are actually a
direct by-product of the elastic IDA-slope determination process. While the FEMA-440 curve
seems to be more accurate, there are always small implementation details that can swing these
minor differences either way.

3.4. Fitting the SPO curves

The fitting of a multilinear model on the SPO is not a trivial issue, especially when it has to
be performed without supervision within a Monte Carlo scheme. This issue has already receive
attention as it is discussed in the guidelines [13, 14] to serve purposes seemingly different to
those of our study. For example the FEMA-356 [13] guidelines propose the fitting of a bilinear
curve on the force-displacement relationship to assist calculating the effective stiffness and the
yield strength of the whole structure. The effective stiffness is taken as the secant stiffness
calculated at a base shear equal to 60% of the effective yield strength, while the slope of the
post-elastic segment is chosen so that balance is achieved between the areas above and below
the SPO data. The FEMA-440 [14] guidelines discuss the fitting of the strength degrading
segment with a line of negative slope αc. It is suggested to separate the effect of P − ∆
phenomena by repeating the analysis with and without including them and performing the
fitting for each case to obtain the slopes αP−∆, αw/o,P−∆. Then the final slope is calculated
as the weighted sum: αc = αP−∆ + λ(αw/o,P−∆ − αP−∆), where λ is taken 0.2 for a near-
field site or 0.8 otherwise. It is evident that the above fitting approaches require engineering
judgment and are sensitive to non-objective decisions. To serve our purposes the fitting has to
be performed within a software tool and thus we need to develop a generally-applicable and
robust algorithm that can fit a multilinear curve on the SPO curve.
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The fitting of a trilinear or a quadrilinear model on the SPO depends primarily on the
properties of the SPO curve. Figure 6 shows three different SPO curves that the fitting
algorithm should be able to handle. The plot in the left is the most common where both
trilinear and quadrilinear models can be fitted, contrary to the case in the middle where the
original SPO does not have a residual plateau and therefore only a trilinear curve can be fitted.
Finally, the right plot shows a case where the SPO is abruptly terminated due to numerical
non-convergence, signifying a very brittle structure (assuming the analysis has been carefully
performed). All such cases need to be handled efficiently.

In our implementation, the fitting of the SPO is performed in two distinct phases. The first
phase refers to fitting the elastic and the post-elastic segment until the point where ‘capping’
occurs, i.e. the point where the negative segment is initiated. In the second phase we fit the
‘post-capping’ segment with slope αc and the residual strength plateau with ordinate r (Figure
2). Previous research [11, 16] has revealed that the yield strength and the post elastic stiffness,
αhKel, seem to have a significant effect at the SPO-level, but when IDA is performed the
sensitivity is small. Therefore the fitting process is simple in this phase and can be done by
obtaining the slopes αel and αh of the elastic and the post-elastic segment, respectively, and
define the yield point as the intersection of the two lines. Alternatively the yielding point can
be defined as the point where the tangent slope reaches for the first time a given percentage
(say 50%) of the initial elastic. In our study, both approximations will yield almost equivalent
SPO2IDA results.

The post-capping stiffness, αc, and the height of the residual plateau, r, are more difficult
to capture, while our results are more sensitive to those parameters. Again two alternative
strategies have been tested. In the first alternative we perform least-square fitting on the
points between the capping point and the first point of the SPO with base shear lower than
an reasonably-chosen value, say 30%, of the yield strength. Care needs to be taken to scale
the coordinates of the SPO so that the least-square line passes through the capping point.
In other words, if V c and θcroof are the coordinates of the capping point and Kel the initial
elastic stiffness, the fitted line can be expressed as (V − V c) = ac Kel (θroof − θcroof ). The
residual strength, r, is obtained by finding the horizontal line that balances the areas between
the branch with negative slope ac and the remaining points of the SPO. For a quadrilinear
approximation a second alternative is also available. In this case an iterative process that
passes through every point of the SPO that lies beyond the capping point is initiated. Trial ac
and r values are defined by the coordinates of the trial point and the areas above and below
the approximating lines are calculated. The point where best balance is achieved defines the
intersection point of the descending and the horizontal branch. Note that when this process
is followed, the abscissas and the ordinates of the SPO need to normalised by their maximum
values to achieve efficient fitting. In our case, both procedures were found equally efficient,
while for our implementation we have adopted the first option. Contrary to FEMA-440 we
found that there is no need to separate the loss in strength caused by P − ∆ effects and
the component in-cycle strength degradation, since our SPO2IDA tool treats both sources of
nonlinearity equally.
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4. METHODOLOGY

In order to accurately calculate the performance statistics of a structure using static pushover
methods, we will employ an approach based on the Monte Carlo (MC) simulation with Latin
Hypercube Sampling (LHS), conceptually following the idea proposed by Dolsek [9]. As simpler
and less resource-demanding alternatives we propose methods that rely on moment-estimating
techniques such as Rosenblackth’s 2K+1 point estimate method (PEM) [?] and the first-order,
second-moment method (FOSM) [6, 7].

4.1. Monte Carlo Simulation with Latin Hypercube Sampling (LHS)

Using the Monte Carlo (MC) simulation on top of SPO2IDA we are able to quickly obtain a
sufficient sample of IDA curves which can be post-processed to provide the required response
statistics. Since we are interested primarily in the mean and the dispersion of the capacity,
the MC method can be combined with the Latin Hypercube Sampling (LHS) method [24] to
ensure improved accuracy with only a few simulations compared to classic random sampling.
As previously discussed, the random variables are the six parameters that fully describe the
backbone of the plastic hinge moment-rotation relationship (Figure 2) and they are varied
concurrently throughout the structure. Using their distribution properties (Table I) we obtain
NLHS samples with the aid of the algorithm of Iman and Conover [25] to ensure zero correlation
among the six variables. Each of the NLHS realizations of the LA9 frame is subjected to a
pushover analysis and then the SPO2IDA tool is utilised to finally obtain NLHS median IDA
realizations, as discussed in the previous section.

According to Iman [26], if n3 simulations are required to estimate the variation of a linear
function with a given level of confidence using Monte Carlo with random sampling, then Monte
Carlo with LHS sampling will achieve an equivalent estimate with the same confidence after
only n simulations. For nonlinear functions, there are no closed-form relationships, but still
LHS would normally require less simulations than random sampling, as long as the sample size
n is large compared to the number of variables K. When the response statistics of buildings
subjected to seismic actions are sought, the accuracy of LHS for our nonlinear structure is
expected to be close to that of a linear system, since the localized nature of nonlinearity
(beam-hinging) reduces changes in the stiffness matrix to a minimum. Therefore, the degree of
nonlinearity of the problem is actually quite small. In any case, as discussed in [11] a sample
size of NLHS = 200 Monte Carlo simulations with latin hypercube sampling is expected to
provide a close estimate of the response statistics of the problem considered here, although
smaller sample sizes may have been also adequate [9]. A parametric investigation of the required
number of Monte Carlo simulations, NLHS, is presented in the last section of the paper.

In our development we are interested in estimating a central value and a dispersion for the
Sa-values of capacity for a given limit-state defined at a specific value of θmax. As a central
value we use the median of the Sa(T1, 5%)-capacities given θmax, ∆Sa|θmax

, while the dispersion
caused by the uncertainty in the median capacity will be characterised by its β-value, [2] , i.e.
the standard deviation of the natural logarithm of the median Sa-capacities conditioned on
θmax: βU = σlnSa|θmax

. In terms of the work of Jalayer [22] we essentially adopt the IM-based
method of estimating the mean annual frequency of limit-state exceedance.

Thus, if lnS j
a,50%, j = 1, . . . , NLHS, are the median Sa-capacities for a given value of θmax

and lnSa,50% is the mean of their natural logarithm, we can obtain the overall median and
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dispersion, βU , as:

∆Sa =medj

(
S j
a,50%

)
(7)

βU =

√√√√∑j

(
lnSja,50% − lnSa,50%

)2

NLHS − 1
(8)

where “medj” is the median operator over all indices j.
According to the work of Cornell et al. [2], such an estimate of the response dispersion due

to epistemic uncertainty can be combined with the dispersion due to record-to-record aleatory
randomness with a square-root-sum-of-squares (SRSS) rule to provide the total variability:

βRU =
√
β2
R + β2

U (9)

This assumption has seen much use and it has been shown to work reasonably well for this
structure [11]. Alternatively, one could take advantage of SPO2IDA’s ability to provide both
the central value and the dispersion of demand and capacity due to aleatory randomness
to allow a more precise estimation of the overall variablity βRU . By assuming a lognormal
distribution of capacity Sa given θmax, the 50% IDA will provide the median while the 16 and
84 fractile IDAs allow us the estimation of its dispersion, for every sample and every value of
θmax. Thus, for every sample structure we can draw 30 (or more) random IDA curves according
to the distribution properties prescribed by the 16, 50 and 84% percentiles. Then we can pool
together the results from all NLHS = 200 samples and compute the overall median and βRU
from the 30 × 200 = 6000 single-record Sa|θmax IDA curves, much in the way that was done
by Vamvatsikos and Fragiadakis [11] for the actual IDA runs. As the results will show, this
level of sophistication is not necessary for our case-study.

4.2. Approximate Moment Estimation

A simpler alternative to performing Monte Carlo simulation is the use of moment-estimating
methods to approximate the variability in the IDA results. Such methods are typically based on
a small number of runs for appropriately perturbed versions of the structural model obtained
with the mean parameter values. Using functional approximations or moment-matching, such
schemes manage to propagate uncertainty from the parameters to the final results using only
a few IDA runs. Specifically in this study we investigate the point estimate method (PEM) of
Rosenlueth [?] and the first-order, second-moment method (FOSM) [7, 6]. Other methods that
probably could be adopted, but have not been examined here, are response surface methods
(e.g. [10]), or moment matching [27]. For uncorrelated and unskewed random variables, both
PEM and FOSM need only two IDA evaluations per parameter, spaced one standard deviation
away from the base-case mean structural model obtained using the mean parameter values.
Thus to calculate ∆Sa

and βU conditional on θmax we need only 2K + 1 = 13 simulations for
a problem with K = 6 random variables.

While both methods are geared towards estimating the mean and the standard deviation
of a function, they can be made to produce median and β-dispersion estimates. We only need
to apply them to the lnSa(T1, 5%) values rather than Sa(T1, 5%). Then PEM and FOSM will
provide the mean of the natural logarithm of Sa(T1, 5%) and its standard deviation. The latter
is exactly the definition of βU while if we take the exponential (exp) of the former and assuming
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that lognormality holds, we will get an approximation of the median Sa(T1, 5%). Although the
description of both methods can be found in standard textbooks the reader is advised to follow
the implementation described in Reference [11], as there may be several misunderstandings or
errors when such methods are adopted in a lognormal setting.

5. NUMERICAL RESULTS

To test the validity of the approximating procedures we first applied Monte Carlo simulation
using an actual multi-record IDA with thirty ordinary records on the nine-storey, steel moment-
resisting frame of Figure 1. Therefore, we have obtained the exact seismic performance metrics
in IDA-terms of NLHS = 200 realizations of the nine-storey frame. The response statistics
obtained with the actual IDA are considered as a reference solution that our approximate
SPO-based estimations have to comply with. The Table of ground motion records adopted can
be found in Reference [11].

Figure 7a shows the NLHS =200 static pushover curves for the different realizations of the
steel frame. The ultimate capacity varies between 7000 and 15000kN and yielding practically
occurs for θroof values between 0.01 and 0.02. Significant scatter seems to exist in the initiation
of the negative branch, while the negative slope itself does not seem to vary considerably. Based
on the established connection between pushover and IDA, these observations lead us to expect
a significant post-yield scatter of the IDA results.

Figure 7b shows the median IDAs that compare to the approximate IDAs generated with
the SPO2IDA tool and are shown in Figure 8. Similarly to the median curves of Figure 5,
the SPO2IDA curves are smoother than the actual IDA because of the simple backbones and
the smooth parametric equations used in the SPO2IDA tool for both the trilinear and the
quadrilinear approximations of Figure 8. For both SPO2IDA approximations the horizontal
flatline branch of the ultimate Sa-capacities varies similarly between 0.4g and 1.2g and is
practically always initiated beyond θmax = 0.07. On average, yielding takes place for θmax

values between 0.03 and 0.08, both for the IDA and the SPO2IDA results. While the scatter
is similar between IDA and SPO2IDA, the central Sa values are somewhat higher for IDA, an
observation that seems to be slightly demoted when the quadrilinear approximation is used.
Furthermore, compared to the trilinear model the IDAs of the quadrilinear approximation
show a slower transition from the initial linear elastic slope to the ultimate capacity flatline.

The IDA and SPO2IDA curves of the Monte Carlo simulation are post-processed to provide
the overall median ∆Sa

, and the βU -dispersion conditional on θmax. Figure 9 shows the median
Sa-capacities conditional on the limit-state, θmax, where the black lines correspond to the
capacities obtained using Monte Carlo simulation and the gray lines were derived with the
approximating PEM and FOSM methods. Figure 9a corresponds to the median obtained with
the trilinear model and Figure 9b to the quadrilinear approximation. When Monte Carlo
simulation is used on top of SPO2IDA (MCSPO2IDA) the conditional median, ∆Sa

, is very
close to that of the actual IDA for the every limit-state, until θmax = 0.09, while for higher
θmax values the agreement is still quite satisfactory for both models. Approaching the collapse
limit-states (large θmax values), the error on ∆Sa|θmax

remains constant and approximately
equal to 16% for the trilinear model, while the quadrilinear model slightly overestimates the
capacity by 6%. For the early and intermediate limit-states (small and intermediate θmax

values), combining PEM and FOSM with SPO2IDA seems to provide a prediction for the
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Figure 7. (a) NLHS=200 static pushover curves for the LA9 nine-storey steel frame, (b) NLHS=200
median response curves obtained through IDA.
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Figure 8. NLHS=200 IDA curves obtained through SPO2IDA using: (a) a trilinear model, and (b) a
quadrilinear model.

median capacities practically identical to that of MCIDA and MCSPO2IDA. However, for limit-
states with θmax ≥ 0.1, the prediction of the trilinear approximation with PEM and FOSM
slightly biases the median to smaller capacities, while the quadrilinear model underestimates
the median as approaching collapse. For both models, the moment-estimating methods seem
to slightly fluctuate, e.g. the trilinear for θmax values in the 0.04–0.08 range, implying that the
estimations of the PEM and the FOSM are less numerically stable compared to those of the
Monte Carlo. This numerical behaviour also seems to explain of the error of the quadrilinear
model for θmax ≥ 0.1. However, for several applications, moment-estimating methods require a
smaller number of simulations, thus often justifying their use over the Monte Carlo approach.
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Figure 9. Conditional median of Sa given θmax estimated by Monte Carlo on IDA and SPO2IDA
versus PEM and FOSM using: (a) a trilinear and (b) a quadrilinear approximation of the SPO.

Figures 10(a-d) show the dispersion βU of the Sa(T1, 5%)-capacities conditioned on θmax

for the two approximating models. As in the case of the medians, the moment-estimating
methods also exhibit some numerical problems (Figures 10a,b). Since for the β-dispersion this
effect is more pronounced, we chose to smoothen those curves (Figures 10c,d) using a non-
parametric locally weighted regression (LOESS) technique with a coarse span for the moving
average [28], as also discussed in [11]. Within many practical applications the agreement of
the methods proposed is quite satisfactory for the whole range of θmax values even when
approaching collapse, regardless of the approximation of the SPO. More specifically, for the
trilinear model the dispersion at collapse was found close to 0.24 with the MCSPO2IDA approach
and 0.29 with the actual IDA, thus resulting to a 17% error, while for the quadrilinear model
the dispersion was found equal to 0.26, at an error of only 10%. Both figures show that the
MCSPO2IDA slightly overestimates βU for θmax lower than 0.07, and underestimates it beyond
0.1. PEM and FOSM for θmax values beyond 0.7 provide β-dispersion estimates similar to
that of MCSPO2IDA, underestimating the MCIDA by almost 15% for the trilinear model, while
the quadrilinear model achieved a close estimation near collapse and an accuracy similar to
the previous methods for θmax between 0.08 and 0.12. Both moment-matching methods can
be seen as approximations to the MCSPO2IDA curve, rather than the MCIDA. Therefore, the
unsmoothed data of Figures 10a,b correctly oscillate around the MCSPO2IDA curve for the
θmax values less than 0.07, while the smoothed data appear to be closer to the MCIDA, but
this is only due to the coarse span of the LOESS filter.

The accuracy observed in Figure 10 can be partially explained by the small error on the
prediction of the median ∆Sa

curves (Figures 5,9), which practically remains constant for
every simulation and was found to be of the order of 10–20%. Since the error in the prediction
of the median IDA is relatively consistent from sample to sample, the methods proposed are
particularly suitable for calculating the dispersion due to epistemic uncertainty, βU , which
normally necessitates more simulations than those required for the median. For example, the
elastic slope of the base-case IDA, kroof, (Equation 2) was found approximately equal to 20g
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Figure 10. Conditional β-dispersion of Sa given θmax estimated with Monte Carlo on IDA and
SPO2IDA versus PEM and FOSM using: (a) trilinear model, unsmoothed, (b) quadrilinear model,
unsmoothed, (c) trilinear model, smoothed, (d) quadrilinear model, smoothed. The smoothening is

applied only to the PEM and the FOSM methods.

using elastic response history analysis, while the slope calculated with the aid of Equation 4
is equal to 25g. While in this simplification there is an obvious bias that seriously affects
the median (Figure 11a), its consistency over all samples conceals itself on the estimate of the
dispersion (Figure 11b). Thus, adopting the first-mode approximate value and a trilinear model
will result to overestimating the median Sa-capacities for the whole range of θmax values, while
the estimation of the β-dispersion values is practically unaffected. The findings were similar
when the quadrilinear model was adopted instead.

Another issue addressed here is the number of latin hypercube samples required for the
Monte Carlo method to estimate the median ∆Sa

and the βU -dispersion. We use our trilinear
SPO2IDA approximation and with the aid of the Iman and Conover algorithm [25] we generate
three different samples with NLHS=200, 50 and 12. Figure 12 shows the estimations obtained
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Figure 11. (a) Conditional median and (b) conditional β-dispersion values using the first-mode estimate
of Equation 4 for kroof. Compared to Figure 9 the mean is overestimated, while the estimate of the

dispersion is not affected.

for the different sample sizes. It seems that all three samples provide sufficient estimations
for the median, while for the βU -dispersion the 200 samples give a slightly better prediction.
Therefore, Figure 12 indicates that 12 samples will yield accuracy close to that of the 200
samples, and therefore the benefit of NLHS=200 is rather small. If this observation holds
for any NLHS=12 sample, there would be no need for any moment estimating method since
MCSPO2IDA is more stable and requires the same number of simulations. To investigate if this
is indeed the case, we generated 50 alternative suites of each of the three NLHS sample sizes
and we calculated the 90% confidence intervals for the prediction of the conditional median
∆Sa

and the βU -dispersion, using the empirical distribution of the data. Figure 13 shows the
90% confidence intervals for the median ∆Sa

and β-dispersion when different sample sizes are
adopted. For the median, the 12 samples seem to be sufficient, but certainly the prediction is
not as stable as that of the 200 samples. However, for the βU -dispersion it is clear that the
12 simulations are not sufficient and thus the successful prediction of Figure 12b was merely
a coincidence.

6. CONCLUSIONS

An innovative approach has been presented to propagate the epistemic uncertainty from the
model parameters to the actual seismic performance of a structure, providing inexpensive
estimates of the response parameters of the limit-state capacities. The methodology proposed
has been applied on a nine-storey, steel moment-resisting frame with beam-column connections
having quadrilinear backbones that are fully described by six non-deterministic parameters.
Monte Carlo simulation with latin hypercube sampling and moment-estimating techniques
are adopted on top of the Static Pushover to Incremental Dynamic Analysis (SPO2IDA)
tool. SPO2IDA provides computationally inexpensive full-range performance estimations,
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Figure 12. (a) Conditional median and (b) conditional β-dispersion values using different LHS sample
sizes.
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Figure 13. 90% confidence intervals for: (a) conditional median and the (b) conditional β-dispersion
values using different LHS sample sizes.

approximating the time-consuming IDA. The main findings of the study are:

• The SPO2IDA tool exploits the information contained in a static pushover capacity curve
and provides a reliable link between SPO and IDA that can be exploited to obtain useful
response statistics for systems with uncertain parameters.

• Moment-estimating techniques require a minimum number of simulations, perturbing
each random variable above and below its mean. Although the Monte Carlo simulation
is combined with latin hypercube sampling to ensure good accuracy within a few
simulations, the number of simulations required is considerably larger compared to that of
moment-estimating methods. Still, the computing cost of MC on SPO2IDA is affordable
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almost for every practical application, since each simulation corresponds to a single static
pushover run.

• Combing Monte Carlo simulation and latin hypercube sampling with SPO2IDA yields
close estimates for the median ∆Sa

capacities, only slightly under- or over- estimating
them when approaching the collapse limit-states. The β-dispersion values of the Sa-
capacities are also successfully approximated with only a small error for the higher limit-
states.

• Moment-estimating techniques, such as PEM and FOSM, yield equivalent estimations
to those of Monte Carlo on SPO2IDA, the PEM being only marginally more accurate.
Compared to the Monte Carlo method they provide similar estimations for both the
median ∆Sa

and the β-dispersion at the expense of only a few static pushover runs. Still,
they are prone to numerical difficulties, in our case necessitating the use of smoothing
to stabilise their results.

• For the multilinear approximation of the SPO either a trilinear or a quadrilinear model
can be adopted. Both models will yield practically equivalent results, in our case the
former being more stable but having the tendency to bias the predictions to lower
capacities or smaller β-dispersion values.

• The number of latin hypercube samples NLHS required to obtain the response statistics
with sufficient confidence, depends on the problem at hand. Still, even for our simple
case study with 6 random variables, only relatively large sample sizes, e.g. NLHS ≥ 50,
can safeguard the accuracy of Monte Carlo.

The above findings may differ for problems with different building properties, uncertain
parameters, or EDPs. However, the methodology discussed is general in scope and when
adjusted to the problem at hand is able to provide results comparable to those of the Monte
Carlo on actual IDA, at only a fraction of the cost. All in all, the proposed tool is an excellent
resource for approximate estimation of the seismic performance of structures having uncertain
system properties, for the first time providing specific results for each limit-state that can be
used in the place of the generic, code-prescribed values.
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